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INTRODUCTION

Tomography is a powerful technique to non-destructively determine the interior
structure of an object. Usually, a series of projection images (e.g. X-ray images)
is acquired from a range of different positions. from these projection images, a
reconstruction of the object’s interior is computed. Many advanced applications
require fast acquisition, effectively limiting the number of projection images and
imposing a level of noise on these images. These limitations result in artifacts
(deficiencies) in the reconstructed images. Recently, deep neural networks have
emerged as a powerful technique to remove these limited-data artifacts from
reconstructed images, often outperforming conventional state-of-the-art techniques.
To perform this task, the networks are typically trained on a dataset of paired
low-quality and high-quality images of similar objects. This is a major obstacle to
their use in many practical applications. In this thesis, we explore techniques to
employ deep learning in advanced experiments where measuring additional objects
is not possible.

In this chapter, we first describe several applications of tomography and the
importance of accurate reconstructed images. Next, we describe the factors that
determine the quality of the reconstructed images and how they are related. In
Section 1.1.3, the image acquisition process is introduced with a focus on noise
statistics that are relevant to proposed techniques in later chapters. In Sections 1.1.4
and 1.1.5, the tomographic inverse problem is formulated and relevant reconstruction
algorithms are reviewed. Next, deep learning techniques for improving the quality
of reconstructed tomographic images are introduced. In Section 1.1.7, these deep
learning techniques are considered from a Bayesian viewpoint that allows predicting
their properties. Next, practical obstacles to the collection of a training dataset
are discussed. Finally, an overview is given of the main research questions and the
chapters that aim to answer them.
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1.1 Background

1.1.1 Applications of tomography

Tomography is a powerful technique to non-destructively determine the interior
structure of an object. Since the 1960s, tomography has steadily gained popularity
in a variety of applications, ranging from protein structure determination at the
nanometer scale [17] to inspection of airplane assemblies of up to several meters [52].
In this section, we discuss tomography as it is used in three places: the hospital,
the laboratory, and at a synchrotron facility (particle accelerator). For each, we
discuss their characteristics and example use cases, as well as the importance of
obtaining high-quality reconstructed images.

Hospital. The use of X-rays in medical applications is perhaps the most
familiar to the public and can serve as an introduction to the topic. Investigation
using only a single 2D X-ray image is known as radiography and is widely used to
diagnose easily visible injuries such as a broken bone. Here, X-rays pass through
the body and are collected on a detector. As different parts of the body absorb
X-rays to a varying degree, a gray-scale image can be formed that corresponds to
the absorption of the X-rays by the body.

Multiple X-ray images are required to investigate an object using tomography,
which is known as CT (computed tomography) in medical applications. Here, mul-
tiple 2D X-ray images are acquired from varying positions, usually in a continuous
fashion. From these images, a 3D reconstruction of the interior of the patient’s body
can be computed, enabling the diagnosis of diseases that require precise localization
of low-contrast features in the patient’s body, such as a tumor [85]. Commonly,
the X-ray source and detector rotate in a helical pattern around a patient that
lies flat, as displayed in Figure 1.1. On the right, a reconstructed image is shown,
displaying a cross-section of the hip area. The achievable resolution is often quite
coarse, making medical CT unsuitable for many non-medical applications.

Laboratory. Laboratory-based micro-CT is used in a variety of industrial
and scientific applications. It is used to scan smaller objects where it provides
substantially finer resolution than medical X-ray scanners. Typically, the sample
under investigation is mounted on a rotation stage between an X-ray point source
and a detector. This type of acquisition is known as circular cone beam geometry,
and is illustrated in Figure 1.1. More flexible acquisition is possible, for instance,
using the micro-CT scanner at the FleX-ray Laboratory at the CWI [42]. This
scanner has ten degrees of freedom, enabling the user to zoom in (by moving the
object closer to the source), or to obtain a larger virtual detector by repeating
an acquisition with the detector at multiple positions and stitching the projection
images together afterwards.

Micro-CT is used to investigate a wide variety of objects, of which we give a
few examples here. One application of micro-CT is in art history, where it can be
used to assign a date to wooden objects using the tree ring pattern hidden in their
interior structure of the wood [24]. Another application is geology, where micro-CT
is used to examine one-of-a-kind fossils and to quantify geological properties such
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Figure 1.1: Three application areas of tomography. Medical CT is used to diagnose patients
using little radiation and at a relatively coarse resolution. Often, the acquisition proceeds using
a helical cone beam geometries, where the source-detector pair rotates around the patient. A
reconstructed image is show on the right, containing a cross-section of the hip area. Laboratory
micro-CT provides higher rates of radiation to investigate smaller objects a higher resolution than
medical CT. Typically, the circular cone beam geometry is used, where an objects rotates between
a point source and a flat panel detector. On the right, a reconstructed image of oatmeal grains is
shown with a voxel size of 17 pm. Synchrotron-based X-ray tomography provides extremely high
photon flux and even smaller resolution. The commonly used single axis parallel beam acquisition
geometry is shown in the middle. On the right, a 4D (space + time) reconstruction of a hydrogen
fuel cell is shown. The region in the yellow square is shown at three time steps, demonstrating
that a water bubble is forming inside the fuel cell in the area indicated by the yellow circle.



4 CHAPTER 1. INTRODUCTION

as porosity and permeability of rock samples [92]. Properties that are important for
the manufacturing and development of new batteries can also be quantified using
micro-CT [164]. Because X-rays do not easily penetrate the heavy materials present
in batteries, however, scanning can take multiple hours [48]. Faster scanning is
possible at more advanced facilities.

Synchrotron. Many important scientific and industrial advances are enabled by
tomography at one of 50 X-ray synchrotron facilities worldwide [190]. These facilities
generate extremely bright X-ray beams using a particle accelerator, enabling
acquisition at substantially higher speeds and smaller scales than laboratory-based
micro-CT setups. In a typical setup, the sample is mounted on a rotation stage and
the photons in the X-ray beam move along parallel lines, resulting in a single-axis
parallel beam geometry, which is illustrated in Figure 1.1. In this way, scanning a
battery sample takes 5 minutes instead of 4 hours [48].

Because it is a non-destructive technique, synchrotron-based tomography is
ideally suited to track internal structural dynamics over time [115]. Here, a full 3D
reconstruction of a dynamically evolving process inside an object is made at several
time steps, resulting in a 3D movie. This enables examining batteries while they
are discharging, for example, and has important implications for understanding
and optimizing battery performance [12, 111]. Another application is the the
investigation of water dynamics inside a hydrogen fuel cell [195]. This is illustrated
in Figure 1.1, which shows the formation of a water bubble inside a fuel cell. The
frame rate of these experiments (where each frame is one 3D volume) is typically
around 10 Hz, but some experiments have demonstrated frame rates of up to 208 Hz
— three times the frame rate of a regular computer monitor [56].

In all of these applications, the quality of the reconstructed images is important.
In medical settings for instance, visually identifying a lesion (tumor) is complicated,
as the contrast of the lesion with respect to the surrounding tissue is small [123].
Similar considerations arise in art and geology applications where fine-scale features,
such as tree rings, can be extremely important. In addition to the visual inspection,
quantitative analysis is used to automatically extract parameters of interest out of
the reconstructed images, such as the porosity of a rock sample [115]. Here, the
images are usually segmented to identify separate features or parts. Preferably,
coarse-grained techniques, such as thresholding, flood-filling and clustering are
used that can easily be manually tuned, inspected, and applied to large volumes
at once. These techniques can be sensitive to imperfections in the reconstructed
image, and can therefore benefit from high-quality reconstructions.

1.1.2 Factors that influence image quality

The quality of the reconstructed image depends on several factors in the acquisition
process and they are all to some degree interconnected. The relationship between
these factors is displayed schematically in Figure 1.2. We first discuss how these
factors contribute to the quality of the reconstructed image and then discuss limits
that occur in practice.

First of all, measurement noise on the projection images is an important factor
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Figure 1.2: The relation between the aims of tomographic imaging and factors that can be
influenced during acquisition. In the dark gray boxes, we identify three aims: preventing radiation
damage, minimizing acquisition time, and maximizing image quality. The acquisition parameters
are shown in the middle column. Solid arrows with a “+” indicate a positive correlation between
factors and dashed arrows with a “—” indicate a negative correlation.

as noise carries over into the reconstructed images. The noise level of a projection
image is influenced by the exposure time, detector resolution, and photon flux,
the rate of photon emission from the source. As more photons are measured, the
projection image becomes less noisy. Therefore, the noise level can be reduced by
increasing the photon flux or the exposure time of each projection image. Detector
resolution plays an important role as well, as doubling the pixel size in each
dimension quadruples the number of photons measured per pixel, reducing the
level of noise.

Second, the pixel resolution of the detector determines the maximally attainable
voxel resolution of the reconstructed volume. In parallel beam setups, the detector
pixel width and height determine the minimal resolvable width and height of
the voxel. In cone beam setups, the detector and reconstruction resolution are
additionally related by the magnification factor that results from moving the object
closer to the source. In addition, blurring can be induced on the detector by
cross-talk between nearby detector pixels and a large focal spot size, decreasing
the effective resolution [31, 161].

Finally, the resolution of the reconstructed images is influenced by the angular
sampling rate. As projection images are acquired from more angles, the resolution
of the reconstructed images improves. The angular sampling rate is related to the
size of the reconstructed volume by the Crowther criterion [95]. In parallel beam
setups, for instance, achieving full resolution on an N? voxel grid requires 7N /2
projection images to be acquired over an angular range of 180°. If the angular
sampling rate is too low compared to the rotation speed, the projection images
may suffer from motion blur. This occurs when the sample rotates too much in
the course of one exposure [41]. Often, this effect is negligible in practice.

Other factors may also cause a deterioration of image quality. These typically
involve a mismatch between physical reality the mathematical model used for
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reconstruction. For instance, beam hardening artifacts may be introduced into the
reconstructed images when the X-ray beam is not monochromatic [31]. We do not
consider these problems in this thesis.

Practical challenges. In practice, the ability to obtain high-quality measure-
ments can be restricted by the wish to prevent radiation damage and minimize
acquisition time. In addition, other factors come in play that vary from application
to application. In medical tomography, the photon flux and acquisition time are
limited to prevent radiation damage. Because the diagnostic use of CT continues
to increase, radiation damage is a growing concern: it has been estimated that
the percentage of cancer cases in the United States that may be attributable to
the radiation from CT studies has increased from 0.4% in 1996 to 1.5 — 2.0% in
2007 [25]. Radiation damage is not limited to human studies and is a frequent
concern in many applications.

The photon flux may also be limited by the available hardware. As previously
mentioned, the photon flux in laboratory micro-CT is limited, which causes the
scan of a battery to take hours. At synchrotron facilities, experiments may also
encounter flux limits, for instance during a scan of an operating battery, where
radiation heats up the battery and can disrupt the process under investigation.

In order to complete more scans faster, ways of minimizing the acquisition
time are always sought for in the hospital, laboratory, and the synchrotron. The
acquisition time can also face a hard limit. In 4D tomography, the speed of the
interior dynamics of the object restricts the acquisition time of a single time step,
as the reconstruction becomes blurred if too much movement occurs during its
acquisition. An example of interior dynamics is shown in Figure 1.1, where a
water bubble appears in a fuel cell in the course of a second, and intermediate
reconstructions are necessary to track its growth.

The acquisition of a single time step is usually accelerated by reducing the
angular sampling rate (resulting in undersampling) or by reducing the exposure
time of each projection image. Decreasing the exposure time has a limit, however,
as most detectors have a maximum frame rate [131]. This imposes a maximum on
the angular sampling rate when the acquisition time is fixed.

In laboratory micro-CT, the achievable resolution in the reconstruction can be
limited by the object size. Typically, the projection images can be magnified by
moving the object closer to the source. If the object is too large however, its projec-
tion may not fall entirely within the detector, which can lead to truncation artifacts
in the reconstruction. This imposes a maximum magnification, and therefore a
tension exists between object size and achievable reconstruction resolution.

In summary, several factors influence the quality of the reconstructed images
that must be balanced to take into account hardware limits, total scan time, and
acceptable radiation dose.

1.1.3 Noise statistics in absorption-contrast tomography

As discussed above, noise and noise statistics play an important role in tomography,
and specifically in the algorithms proposed in this thesis. We use the properties of
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Figure 1.3: Absorption of an X-ray beam in a single-pixel detector setup. (a), An X-ray beam
with initial intensity Io passes through a uniform mass with absorption coefficient v. Each photon
has a probability 7 of being transmitted through the mass. (b), The relative bias in y due to
non-linear effects in post-processing as a function of I, the emitted photon count. The horizontal
blue bar indicates a 1% offset from v. In the inset, the effect of photon starvation is plotted for
the same values of Ij.

the noise in tomographic imaging to improve reconstructions using deep learning.
One specific feature that the noise is assumed to have is that it is unbiased. A
random variable a is said to be an unbiased estimate of b if

b=E[a] = lim %Za (1.1)

i.e., if the average value of an increasing number of measurements a; ~ a converges
to b [178], where the second equality is a consequence of the strong law of large
numbers. In this section, using an example of a single-pixel detector, we show that
under reasonable conditions the bias of the noise is very mild.

First, we introduce the single-pixel detector setup and describe how absorption
can be modeled as a random process. Next, we describe how the absorption process
can become biased as a result of photon starvation and Jensen’s inequality and
describe conditions under which the bias is negligible. Finally, we discuss other
sources of randomness in the acquisition process.

Suppose that an X-ray beam is measured on a single pixel detector, after it
has passed through a uniform mass. Furthermore, suppose that the X-ray source
emits Iy photons and that the mass of unit width has an attenuation coefficient v,
describing its tendency to absorb photons. Each individual photon has a probability
T = e~ ¥ to be transmitted through the object as a result of Beer-Lambert’s law of
attenuation [31]. The number of photons detected at the detector, |, is therefore
B(Iy,7) binomially distributed, with Iy the number of emitted photons. The goal
is to recover the attenuation coefficient v from the measured number of photons I.
This setup is illustrated in Figure 1.3 (a).
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The expection of | has an exponential relation to v, i.e.,

Io
R S R L R L O (12)

k=0

In practice, the attenuation coefficient v is therefore recovered by taking the
logarithm, i.e,

(1.3)

where we define the attenuation projection value y as the logarithmic fraction on
the right-hand side.

The question is whether y is an unbiased estimate of v. Since Equation (1.3) is
non-linear, it is not self-evident that the noise is unbiased, i.e., E]y] = v. Two
phenomena exert an opposite bias on this expectation: photon starvation and
Jensen’s inequality.

Photon starvation occurs when a pixel does not collect any photons, i.e., the
event {I = 0}. This event occurs with probability

P(1=0)=(1—-1)l. (1.4)

When this happens, calculating y is more difficult, since the logarithm of zero is
undefined. A practical solution is to set the photon count to 1 before taking the
logarithm. This introduces a downward bias in the statistics of y.

The other effect on the expected attenuation projection function is purely math-
ematical. Since the negative logarithm is a convex function, Jensen’s inequality [66]
states that we have
E[]

0

<E {mlﬂ =EJ]. (1.5)

v=—1In

Here, the equality on the left-hand side is a direct result of Equation (1.2). Hence,
Jensen’s inequality exerts an upward bias on y and the photon starvation correction
exerts a downward bias.

The effect of photon starvation and Jensen’s inequality is illustrated in Figure 1.3.
Here, the measurement process has been repeated a million times to obtain an
accurate estimate of E [y]. For small values of the transmittance 7, photon starvation
correction exerts a strong downward bias at smaller values of Iy. For larger values
of 7, the upward bias slowly reduces, until at roughly 1000 emitted photons, the
bias is mostly removed. As a rule of thumb, for non-highly attenuation objects, at
1000 emitted photons per pixel there appears to be little bias in the noise.

For the sake of argument, some aspects of the tomographic acquisition pipeline
have been simplified. In the standard treatment, the measurement of a photon
is a statistical process that can be divided into three parts [31, 192]: (1) the
probability of a photon being emitted from the source, (2) the probability of an
emitted photon being transmitted through the object, and (3) the probability of
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a transmitted photon being detected by the detector. The emitted number of
photons I per time step is typically Poisson-distributed [192]. The binomial process
describing the absorption of photons by the object commonly approximated using
a Poisson distribution as emission rate I is typically large [31]. The measurement
process on the detector can be modeled using a Poissonian-Gaussian model that is
influenced by the quantum efficiency of converting photons to electrons (Poisson)
and electronic noise (Gaussian) due to thermal noise or bias currents [55, 192]. In
the regime where the absorption process is unbiased, however, these effects are
minor.

1.1.4 Formulation of the inverse problem

Many common tomography setups can be modeled as a collection of line integrals
through space where the ith measurement y; € R is obtained as a line integral

yi = /Rz(si + ;) dt (1.6)

through a point s; € R? with direction n, € R3 [173].

The canonical case is absorption contrast tomography, which is also used
in medical applications. In absorption contrast tomography, the reconstruction
problem can be posed as a linear discrete inverse problem. Suppose measurements
yey=RN 0Ny are acquired from Ny positions using a square detector that is
divided into Ng pixels. Define the cubic reconstruction volume x € X = RN on
a voxel grid and let A denote the projection matrix such that A;; describes the
absorption by object voxel j of the ray to measurement i. The goal is to determine
the value of x that gave rise to the measurement

Ax=y. (1.7)

An algorithm, R : Y — X, that recovers the volume x from the measurements y is
known as a tomographic reconstruction algorithm.

1.1.5 Tomographic reconstruction algorithms

Several approaches to tomographic reconstruction can be distinguished. Each
approach can be characterized in terms of computational speed, sensitivity to
noise and undersampling, and their ability to be applied to different acquisition
geometries.

Fast filtered backprojection (FBP)-type reconstruction algorithms have been
developed over the years for common acquisition geometries, such as single-axis
parallel-beam (FBP) [134], circular cone beam (FDK) [53], and the helical cone
beam (Katsevich’s algorithm) geometry [89]. Each algorithm is specific to a single
acquisition geometry. They are well-suited for fast, parallel computation [140] and
are derived from a continous formulation of the inverse problem. These algorithms
typically consist of two steps. First, the acquired projection data y is convolved
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with a filter h. Next, the filtered data is backprojected (A”) into the volume,
leading to

XFBP = AT (h * y) . (18)

Reconstructions computed by FBP-type methods can suffer from significant artifacts
when the number or quality of the measurements decreases. Artifacts can be
remedied to an extent by altering the filter h, making it more similar to a low-
pass filter [134]. An algorithm that is similarly fast, specific to one acquisition
geometry, and sensitive to noise, is the GridRec algorithm [118]. Doing away with
the backprojection step, the algorithm can be considered as a non-uniform fast
fourier transform [54], which aids its computational performance as images become
larger [141]. The GridRec and FBP-type methods are collectively referred to as
direct methods, distinguishing them from iterative and variational methods that
are described next.

Iterative reconstruction algorithms aim to solve Equation 1.7 by treating it as
a minimization problem that is typically formulated as

Xiter = argminHAx—}’Hg. (1.9)
xeX

As the name implies, the methods operate by refining the reconstruction over a
number of iterations. An elementary example is the Landweber iteration [105]

xo=0¢ X, (1.10)
xi1 =% +nAT (y — Ax;). (1.11)

In each iteration, the residual error y — A x; is backprojected and added to
the current estimate after multiplication by a step size 1. Common iterative
reconstruction algorithms include ART [59], SART [6], CGLS [76], and SIRT [57, 60].
An advantage of iterative reconstruction methods is that they can be applied to any
(non-standard) acquisition geometry where the forward operator A can be computed.
Compared to direct methods however, they are substantially more computationally
intensive. In addition, like direct methods, they can suffer from artifacts in case of
noise or undersampling, which is typically remedied by early stopping, i.e., stopping
the iteration before convergence has been reached. This effectively retains the
low-frequency components of the reconstruction and moderates the high-frequency
components.

Variational reconstruction algorithms aim to maximize not just the agreement
with respect to the measured data, but also impose prior knowledge on the recon-
struction through regularization. A common varational method in tomography
is Total-Variation Minimization (TV-MIN) [168] that obtains a reconstruction
through minimizing the objective

Xyar :argminHAX—yHg-l-)\g(J?), (1.12)
xeX
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where the regularization function is defined by g(x) = |||Vx|||; with V the discrete
gradient operation. This regularization function promotes piecewise constant re-
constructions. The degree to which the solution must satisfy prior knowledge is
modulated by the regularization parameter A. Algorithms for minimizing the objec-
tive in Equation (1.12) include FISTA [15] and the Chambolle-Pock algorithm [33].
Compared to the previously described iterative reconstruction methods, variational
methods tend to be slower to compute, although the addition of regularization can
make them more robust to noise and undersampling. As the prior knowledge that
informs the regularization function g depends on the object class being scanned,
manual tuning of both g and A may be required to obtain optimal results on new
classes of objects [122]. Deep learning methods hold the promise of learning prior
knowledge by example.

1.1.6 Convolutional neural networks (CNNs) in tomography

Among techniques for removing artifacts from reconstructed images, deep convo-
lutional neural network (CNN)-based methods have shown strong results, often
outperforming conventional state-of-the-art techniques [5, 81, 85, 140]. A sub-
stantial subset of these techniques are known as post-processing techniques. Here,
a reconstruction is first computed using a fast reconstruction algorithm and a
CNN is used to post-process the reconstructed image. Because the post-processing
approach has proven to be applicable to large-scale tomographic problems [140], it
is the main focus of this thesis.

CNNs are usually organized in layers: the input image is copied into the first
layer, the output image is the final layer, and computations are performed in the
intermediate layers. The CNN computes convolutions that are parameterized by
thousands to millions of small filters (typically 3 x 3). In each intermediate layer,
the images in the previous layer are convolved with these filters, after which a
pixel-wise non-linear function is applied. A common non-linearity is the ReLLU
function, which is the identity for positive arguments and zero otherwise [79, 133].
A prototypical CNN is illustrated in Figure 1.4. In practice, results can be improved
substantially by using more complex network structures. Throughout this thesis,
we use the UNet [38, 156], DnCNN [199], and MS-D networks [140, 143], which are
introduced in the relevant chapters.

A CNN is usually prepared to perform a specific image-to-image translation task
by supervised training. During training, the network is presented with low-quality
input images and high-quality target images from a training dataset. On each
image pair, the parameters of the convolutions are optimized to minimize the
training loss, i.e., the difference between the output and target image. The training
loss is commonly quantified by the pixel-wise mean square error [66] and minimized
using stochastic gradient descent [153].
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Figure 1.4: A prototypical convolutional neural network (CNN) in a supervised training arrange-
ment for denoising. The CNN is composed of multiple layers. To compute an image in the next
layer, images in the previous layer are convolved with a small filter (depicted in blue), after
which a non-linear function is applied. To train a CNN to perform denoising, the output image is
compared to a target image, and the convolution filters are updated accordingly.

1.1.7 CNN training as Bayesian function estimation

When formulated in a Bayesian statistical framework [9], the solution of the training
minimization problem can be described in closed form. This solution can be used
to predict important properties of the trained neural network, which we use in the
methods developed in this thesis.

Suppose the pairs of input and target images are drawn from a prior distribution
as follows

u;,v; ~ (u,v), i=1,...,N, (1.13)

where u and w are image-valued random variables. Then the solution of the training
minimization problem on this dataset can be considered as approximating the
regression function

N
h* =argminE, , [Hh(u) —v|| ;} R argminz [Ih(u;) — vl ;, (1.14)
h h =

that minimizes the expected prediction error among a class of functions [66]. In
the case of the squared Lo-norm, the regression function is known [4] and equals
the conditional expectation

R (u)=E[v|u=ul. (1.15)

In practice, the trained neural network does not equal h* and an approximation is
obtained. However, since equation (1.15) describes the solution in the ideal case,
it can be used to predict properties of the output of trained neural networks in
practice, as we show in Chapter 3.

1.1.8 Deep learning challenges in tomography applications

Tomographic applications of deep learning face a challenge in obtaining a dataset
that is suitable for supervised training. We first identify three issues that underly
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this challenge, followed by common strategies to work around them. First of all,
as outlined in Section 1.1.2, obtaining high-quality images may be complicated,
expensive, or impossible.

Second, obtaining a large quantity of similar data can be difficult. That is, data
that is similar enough to the object under investigation that it can provide a useful
inductive bias during neural network training. At synchrotron facilities, beam
time may be limited or too expensive. Using micro-CT, scanning multiple objects
may take prohibitively long (batteries, for instance). In addition, the object under
investigation may be unique or expensive, for instance in the case of a historical
art object. In medical applications, large quantities of similar data are available, as
many scans are performed every day. Nonetheless, the collection and dissemination
of large datasets may encounter ethical concerns and the normalization of data
acquired using different scanners is challenging in both CT and magnetic resonance
imaging (MRI) [35].

Finally, the exact pairing of the low- and high-quality datasets can be time
consuming, requiring manual tuning to register the images. This is important
because the accuracy of registration directly impacts the quality of the trained
network [166]. When the object moves or degrades during a scan, accurate pair-
ing is even more complicated and may require advanced deformable registration
methods [49]. Therefore, deficiencies in data quality, sample quantity, and image
pairing are important to address.

In practice, these issues are circumvented using several strategies, each with
their own downsides. The most prevalent is the use of synthetic degradation of
high-quality data. For instance, noise can be added to high-quality projection
images to simulate a low dose acquisition [123]. Another tactic that is popular in
MRI is the use of undersampling, where the low-quality dataset is obtained by
removing a fraction of the projection images [96, 140]. Synthetic degradation solves
the problem of pairing, but obtaining high-quality data remains an issue.

Another approach is to use a computationally expensive reconstruction algo-
rithm to compute a “gold standard” reconstruction. An example of this approach is
found in neutron imaging [181], where cheap FBP-type reconstructions are paired
with expensive model-based reconstructions. Here, the trained networks do not
exceed the reconstruction quality of the expensive reconstruction algorithm and
the aim is mainly to speed up future computations of the reconstruction.

When accurate pairing is a problem, but low-quality data and high-quality data
can be obtained separately, then training using cycle-consistency may be used. In
this approach, two translation networks are trained. One is trained to convert the
low-quality to high-quality data and the other is trained to perform the reverse
transformation. Meanwhile, two discriminator networks are trained to distinguish
between the outputs of the networks and real collected data. The translation
networks are optimized to minimize their chance of detection by the discriminator
networks and to maximize their cycle consistency: ideally, the application of the
first translation network followed by the second should yield the original image.
This strategy is applied to multiphase coronary CT angiography, where multiple
CT measurements of the heart are taken using different levels of radiation dose [84].
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In practice, however, the training process is extremely sensitive to hyperparameters
and may require repetitive manual tuning to prevent optimization instability [7,
62] and mode collapse [125, 151].

Finally, synthetic data may be used to obtain a training dataset. In practice,
however, it is questionable whether the data is similar and representative enough
to trust the trained neural network on real-world data. This vulnerability has
raised concerns about the proliferation of synthetic data in medical applications, for
instance [36]. The use of synthetic data is therefore advised mainly to complement
real-world data.

1.2 Research questions

In this thesis, strategies are explored to employ deep learning in situations where a
large set of similar data is not available, or high-quality measurements are absent.
An outline of the thesis is provided first, followed by a description of the research
questions on the next pages.

In Chapter 2, we investigate how the resolution of reconstructed images can be
improved using deep learning when only a single object is available. This involves
an acquisition strategy where the object is scanned twice without scanning the
full object at high-resolution. Using this approach, it is possible to construct a
supervised training dataset containing paired low-resolution and high-resolution
images, from which a neural network can be trained.

In Chapter 3, we study the properties of noise in tomography and determine
whether techniques from photographic image denoising carry over into the domain
tomographic of reconstructed images. In addition, we develop a deep learning
technique for denoising (Noise2Inverse) that can be applied to tomography and
related inverse problems. This approach does not require a supervised training
dataset containing high-quality images: in fact, the method can be applied to any
existing tomographic dataset.

In Chapter 4, the applicability of Noise2Inverse to real-world synchrotron data
is explored. Specifically, the use of additional information from the space, time,
and spectrum-like domain is investigated as a means to improve reconstruction
quality.

While validating the aforementioned approaches using real-world data, a recur-
ring problem was determining the exact geometry of the tomographic acquisition.
In Chapter 2 for instance, a low-resolution and high-resolution reconstruction had
to be perfectly registered (made to overlap) in order to train a neural network.
This was complicated by the fact that the positions of the source and detector were
not known with sufficient precision, requiring sensitive tuning after the acquisition
was complete. In Chapter 4, a substantial improvement in image quality depended
on a tiny deviation of the investigated object’s rotation speed from its reported
value that was only discovered after careful investigation.

It has therefore become apparent that software is needed that can provide
support to perform small and common adjustments to standard geometries, as
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well as support to devise new acquisition geometries that are increasingly used in
advanced experiments. This is the topic of Chapter 5.

The chapters deal with the following research questions, which are described on
a separate page each.
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Research question 1. Can deep learning be used to improve the resolution of
reconstructed images using a tomographic acquisition of a single object?

In Chapter 2, we propose a deep learning method for improving the resolution
of reconstructed images of a single object. It involves a custom acquisition protocol
for cone beam micro-CT that enables the reconstruction of a region of interest at
low-resolution and at high-resolution. The reconstructions of the region of interest
serves as a training dataset for a deep learning model. The trained model is applied
to the full low-resolution reconstruction to obtain images of the whole object at
high resolution.

Low-resolution Ours High-resolution
input reconstruction ground truth

Figure 1.5: The result of applying our proposed method for resolution improvement to a dataset
containing oatmeal grains. The images display a slice through a region of interest that was
acquired for validation. The top row shows the original low-resolution reconstruction, the results
of the proposed method, and a ground truth reconstruction that was used for validation. The
bottom row shows a 4x magnification of the region indicated by the yellow square.
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Research question 2A. Many image denoising methods depend on the assumption
that moise in one pizel is uncorrelated to noise in any other pizel. Can such image
denoising techniques achieve similar performance on tomographic reconstructed
images as they do on noisy images that satisfy the no-correlation assumption?

In Chapter 3, the properties of noise in photographic images and in reconstructed
images is compared. Many photographic image denoising methods depend on the
assumption that noise in one pixel is not correlated to noise in another pixel. In
tomography, however, backprojection smears out the noise in a detector pixel across
a line through the reconstructed images, which may cause the noise in one pixel
to be correlated to noise in other pixels of the reconstructed image. The effect of
applying methods with the no-correlation assumption to tomographic images is
investigated in Section 3.3.4.

Normal Gaussian noise

@® Noise in adjacent
pixels is uncorrelated
Noise2Self

Tomographic noise

@ Noise in adjacent
pixels is correlated

Figure 1.6: The performance of Noise2Self, a photographic image denoising method introduced in
Chapter 3, is compared as it is applied to noise common to photography (Gaussian noise, top
row) and to noise common to tomography (bottom row). The noise levels (PSNR with respect to
ground truth) of the noisy images are similar (left column). After application of Noise2Self both
images are less noisy (right column), but the PSNR improvement is substantially smaller in the
case of tomographic noise.
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Research question 2B. Can deep learning be used to denoise a single 3D
tomographic acquisition without any additional training data?

In Chapter 3, we propose Noise2Inverse, a method for training deep neural
networks to denoise reconstructed images using only noisy training images, i.e., no
additional noise-free measurements are required. By considering the training process
of neural networks in an idealized mathematical framework, the solution to the
training process can be written down in simple terms, using Bayesian probabability
theory. Making use of standard results on statistical independence and linearity in
probability theory, an argument is made that any solution to the proposed training
scheme is forced to remove noise from its input. It is demonstrated that neural
networks trained using the proposed scheme indeed remove noise. In fact, they
obtain better image metrics than conventional reconstruction methods on simulated
data.

Supervised Noise2Inverse (ours) Deep Image Prior TV-MIN

Figure 1.7: A comparison of the proposed Noise2Inverse method to other reconstruction methods
on a simulated noisy foam phantom. Results are displayed of supervised training (with access
to noise-free data), the proposed Noise2Inverse method (with access to only noisy data), the
unsupervised Deep Image Prior, and total-variation minimization (TV-MIN). In each panel, the
insets show a magnification of the noisy FBP reconstruction, the ground truth, and the result of
the reconstruction method (in red). The noise level in the top row is more challenging than in
the bottom row.
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Research question 3. Can self-supervised denoising be applied to real-world
synchrotron-based tomographic experiments?

In Chapter 4, we demonstrate that the Noise2Inverse method can be used
to denoise challenging real-world tomographic datasets obtained at synchrotron
X-ray facilities. In Chapter 3, only 2D spatial information was taken into account
in applications of Noise2Inverse. In this chapter, we expand the application
of Noise2Inverse in space, time, and spectrum-like domains. This development
enhances applications to static and dynamic micro-tomography as well as X-
ray diffraction computed tomography (XRD-CT). We show results on a micro-
tomography dataset, a dynamic micro-tomography dataset, and on an X-ray
diffraction computed tomography dataset. These results demonstrate the ability of
Noise2Inverse to perform accurate denoising and its potential to enable a substantial
reduction in acquisition time while maintaining image quality.

Conventional
reconstruction

Conventional
reconstruction
using optimized
preprocessing
pipeline

Noise2Inverse
(Ours)

Figure 1.8: Reconstructions of a noisy synchrotron micro-tomography dataset of a fuel cell. From
top to bottom, reconstructions of a horizontal slice using a conventional reconstruction algorithm
(GridRec [118]), using a manually optimized preprocessing pipeline [29], and a reconstruction
using Noise2Inverse. Maginifications of the region indicated by the yellow square are shown on
the right.
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Research question 4. Can the implementation of reconstruction algorithms for
advanced synchrotron tomography techniques be aided by a concise and efficient
way to express acquisition geometries in terms of basic building blocks, primitive
geometric transformations, and their compositions?

In Chapter 5, we present the tomosipo software package. Its application
programming interface (API) provides primitives to create common tomographic
acquisition geometries and several composable tools to manipulate them, such
as geometric transformations. In addition, the package allows making full use of
the graphics processing unit (GPU) to efficiently compute reconstructions using
advanced algorithms.

We demonstrate the ease of making common adjustments to an acquisition
geometry, such as changing the center of rotation. In addition, the design and
implementation of recently developed synchrotron-based tomography techniques is
demonstrated, specifically diffraction contrast tomography (DCT) [184] and X-ray
scattering tensor tomography (XSTT) [93]. Reconstructions of real-world data
from synchrotron and laboratory micro-CT sources are shown, computed using
several common reconstruction algorithms. Finally, bechmarks demonstrate the
utility of being able to take full advantage of the GPU.

t = np.linspace(-1, 1, 100) # Time t = -1.0, -.98, ..., 1 \
s =2 *%np.pi*t # Angle

radius = 2 # Radius of helix

h=1.0 # Vertical "speed"

vg = ts.volume()
pg = ts.cone(src_orig_dist=radius, src_det_dist=2 * radius)

R = ts.rotate(pos=0, axis=(1, 0, 0), angles=s)
T = ts.translate(axis=(1, 0, 0), alpha = h * s / (2 * np.pi))
H=T%*R

ts.svg(vg, H * pg.to vec())

Figure 1.9: A demonstration of composing primitive geometric transforms in tomosipo. A helical
acquisition geometry is defined using the code on the left and displayed on the right. First, a
non-moving reconstruction volume and source-detector pair are defined. Next, a helical movement
is defined by composing the primitive translation and rotation transforms. Finally, the helical
transform is applied to the source-detector pair to set it in motion.
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“I think that the referee did not “Ik denk dat die scheidsrechter niet
allow much, but didn’t see much. zoveel toe liet, maar zag niet zoveel.
You can hardly whistle for some- Je kan moeilijk fluiten als je iets
thing you cannot see.” niet ziet.”

Johan Cruijff,
NOS television, 7 July 1998

Tomography is a powerful technique for reconstructing an image of the interior
of an object from a series of its projections, acquired from a range of angles. In com-
puted tomography (CT), a 3D volumetric representation of the object is computed
from a set of projections using a tomographic reconstruction algorithm. A broad
range of imaging modalities can be used for acquiring the projection images, includ-
ing X-ray imaging [39], electron imaging [128], neutron imaging [86], and optical
imaging [8], all resulting in similar computational reconstruction problems.

Improving the resolution of tomographic 3D volumes is an important goal in
the development of new tomographic scanners and their accompanying software.
Improvements in resolution enable new developments in materials science [159],
geology [39], and other fields of inquiry [172]. In some cases, the resolution
of the acquired projections is limited by the effective pixel size of the detector,
which imposes a discretization on the measured data that is carried over into
the reconstructed 3D volume. For certain tomographic scanners, this limit can
be overcome by zooming into a region of interest, decreasing the effective pixel

This chapter is based on:
A. A. Hendriksen, D. M. Pelt, W. J. Palenstijn, S. B. Coban, and K. J. Batenburg. “On-
The-Fly Machine Learning for Improving Image Resolution in Tomography”. Applied
Sciences 9.12 (2019).
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size of the detector [39]. Often, other properties of the imaging process also limit
the resolution, such as the spot-size of the radiation source or pixel cross-talk
on the detector. In such cases, the actual resolution at which a 3D image can
be reconstructed is lower than the theoretical maximum based on the detector
resolution [31]. When using standard reconstruction algorithms, such as the
well-known Filtered Backprojection method (FBP) or Algebraic Reconstruction
Technique (ART), the resolution of the reconstructed volume is inherently limited
by the resolution and signal-to-noise ratio of the acquired projection data [61,
132].

Various tomographic techniques permit zooming in to a specific parts of an
object, leading to magnified projection images. At synchrotron light sources, X-ray
images are acquired by converting the high energy photons transmitted through the
object into visible light using a scintillator. The visible light is converted into digital
images by a conventional high-resolution image sensor. Magnification of the region
of interest is achieved by magnifying the visible light using optical instruments
placed between the scintillator and image sensor [172]. Laboratory CT systems,
on the other hand, have a natural zooming ability, since the X-rays emanate from
a point source and are projected onto a linear (fan beam) or planar detector (cone
beam). Therefore, moving the object closer to the source magnifies the projected
image on the detector. In this chapter, we focus on the 3D cone-beam setup,
although the proposed approach is applicable to other tomographic techniques as
well, including synchrotron tomography.

A variety of strategies have been proposed for increasing the resolution of
tomographic volumes, either by changing the scanning process, or by changing the
reconstruction method. When changing the scanning process, several strategies are
commonly used:

e  High-resolution 3D images can be obtained if a small section can be physically
extracted from the object and then scanned at a higher magnification. This
provides only information on the particular section, and involves the destruction
of the full sample [92].

e  Region-of-interest tomography focuses the imaging system on a sub-region of
the object, obtaining a set of projections in which that region is always visible,
but also superimposed on the surrounding structures. This only recovers high-
quality 3D information of the region of interest and leads to challenging image
reconstruction problems, as truncation artifacts can hamper the reconstruction
quality [135].

e In some cases, it is possible to move the detector while performing a scan,
creating a large projection by stitching the images for several detector posi-
tions [183]. This permits capturing the full object at a high zoom factor, yet at
the cost of a strong increase in radiation dose, scanning time, and computation
time.

The resolution of the reconstruction can also be increased by incorporating
certain prior knowledge about the scanned object into the reconstruction algorithm,
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resulting in super-resolution reconstruction. In CT, such prior knowledge comes
in many forms, e.g., sparsity of the reconstructed image [108], sparsity of its
gradient [19, 169], or knowledge of the materials constituting the object and their
attenuation coefficients [13]. However, such prior knowledge is often not available
in practice and introduces the risk of making assumptions that are not in good
agreement with the actual scanned object, which can decrease the quality of the
reconstructed image.

In recent years, machine learning has shown the ability to improve resolution
in a range of imaging applications [106, 155]. In particular, convolutional neural
networks (CNN) have been applied successfully to attain super-resolution for a wide
range of imaging modalities [106]. By training the CNN to compute the mapping
between low-resolution data and specially obtained high-resolution training data,
the characteristics of the datasets can be learned, removing the need for manually
choosing a model. However, this approach relies on the availability of high quality
training data for a series of similar objects, which for tomography would consist
of high- and low-resolution scans of these objects. Such data are often difficult to
obtain in practice for two main reasons:

e  when the objects under investigation are unique (i.e., no batches of similar
objects are available), it is not possible to obtain the training data;

e  creating high-resolution scans requires long scanning time and may also require
high radiation dose, which can be unacceptable for dose-sensitive objects.

Therefore, existing machine learning approaches to achieve super-resolution in
tomographic imaging are often infeasible in practice.

In this chapter, we propose a novel technique for computationally improving
image resolution in tomography. The technique integrates a specially designed
scheme for acquiring the scan data and a machine learning method for super-
resolution imaging. The data acquisition protocol ensures that certain sub-regions
of the scanned object can be reconstructed at high resolution, while still keeping
the total scanning time and dose relatively low. By using these high-resolution
sub-regions as a training target for creating a super-resolution version of the full
object, key morphological properties of the scanned object can be captured even if
the scanned object is unique and no similar objects are available.

Rather than exploiting similarity between a large batch of objects, our approach
exploits self-similarity within a single object. As such, it is expected to perform
properly if the object has high self-similarity, meaning that the local structure
of the material is consistent throughout the entire object. Objects with such
self-similar structures are abundantly available in nature, and are investigated
in detail specifically for their structure. Examples include the crystallization
of rare fossils and meteorites, or the porosity and texture of rocks and soils in
geology [92]. Furthermore, in materials science, investigations are conducted on
the micro-structure of metal foams, batteries, and other materials to improve their
physical properties [87, 159]. The goal of this chapter is to present an approach for
improving the resolution of tomographic reconstructions of these type of objects.
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We show visual and quantitative results for simulated and experimentally acquired
cone-beam CT datasets.

This chapter is structured as follows. Section 2.1 introduces necessary notation.
In Section 2.2, we present our method. In Section 2.3, we describe the experiments
that were performed to evaluate the accuracy of the proposed approach. Results
are presented on simulated and experimentally acquired data. In Section 2.4, we
discuss these results and provide possibilities for further research. Finally, our
conclusions are presented in Section 2.5.

2.1 Background and Notation

2.1.1 Tomography

In circular cone-beam CT, an X-ray point source and flat-panel detector are fixed
opposite to each other at some distance, which we refer to as the source-detector
distance (SDD). In between, at a distance SOD (source-object distance) to the
source, the object under study is mounted on a rotation stage. KEquivalently,
the object can be fixed while the source and detector rotate around it. In either
case, X-ray images are acquired at discrete angles during rotation. The resulting
stack of pictures is called the projection dataset. The setup is displayed in Figure 2.1.

Cone beam tomography can be modeled as follows. Let the object function
f:Q — R represent the density of an unknown 3D volume supported on Q C R3.
From the frame of reference of the object, the formation of the projection on the
detector is given by

Py, v) = /O FU@) dt, (2.1)

where [(t) : [0,1] — R? is the parameterization of the line segment connecting the
position of the source at angle 6 with position (u,v) on the detector.

In practice, only a finite number Ny of projections are acquired on a discrete
grid of N, x N, detector pixels of size r x r. Hence, the projection data can
be described by a vector p € R™,m = Ny x N, x N,. Likewise, the object f
is represented by a three-dimensional voxel grid x € RN=*NxxNx describing a
physical volume Q, O . Here, solely for ease of exposition, we choose all grids
to be cubes. The physical dimensions of a single voxel, the voxel size, is naturally
determined by the number of voxels in x and choice of {24, and can in principle be
made arbitrarily small. The discrete formulation gives rise to the linear inverse
problem

Ax = p, (2.2)

with A = (a;;) an m x n matrix where a;; represents the contribution of volume
voxel j to detector pixel i. The goal of tomographic reconstruction is to estimate x
such that it matches the Ny X Ny x Ny voxel discretization of f.
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Figure 2.1: A schematic overview of the cone-beam geometry. The object is mounted on a
rotation stage at distance SOD from the source. The object is supported on €2, and the voxel
grid x is supported on Q. The detector is at distance SDD from the source and is divided into
Ny X N, pixels of size 7 x r. We use the coordinates (u,v) to denote a location on the detector.

For the circular cone beam trajectory, several methods exist to compute x from
projections p. One of these methods is the widely used Feldkamp—Davis—Kress
(FDK) algorithm [53], FDK : RVexNuxNo _y RNxXNxXNx wwhich computes

% = FDK (p) = A" (1 * P10, (2.3)

where AT € R™*™ the transpose of A, is the discrete backprojection of p onto x,
h € R« is the convolution kernel associated with the FDK algorithm, and (h*p)1p
is the horizontal one-dimensional convolution of h with p, a weighted version of p
with diminished intensity at higher distance from the detector center. The FDK
algorithm is computationally efficient and results in accurate reconstructions when
the projection data have a low noise profile and have been acquired from a sufficient
number of angles.

The resolution of the reconstruction cannot be arbitrarily improved by choosing a
finer reconstruction grid. Even in the absence of noise and other effects, the minimal
voxel size is limited by the detector pixel size [26]

SOD
SDD’
The angular resolution of the CT scan also influences the voxel size. The
number of angles from which the projection data has been acquired also influences
the minimal voxel size, but, when a sufficiently large number of angles has been
used, the voxel size as determined in Equation (2.4) is not further limited [95].
In addition to the detector pixel size, multiple optical phenomena influence
the formation of projection images. Many of these optical effects introduce a
blurring effect on the projection images. For instance, pixel cross-talk causes an
element of the photo-multiplier array to measure some fraction of the incoming
photons of its neighboring pixels [147]|. Cross-talk can occur both in the scintillator,
where the high-energy photons are converted into the visible spectrum, and in the

(2.4)

v=r-
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photo-sensor itself. Blurring can also be introduced when the focal spot, the region
where the X-rays originate from, is a larger disc-like region rather than a point
source [31, Chapter 9]. These optical effects can be modeled by a point spread
function (PSF), e.g., a 2D Gaussian filter, describing the projection on the detector
of a point-like object. A consequence of these optical effects is that the effective
resolution on the detector is lower than the pixel resolution, thereby increasing the
effective voxel size [31].

Even though detector resolution is limited, Equation (2.4) shows that the voxel
resolution can be increased by modifying the acquisition geometry. The projection
of a feature located on the rotation axis has a magnification factor of

SDD

By moving the object closer to the source, this magnification factor is increased,
which, thereby, as a consequence of Equation (2.4), decreases the minimal voxel size.
As the object is moved closer to the source, the projections of the object may become
truncated. Consequently, only a part of the object, the region of interest (ROI),
is consistently projected onto the detector at every angle. This causes truncation
artifacts in the reconstruction. Various techniques exist to minimize these artifacts
[98, 176, 180, 194]|. Nonetheless, these methods only improve resolution in the
region of interest, hence new methods are required to reconstruct the entire volume
at high resolution.

2.1.2 Deep Convolutional Neural Networks

A recently proposed strategy to improve the resolution of photographic images is
the use of deep convolutional neural networks (CNNs) [106]. This class of machine
learning algorithms processes the image by applying multiple convolution kernels
and saves the intermediate results in layers. Each layer consists of several images,
and is computed by convolving the previous layer with learned kernels, adding a
scalar bias term, and applying a nonlinear activation function to each pixel. The
network

Netc,, : ROXNXN _ RNXN (2.6)

is trained to find a set of parameters ¢ € ® such that it best transforms a stack
of C' images into a desired image of N x N pixels. In modern CNN architectures,
the number of parameters can range up to millions.

The training procedure applies the network to a training set of input data,
(zi),, and compares the output to target data (z;)7—,, where the goal is to
minimize a user-specified empirical loss function L. Here, we use the pixel-wise
mean square error

1 n
L(p) = = 3 INeto,p(w:) — 2l 3 (27)
=1
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Training is not usually carried out to completion, i.e., the training is stopped
before the absolute minimum of L is attained on the training set. This is done
to prevent overfitting the network to the training data. When the network is
overfit, the empirical loss is low for data in the training set, but high for data not
included in the training set. The performance of a network that is being trained
is commonly tested on a wvalidation set that is not part of the training set. Once
the performance on the validation set stops improving, training is stopped. An
alternative to using a validation set is early stopping, where training is stopped at
some predetermined time.

Most existing state-of-the-art CNNs process 2D images. To process 3D volumes,
we can subdivide the input and target voxel grids XMPUt and xtarget jnto 2D
horizontal slices. As input, the network is provided with a slab containing not
just a single input slice but also surrounding slices, supplying the network with
quasi-3D information. Although network architectures exist that process entire 3D
volumes at once, their memory requirements are challenging when applied to voxel
grids with sizes that are common in tomography.

2.2 Method

In this section, we describe the main contribution of this chapter: an integrated data
acquisition and machine learning approach for improving resolution in cone-beam
tomography. Our approach consists of several steps. First, we perform a standard
CT scan of the object under study. In addition to a standard CT scan, we acquire
additional projection images with the object moved closer to the radiation source.
Second, we reconstruct the entire volume at low resolution. Next, using both
projection datasets, we reconstruct a region of interest at high resolution. These
two reconstructions are used to train a neural network to compute a mapping
between the low-resolution volume in the region of interest and its high-resolution
counterpart. The trained neural network is then applied to the entire low-resolution
volume to obtain a final high-resolution volume representation. This process is
illustrated in Figure 2.2. In the next subsections, we describe the steps of our data
acquisition and reconstruction strategy in detail.

2.2.1 Data Acquisition

Our data acquisition protocol consists of two scans. The first scan with magnifi-
cation factor aj,y, = SPP/sop is a standard circular cone beam scan and yields

projection dataset pl®%

, as shown in Figure 2.1. In addition to the standard
acquisition, we propose to acquire an additional projection dataset phlgh. Here,
the object is moved closer to the source such that the resulting projection on the

detector has a magnification factor of Ohigh = SDD/sop,. Now, only a region of

interest Qpop € N2 C R3 is in full view on the detector at all times, as is depicted

in Figure 2.3. The addition of the second projection dataset phigh permits the
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Figure 2.2: Method summary. We make a high- and low-resolution reconstruction of a region of
interest to train a neural network to obtain a high-resolution representation of the entire object.
(1) Acquire projection data; (2) Acquire zoomed in projection data; (3) Reconstruct on a coarse
grid; (4) Restrict to a region of interest; (5) Reconstruct the region of interest on a fine grid using
both projection datasets; (6) Train a neural network to transform the low-resolution region of
interest to a high-resolution volume; (7) Apply the network to the entire low-resolution volume.

high-resolution reconstruction of a rectangular sub-region of the region of interest.
This is described below.

2.2.2 Reconstruction

From the acquired datasets, two reconstructions are computed. The first recon-
struction contains the entire object at low resolution, and the second reconstruction
describes the region of interest at high resolution. Because these reconstructions
are later used for the training of a neural network, we ensure that their voxel grids
are aligned.

The dimensions of the low-resolution reconstruction grid are determined using
the pixel size r and the physical dimensions 2 of the object. We calculate the
effective voxel size v)yy = /a4y Using Equations (2.4) and (2.5). Given the voxel

size, the shape of the voxel grid XIOW, MNow X Nigw X Now- is established such

that its real-world volume €, C R3 covers the object, i.e., Q C Qow- On this
grid, the low-resolution reconstruction is computed using the FDK algorithm

zlow _ ppK (plow) € RMow. (2.8)

Next, we determine the shape and voxel size Uhigh of the high-resolution voxel
grid xhigh
rounded to the nearest integer. In practice, magnification factors oy, and Chigh
can be carefully chosen to avoid the need for rounding. The voxel size Uhigh is

. We set the voxel size to equal Uhigh = Ylow/k, where k equals “high/a;qy

close to the limit defined by Equation (2.4), since, by Equation (2.5), we have

Ylow YNow T Qow r
Vs = ~ U = = . (29)
high = W aigh  Yow Yhigh  Chigh

We fix the physical volume of the high-resolution grid, thghv to be contained in
the region of interest, i.e., thgh C QRrOr and set its shape, Nhigh X Nhigh X Nhigh’
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Figure 2.3: An illustration of the second tomographic scan. The object, supported on €, is
scanned at magnification Qhigh = SDD/sOD,. Now, only the region of interest, Qry, is always

in full view of the detector. The high-resolution reconstruction grid x1i8h i5 thus constrained to
the rectangular volume thgh' Part of the object outside of thgh contributes to the acquired
projection data. This is highlighted in red.

low

such that Nhigh is divisible by k. Now, voxels from x*“" relate to cubes of k x k x k

high  This assists in modeling the forward projection of the second scan.
As shown in Figure 2.3, the rays forming the projection data, p8h, have been
transmitted through both thgh and Q\ thgh' This is modeled by the discrete

linear equation

voxels in x

phigh ~ A (high) high +A(10W_’high)Mxlow, (2.10)

where M € RV ow * Niow is a matrix that masks all voxels in xlOW that are contained
in thgh' In other words, M is a diagonal matrix where the diagonal is 0 on row 4

if voxel i of the large grid xlow overlaps thgh’ and is 1 elsewhere. The matrix

Allow—high) _ (ai;) is defined such that a,;; represents the contribution of the

high

low-resolution volume voxel X;-OW to detector pixel p, B at magnification Ohigh-

The matrix A (high) similarly defines the projection of the high-resolution volume
xhigh 4t magnification Opigh-

To reconstruct xhigh, we subtract the reprojection of the masked reconstruction

MW from the acquired high-resolution projection data
p= phigh _ A(low—high)przlow (2.11)

Next, we apply the FDK algorithm to the processed projection data to obtain
the reconstruction

xhigh — pDK (p) € R™high, (2.12)
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In a conventional FDK reconstruction, the outside contributions of Q \ thgh

to the projection data phlgh cause truncation artifacts. Because we have ap-
proximately removed these contributions, we can apply the FDK algorithm to
obtain a high-resolution reconstruction of the region of interest. Note that similar
subtraction methods have been proposed before to remove truncation artifacts
in region-of-interest tomography [114, 176, 180]. Some artifacts may occur on
the border of the region of interest, which may be due to the specifics of the
interpolation kernel that is used in the forward projection Adow—high) o e
to discontinuity at the image borders enhanced by the FDK filter kernel. Water
cylinder extrapolation or truncation robust FBP methods like [45] may alleviate
these artifacts. These artifacts are not a problem in practice, as the affected border
voxels may be ignored.

2.2.3 Machine Learning

At this point in the process, the tomographic reconstruction method yields a
low-resolution voxel grid %W and a high-resolution voxel grid zhigh  For the
neural network to match the low-resolution input to the high-resolution target, it
is necessary that both input and target relate to the same physical space, and have
the same voxel size. In this section, we outline how %1OW and xhigh e processed
to match in physical space and voxel size. We also describe the training procedure,
and motivate the choice of neural network architecture. )

The voxel grid X1V corresponds to the physical space oy and zhigh coppe-
sponds to thgh' To serve as input data for neural network training, we use the

voxels from X% that are contained in thgh' We denote this restriction operation

by R : RNow — R™hen/k* | The resulting voxel grid
o1 = R (ROV) e R/t (2.13)

corresponds to the physical volume thgh’ and each of its voxels can thus be

matched with voxels from %0igh
The voxel sizes of ilﬁ’gl and X
lo

high can be equalized by either up-sampling the

input data X;9% + or down-sampling the target data xhigh e present both options,
which we designate as method A and method B, respectively. By up-sampling the
input data with an interpolation method Uy : R bien/x* _y RN by a factor k with
N = Nhigh> we obtain training data on a fine grid

gimput _ gy, (ilRo&) e RV, (method A) (2.14)
xtarget — ghigh ¢ g, (2.15)

By down-sampling the target data by a factor £ with an interpolation method
3
Dy : RMhigh — RN" with N = Nhigh/k, we obtain training data on a coarse grid
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Downsample (D

k)

Nhighk / Upsample (U,)

Figure 2.4: Two voxel grids at different resolution. The low-resolution grid on the left can be up-
sampled (Ug) to a high-resolution grid. This transforms a slice (in red, left) into a slab (in green,
right), which consists of multiple slices. The down-sampling operation (Dy) performs the reverse
transformation. Here, the up-sampling and down-sampling are performed with magnification
factor k = 4, which increases or decreases the number of voxels in each dimension by a factor of k.

Nhigh

Zinput _ ;(EWOVI c RNS, (method B) (2.16)
xtarget _ (ihigh> e RV, (2.17)

The interpolation methods Uy and Dy are open to choice. Various methods can
be used, including, for instance, cubic interpolation. The up- and down-sampling
operations are illustrated in Figure 2.4.

The properties of the acquired projection data can be used to inform the choice
whether to up-sample the input (method A), or down-sample the target (method

B). When optical blurring on the detector is negligible, the small-scale features

xhigh will be hard to visualize on the coarse grid of XIRO&

starget

that can be seen in x

Therefore, it is recommended to use method A where x is defined on a fine

grid. If, on the other hand, optical blurring limits the effective resolution of ilfgvovl,
and its resolution can be improved without reducing the voxel size, then it is
recommended to use method B, where the grid size is smaller, and training and
applying the network is thus computationally faster. The differences between the

input and target grids are summarized in Table 2.1.

Finput starget

serve to train the con-
starget

and x
Finput

The input and target voxel grids x

volutional neural network. The voxel grids x and x are divided into

slices Xlnput ~target ; =1,..., N as illustrated in Figure 2.4. In this chapter, x;

denotes both a smgle voxel at position ¢ and a horizontal slice ¢ of a voxel grid x.

The surrounding text always distinguishes between a voxel and a slice.
i+s
The input slices are combined into slabs [ ;nput}  ,i=s+1,...,N —s5,
Jj=i—s
containing the input slice and the s slices above and below. The target slices are
not combined into slabs. The training procedure now minimizes

1= ~input]“t* ~target :
L) =5 3 INetawry ([RP]7 )™ @y

i=s+1 J=ems 2
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Method A Method B

Training
Grid size (N?) Nijieh Niign/k?
Input (XMPUL) Uy, (xIo% ) X%
Target (xtarget) xhig D, (xhigh)
Processing
Grid size (ENjgw — 28)3  (Njgw — 28)3
Input U (xloW) xlow

Table 2.1: An overview of the grid sizes of method A, where the input is up-sampled, and method
B, where the target is down-sampled. The grid size and input are tabulated for the training phase
and the processing phase, in which the final output is calculated. The grid size is in number of
voxels. The processing grid size is the size of the output xfinal when the network is applied to
ilow, and s is the number of additional input slices that the network takes as input.

which yields the set of parameters, . Other norms, such as the L1 norm, could
also be used.

Multiple deep network architectures can be used to improve the quality of recon-
structions [81, 143, 156, 165]. One of these is the mixed-scale dense (MS-D) network,
which is a neural network architecture specifically developed for scientific settings.
The mixed-scale dense network has several properties that make it well-suited for
our method. The MS-D network has relatively few parameters compared to other
neural network structures, making it easier to train and less likely to overfit. This is
especially useful if a small training set is available, and no part of the training set is
sacrificed to serve as a validation set, as is the case here. Another advantage is that
the MS-D network maximally reuses the intermediate images in each layer, thus
requiring fewer intermediate images compared to other deep convolutional neural
network architectures. Therefore, the MS-D network can transform large images
using less memory and computation time compared to other popular convolutional
neural network architectures [143]. Finally, the network has shown good results for
removing noise and other artifacts from tomographic images when a large training
set of similar objects scanned at high dose is available. This is described in [140],
where the network was applied to tomographic images reconstructed from a dataset
of parallel beam projections, rather than cone beam projections.

2.2.4 Improving Resolution

After training the network, a set of network parameters ¢ is obtained. The trained
neural network Net is applied to the initially reconstructed low-resolution volume

ZIOW {6 obtain a final volume representation xfinal g process consists of
several steps. If the training input has been up-sampled using method A, then the
reconstruction X1°% must likewise be up-sampled to Uy (%low), which is k times
larger in every dimension. If method B has been used, no up-sampling of the
reconstruction is necessary. The resulting voxel grid is processed by the network

slice by slice. These slices must be collected in slabs containing s slices above and
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below the input slice. This influences the output size, since the top and bottom s
slices of X1°W do not have enough surrounding slices to be processed by the network.
This is usually not a problem because s is small (s < 10) and the low-resolution
grid can be chosen large enough that any important features are at some distance
from the top and bottom. Finally, the network can be applied to each of these
slabs in turn, the result of which we collect into xfinal -1, summary, this process
results in the final volume representation

i+2s Nfinal
«final _ Netasi1,6 ([UK (ilOW) } )] (Method A),
I j=i i=1
i+2s Nfinal
final _ [Net2s+1,<ﬁ ({i%ow] - )} (Method B).
= i=1

For both methods, the size of the final grid xfinal is summarized in Table 2.1.

2.3 Results

We evaluate the accuracy of our method on simulated and experimental data, which
is described below. Before going through the specifics of each experiment, we first
provide details on the steps that all experiments have in common.

Data acquisition For each experiment, three projection datasets are acquired.
The first projection dataset has the entire object in the field of view and has a low
magnification factor oy, The second and third projection datasets are acquired
of a central and upper region of interest and have a higher magnification factor
Ohigh- This is illustrated in Figure 2.5.

Reconstruction In all experiments, high-resolution reconstructions are com-
puted of a central and upper region of interest to serve as target data for the
training set and test set, respectively. A low-resolution reconstruction is computed
of the entire object, which serves as input data for both training and testing. In
all experiments, the low-resolution voxels are k = 4 times as large as the high-
resolution voxels. FDK reconstructions were computed using the ASTRA toolbox

2]

Input Train target Test target
— Al ol <Y
7
7

Figure 2.5: For each object, three projection datasets are acquired. The first dataset has the

entire object in the field of view, and its reconstruction is used as input data for the learning
step. The second dataset has a central region of interest in view (dark gray), the reconstruction
of which is used as target data for the learning step. The third dataset has an upper region of
interest in view (dark gray), the reconstruction of which is used as target data for evaluation.
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Up- and down-sampling The up- and down-sampling of the reconstructed
volumes can be performed in various ways. In the experiments, up-sampling in
method A is carried out by nearest-neighbor up-sampling, where each voxel is
repeated k times in each direction. Empirically, we found this to be sufficient, as cu-
bic up-sampling did not improve the quality of the network output. Down-sampling
of the target voxel grid in method B is carried out using three-dimensional cubic
interpolation, where the image is interpolated to a coarser grid using polynomials
of degree at most 3 determined by a window of 4 x 4 x 4 voxels.

Neural network implementation For each experiment, three separate net-
works are trained using: (i) method A and a single input slice, (ii) method A and a
slab of nine input slices, (iii) method B and a single input slice. The MS-D network
is implemented in PyTorch [139]. Each trained network has 100 single-channel in-
termediate layers, and the convolution in layer ¢ is dilated by d; = 1 + (¢ mod 10),
as is described in [143]. The network has 45,652 parameters when there is a single
input slice, and it has 52,948 parameters when the input is a slab of nine slices.

Training procedure The network is trained on the central region of interest.
Because we chose not to use a validation set, a criterion was set for early stopping.
In all experiments, training finished after two days or 1000 epochs, whichever came
first. All networks are trained from scratch in each experiment. The training
procedure minimizes the mean square error between the output and target images,
and the networks are trained using the ADAM algorithm [94] with a mini-batch
size of one. The network output is evaluated on a test set containing the low- and
high-resolution reconstructions of the upper region of interest. The training and
test set are thus non-overlapping.

Metrics and evaluation On both datasets, the on-the-fly machine learning
approach is evaluated using the structural similarity index (SSIM) [191] and the
mean square error (MSE) metrics. These metrics are used to compare the output
slices of the networks to target slices from the upper ROI reconstruction. To
compare methods A and B on the same grid, the output volume of method B is
cubically up-sampled before computing the MSE and SSIM metrics. The output
slices of method A are not processed, since they are the same size as the target
slices of the test set. Both metrics are computed slice by slice and averaged. To
prevent the influence of reconstruction artifacts at the boundaries of the high-
resolution reconstructions, all metrics are calculated on pixels that are at least
eight pixels from the boundary of the volume. Likewise, all displayed images are
cropped to remove eight pixels from all sides. The error metrics of our approach are
compared to a baseline: a full-volume three-dimensional cubic up-sampling of the
low-resolution input volume. We visually compare all methods on the central slice
of the upper ROI reconstruction on both the simulated and the experimental data.

All computations were performed on a server with 192 GB of RAM and four
Nvidia GeForce GTX 1080 Ti GPUs (Nvidia, Santa Clara, CA, USA) or on a
workstation with 64 GB of RAM and one Nvidia GeForce GTX 1070.
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Foam Foam Oatmeal
Pixel-Limited Optics-Limited
Detector
Shape 1000 x 1000 1000 x 1000 1536 x 1944
Pixel size 0.0012 0.0012 75 pm
Number of angles 1500 1500 2000
Full object
Grid shape 1064 x 1064 x 1064 1064 x 1064 x 1064 1647 x 2084 x 2084
Voxel size 0.0012 0.0012 68.26 um
Central ROI
Grid shape 888 x 664 x 664 888 x 664 x 664 1364 x 1304 x 1304
Voxel size 0.0003 0.0003 17.07 pm
Top ROI
Grid shape 880 x 664 x 664 880 x 664 x 664 1364 x 1304 x 1304
Voxel size 0.0003 0.0003 17.07 pm

Training epochs

Method A 9 slices 230 230 30
Method A 1 slice 260 250 40
Method B 1 slice 1000 1000 950

Table 2.2: A summary of the pixel and voxel grids used for the reconstructions of the full object
and regions of interest (ROIs). For each dataset, the network was trained by up-sampling the
input (method A) with a slab of nine slices and one slice as input, and by down-sampling the
target (method B) with a slab of one slice as input.

2.3.1 Simulations

First, we investigated the performance of the proposed on-the-fly machine learning
technique on simulated tomographic data.

Simulation phantom A foam ball simulation phantom was generated by
removing 90,000 randomly-placed non-overlapping spheres from a large sphere
made of one material. The foam ball has diameter 1. All other dimensions in
the simulation are relative to this unit length. The radius of the random spheres
ranges between 0.0025 and 0.2. The central slice of this phantom is displayed in
Figure 2.6.

Data simulation Using the foam phantom, three projection datasets were
computed. For the first projection dataset, which has the entire foam ball in the
field of view, the source-object distance is equal to the source-detector distance,
yielding a magnification factor of o), = 1. In practice, having an equal source-
object and source-detector distance is not possible, since the detector and object
would share the same physical space. In simulations, however, this is both possible
and natural, since it results in a minimal voxel size that is equal to the detector
pixel size. The second and third projection dataset were acquired at a magnification
factor of Ohigh = 4.

To simulate how our method copes with optical phenomena, another set of
projections was created by post-processing the projections using a Gaussian blur
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Figure 2.6: (a) A projection image of the foam ball; (b) a magnified projection image of the
central region of interest (ROI); (c) a magnified projection image of the upper ROI; (d) the
central cross-sectional slice of the phantom.

with standard deviation of two pixels. The Gaussian blur convolves the projection
images with a 2D filter defined by g(z) = exp(~171%/20%) /\/3752, where o is the chosen
standard deviation. We refer to the blurred data as optics-limited, and to the
non-blurred data as pizel-limited.

The projections were carried out using the GPU-accelerated cone_balls software
package, which we have made available as an open source package [67]. This package
analytically computes the linear cone beam projection of solid spheres of constant
density. For each dataset, 1500 projections were acquired over 360 degrees on a
virtual detector with 1000 x 1000 pixels. For each detector pixel, four rays were
cast through the phantom, and their projection values were averaged.

Processing The reconstruction and training of the foam phantom was per-
formed as described before in Section 2.3. The details are summarized in Table 2.2.
Methods A and B are evaluated on the upper ROI reconstruction, and compared
below for both the pixel-limited and optics-limited case.

Evaluation For the simulated data, the MSE and SSIM metrics are computed
between the network outputs and the original phantom data, rather than the
high-resolution reconstruction. As the SSIM metric is designed to operate on
images with a fixed intensity interval, we clip the network outputs such that all
images have the same minimum and maximum intensity as the phantom data.
Similarly, the images displayed in Figure 2.7 are clipped to the range [0, 1]. The
MSE metrics are calculated on the unclipped data.

The quantitative results for the foam phantom are given in Table 2.3. Both

Pixel-limited Optics-limited
Method MSE SSIM MSE SSIM

Method A: 9 slices in slab  0.0044 0.9578 0.0143 0.8275
Method A: 1 slice in slab 0.0089 0.9281 0.0154 0.8220
Method B: 1 slice in slab 0.0111 0.8065 0.0178 0.8135
Cubic up-sampling 0.0125 0.6893 0.0463 0.6038

Table 2.3: Foam ball phantom: comparison of the MSE and SSIM between the output of the
three approaches described in this section and cubic up-sampling. For each dataset and metric,
the best results are shown in bold.
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Low-resolution High-resolution Method A Method A Method B Cubic
reconstruction reconstruction 9 slices 1 slice up-sampling
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Figure 2.7: Results of applying the trained networks to the central slice of the upper region of
interest. The low-resolution slice (shown left) was not part of the training set. The high-resolution
slice is the result of reconstruction (Equation (2.12)). The images in the right-most four columns
are computed from the input using our proposed methods and cubic up-sampling. Magnifications
of the central yellow square are displayed in the even rows. The first row displays the results
on the non-blurred foam phantom reconstructions, and the third row displays the results on
reconstructions of blurred foam phantom projections. The output of method B is cubically
up-sampled by a factor of 4 to be the same size as the other images.

variants of method A significantly outperform cubic up-sampling on both MSE
and SSIM metrics. On the pixel-limited dataset, the SSIM score of method B
is lower than the methods A but higher than cubic up-sampling. The fine scale
features in the pixel-limited high-resolution image can simply not be represented
on the coarser grid that method B operates on. On the optics-limited dataset,
on the other hand, the SSIM score of method B is comparable to the SSIM scores
of methods A, and is significantly higher than that of cubic up-sampling.

In Figure 2.7, the methods are visually compared on both the pixel-limited
dataset and the optics-limited dataset. In the pixel-limited dataset, the low-
resolution input suffers from partial volume effects, where some voxels contain more
than one material. In this case, the foam and void contributions to a voxel are
averaged, which leads to jagged edges. The high-resolution data are significantly
sharper, but still has some non-smooth texture in the foam and voids. The output of
method A with nine input slices makes the edges as sharp as in the high-resolution
image, and removes the non-smooth texture in the foam and voids. Moreover, it
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does not introduce any voids where there are none in the target data. Method A
with one input slice performs similarly, but has some difficulty with features that
are rapidly introduced in the vertical direction. This is apparent in the magnified
image in Figure 2.7, where the top or bottom of one void in the input data are not
correctly removed. As discussed before, method B performs worse than method A
when the high-resolution features cannot be represented on the coarse grid.

In the optics-limited dataset, both low- and high-resolution slices are less
sharp than in the pixel-limited case. Due to the additional blur on the projection
data, some of the smaller features in the low-resolution image cannot easily be
distinguished. Nonetheless, the output of both methods A has significantly improved
resolution and is visually similar to the target slice. With few exceptions, all voids
in the output are round, and, without exception, all voids in the output are also
present in the target. Method B produces output that looks similar to the output
of methods A, although it fuses some voids that can still be distinguished in the
output of methods A.

2.3.2 Experimental Data

To verify the practical applicability of our approach, we have investigated the
performance of our method on experimentally acquired cone-beam CT data.

Sample A plastic jar filled with oatmeal was scanned. The oatmeal was
specifically chosen for its structure, which is consistent throughout the entire object.
A package of oatmeal contains thousands of flakes, which all have roughly the same
dimensions and shape, but still exhibit fine-scale features, requiring high-resolution
tomography to accurately capture. Projection and reconstruction images of the
oatmeal are displayed in Figure 2.8.

Data acquisition The projection images were acquired using the custom-
built and flexible CT scanner, FleX-ray Laboratory, developed by XRE NV and
located at CWI [42]. The apparatus consists of a cone-beam microfocus X-ray
point source that projects polychromatic X-rays onto a 1944 x 1536 pixels, 14-bit,
flat detector panel. The data was acquired over 360 degrees in circular motion
with 2000 projections distributed evenly over the full circle. The projections were

a b c
(a) (b) () (@

Figure 2.8: (a) A projection image of the oatmeal sample; (b) a magnified projection image of
the central ROI; (c) a magnified projection image of the upper ROI; (d) a central slice of the
oatmeal sample.
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Emitted Beam Energy (J) Scanning Time (Minutes)

Full low-resolution scan nx 27,720 11
High-resolution ROI scan nx 27,720 11
Full high-resolution scan nx 443,520 176

(Estimate for tiling)

Table 2.4: The scanning times and emitted beam energy of the experiments. The third row
contains an estimate of the duration of a full high-resolution scan with a detector tiling strategy,
where a virtual large projection image is created by stitching the images for several detector
positions. To achieve similar resolution as the high-resolution ROI scan, 16 detector positions
would have to be stitched together. The emitted beam energy is used as a proxy for the radation
dose absorbed by the object. The efficiency of the source 7 is multiplied by the power P = 42W
applied to the X-ray tube, and the scanning time in seconds.

collected with 250 ms exposure time and the total scanning time was 11 minutes
per acquisition. The tube voltage was 70 kV and the tube power was 42 W.
This acquisition strategy was performed three times with magnification factors
a =1.09,4.38, and 4.38. Examples of the acquired projection images are displayed
in Figure 2.8 and an overview of scanning time and emitted beam energy is given in
Table 2.4. The object was centered on the detector for the first two scans, and the
object was moved down to capture a region of interest above the center of the
object for the final scan. These data are publicly available via [40].

Processing Reconstructions were computed of the full object, a central region
of interest (serving as training set), and an upper region of interest (serving as test
set). An example of the central slice of the oatmeal is displayed in Figure 2.8d.
The voxels in the full-object reconstruction are four times larger in each dimension
than the voxels in the region-of-interest reconstructions. The training step was also
performed in the same way as for the simulated data. The details are summarized
in Table 2.2. Up-sampling the low-resolution region-of-interest slices to 1304 x 1304
pixels takes roughly 0.56 s per slice and 13 min in total using method A with one
input slice. Using method B, up-sampling a single slice takes 0.03 s, and the entire
region of interest can be up-sampled in less than a minute.

Evaluation The attenuation coefficients of the voxels in the high-resolution
reconstruction are contained in the range [—0.039,0.105]. To enable comparison
of the MSE and SSIM metrics of the experimental data with the simulated data,
we rescaled the attenuation coefficients of the target volume to the range [0, 1],
and used the same scaling factors to rescale the values of all other volumes. In
addition, before calculating the SSIM, all volumes are clipped to the range [0, 1],
similar to the simulated data. Likewise, the slices displayed in Figure 2.9 are
rescaled and clipped to the unit range.

The experimental results on the oatmeal dataset are visually compared on
the central slice of the upper region of interest. This low-resolution input slice,
which is displayed in Figure 2.9, is thus not part of the training set. The low-
and high-resolution slices of the oatmeal both suffer from some noise. The high-
resolution slice contains significantly more visible fine-scale features. The output
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Low-resolution High-resolution Method A Method A Method B Cubic
reconstruction reconstruction 9 slices 1 slice up-sampling

Figure 2.9: Oatmeal data: results of applying the trained networks to the central slice of the
upper region of interest. The low-resolution slice (shown left) was not part of the training set. The
high-resolution slice is the result of reconstruction (Equation (2.12)). The four images on the right
are computed from the input using our proposed methods and cubic up-sampling. Magnifications
of the central yellow square are displayed in the second row. The red ellipse highlights a flake

that is partially visible in the input, and is correctly removed by all three methods. The output
of method B is cubically up-sampled by a factor of 4 to be the same size as the other images.

Oatmeal

Oatmeal
(zoomed)

Method MSE SSIM

Method A: 9 slices in slab 0.0027 0.4508
Method A: 1 slice in slab 0.0026 0.4529
Method B: 1 slice in slab 0.0025 0.4521
Cubic up-sampling 0.0035 0.4192

Table 2.5: Oatmeal: comparison of the MSE and SSIM between the output of the three approaches
described in this section and cubic up-sampling. The best results are shown in bold for each
metric.

of the three methods is virtually indistinguishable in the non-magnified images. In
the magnified images, we see that not all fine details can be retrieved: some small
features are removed and others are slightly deformed compared to the target. In
the red ellipse, a large flake is visible in the low-resolution slice that appears larger
than it really is due to partial volume effects. The high-resolution slice, on the
other hand, shows only a small fragment of the large flake. All three networks are
able to filter away a large part of the flake and retain the ridge that is visible in
the high-resolution slice. The three methods significantly reduce the background
noise that is present in the high-resolution target beyond what can be achieved
using cubic up-sampling. Overall, all three methods sharpen features that are
hard to distinguish in the input, significantly reduce the background noise, and do
not introduce new features that are not present in the high-resolution slice. The
quantitative results paint a similar picture, and are displayed in Table 2.5. The
difference between the three proposed methods in terms of MSE and SSIM is small,
whereas the cubic up-sampling performs worse on both metrics.

Comparing method A and method B, we observe a difference between simulation
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and experimental data. For the pixel-limited dataset, method A performs better on
the MSE and SSIM metrics, and it outputs visually more appealing and accurate
results. For the real-world data, however, there appears to be qualitatively little
difference between method B and method A. In this case, the coarse voxel grid
seems fine enough to represent almost all details that can be reconstructed.

2.3.3 Comparison with Other Network Structures

In this section, we compare the results of the MS-D network to the widely used
U-net approach described in [156] on both the simulated and experimental data.
The data acquisition and reconstruction procedures remain unchanged, and the
U-net is trained on the low- and high-resolution data for two days or 1000 epochs,
whichever comes first. As before, the metrics on the simulated data are computed
based on the original phantom and the output of the network, and the metrics on
the experimental data are computed based on the high-resolution target and the
output of the network.

Neural network implementation The U-net network is implemented in
PyTorch, and is based on a widely available open source implementation. We
have provided our code as an open source package [68]. This implementation of
the U-net architecture is almost identical to that described in [156]: the images
are down-sampled four times using 2 x 2 max-pooling, the “up-convolutions” have
trainable parameters, and the convolutions have 3 x 3 kernels. Like [38], this
implementation uses batch normalization before each ReLU. Moreover, the smallest
image layers are 512 channels instead of 1024 channels, and zero-padding is used
instead of reflection-padding. An adaptation was made to allow the network to
process images whose width or height was not divisible by 16: these images were
padded to the right dimensions using reflection padding. All U-net networks are
trained from scratch in each experiment.

Metrics and evaluation The quantitative results are given in Table 2.6,
and the network outputs are visually compared in Figure 2.10. On the whole,
the output of the U-net is visually similar to the MS-D network, and apart from a

Method A Method A Method B

Slab: 9 Slices Slab: 1 Slice Slab: 1 Slice
MSE SSIM MSE SSIM MSE SSIM
Pixel-limited U-net 0.0057 0.4225 0.0092 0.9149 0.0111 0.6850
© © MS-D 0.0044 0.9578 0.0089 0.9281 0.0111 0.8065
Onptics-limited U-net 0.0159 0.7436 0.0402 0.1339 0.0178 0.7959
puestimited NS D 0.0143  0.8275  0.0154  0.8220 0.0178  0.8135
Oatmeal U-net 0.0030 0.4372 0.0029 0.4372 0.0037 0.4221
MS-D 0.0027 0.4508 0.0026 0.4529 0.0025 0.4521

Table 2.6: Comparison of the MSE and SSIM between MS-D and U-net for all three datasets.
For each dataset and metric, the best results are shown in bold.
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Figure 2.10: Comparison of U-net and MS-D on the central slice of the upper region of interest.
The high-resolution slice (left-most column) is the result of reconstruction (Equation (2.12)). The
four columns on the right are computed from a low-resolution reconstruction using a U-net or
MS-D network. The first and third row display the results on simulated data, and the fifth row
displays the results on experimentally acquired oatmeal data. Magnifications of the central yellow
square are displayed in the even rows. The output of method B is cubically up-sampled by a
factor of 4 to be the same size as the other images.



2.4. DISCUSSION 43

0.0025

—— U-Net — — Training set

— MS-D —— Test set
0.0020

0.0015 -

MSE

0.0010 4

0.0005 47 X~ === - - ----~-------—-

0.0000 T T T T
0 200 400 600 800 1000

Training epochs

Figure 2.11: Oatmeal dataset, method B: the mean square error for MS-D and U-net calculated
on the central slice of the training and test set. The training error decreases as the networks are
trained longer. The test error of the U-net increases, whereas the test error of the MS-D network
remains stable.

few negative outliers, the metrics of U-net are similar to those of the MS-D network.
The lower SSIM metrics of the U-net could be explained by the fact that, on the
pixel-limited dataset, the U-net appears to introduce the same non-smooth texture
in the foam (method A—9 slices) and in the voids (method B) that is present in
the high-resolution image. Likewise, the oatmeal flakes in the U-net outputs appear
to have a distinct texture, especially for method B. It appears that some care must
be taken to prevent the U-net from overfitting to the training data. In Figure 2.11,
we compare the training and test error of the U-net and MS-D networks as training
progresses. The mean square error metric is computed on the central slice of the
training and test set of the oatmeal dataset. For both networks, the MSE decreases
on the training slice. On the test slice, however, the MSE metric of the MS-D
network remains consistently low, but the MSE of the U-net increases as training
progresses, indicating that the network overfits to the training data.

2.4 Discussion

The experimental results demonstrate the feasibility of applying our combined
acquisition scheme and on-the-fly machine learning technique to improve the
resolution of tomographic reconstructions. Although our approach already achieves
substantial improvement in image resolution, we believe our approach can still
be improved. In this section, we discuss possible improvements to the network
training procedure, and possible adaptations to less self-similar objects.

We believe that training the neural network can be accomplished faster and that
the training procedure can be made less sensitive to small changes in alignment.
In its current form, the computations of the learning step take considerably longer
than the reconstruction step. In fact, the reconstruction for both the simulated
data and the experimental data took less than fifteen minutes, while the learning
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step took up to two days. By using a validation set, for instance, the training can
be cut short when the validation error does not improve. Sacrificing part of the
training set for validation appears possible without making the training set too
small for the network to learn a useful transformation from low- to high-resolution
data. Based on the results in Figure 2.11, we expect that training for a considerably
shorter period is possible, and will lead to results comparable to those reported
here. The neural networks were trained using the mean square error, which is
sensitive to small changes in alignment. Hence, the alignment of the low-resolution
and high-resolution reconstructions is critical, but can in practice not always be
guaranteed. Therefore, using an error metric that does not depend on the exact
alignment of the input and target data could improve robustness. Resolving this
problem has received considerable attention, for instance by learning the loss
function in an adversarial setting [78, 106].

The experimental results indicate that super-resolution can be obtained using
our method if objects are self-similar, thus providing a super-resolution approach
that does not rely on a training set of similar objects. There are cases, however,
where not all parts of the object have similar structure. For example, an object may
consist of multiple parts with different characteristics. In that case, the network
may be trained on multiple ROI reconstructions in these parts to ensure that it
is able to improve the resolution of the various structures within the object. The
areas where the local structure are different can usually be identified using just the
low-resolution reconstruction.

2.5 Conclusions

In this chapter, we have presented a novel technique for improving the resolution of
tomographic volumes using a custom scanning procedure combined with on-the-fly
machine learning. The technique relies on combining high-resolution projection
data of a small region of interest with low-resolution projection data of the entire
object. Reconstructions of both projection sets are used to train a neural network,
which is then able to improve the resolution of the low-resolution reconstruction
of the entire object. The effectiveness of our approach was tested on simulated
data and real-world experimental data. The proposed approach is able to recover
a large fraction of high-resolution features without introducing additional artifacts.
Moreover, it requires a limited increase in scanning time and radiation dose.
We have proposed two variants of our approach (A and B). The first variant (A)
performs better on synthetic data but is more computationally costly to compute.
The second variant (B) is considerably cheaper to compute, results in smaller
output images, and produces results qualitatively similar to method A on real-
world experimental data. Our proposed approach has the added advantage of
removing noise from reconstructions of experimental data. The results show that
the proposed machine learning method is able to significantly improve resolution
of tomographic reconstructions without requiring a training set of similar objects.



NOISE2INVERSE:
SELF-SUPERVISED DENOISING

“You only start to see it once you “Je gaat het pas zien als je het
understand.” doorhebt.”

Johan Cruijff,
Vrij Nederland, 8 Jan 1994

Reconstruction algorithms compute an image from indirect measurements. For
a subclass of these algorithms, the relation between the reconstructed image and
the measured data can be described by a linear operator. Such linear reconstruction
methods are used in a variety of applications, including X-ray and photo-acoustic
tomography, ultrasound imaging, deconvolution microscopy, and X-ray hologra-
phy [10, 102, 118, 121, 123, 148, 167, 197, 198]. These methods are well-suited for
fast, parallel computation [140], but are also generally sensitive to measurement
noise, leading to errors in the reconstructed image [31, 167]. Controlling this error,
i.e., denoising, is a central problem in inverse problems in imaging [16, 27, 34, 85,
123, 140, 174].

Supervised deep convolutional neural network (CNN)-based methods are able
to accurately denoise reconstructed images in several inverse problems [16, 85, 123,
140, 174]. These networks are trained in a supervised setting, which amounts to
finding the network parameters that best compute a mapping from noisy to clean

This chapter is based on:
A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg. “Noise2inverse: Self-Supervised
Deep Convolutional Denoising for Tomography”. IEEE Transactions on Computational
Imaging (2020), pp. 1-1.
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reconstructed images on a dataset of example image pairs. However, the success of
these supervised deep learning methods critically depends on the availability of
such a high-quality training dataset of similar images [16, 112].

For photographic image denoising, recent work has shown that deep learning
may be possible without obtaining high quality target images, by instead training
on paired noisy images [107]. Nonetheless, such Noise2Noise training still requires
additional noisy data. The feasibility of image denoising by self-supervised training,
that is, training with single instead of paired noisy images, was demonstrated
by [14, 100, 104]. These self-supervised training methods, such as Noise2Self,
depend on the assumption that noise in one pixel is statistically independent from
noise in another pixel.

In inverse problems, reconstructed images may exhibit coupling of the measured
noise [85]. In CT, for instance, backprojection smears out the noise in a detector
pixel across a line through the reconstructed image. Naturally, this causes the
noise in one pixel to be statistically dependent on noise in other pixels of the
reconstructed image.

In this chapter, we demonstrate that a straightforward application of Noise2Self
to reconstructed CT images delivers substantially inferior results compared to
results obtained on photographic images, for which it was developed. We analyze
the cause of this apparent mismatch, and propose Noise2Inverse, a new approach
that is specifically designed for linear reconstruction methods in imaging to overcome
these limitations.

In the proposed Noise2Inverse approach, the training regime explicitly takes
into account the structure of the noise in the inverse problem. In its simplest form,
our method splits the measured data in two parts, from which two reconstructions
are computed. We train a CNN to transform one reconstruction into the other,
and vice versa. The properties of the physical forward model cause the noise in
the reconstructed images to be statistically independent. This enables the CNN to
perform blind image denoising on the reconstructed images. That is, our method
does not assume a known notse model. We stress that our method can be applied
to existing datasets without acquiring additional data.

In recent years, a range of deep learning approaches have been developed for
denoising in imaging with limited training data. Several weight-regularized self-
supervised methods exist that require a known Gaussian noise model [32, 126,
170, 200]. While such a model is often available in direct imaging modalities,
the noise model for reconstructed images in an inverse problem setting is often
more complex and hard to characterize by such a Gaussian model. Unsupervised
approaches using the Deep Image Prior [37, 120, 177| have been proposed for image
restoration and inverse problems [46, 80]. A key obstacle for the application of such
techniques to large-scale 3D image reconstruction problems is their computational
cost, as they involve training a new network for every 2D slice of the reconstruction.
For inverse problems, approaches that rely on splitting the measurement data
have recently been proposed for magnetic resonance imaging (MRI) [112, 196]
and Cryo-transmission electron microscopy (Cryo-EM) [27] showing image quality
improvement with respect to denoising applied on the reconstructed image. While
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these results are highly promising, a solid theoretical underpinning that allows
analysis and insights into the interplay between the underlying noise model of the
inverse problem and the obtained solution is currently lacking.

In this chapter — motivated by these promising results — we present a frame-
work for generalizing the self-supervised denoising approach in the setting of linear
reconstruction methods. Our framework pinpoints exactly the underlying theoret-
ical properties that explain the differences in observed results of self-supervised
approaches. We perform a qualitative and quantitative comparison to conventional
iterative reconstruction and state-of-the-art image denoising techniques. We evalu-
ate these methods on several simulated low-dose CT datasets, and include results
on an existing experimentally acquired CT dataset, for which no low-noise data is
available. In addition, we present a systematic analysis of the hyper-parameters of
the proposed method.

This chapter is structured as follows. In Section 3.1, we introduce linear inverse
problems and deep learning for image denoising, including self-supervised methods.
In Section 3.2, we introduce the proposed Noise2Inverse method, and show its
theoretical properties, which we use to develop an implementation for computed
tomography. In Section 3.3, we perform experiments to compare the performance
of Noise2Inverse, conventional reconstruction techniques, and Noise2Self-based
methods on real and simulated CT datasets. In addition, we perform a hyper-
parameter study of the proposed method. We discuss these results in Section 3.4.

3.1 Notation and concepts

As prerequisites for describing our Noise2Inverse approach, we first discuss deep
learning methods for image denoising, including strategies for training neural
networks when clean images are unavailable. In addition, we review linear in-
verse problems, where we discuss that denoising reconstructed images introduces
additional difficulties.

3.1.1 Deep learning for image denoising

The goal of image denoising is to recover a 2D image y € Y = R™ from a
measurement ¥ € Y that is corrupted by random noise €, taking values in ). This
problem is described by the equation

y=y-+e (3.1)

It is common to assume that the entries of the noise vector € are mutually indepen-
dent. Many image denoising methods rely on this assumption [43, 100, 199]. In
addition, these methods assume that the image exhibits some statistically mean-
ingful structure that can be exploited to remove the noise. The popular BM3D
algorithm [43], for example, exploits non-local self-similarity, i.e., the expectation
that certain structures of the image are repeated elsewhere in the image. Note that
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Figure 3.1: Three training regimes for CNN-based image denoising. Supervised training is
performed with noisy and clean images, and the trained CNN is applied to unseen noisy data.
Noise2Noise training is performed with pairs of noisy images. Noise2Self training is performed
with just noisy images, which are split into input-target pairs. The loss is only computed where
target pixels are non-zero. The red inset displays one of these locations. For Noise2Noise and
Noise2Self, the trained CNN can be applied to the training data to obtain clean images.

it is also possible to include BM3D as a prior inside iterative algorithms for inverse
problems using a plug-and-play framework [182].

Instead of relying on an explicit image prior, prior knowledge can be based
on a range of example images, as is done in deep learning. In particular, deep
convolutional neural networks (CNNs) have been recognized as a powerful and
versatile denoising technique [199]. We briefly introduce three training schemes for
denoising with CNNs: supervised[199], Noise2Noise [107], and Noise2Self [14].

The supervised training scheme has access to a training dataset containing
pairs of noisy input and clean target images

(S’Z’yl) ~ (y+ 67y)7 Z’ = 17 R 7N7 (3'2)

where y is a random variable taking values in ) that represents the clean images.
The supervised training objective is to find the regression function

n* = argminEy . [y +¢) - HE (3.3)

that minimizes the expected prediction error [66]. The most common loss function
is the pixel-wise mean square error, which we use here. Alternative training losses
are also used, such as the L1 loss and perceptual losses [107]. Solving Equation (3.3)
is usually intractable. Therefore, the expectation is estimated by the sample mean
over the training dataset, which is minimized over neural networks f, : Y — Y
with parameters ¢. The training task is then to find the optimal parameters

N
R . ~ 2
¢ =argmin Y _ || fo(7:) - vill 5, (34)
Y =1
which minimize the loss on the sampled image pairs. The trained network f; is
applied to unseen noisy images to obtain denoised images, as displayed in Figure
3.1.
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The regression function that minimizes the expected prediction error in Equation
(3.3) is the conditional expectation

() =Ely[y+e=y]. (3.5)

In practice, the trained neural network f; does not equal h* and an approximation
is obtained.

Noise2Noise training may be applied if no clean images are available, but
one can measure independent instances of the noise for each image. The training
dataset contains pairs of independent noisy images

(YZ+617Y1+51)N(y+63y+5)a 7’:1,aN7 (36)

where the noise ¢ is a random variable that is statistically independent of €. The
training task is to determine

N
¢ =argmin Y _||fo(yi + ) — (vi+6:)] 5, (3.7)

Y =1

and the trained neural network f; approximates
h* = argminE, s [||h(y te) - (y+0) ;} . (3.8)

If the noise ¢ is mean-zero, i.e., E [§] = 0, the expected prediction error in Equation
(3.8) is minimized by the same regression function h* as in the supervised regime
(Equation (3.5)). In practice, Noise2Noise and supervised training indeed yield
trained networks with similar denoising performance.

Noise2Self enables training a neural network denoiser without any additional
images. The training dataset contains only noisy images

Vi~y+e i=1,...,N. (3.9)

The method depends on the assumption that the noise is element-wise statisti-
cally independent and mean-zero, and that the clean images exhibit some spatial
correlation.

Noise2Self training uses a masking scheme that ensures that the loss compares
two statistically independent images. For simplicity, we describe a simplified version
of Noise2Self training, and refer to [14] for a more in-depth explanation. In each
training step, the noisy image is split into two sub-images: one sub-image — the
target — contains non-adjacent pixels and the other sub-image — the input —
contains the remaining surrounding pixels. The network is trained to predict the
value of a noisy pixel from its surrounding noisy pixels, as is shown in Figure 3.1.

The division of pixels between the input and target image is determined by a
partition J of the pixels such that adjacent pixels are in different subsets. We
denote by J € J the target section, and by J the input section, where J¢ denotes
the set complement of J, containing all pixel locations not contained in J. The
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input and target images 1 ;c¢y; and 1 ;y; have non-zero pixels only in the input
and target section, respectively. Here, 1 ; denotes the indicator function such that
element-wise multiplication of 1 ; with an image retains pixel values in J and sets
pixels to zero elsewhere. The training task is to determine the set of network
parameters minimizing the training loss

N
p=argmin» > |1, f(1se5:) — Liil;, (3.10)
¥ i=1 JeJ

where the loss is only computed on the target sections.
The inference step is performed by the section-wise combined network g : Y —

y?
95(9) ==Y _ 15 fp(1,c9), (3.11)

JeJ

that computes the output in each target section by applying the trained network
to the input section.
The piecewise-combined network is an approximation of the regression function

g (1) =Y LRy | Lye(y+e) =1, (3.12)
JeJg

This regression function computes the conditional expectation of the clean image
in each target section using the surrounding noisy pixels.

Although aforementioned methods can produce accurately denoised photo-
graphic images in many cases [14, 107, 199], a subclass of these algorithms —
Noise2Self in particular — has strong requirements on the element-wise indepen-
dence of the noise. These requirements do not generally hold for solutions of linear
inverse problems, as we discuss next.

3.1.2 Linear inverse problems

We are concerned with inverse problems that are described by the equation
Ax =y, (3.13)

where x € X = R" denotes an unknown image that we wish to recover, and
y € Y = R™ denotes the indirect measurement. The linear forward operator
A : R"™ — R™ describes the physical model by which the measurement arises from
the image x. As in the image denoising setting, these measurements are corrupted
by element-wise independent noise €, and we write

¥=Ax+e (3.14)

Although noise in Equation (3.14) is modeled as an additive term, we note that
this model also covers non-additive noise, such as Poisson noise, where the noise
term typically depends on the signal intensity.



3.2. NOISE2INVERSE 51

Reconstruction algorithms approximate the image x from measured data y. A
subclass of these reconstruction algorithms computes a linear operator R : Y — X.
Examples of linear reconstruction algorithms include the filtered backprojection
algorithm for tomography and Wiener filtering for deconvolution microscopy [31,
167]. We denote the reconstruction from a noisy measurement by

x = Ry = Ry + Re, (3.15)

which can contain artifacts unrelated to the measurement noise, e.g., reconstruction
and/or under-sampling artifacts. The reconstruction operator R may cause elements
of the reconstructed noise Re to be statistically coupled, even if € is element-
wise independent [85]. That Re does not satisfy the element-wise independence
property is unavoidable for all but the most trivial cases, since inverse problems
are essentially defined by the intricate coupling of the unknown image with its
indirect measurement.

This coupling of the noise seriously degrades the effectiveness of the Noise2Self
approach, as we will see in Section 3.3.4. In the next section, we propose a self-
supervised method that does take into account the properties of noise in inverse
problems.

3.2 Noise2lnverse

In this section, we present the proposed Noise2Inverse method. First, we describe
the assumed noise model, and give a general description of the method. In
Section 3.2.1, we provide a theoretical explanation how and why the convolutional
neural network learns to denoise. Here, we also discuss how these results can guide
implementation in practice. In Section 3.2.2, we give a more practical description
of the implementation for tomography, and discuss implementation choices with
regard to the obtained theoretical results.

Suppose that we wish to examine several unknown images x1,...,Xy ~ X,
sampled from some random variable x. We obtain noisy indirect measurements

§i~Axi+¢€, i=1,...,N, (3.16)

where we assume that the noise € is element-wise independent and mean-zero
conditional on the data, i.e.,

Exe[Ax+e| Ax=y] =y. (3.17)

As in Equation (3.14), we assume the noisy may be non-additive. Our goal is to
recover the clean reconstructions that would have been obtained in the absence of
noise, i.e., x; = Ry; with y; = Ax;,¢=1,...,N.

One approach is to compute noisy reconstructions, and use Noise2Self to
remove the noise in the reconstructed images. Given the noisy reconstructions
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x; = Ry;,t=1,...,N, the training task is to determine the network parameters
minimizing the training loss

- argmln > ZH]lJf@ (Lye%s) — 1%l 2, (3.18)

JeT, i=1

where the target sections are contained in J,, a partition of the pixels of the
reconstructed images. As discussed before, however, the noise in the input and
target pixels of the reconstructed images are unlikely to be statistically independent.

The key idea of the proposed Noise2Inverse method is that it partitions the data
in the measurement domain — where the noise is element-wise independent — but
trains the CNN in the reconstruction domain. In each training step, the measured
data is partitioned into an input and target component, and a neural network is
trained to predict the reconstruction of one from the reconstruction of the other.
After training, the neural network is applied to denoise the reconstructions.

The division of measured data between input and target is determined by
the collection J of target sections J C {1,2,...,m} that represent subsets of
the measurement domain ) = R™. We note that J can be chosen such that it
contains structured subsets of the measurement domain, rather than all subsets.
For each target section J € J, the measurement is split into input and target
sub-measurements y; jc and y; y, where J ¢ denotes the set complement of J with
respect to {1,2,...,m}. The input and target sub-reconstructions are computed
by linear reconstruction operators Ry : )y — X that take into account only the
measurements in section J € J. We define

X; 50 = Rjey; jo and X5, 5 = Ry¥: 5

to be the input and target sub-reconstructions of ¥;, respectively.
The training task is to determine the parameters

N
b =argmin 0 303 1,5 00) — S (3.19)

JeJ i=1

that best enable the network f; to predict the target sub-reconstruction from the
complementary input sub-reconstruction.

The final output is computed by the section-wise averaged metwork, which
applies the trained network to each input sub-reconstruction, and computes the
average, yielding

0 - 3.20
zout |j‘;flp J ( )

In the next section, we show why the final result approximates the clean recon-
struction.



3.2. NOISE2INVERSE 53

3.2.1 Theoretical framework

In this section, we embed Noise2Inverse in a theoretical framework that explains why
it is an accurate denoising method. In addition, we describe design considerations
that enable it to operate successfully.

Below, we show that Noise2Inverse recovers an average clean reconstruction in
theory. This result is founded upon Proposition 1, which shows that the expected
prediction error is the sum of the variance of the reconstructed noise and the
supervised prediction error, which is the expected prediction error that would have
obtained if the target reconstructions were noise-free. Hence, the regression function
that minimizes the expected prediction error also minimizes the loss with respect to
the unknown clean reconstruction. Therefore, it predicts a clean sub-reconstruction
when given a noisy sub-reconstruction.

As before, we represent the clean and noisy measurements by the random
variables y = Ax and § = y + e¢. The input and target sub-reconstructions are
represented by random variables X;c = Rjcyjc and X; = Ry for J € J. In
this case, the trained network f;; obtained in Equation (3.19) approximates the
regression function

h* —argmm j ZE
| |JeJ

which minimizes the expected prediction error. We randomize the section J as well,
representing it by J taking values uniformly at random in 7. The input and target
sub-reconstructions become random in J as well, which is denoted by X;c = R,c¥,c
and X; = R,¥;. The expected prediction error then becomes

Y Exellh(se) = 5l * = Eyllh(Se) —%ll%,
JeJ

h(%ye) — %%, (3.21)

\JI

where we replace the average over J € J by the expectation with respect to J. We
denote with p the joint measure of x, €, and J. Define the sub-reconstruction of the
clean measurement

X*J = RJyJ, (322)

which describes the clean target reconstruction. Now the expected prediction error
can be decomposed into two parts.

Proposition 1 (Ezpected prediction error decomposition). Let Xy,%jc,x*), and p
be as above. Let € be element-wise independent and satisfy (3.17). Let Ry be linear
for all J € J. Then, for any measurable function h : X — X, we have

~ ~ 2 ~ * 2 * ~ 2
Eulh(%5e) = Slly = Eullh(%ye) — x5l 5 + Eullx*s — %[ 5. (3.23)
Proof. First, expand the squared norm [158, Lemma 3.12]
1h(%se) = %l * =[[h(&e) = x5 +x*5 =% °
=[[h(&se) = x| + x5 = %4 2
+ 2(h(%ye) — x5, X"y — %)
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Let z € X, y = Az, and J € J. Then, from Equation (3.17), we obtain
EM [iJ | T, J] = EM [RJS}J | z, J]
=R E [y +es|1]
=R,ys
= x7, (3.24)
where we use that R ; is linear.
The noisy random variables X;c and X; are independent conditioned on z and
J, since domains of R; and R jc do not overlap, and the noise € is element-wise
statistically independent. This independence condition allows us to interchange

the order of the expectation and inner product [47, Proposition 2.3], which yields,
using Equation (3.24),

]E[<h()?Jc) —X*J,X*J —)N(J> | m,J}

Using the tower property of expectation, we obtain
E,|[h(%5e) — % *
=E [E [|h(%e) = %7 | x.J]]
—E [E [|h(Rie) = x50 % + x5 = %l %, 4]
= Eu|h(Fse) = x| + Eullx"s = % .
O

Similar proofs can be found in [4, 14]. Proposition 1 states that the expected
prediction error can be decomposed into the supervised prediction error, which
depends on the choice of h, and the variance of the reconstruction noise, which does
not depend on h. Therefore, when minimizing (3.23), the function h minimizes
the difference between its output and the unknown clean target sub-reconstruction
x*j. Note that the minimization of h occurs with respect to x*; instead of the fully
sampled reconstruction x*. When the target sections have been chosen such that
E; [x*;] = x* holds, however, the difference is minimized.

The supervised prediction error, E,||h(X)c) — X*Jug, is minimized [4] by the
regression function

h*(2) =E, Xy | Xjc = 12]. (3.25)

The section-wise averaged network, defined in Equation (3.20), therefore approxi-
mates the section-wise average of the regression function, defined by

_ 1 ‘e .
9" (9) = Z E, X"y [ &Ko = 25e], (3.26)
=



3.2. NOISE2INVERSE 55

where we write ;¢ = Rjegjc for g € Y and J € J.

Using these results, we can explain why the section-wise average obtains a
denoised output. A noisy sub-reconstruction can be explained by different values
of the clean reconstruction x*. The expectation E,, [x*; | Xjc = &;c] is the mean of
noiseless reconstructed images consistent with the observed noisy reconstruction
Zjc. Equation (3.25) therefore predicts that our method produces denoised images.
In fact, our method computes the mean over all clean sub-reconstructions indicated
by J € J.

The obtained results may be used to guide implementation in practice. Equation
(3.26) explains how to choose subsets J. First of all, the mean of the clean sub-
reconstructions /|7 > ses X" must resemble the desired clean image. This can
be achieved by choosing J to be a partition of {1,...,m}, or, by choosing J such
that each measured data point is contained in the same number of overlapping
subsets J € J. Not doing so introduces a systematic bias into the reconstruction.

Second, the sub-reconstructions should be homogeneously informative through-
out the image. If the sub-reconstructions are very different, or contain limited
information about large parts of the image, then many dissimilar clean images are
consistent with the observed noisy reconstruction, and the average over all these
images will become blurred.

We note that x* denotes the clean reconstruction, rather than the unknown
image. This has two consequences. First, the theory predicts that artifacts
that are unrelated to the measurement noise, e.g. under-sampling artifacts and
reconstruction artifacts, will not be removed by the proposed network. Second,
if the reconstruction method also performs denoising operations, for instance by
blurring, then the result of our method might become blurred. The same effect
might occur when a non-linear reconstruction method is used, for which Proposition
1 does not generally hold. In this case, the regression function averages the bias
introduced by the non-linear reconstruction of the noise. In the next section, we use
the considerations discussed above to devise an approach for computed tomography.

3.2.2 Noise2Inverse for computed tomography

In this section, we describe our implementation of Noise2Inverse for 3D parallel-
beam tomography, and discuss how the implementation relates to the theoretical
considerations discussed before.

The 3D parallel-beam tomography problem may be considered as a stack of
2D parallel-beam problems. In 2D parallel-beam tomography, a parallel X-ray
beam penetrates an object, after which it is measured on a line detector. The line
detector rotates around the object while capturing the intensity of the attenuated
X-ray beam, as illustrated in the top panel of Figure 3.2.

In practice, a finite number of Ny projections are acquired on a line grid of
N, detector elements at fixed angular intervals. Hence, the projection data can
be described by a vector y € Y = R™,m = Ny x N, which is known as the
sinogram. Likewise, the two-dimensional imaged object is represented by a vector
x € X =R",n = N2. We can formulate 2D parallel-beam tomography as a discrete
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Collect
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Figure 3.2: Noise2Inverse for computed tomography. First, 3D parallel-beam tomography obtains
a stack of noisy sinograms by integrating over parallel lines at several angles. Next, the stack of
sinograms is split along the angular axis. Then, the split sinograms are reconstructed to act as
training dataset. During training, a dynamic subset of slices is averaged to form the input; the
target is the average of the remaining slices. To obtain a low-noise result, the trained CNN is
applied to all arrangements of input slices and averaged.
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linear inverse problem, where A = (a;;) is an m x n matrix such that a;; represents
the contribution of object pixel j to detector pixel . In 3D tomography, a sequence
of 2D projection images of the 3D structure is acquired, which may be converted
to a stack of 2D sinograms.

The imaged object can be recovered from the sinogram by a reconstruction
algorithm, such as the filtered back-projection algorithm (FBP) [31]. FBP is an
example of a linear operator that couples the measured noise in the reconstruction,
as described in Equation (3.15). In addition, it is typically fast to compute, although
its reconstructions tend to be noisy [34].

The Noise2Inverse method is well-suited to denoise this kind of problem. Sup-
pose we have obtained a stack of 2D noisy sinograms y1,7s,...,¥n, acquired from
a range of Ny equally-spaced angles 61,6s,...,0n,. Our approach follows the
following steps.

First, we split each sinogram y; into K sub-sinograms ¥; 1,...,¥; x such that
each sub-sinogram y; ; contains projection data from every Kth angle. The number
of splits K is a hyper-parameter of the method.

Using the FBP algorithm, we compute sub-reconstructions

%y =Ry(F1)), J=1....K. (3.27)

For training, the division of the sub-reconstructions over the input and target
is determined by a collection J, which contains subsets J C {1,...,K}. For

J CA{1,..., K}, we define the mean sub-reconstruction as
%0 =17 Z i (3.28)
jeJ

As before, training of the neural network f, aims to find

= argmlnz Z ||f¢ i g0 ) )E”Hz (3.29)

i=1JegJ

The final output, x7 ., is computed slice by slice by section-wise averaging of the
output of the trained network

1out |j‘ wa ZJC

JeJg
We identify two training strategies specifying 7:

X:1 Using this strategy, the input is the mean of K — 1 sub-reconstructions, and
the target is the remaining sub-reconstruction, i.e.,

1:X This is the reverse of the previous strategy: the input is a single sub-recon-
struction, and the target is the mean of the remaining sub-reconstructions,
ie.,

Jix ={J° | J€ Txa}. (3.31)



58 CHAPTER 3. NOISE2INVERSE: SELF-SUPERVISED DENOISING

In the 1:X strategy, the input is noisier than the target image, which corresponds
to supervised training, where the quality of the target images is usually higher than
the input images. The opposite is the case for the X:1 strategy, which corresponds
more closely to Noise2Self denoising in its distribution of data between input and
target, where more pixels are used to compute the input than to compute the target
images. Note that other splits are possible, but we focus on these two strategies
because they represent two extremes in the trade-off between input quality and
target quality.

Our implementation of Noise2Inverse for tomography is consistent with the
theoretical considerations discussed in the previous section. In both strategies,
we prevent biasing the reconstructions, by ensuring that each projection angle
occurs in reconstructions at the same rate. In fact, a property of FBP is that
the full reconstruction is the mean of the sub-reconstructions. In theory, this
means that training converges to the conditional expectation of the full clean
FBP reconstruction. Furthermore, we use every Kth projection angle to compute
the reconstructions. This ensures that the reconstructions are homogeneously
informative throughout the image, and we prevent missing wedge artifacts, which
occur when adjacent projection angles are used [127]. In addition, we use the FBP
algorithm with the Ram-Lak filter[31], which does not blur the reconstructions to
remove noise. Finally, we remark that our method is not geometry-specific, and
can also be applied to non-parallel geometries, as is demonstrated in Section 3.3.3.
In the next section, we describe the performance of this implementation in practice.

3.3 Results

We performed several experiments on tomographic reconstruction problems. These
experiments were performed with the aim of assessing the performance of the
proposed Noise2Inverse method, determining the suitability of Noise2Self denoising
for tomographic images, and analyzing the impact of hyper-parameters on the
performance of Noise2Inverse.

Comparison to denoising techniques Noise2Inverse is compared to tomo-
graphic reconstruction algorithms, an image denoising method, and an unsupervised
deep learning method in Sections 3.3.1, 3.3.2, and 3.3.3. These sections describe
a quantitative evaluation on simulated tomographic data, medical CT data with
simulated noise, and a qualitative evaluation on an existing experimental dataset.

Noise2Self on tomographic images The experiments in Section 3.3.4 in-
vestigate a transfer of Noise2Self denoising to inverse problems. The Noise2Self
method was evaluated on two datasets: one dataset with noise common to tomo-
graphic reconstructions and one with similar but element-wise independent noise.
In addition, Noise2Inverse was compared to several variations of Noise2Self.

Hyper-parameters In Section 3.3.6, the impact on the reconstruction quality
of several variables was investigated, specifically, the number of projection angles
Ny, the number of splits K, the training strategy 7, and the neural network archi-
tecture. In addition, we analyze the generalization performance of the Noise2Inverse
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Figure 3.3: Displays of the clean reconstruction (left) and low-dose reconstructions of the central
slice of the foam phantom. Both «, the absorption of the phantom and Ij, the initial photon
count per pixel, were varied. The yellow insets show an enlarged view of the reconstructions.

approach by training on progressively smaller subsets of the training dataset.

We first describe the simulated tomographic dataset and our implementation of
Noise2Inverse. Both are used throughout the experiments.

Simulated data A cylindrical foam phantom was generated with 100,000
randomly-placed non-overlapping bubbles. Analytical projection images of the
phantom were computed using the foam_ct_phantom package [140]. The value of
each detector pixel was calculated by taking the average projection value of four
equally-spaced rays through the pixel. Projection images were acquired from 1024
equally spaced angles.

The projection images of the foam dataset were corrupted with various levels
of Poisson noise. The noise was varied by altering the average absorption of the
sample a and the incident photon count per pixel Iy. The average absorption of
the sample was calculated as the mean of the vector 1 — e™¥¢ for positions ¢ where
y; was non-zero, and it was adjusted by modifying the intensity of the sinogram.
The pixels in the noisy projections where sampled from p, which for clean pixel
value p was distributed as

Iye P ~ Poisson (Ioe_p) .

i.e., a Poisson distribution on the pre-log raw data. As discussed in Section 1.1.3,
this type of noise is typically mean-zero conditional on the clean projections, as
described in Equation (3.17).

FBP reconstructions were computed on a 5123 voxel grid with the Ram-Lak
filter using the ASTRA toolbox [2]. On this grid, the radius of the random spheres
ranged between 1.5 and 51 voxels. A reconstruction of the central slice of the
foam phantom can be found in Figure 3.3, along with reconstructions of the noisy
projection datasets.

Noise2Inverse We describe the Noise2Inverse implementation in terms of
neural network architecture and training procedure.

The principal network architecture used throughout the experiments was the
mixed-scale dense (MS-D) network [143], of which we used the msd_pytorch
implementation [71]. The MS-D network has 100 single-channel intermediate
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layers, and the convolutions in layer i are dilated by d; = 1+ (i mod 10). With
45,652 trainable network parameters, the MS-D architecture has considerably fewer
parameters than comparable network architectures, reducing the risk of overfitting
to the noise. The MS-D architecture is compared with other architectures in Section
3.3.6. The networks were trained for 100 epochs using the ADAM algorithm [94]
with a mini-batch size of 12 and a learning rate of 1073.

3.3.1 Simulation study

In this section, Noise2Inverse is compared to two conventional iterative recon-
struction techniques: the simultaneous iterative reconstruction technique (SIRT)
[60] and Total-Variation Minimization (TV-MIN) [15]|. In addition, we compare
to the BM3D image denoising algorithm [43], the Deep Image Prior[177], and to
supervised training. The reconstruction quality of these methods is assessed on a
simulated foam phantom dataset with various noise profiles.

For Noise2Inverse, we used the X:1 training strategy with K = 4 splits. We
show that this is a robust choice in Section 3.3.6.

Iterative reconstruction The hyper-parameters of SIRT and TV-MIN were
tuned using the usually unavailable clean reconstructions. Therefore, the results of
SIRT and TV-MIN might be better than what is achievable in practice, but they
serve as a useful reference for comparison to Noise2Inverse. SIRT has no explicit
hyper-parameters, but its iterative nature can be exploited for regularization: early
stopping of the algorithm can attenuate high-frequency noise in the reconstructed
image [60]. We selected the number of iterations (with a maximum of 1000) with
the lowest Peak Signal to Noise Ratio (PSNR) on the central slice with respect to
the clean reconstruction.

The FISTA algorithm [15] was used to calculate the TV-MIN reconstruction.
TV-MIN has a regularization parameter A that effectively penalizes steps in the
gray value of the reconstructed image. As with SIRT, we selected the optimal
number of iterations (with a maximum of 500) based on the PSNR of the central
slice with respect to the clean reconstruction, and the value of the \ parameter
maximizing the PSNR was determined using the Nelder-Mead method [185].

BM3D We used the BM3D implementation described in [116]. The BM3D
algorithm was applied to the noisy FBP reconstructions and provided with the
standard deviation of the noise, which was calculated from the difference image be-
tween the noisy and clean FBP reconstruction. The addition of a prewhitening step
can improve denoising performance [163], but was not included as its computation
becomes infeasible for large image sizes.

Supervised A separate training dataset was created to train MS-D networks
with a supervised training approach. Here, the input and target images were noisy
and clean reconstructions, respectively. The training parameters for supervised
training — learning rate, batch size, network architecture — were exactly the same
as for the Noise2Inverse network.

Deep Image Prior We used the Deep Image Prior implementation from [177].
The quality of the result can be improved by adding noise to the input and by
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Figure 3.4: Results of supervised training, Noise2Inverse, Deep Image Prior (DIP), TV-MIN,
BM3D, and SIRT on simulated foam phantoms with varying absorption « and photon count Ip.
Results are shown on the central slice. The insets display the noisy and clean reconstructions
(yellow) and the algorithm output (red).

Full Volume Central slice
PSNR SSIM PSNR SSIM
a Iy Method

Supervised 20.01 0.83 20.02 0.80
Noise2Inverse 19.71 0.78 19.63 0.74
Deep Image Prior 17.98 0.59
10% 100 TV-MIN 16.89 0.46 16.78 0.40
BM3D 14.79 0.38 14.81 0.33
SIRT 15.56 0.36 15.54 0.32
Supervised 21.77 0.86 21.71 0.83
Noise2Inverse 21.66 0.79 21.62 0.75
Deep Image Prior 19.75 0.67
50% 10 TV-MIN 18.08 0.53 17.99 0.48
BM3D 16.65 0.49 16.74 0.45
SIRT 16.53 0.42 16.50 0.37
Supervised 26.55 0.91 26.50 0.88
Noise2Inverse 26.25 0.89 26.24 0.87
Deep Image Prior 24.03 0.86
10% 1000 TV-MIN 21.24 0.68 21.24 0.61
BM3D 21.14 0.69 21.11 0.65
SIRT 18.84 0.53 18.82 0.48

Table 3.1: On the full volume and on the central slice: comparison of PSNR and SSIM metrics
for SIRT, TV-MIN, BM3D, Deep Image Prior, Noise2Inverse, and a supervised CNN at several
noise profiles. Bold font is used to emphasize the best metrics, excluding supervised training,
which serves as an oracle case for comparison.
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employing an exponentially decaying average of recent iterations [37]. We used
both techniques. To maximize the PSNR with respect to the ground truth, the
training is stopped early with a maximum of 10000 iterations, and the ¢ parameter
of the input noise is optimized using a line search.

Metrics and evaluation The output of each method was compared to the
clean FBP reconstruction using two metrics: the structural similarity index (SSIM)
[191] and the Peak Signal to Noise Ratio (PSNR). Because the reconstructed images
did not fall in the [0, 1] range, these metrics were computed with a data range that
was determined by the minimum and maximum intensity of the clean reconstructed
images. The metrics were calculated on the convex hull surrounding the object,
which diminishes the importance of the background image quality. Due to the
computational demands of deep image prior, we compute metrics on a single slice
of the reconstruction rather than on the whole volume.

The top row of Figure 3.4 displays the output of Noise2Inverse for the central
slice of the three simulated datasets. Denoising these datasets is challenging, as
can be seen when comparing with SIRT and TV-MIN: these algorithms fail to
recover several fine details. In contrast, our method achieves a much improved
visual impression on all three datasets. As can be seen in Table 3.1, the PSNR and
SSIM metrics of the Noise2Inverse method are considerably higher. The supervised
network attains the best metrics, although by a slight margin compared to the
Noise2Inverse method.

3.3.2 Medical CT

To assess the quality of reconstruction on medical data, we evaluate our method
on simulated data from human abdomen CT scans from the low-dose CT Grand
Challenge dataset [123]. This dataset contains full-dose reconstructions of 10
patients, consisting of a total of 2378 slices of 512 x 512 pixels. Following [5],
sinograms were computed from these reconstructions by projecting onto a fan-beam
geometry. Noise was applied, corresponding to a photon count of 10,000 incident
photons per pixel. Reconstructions are shown in Figure 3.5.

We compare the same methods as before. The dataset was split into a training

Site 1 (Clean) Site 1 (Noisy)

Site 2 (Clean) Site 2 (Noisy)

Figure 3.5: Original high-dose reconstructions of low-dose CT grand challenge (clean) and
reconstructions with simulated noise (noisy).
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Figure 3.6: Results of supervised training, Noise2Inverse, Deep Image Prior, TV-MIN, BM3D,
and SIRT on Low-dose CT grand challenge data with simulated noise. The red insets display the
algorithm output.

Full volume Single slice

PSNR SSIM PSNR SSIM
Method
Supervised 46.34 0.99 46.29 0.99
Noise2Inverse 45.06 0.99 45.46 0.99
TV-MIN 44.91 0.99 45.65 0.98
Deep Image Prior 44.57 0.98
BM3D 43.84 0.99 43.97 0.98
SIRT 39.87 0.97 40.61 0.95

Table 3.2: Medical data: comparison of PSNR and SSIM metrics for SIRT, TV-MIN, BM3D,
Deep Image Prior, a supervised CNN, and Noise2Inverse. Bold font is used to emphasize the best
metrics, excluding supervised training, which serves as an oracle case for comparison.

dataset, consisting of nine patients, and a test set, containing the remaining patient.
Both Noise2Inverse and the supervised CNN were trained on the training set. The
optimal hyperparameters for SIRT, TV-MIN, and BM3D were determined on the
training set. The Deep Image Prior, including its hyperparameters, was directly
optimized with respect to the slices displayed in Figure 3.6. Metrics were calculated
on the full volume of the test patient, and on the top displayed slice in Figure 3.6.

Results are shown in Figure 3.6 and Table 3.2. The Noise2Inverse method
achieves similar results to TV-MIN, but without the staircasing artifacts. The
difference between the methods is smaller in this experiment. For the SSIM
metric, this is likely due to the low contrast of structures of interest compared to
the full intensity range of the reconstructions. In general, compared to previous
experiments, the noise has significantly lower intensity, and many different objects
structures are present, each of which must be learned by the neural network.
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3.3.3 Experimental data

The Noise2Inverse method was compared to SIRT and TV-MIN on an existing
real-world experimental dataset from TomoBank [44]. The dataset, Dorthe_F_002,
was acquired at the Advanced Photon Source at Argonne National Laboratory,
and contained 900 noisy projection images of 960 x 600 pixels depicting a cylinder
of glass beads that was scanned at experimental conditions designed to capture
the dynamics of fast evolving samples. At 6 milliseconds per projection image, the
exposure time was therefore much shorter than what is required for low-noise data
acquisition [44]. The data was pre-processed with the TomoPy software package
[64] and reconstructed with FBP[2], resulting in 900 2D slices of 960 x 960 pixels.
We stress that no low-noise projection images were available.

For Noise2Inverse, an MS-D network was trained with the X:1 strategy and 4
splits for 100 epochs. The best parameter settings for SIRT and TV-MIN were
determined by visual inspection. For SIRT, the best reconstruction was chosen
from 1000 iterations on the central slice. For TV-MIN, the number of iterations
was fixed at 500, and the optimal value of the regularization parameter was chosen
from several values regularly spaced on an exponential grid. For BM3D, the best
image was chosen from various values of the standard deviation parameter. We
have omitted the Deep Image Prior since there was no ground truth with respect
to which to perform early stopping.

After initial reconstructions, we found that the reported value of the center
of rotation offset — 4.5 pixels from center — yielded unsatisfactory results. The
reconstructions in Figure 3.7 were computed with a center of rotation that was
shifted by 8.9 pixels. Results are shown for the central slice of the reconstructed
volume. The FBP and SIRT reconstructions exhibit severe noise. The TV-MIN
reconstruction improves on the level of noise, but contains stepping artifacts that
reduce the effective resolution. Our method is able to remove the noise while
retaining the finer structure of the image.

Figure 3.7: Reconstructions of cylinder containing glass beads [44] using: FBP, SIRT, BM3D,
TV-MIN, and the proposed Noise2Inverse method. The red insets show an enlarged view of the
algorithm output.
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Figure 3.8: The effect of element-wise independence of the noise on the Noise2Self method. In
the top row, Gaussian noise is added to a reconstruction, and Noise2Self is applied to remove it.
In the bottom row, Gaussian noise is added to the projections before reconstruction, resulting in
a reconstructed image with similar but coupled noise. Noise2Self achieves lower PSNR in the
bottom row than in the top row.

3.3.4 Self-supervised image denoising for tomography

The performance of Noise2Self on tomographic images was evaluated in two experi-
ments. The first experiment tested the element-wise independence requirement,
by evaluating Noise2Self on images corrupted by element-wise independent noise
and on images reconstructed from noisy projection data. The second experiment
was a comparison of Noise2Inverse to Noise2Self, including variations of Noise2Self
applied to projection and sinogram images.

Noise2Self We used the original implementation of Noise2Self [14], which
obtains better performance than the simplified scheme discussed in Section 3.1.1.
The training procedure was the same as for Noise2Inverse: an MS-D network was
trained for 100 epochs as described at the beginning of Section 3.3.

Tomographic versus photographic noise Noise2Self was applied to images
with coupled reconstructed noise and to similar but element-wise independent noise.
In these experiments, the same foam phantom was used as before, and Gaussian
noise was used throughout the comparison to strictly compare the independence
properties of the noise. First, we confirmed that Noise2Self obtained denoised
images when the noise satisfied the element-wise independence property. In this first
case, a clean reconstruction was computed on a 5123 voxel grid, and independent
and identically distributed (i.i.d.) Gaussian noise was added to the reconstructed
images. The PSNR of the noisy volume with respect to the clean reconstruction was
11.06. Then, Noise2Self was applied to obtain a denoised volume with significantly
improved PSNR of 25.23. This process is displayed in the top row of Figure 3.8.

Next, the performance of Noise2Self on coupled reconstructed noise was inves-
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Figure 3.9: From top to bottom, results on the central slice of the foam phantom of Noise2Self
applied to reconstructed, projection, and sinogram images. For comparison, the insets show the
output of Noise2Inverse (yellow) and Noise2Self (red).

tigated. Here, i.i.d. Gaussian noise was added to the projection images, and a
reconstruction was computed afterwards. The PSNR of this noisy reconstruction
with respect to the clean reconstruction was 11.59. When Noise2Self was applied
to the noisy reconstruction, it obtained a PSNR of 16.14, substantially less than in
the first case. This is displayed in the bottom row of Figure 3.8.

The results in Figure 3.8 demonstrate that the performance of Noise2Self is sub-
stantially degraded when the noise is not element-wise independent. Even though
the starting PSNR in the bottom row is slightly higher, the PSNR improvement is
only half of the top row. In the top row, the validation error continued to improve
for 100 epochs, whereas in the bottom row, training started to overfit to the noise
within the first 10 epochs of training, which could be caused by the statistical
dependence between the input and target images.

Noise2Self on sinogram and projections To mitigate the effect of coupled
noise, Noise2Self was also applied to images that do satisfy the pixel-wise indepen-
dence property: the projection images and sinograms. In these cases, Noise2Self
was first applied to denoise the raw images, and reconstructions were computed
from the denoised projection images or sinograms.

As can be seen in Figure 3.9, the variations of Noise2Self did improve results,
but not beyond Noise2Inverse. Although applying Noise2Self on the projection and
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Absorption Ip  Method PSNR  SSIM
N2S Reconstructions 6.37 0.27

10% 100  N2S Projections 16.43 0.44
N2S Sinograms 16.98 0.45

Noise2Inverse 19.71 0.78

N2S Reconstructions 9.12 0.20

50% 10  N2S Projections 17.49 0.49
N2S Sinograms 18.06 0.51

Noise2Inverse 21.66 0.79

N2S Reconstructions 15.39 0.50

10% 1000 N2S Projections 19.57 0.62
N2S Sinograms 20.62 0.60

Noise2Inverse 26.25 0.89

Table 3.3: Comparison of Noise2Self results on reconstruction, projection, and sinogram images.

sinogram images did accurately denoise the raw images, the resulting reconstruc-
tions of these denoised images exhibited some blurring (projections) and streaks
(sinograms). As displayed in Table 3.3, the Noise2Self-based method with the best
metrics, Noise2Self on sinograms, obtains PSNR, on par with TV-MIN and SSIM
worse than TV-MIN, see Table 3.1.

3.3.5 Noise2Inverse and missing wedge artifacts

The quality of tomographic reconstructions may be degraded due to artifacts other
than measurements noise, such as missing wedge artifacts. These artifacts arise
when projection data is acquired along an arc spanning less than 180°. The results
in Section 3.2.1 predict that Noise2Inverse preserves these artifacts. To test this
prediction, we apply Noise2Inverse to a foam dataset where the reconstructions are
computed from 400 projection images along an arc of approximately 60°. Noise
is applied consistent with an absorption of 10% and an incident photon count of
1000 photons per pixel. As can be seen in Figure 3.10, Noise2Inverse accurately
denoises the reconstructed image, but leaves the missing wedge artifacts intact.

)

Missing wedge (clean) Missing wedge (noisy)

Noise2Inverse

Figure 3.10: Noise2Inverse applied to a noisy dataset with missing wedge artifacts. The red and
yellow insets show an enlarged view of the output and ground-truth, respectively.
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3.3.6 Hyper-parameters

We analyzed how the effectiveness of Noise2Inverse was influenced by the number
of splits, training strategy, number of projection angles, and neural network ar-
chitecture. In addition, we tested the generalization by training on subsets of the
data.

The same foam phantom was used, and noisy projection data were acquired
from 512, 1024, and 2048 angles, of which the first and last acquisitions were under-
sampling and over-sampling the projection angles, respectively. For each dataset,
the total number of incident photons remained constant: we used Iy = 400, 200, 100
for Ny = 512,1024, 2048, respectively. The average absorption was 23%, which is
the default value of the foam_ct_phantom package.

Splits and strategy The performance of the Noise2Inverse method was
evaluated with a number of splits K = 2,4, 8,16, 32, and with strategies X:1 and
1:X, see Equations (3.30) and (3.31). These experiments were performed with
MS-D networks, which were trained for 100 epochs, and used the same training
procedure as before.

Strategy = X:1 Strategy = 1:X

30 [ R T U N N
2 ek Tiuliat: —ondl :
325 e, —— . __Angles
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Z20 E -~.,...\. 21024
o ] T 102048
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2 4 8 16 32 2 4 8 16 32
Splits Splits

Figure 3.11: The PSNR metric for the Noise2Inverse method with the MS-D network applied
on the foam phantom with varying number of splits, angles, and varying input-target splitting
strategies. The X:1 strategy attains higher PSNR than the 1:X strategy.

The PSNR metrics are displayed in Figure 3.11. The figure shows that the
X:1 strategy yields considerably better results than the 1:X strategy, except for
K = 2, where they are equivalent. Setting the number of splits to K = 2 yields
good results across the board, but the PSNR can be improved by setting K to 4 or
8, if the projection angles are not under-sampled. In general, the figure shows that
increasing the number of acquired projection images can improve reconstruction
quality without increasing the photon count. On the other hand, we note that
reducing the number of projection images further can reduce the reconstruction
quality as the artifacts arising from undersampling are not removed by the neural
network.

Neural network architectures We compared three neural network architec-
tures: the U-Net [156], DnCNN [199], and the previously described MS-D [143]
network architectures, all of which were implemented in PyTorch [139).

The U-net is based on a widely available open source implementation®, which

Ihttps://github.com/milesial/Pytorch-UNet/
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Figure 3.12: Comparison of the PSNR metric. The MS-D, U-Net, and DnCNN networks were
trained for 100 epochs on the foam phantom with 1024 projection angles.

is a mix of the architectures described in [38, 156]. Like [156], the images are
down-sampled four times using 2 x 2 max-pooling, the “up-convolutions” have
trainable parameters, and the convolutions have 3 x 3 kernels. Like [3§], this
implementation uses batch normalization before each ReLU, the smallest image
layers are 512 channels instead of 1024 channels, and zero-padding is used instead
of reflection-padding. The resulting network has 14,787,777 trainable network
parameters.

We used the DnCNN implementation from [14] with a depth of 20 layers, which
is advised for non-Gaussian denoising [199]. The resulting network has 667,008
trainable network parameters.

The previous experiment was repeated on the dataset containing 1024 projection
images. The networks were trained for 100 epochs, and used the same training
procedure as before. The results are displayed in Figure 3.12. The figure shows
that the U-net achieved overall highest performance using the X:1 strategy with
4 splits. In addition, the effect of the number of splits K is roughly the same
across strategies and network architectures, except for U-net. In fact, the PSNR
metric of the U-Net with the 1:X strategy initially increases when K is increased,
which might be due to the large network architecture and number of parameters
compared to the other two neural network architectures. Nonetheless, the X:1
strategy consistently attains higher PSNR than the 1:X for the U-net as well. We
note that the U-Nets performed worse than the other networks with 2 splits, which
suggests that training might have overfit the noise.

Overfitting We tested if the networks overfit the noise when trained for a long
time. All three networks were trained for 1000 epochs using the X:1 strategy and
K = 4 on the same foam dataset with 1024 projection angles. The resulting PSNR,
on the central slice as training progressed is displayed in Figure 3.13a. The figure
shows that U-Net and DnCNN started to fit the noise, whereas the PSNR of the
MS-D network continued to increase. This matches earlier results on overfitting |73,
140, 143]. If the training dataset had been larger, these effects could have been less
pronounced.

Generalization We tested whether the network could be trained on fewer data
samples and generalize to unseen data. We used the 1024-angle foam dataset, the
MS-D network, 4 splits, and the X:1 strategy. The network was trained on the
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Figure 3.13: a) The PSNR on the central slice as training progressed. A U-Net, DnCNN, and
MS-D network were trained with the X:1 strategy and number of splits K = 4 for 1000 epochs on
the foam phantom reconstructed from 1024 projection angles.

b) An MS-D network was trained on subsets of the data. The PSNR on the training set (black)
and test set (remaining data; red) are displayed.

first 4, 8, 16, 32, 64, 128, and 256 slices of the data. We report PSNR metrics on
this training set and on the remaining slices, which we refer to as the test set. The
number of epochs was corrected for the smaller dataset size, such that all networks
were trained for the same number of iterations. When the training set exceeds
32 slices, the PSNR on the training and test set is comparable, as can be seen in
Figure 3.13b.

3.4 Discussion and conclusion

The results show that the proposed Noise2Inverse method outperforms conventional
reconstruction algorithms SIRT and TV-MIN by a large margin as measured in
PSNR and SSIM. This improvement is accomplished despite optimizing the hyper-
parameters of SIRT and TV-MIN on the clean reconstruction and without likewise
optimizing the Noise2Inverse hyper-parameters. In addition, Noise2Inverse is able
to significantly reduce noise in challenging real-world experimental data, improving
on the visual impression obtained by SIRT and TV-MIN.

Extending the Noise2Self framework|[14|, we describe a general framework for
denoising linear image reconstructions that provides a theoretical rationale for the
success of our method. The framework shows that clean reconstructions may be
recovered from noisy measurements without observing clean measurements, under
the common assumption that the measured noise is element-wise independent and
mean-zero. We remark that in low-noise situations, the trained network does not
introduce additional artifacts in its output, as predicted by the theory.

We now focus on the comparison between the proposed Noise2Inverse approach
and the existing Noise2Noise and Noise2Self approaches. As in Noise2Noise, the
network is presented with two noisy images during training. In Noise2Inverse,
however, these images are sub-sampled reconstructions, and since the artifacts
arising from sub-sampling the data are correlated, the input and target images
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are not statistically independent — although the reconstructed noise in these
images is statistically independent. Therefore, our results fall outside of the
Noise2Noise framework. As in Noise2Self, Noise2Inverse trains a denoiser from
unpaired measurements. The key difference is that the noise is element-wise
independent in the measurement domain, rather than in the reconstruction domain,
where denoising takes place. Therefore, the results from [14] do not carry over to
the inverse problems setting. However, we are able to prove Proposition 1 using
essentially similar arguments to those in [14].

The framework points the way to new applications of Noise2Inverse to linear im-
age reconstruction methods. The implementation of Noise2Inverse for tomography
shows that several aspects are worth considering. If reconstruction artifacts arise
in the absence of noise, they will be preserved. In addition, if the reconstruction
algorithm filters the noise at the expense of resolution, this will cause blurring in
the output of our method. Moreover, splitting the measurement uniformly can
avoid biasing the output of the method towards a particular subset of the measured
data. Finally, the performance of the neural network can be improved by ensuring
that the sub-reconstructions are homogeneously informative throughout the image.

Noise2Inverse is well-suited to imaging modalities that permit trading acquisition
speed for measurement noise, as it aims to remove measurement noise but does not
remove artifacts resulting from under-sampling, Whether this trade-off is possible,
depends on the specifics of the imaging modality. Tomographic acquisition, for
instance, permits acquiring the same number of projection images by lowering the
exposure time at the cost of increased noise [123]. Magnetic Resonance Imaging
(MRI), on the other hand, is usually accelerated by reducing the number of
measurements, rather than by acquiring noisier measurements [96]. Examples of
imaging modalities that permit trading speed for noise include ultrasound imaging
[121], deconvolution microscopy [167], and X-ray holography [197].

The comparison of Noise2Inverse with Noise2Self demonstrates that the success
of our method depends not only on considerations of statistical independence, but
also on taking account of the physical forward model. Regarding statistical inde-
pendence, we have demonstrated that a straightforward application of Noise2Self
fails on noisy tomographic reconstructions due to coupling of the noise. Regarding
the forward model, we have investigated a two-step approach, where Noise2Self
is applied to projection or sinogram images — which do satisfy the element-wise
independence requirement — before reconstructing. This approach performs worse
than TV-MIN and Noise2Inverse in terms of visual impression and quality metrics.
This matches earlier results [27], and could result from the fact that the consistency
of the projection and sinogram images with respect to the forward operator is not
necessarily preserved. These results suggest that taking into account the properties
of the inverse problem — as Noise2Inverse does — significantly improves the quality
of the reconstruction.

Several variables affect the performance of Noise2Inverse. Most importantly,
the training strategy that reconstructs the input images from at least as many
projection angles as the target images — the X:1 strategy — yields better results
than vice versa. This conclusion holds regardless of network architecture, number
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of splits, or number of projection angles. This suggests that noise in the gradient
is less problematic than noise in the input for neural network training, as was
observed before [107]. Another variable that consistently predicts performance
is the number of angles; acquiring more projections yields a small but consistent
performance boost. The number of parts in which the measured data is split,
however, deserves more nuance: when the projection angles are under-sampled,
the results indicate that two parts yield the best results; otherwise, splitting into
more parts yields better results. Finally, maximal performance can be obtained by
tuning the neural network architecture and number of training iterations. When
tuning is not an option, an MS-D network can be trained with limited risk of
overfitting the noise. Finally, the object under study influences the comparative
advantage of our method to conventional reconstruction techniques. When the
aim is to retrieve low-contrast details from low-noise reconstructions, the difference
may be minimal. When the object is self-similar and the noise has high intensity,
on the other hand, our method can significantly outperform other methods.

In conclusion, we have proposed Noise2Inverse, a CNN-based method for
denoising linear image reconstructions that does not require any additional clean
or noisy data beyond the acquired noisy dataset. On tomographic reconstruction
problems, it strongly outperforms both standard reconstruction techniques such as
Total-Variation Minimization, and self-supervised image denoising-based techniques,
such as Noise2Self. We also demonstrate that the method is able to significantly
reduce noise in challenging real-world experimental datasets.



NOISE2INVERSE FOR
SYNCHROTRON TOMOGRAPHY

“That solution which appears the “Die op het oog simpele oplossing,
simplest, turns out to be the hardest blijkt in de praktijk het moeilijkst.”
in practice.”

Johan Cruijff
Vrij Nederland, 21 Dec 1974

Synchrotron-based X-ray tomography is a powerful technique for investigating
the internal structure of objects with applications in energy research, materials
science, life sciences, and many other fields [146, 152, 173|. Thanks to the high
photon flux available at synchrotrons, experiments can be performed at speeds
and microscopic scales that push the envelope of scientific imaging [56, 77]. In
these experiments, a rotating object is located in the path of an X-ray beam,
and its projection is measured on a detector. A representation of the object is
reconstructed from a series of its projection images. The projection images typically
suffer from noise, which carries over to the reconstructed images. Noise can be
reduced by increasing the exposure time or photon flux, resulting in a higher
dose. In many cases, however, dose and exposure time are limited by unavoidable
experimental constraints, such as fast sample dynamics, radiation damage, and
alteration of system properties during prolonged exposure to high-flux synchrotron

This chapter is based on:
A. A. Hendriksen, M. Biihrer, L. Leone, M. Merlini, N. Vigano, D. M. Pelt, F. Marone,
M. di Michiel, and K. J. Batenburg. “Deep Denoising for Multi-Dimensional Synchrotron
X-Ray Tomography Without High-Quality Reference Data”. Scientific Reports 11.1
(2021).
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X-ray beams [23, 29, 50, 56, 113, 157]. In such experiments, accurate denoising of
the reconstructed images is a central problem.

Among techniques for removing noise from reconstructed images, deep convo-
lutional neural network (CNN)-based methods have shown strong results, often
outperforming conventional state-of-the-art techniques [5, 85, 140|. A substantial
subset of these techniques are known as post-processing techniques. Here, a re-
construction is first computed using a fast reconstruction algorithm and a CNN is
used to post-process the reconstructed image. Other approaches, such as learned
iterative techniques [5] also exist, but are generally not as computationally efficient.
Most proposed methods, however, require supervised training before they can be
applied to the problem at hand. That is, the networks are trained by using paired
examples of noisy input reconstructions and high-quality target reconstructions.

In practice, obtaining the set of paired noisy and high-quality reconstructions
required for supervised training is a major obstacle [16]. First, obtaining low-noise
reconstructions may not be possible, due to the aforementioned experimental
constraints. Second, accurate pairing of two different datasets may require time-
consuming manual labor to register the images, especially because the accuracy
of registration directly impacts the output quality of the trained network [166].
Sub-pixel inaccuracies may cause blurring of the network output, for example.
Finally, with fewer than 50 synchrotron facilities worldwide, beamtime is a scarce
resource [190], and acquiring additional measurements may simply be too expensive.

To sidestep the issue of obtaining training data, CNN-based denoising techniques
have recently been proposed that do not require the acquisition of high-quality
images [14, 27, 97, 100, 107, 112, 149, 196]. However, many of these techniques
rely on assumptions about the source of noise that are not correct in tomography,
resulting in suboptimal denoising accuracy [75]. As a solution to these difficulties, we
have proposed Noise2Inverse [75], which is a post-processing technique specifically
designed for tomography and related inverse problems. Using self-supervised
training, the acquisition process is exploited to create pairs of noisy reconstructions
from a single tomographic dataset. Although no high-quality reconstructions are
presented to the network, training still produces a denoising CNN whose accuracy is
comparable to supervised CNN training [75]. To obtain a denoised reconstruction,
the trained CNN can be applied both to the noisy training reconstruction and
to similar data that is acquired in the future. The Noise2Inverse method can be
applied in the aforementioned cases where collecting a training set is found to be
an obstacle.

To obtain a denoising CNN, the reconstructed training pairs must satisfy certain
conditions, which we describe in this chapter and refer to as the Noise2Inverse
conditions. In previous work, analysis of the Noise2Inverse conditions was limited
to single-slice (2D) parallel-beam tomography [75], treating multi-slice (3D) to-
mographic datasets as a stack of independent 2D problems. In the synchrotron
community, however, 3D tomography is routine and many important research
questions can only be answered using more advanced imaging techniques that make
use of additional information in the time or spectral domain of the signal [10, 22,
23, 28, 29, 50, 56, 77, 87, 113, 157, 189]. In this chapter, we extend the analysis
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of the Noise2Inverse conditions to such techniques, including micro-tomography
(space), dynamic micro-tomography (time), as well as X-ray diffraction computed
tomography (diffractogram, spectrum-like). Taking into account the Noise2Inverse
conditions, we tailor training procedures to each of these techniques. Our descrip-
tion of the training procedures for these imaging techniques may serve as a template
for other use cases. In addition, we discuss how the acquisition can be refined to
optimize the results of Noise2Inverse denoising. Finally, we apply Noise2Inverse
to real-world datasets, compare it to commonly used reconstruction techniques,
and investigate the possibility of reducing acquisition time without loss of image
quality.

This chapter is structured as follows. First, we introduce the basics of CNN-
based denoising. Next, we describe the Noise2Inverse method for single-slice (2D)
parallel-beam tomography. Then, for each of the three domains (space, time, and
diffractogram) and corresponding imaging technique, we describe a Noise2Inverse
training procedure that exploits the acquisition process to obtain a denoising CNN.
Next, we present results of the application of Noise2Inverse to real-world datasets
of each of these techniques, and conclude with a discussion.

4.1 CNN-based denoising

Convolutional neural network

N\
N S
[0) Target

O

Figure 4.1: A prototypical convolutional neural network (CNN) in a supervised training arrange-
ment for denoising. The CNN is composed of multiple layers. To compute an image in the next
layer, images in the previous layer are convolved with a small filter (depicted in blue), after
which a non-linear function is applied. To train a CNN to perform denoising, the output image is
compared to a target image, and the convolution filters are updated accordingly.

Input

Convolution
Non-linearity

This section briefly introduces convolutional neural networks (CNNs) for de-
noising. For a more detailed overview, we refer the reader to [122, 199]. CNNs are
usually organized in layers: the input image is copied into the first layer, the output
image is the final layer, and computations are performed in the intermediate layers.
The CNN computes convolutions that are parameterized by thousands to millions
of small filters (typically 3 x 3). In each intermediate layer, the images in the
previous layer are convolved with these filters, after which a pixel-wise non-linear
function is applied. A common non-linearity is the ReLLU function, which is the
identity for positive arguments and zero otherwise |79, 133]. A prototypical CNN
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is illustrated in Figure 4.1. The input to the network can consist of multiple 2D
channels, for example when the input is a color image. Similarly, the intermediate
layers and output may consist of multiple channels — regardless of the number of
channels in the input.

The network can be prepared to perform denoising by supervised training.
During training, the network is presented with noisy input images and noise-free
target images from a training dataset. On each image pair, the parameters of
the convolutions are optimized to minimize the training loss, i.e., the difference
between the output and target image. The training loss is commonly quantified by
the mean square error [66] and minimized using stochastic gradient descent [153].

If the number of parameters of a CNN is large compared to the amount of
training data, there is a risk of overfitting. In such situations, the network starts
to fit features particular to the training data which causes its accuracy to suffer
on its intended use case [16]. A practical remedy is to monitor the results of the
network on a separate validation dataset, and perform early stopping when the
results start deteriorating. Early stopping may not be necessary, however, if the
number of training pixels vastly exceeds the number of CNN parameters [66].

In tomography, the reconstructed data is often volumetric rather than a single
2D image. In the volumetric case, it has been observed that image quality can
be improved by using 3D CNNs instead of 2D CNNs [201]. Here, the input and
output are a 3D volume, and intermediate computations are performed using 3D
convolutions. 3D CNNs, however, impose computational demands that can be
prohibitive in practice. As a solution to this problem, 2.5D CNNs have been
proposed. These networks can often achieve image quality similar to 3D CNNs at a
reduced computational cost [201]. We refer to a 2D sub-image of a 3D volumetric
dataset as a slice. The input to a 2.5D CNN is a stack of 2D slices, and its output
is a 2D slice. In addition to the current input slice, the network input consists of
context slices located above and below the current slice. This technique is applied
to 3D tomographic datasets in Section 4.2.2.

As described before, the collection of paired image data can be a major obstacle
to the use of supervised training. In the next section, we describe how a denoiser
can be trained without such a training dataset.

4.2 Method

In this section, we discuss the Noise2Inverse method. First, we summarize the
procedure for single-slice (2D) parallel-beam tomography and describe the condi-
tions under which Noise2Inverse training is possible [75]. Next, we describe how
Noise2Inverse can be extend in space, time, and spectrum-like domains so that it
can be applied to imaging techniques in common use at synchrotron facilities.
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4.2.1 Noise2Inverse on single-slice parallel-beam tomography

In single-slice parallel-beam tomography, a rotating object is located in the path of
a planar beam, and its projection is measured on a line detector, as displayed in
Figure 4.2. A 2D image, called the sinogram, is collected from readouts at a series
of angles. From the sinogram, a 2D image (slice) of the object can be computed
using a reconstruction algorithm [31].

The Noise2Inverse procedure for parallel-beam tomography was comprehensively
introduced in [75]. First, the acquired sinogram is split into multiple target sections
in the domain of the rotation angle. Each target section has a matching input
section that covers the remainder of the sinogram. As displayed in Figure 4.2 (b),
the target sections split the sinogram in such a way that adjacent measurements
in the angular domain are in different target sections. During CNN training, the
input and target images are reconstructed from the corresponding sections of the
sinogram. The CNN thus learns to map noisy reconstructed images to each other.
The training process is displayed in Figure 4.2.

After training, the reconstructed images are post-processed using the CNN. In
this chapter, we describe a modification to the post-processing step described in
the previous chapter. There, the CNN was applied to reconstructions of the input
sections separately, resulting in several denoised intermediate images, of which
the average formed the output of the algorithm. Here, on the other hand, the
output is computed by directly applying the CNN to the reconstruction of the
full sinogram. Empirically, this modification consistently improves results [14],
although no theoretical explanation for its success has yet emerged.

To train a denoising CNN, the Noise2Inverse method requires that the recon-
structed training pairs satisfy the following two Noise2Inverse conditions:

1. The noise in the reconstructed input image is statistically independent from
noise in the reconstructed target image.

2. Every subset of the measurement is used in the reconstructed target images
equally often.
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Figure 4.2: Noise2Inverse for single-slice parallel-beam tomography. (a), A sinogram is acquired
of a rotating object. (b), The sinogram is split into sections (red, green, and blue) in the domain
of the rotation angle. (c¢), The input and target images for training the network are reconstructed
from distinct sections of the sinograms (indicated by the red, green, and blue dots). The input
and target sections cover 2/3 and 1/3 of the sinogram, respectively.
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The Noise2Inverse conditions are satisfied in the case of single-slice parallel-beam
tomography. The noise in the reconstructed input and target images is independent
(“uncorrelated”), because the images, and thus the noise, are reconstructed from
distinct input and target sections of the sinogram. Because target sections from all
parts of the sinogram are used during training, the second requirement is satisfied as
well. This prevents biasing the result towards a specific subset of the measurements.

Formally, the first condition makes it possible to write the training loss as
the sum of two terms. Consider a noisy measurement and its corresponding
unknown noise-free sinogram. Split the measurement into J target sections and
denote by Z; noise-free the reconstruction of the j-th target section of the noise-free
sinogram. Denote by z; 0isy the reconstruction of the j-th target section of the
noisy measurement and by ..; noisy the corresponding input reconstruction. The
training loss can then be decomposed as a sum of two terms [75]

Noise2Inverse training loss

J
Z ||CNN(x-7éj,noisy) - xj,noisyHg

Jj=1

J
E
- Z |CNN T.A£j, nmsy) — &j noise- frcc”z + ||1'] noise-free — Lj, nOlSy||2, (41)

Loss w.r.t. noise-free reconstructions Variance of the noise

where = indicates that the equality holds on average over the statistical distribution
of the noise and the imaged objects. On the right hand side, the first term represents
the difference between the CNN output and the noise-free reconstructions, and the
second term represents the variance of the noise in the reconstructed images, which
does not depend on the CNN. Minimizing the Noise2Inverse training loss therefore
minimizes the loss with respect to the noise-free reconstructions, which is the goal
of denoising.

Equation (4.1) holds in combination with any linear reconstruction algorithm.
Most common reconstruction algorithms in synchrotron tomography fall into this
category, e.g., FBP, GridRec, and SIRT [31, 60, 118]. An additional requirement
is that the measurement noise is zero-mean. This is typically satisfied by sources
of noise in X-ray synchrotron tomography, such as Poisson or additive Gaussian
noise. An example of noise that is not zero-mean is salt and pepper noise, which
randomly corrupts pixels by setting them to zero or a fixed high value.

Intuitively, Noise2Inverse and other self-supervised methods rely on the ability
of CNNs to find correlations between images. During training, the content of
both the input and the target reconstruction is determined by the structure of the
object — resulting in a strong structural correlation between the images — and the
noise, which is uncorrelated. Therefore, the network is rewarded when it makes a
prediction using the structure of the object. If it picks up a correlation based on the
noise, it may be punished when this spurious correlation is absent in later iterations.
During training, the network thus learns the statistical distribution of noiseless
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reconstructions. This distribution encompasses all features of the reconstructed
images that are not related to the measurement noise. Therefore, when systematic
imperfections in the measurement carry over into the reconstructed images, the
network will not learn to remove them. This can occur, for instance, when the
angular sampling of the full sinogram has insufficient resolution, as described in [75].

If the Noise2Inverse conditions are not satisfied, then the output of the trained
CNN can be sub-optimal. First, if the noise in the reconstructed input and target
images is not independent, then the CNN will learn to reintroduce noise in its output.
This can happen when the input and target sections of the measured data partially
overlap, for instance. Second, when not every subset of the measurement is used in
the target image equally often, then the CNN may be trained to overemphasize
reconstruction of certain sections of the measured data, resulting in biased output.

4.2.2 Noise2Inverse on synchrotron X-ray tomography

In this section, we propose Noise2Inverse training strategies tailored to imaging
techniques in common use at synchrotron facilities. We discuss extensions in the
spatial domain (3D micro-tomography), time domain (dynamic micro-tomography),
and spectrum-like domain (X-ray diffraction tomography). In addition, we discuss
how the training strategies satisfy the Noise2Inverse conditions.

Static 3D micro-tomography In 3D micro-tomography, the beam is measured
on a 2D detector instead of a line detector. In the parallel-beam case, this problem
can be viewed as a stack of single-slice problems. Therefore, the strategy from the
previous section could be pursued, using reconstructed image pairs from the entire
stack to train a single 2D CNN [75]. As discussed in Section 4.1, however, the image
quality can be further improved by using a 2.5D CNN [201]. This network’s input
consists of context slices located above and below the current slice, as illustrated
in Figure 4.3 (c).

The Noise2Inverse strategy can be used with 2.5D CNNs. After acquisition of a
stack of sinograms, we propose that each sinogram is split in the angular domain to
obtain target sections and complementary input sections. In each training iteration,
the target image is a single slice reconstructed from a target section. The input
consists of an input slice and context slices reconstructed from the corresponding
input section. The procedure is illustrated in Figure 4.3. This strategy preserves
the Noise2Inverse conditions, as the noise in the input and target is reconstructed
from distinct sections of the sinograms, and each part of the sinogram is used as
target section.

Dynamic micro-tomography In dynamic tomography, a full scan of a
dynamically evolving process is made at several time steps. In a single time
step, movement of the object can result in motion artifacts, severely degrading the
quality of the reconstructed image. To prevent such artifacts, the ideal scan time of
a time step is bounded by the speed of the evolving process [29, 56]. Additionally,
the number of projection images per time step may be limited by the maximum
frame rate of the detector. Therefore, both the exposure time and the number of
projection images per rotation may be limited, and a reconstruction of a single
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Figure 4.3: Noise2Inverse training procedures for several imaging techniques. a—c, Static 3D
micro-tomography. Acquisition produces a stack of sinograms (a), each of which is split in the
angular domain (b). A 2.5D-CNN is supplied with the current input slice and several context
slices (shown in white) reconstructed from one part of the sinogram (blue dot). The target slice
is reconstructed from a different part of the sinogram (red dot). d—f, Dynamic micro-tomography
of an evolving process. Scans of multiple time steps are acquired (d). With interlaced acquisition,
the angular sampling of each time step is slightly displaced with respect to the previous time step
(indicated by the “clock’s hands”) (e). Denser angular sampling is achieved by combining the
sinograms of multiple time steps (e). A 2.5D-CNN is trained on time steps where the dynamic
process has not yet started (f). The input is a reconstruction of a single time step (blue dot),
and the target is reconstructed from the sinograms of the other time steps (red and green dots).
g—i, X-ray diffraction computed tomography (XRD-CT). A pencil beam probes a rotating object
that is moved sideways in steps (g). Diffraction of the beam gives rise to rings on the detector
(in green). Azimuthal integration along rings at different radii yields several sinograms for each
slice of the object. These sinograms are split in the domain of the rotation angle (blue and red
dots) (h). From these sinograms, a multi-channel reconstruction is computed, representing the
diffractogram of the object (in shades of green) (i). Training is performed with multi-channel
inputs and multi-channel targets, with inputs and targets reconstructed from distinct parts of the
sinograms (blue and red dots).



4.2. METHOD 81

time step may suffer from sparse angle artifacts [83)].

When angular undersampling occurs in dynamic tomography, Noise2Inverse
benefits from interlaced angular sampling [3]. Here, the angular sampling at each
time step is displaced from the sampling at the previous time step. By combining
sinograms of multiple time steps, this technique enables denser angular sampling
to be achieved, as illustrated in Figure 4.3 (e). From the combined sinogram, an
accurate reconstruction can be computed, possibly even avoiding motion artifacts
where and when the object is static. As discussed in Appendix A.1, it is likely that
a fast dynamic scan uses interlaced angular sampling, either deliberately or as a
consequence of minimal mechanical inaccuracies.

Typically, the dynamic process does not start immediately during the acquisition.
This creates a window of opportunity to train a CNN on the first few time steps.
Here, interlaced sampling mitigates the effects of undersampling, and motion
artifacts are avoided, since the dynamic process has not yet started. We propose
that the sinogram stacks of these time steps are combined into a single sinogram
stack. The sinogram stack is subdivided such that each input section covers a
single time step, and the corresponding target section covers the remaining time
steps. During training, the input and target are reconstructed from the input and
target sections. This process is displayed in Figure 4.3 (d — f), where three time
steps are combined into a single sinogram stack, and two time steps are used to
reconstruct the target image in a round-robin fashion. The number of time steps
should preferably be chosen such that the interlaced sampling distributes the angles
of the projection images evenly over a 360° arc. As in the static 3D case, 2.5D CNN
training can be used. After training, the network is applied to each reconstructed
time step to obtain a sequence of denoised reconstructions. A similar approach has
been described for dynamic magnetic resonance imaging (MRI) [112].

This training strategy preserves the Noise2Inverse conditions. The noise in the
reconstructed input and target images is independent as the images have been
reconstructed from distinct time steps. The second property is satisfied, as each
time step occurs in the target images equally often. Note that in contrast to the
previous cases, the target is reconstructed from more measurements than the input,
since the target is computed using multiple time steps. This enables the target
reconstructions to achieve denser angular sampling and causes the network to
mitigate sparse angle artifacts.

X-ray diffraction computed tomography X-ray diffraction tomography
(XRD-CT) makes it possible to non-destructively identify the crystallographic
phases that compose a material, using the principles of X-ray powder diffraction 10,
22]. As illustrated in Figure 4.3 (g), the acquisition proceeds by probing a rotating
object with a pencil beam, repeating the acquisition as the object is moved sideways
in steps. The diffraction signal produced by the sample is recorded on a 2D detector,
on which rings correspond to the scattering angle of the beam. By azimuthal
integration along these rings, sinograms are computed for each scattering angle,
forming 2D images indexed by the rotation angle and the sideways translation
of the object. Performing the azimuthal integration with different radii yields
several sinograms for one 2D horizontal slice of the object. From these sinograms,
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a multi-channel reconstruction is computed where each channel corresponds to a
radius of the azimuthal integration. For each voxel in the 2D slice, these channels
form a diffractogram, which is a non-spatial dimension analogous to a spectrum.

The Noise2Inverse strategy for X-ray diffraction tomography exploits the in-
terdependence of the object in the domain of the diffractogram (across channels).
The diffractogram at a location is determined by the specific crystallographic phase
of a material at that location. Hence, if a material in a specific phase is present
at multiple locations, its diffractogram — the values in the multi-channel recon-
structed image — must correspond. The accuracy of denoising can be improved by
exploiting this interdependence.

During Noise2Inverse training, we propose to split the obtained sinograms in
the domain of the rotation angle to obtain input and target sections. Multi-channel
reconstructions are computed from the input and target sections of the sinograms,
which are used as input and target during training. This training strategy satisfies
the Noise2Inverse conditions, as the input and target images are reconstructed from
distinct sections of the sinograms, and the target sections cover the full sinogram.

In summary, Noise2Inverse can be adapted to make use of additional information
in space, time, and spectrum-like domains. This enables its application to several
imaging techniques in use at synchrotron X-ray facilities. In the case of static 3D
micro-tomography, the 2D network input is extended with context slices to utilize
2.5D CNN training. In the case of dynamic 3D micro-tomography, the effects of
sparse angular sampling are mitigated by reconstructing the target image from a
combined sinogram of multiple time steps.

In the case of X-ray diffraction tomography, multiple channels represent the
diffractogram of each voxel in a 2D slice of the object — not its vertical direction

—, and thus serve a different purpose than in the previous cases.

4.3 Results

We applied the Noise2Inverse method to datasets acquired at two synchrotron
beamlines. In particular, we compared the method to common reconstruction
algorithms on a static and a dynamic micro-tomography dataset from the TOMCAT
beamline at the Swiss Light Source (SLS). In addition, we investigated the possibility
of accelerating the acquisition process using an X-ray diffraction tomography (XRD-
CT) dataset from the ID15A beamline at the European Synchrotron (ESRF). The
acquisition procedure for each dataset is described in Appendix A.1.

On each dataset, CNN training was performed using the same parameter-
efficient mixed-scale dense network architecture (MS-D) [143] and the same hyper-
parameters. Differences between the Noise2Inverse training procedures on each
dataset are summarized in Table 4.1 and described in more detail in Appendix A.2.

Static 3D micro-tomography A static 3D micro-tomography dataset of a fuel
cell was acquired. This dataset was part of a set of acquisitions aimed at imaging
the water dynamics in the fuel cell. During operation, fuel cells generate water as
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Micro-tomography reconstructions of static fuel cell
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Figure 4.4: Comparison of reconstructions of a fuel cell using GridRec, Paganin+GridRec, and
Noise2Inverse. a, Reconstructions of the static fuel cell. The yellow region of interest is magnified
in the windows on the right. Gray level ranges have been adjusted to improve contrast and are
indicated by the shaded region in the histograms on the right. b, A comparison of Noise2Inverse
with a 2D CNN and a 2.5D CNN on a vertical cross-section of the reconstruction. The magnified
regions of interest in the middle reveal discontinuities in the 2D CNN reconstruction.

a by-product. Suboptimal water management is currently a major limiting factor
to sustained performance of the fuel cell at high current densities [29]. Accurate
imaging of the water dynamics can inform improvements to the fuel cell design.
This static dataset contained no water; a dynamic dataset of the operating fuel
cell is discussed below.

We compared the Noise2Inverse reconstruction to reconstructions using the
GridRec algorithm [118] with and without additional preprocessing. The pre-
processing was performed using Paganin phase retrieval [137], and we refer to
resulting reconstructions as Paganin+GridRec. For single material objects and
monochromatic radiation, the Paganin algorithm [137] can be used to preprocess the
projection images prior to tomographic reconstruction to obtain quantitative results
free of edge-enhancement artifacts. In the synchrotron community, thanks to its
robustness, the Paganin algorithm is also used when not all assumptions are strictly
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satisfied as a tool to boost contrast and decrease noise in tomographic reconstruc-
tions. In both static and dynamic experiments with polychromatic radiation and a
multi-material object, the parameters for the Paganin algorithm were chosen so as
to maximize contrast while limiting the degradation of spatial resolution. The sino-
gram stacks were computed using standard dark-field, flat-field, and log-correction
from the raw projection data for the GridRec and Noise2Inverse reconstructions.
In the Paganin+GridRec reconstruction, the dark-field and flat-field corrections
were applied before Paganin phase retrieval, and the log-correction was applied
afterwards. We emphasize that the GridRec and Paganin+GridRec reconstruc-
tions were computed from exactly the same measured data as the Noise2Inverse
reconstruction. No additional measurements were acquired for the Noise2Inverse
reconstructions.

The results are shown in Figure 4.4. The measurement noise was carried over
into the GridRec reconstruction, and the Paganin+GridRec reconstruction was
blurred. Image features in the Noise2Inverse reconstruction could be more easily
distinguished, and the reconstruction did not suffer from noise or blurring. In
addition, we trained a 2D CNN to illustrate the effect of not taking into account
additional 3D information using a 2.5D CNN. Panel (b) displays a vertical cross-
section of the resulting reconstruction that allows comparing between Noise2Inverse
with a 2D CNN and with a 2.5D CNN. On this vertical reconstruction, we see
that the 2D CNN reconstruction suffers from slight vertical discontinuities that are
not present in the 2.5D CNN. The 2D CNN was not much faster to train than the
2.5D CNN.

Dynamic 3D micro-tomography A dataset was acquired of a fuel cell that
was in operation. The speed of the water dynamics made it necessary to acquire
a single time step 10 times faster than in the static case, resulting in a highly
restricted exposure time and a restricted angular sampling frequency — due to
the maximum frame rate of the detector. During the acquisition, the object was
continuously rotating at a constant speed. As described in Appendix A.1, we
observed a small deviation in the rotation speed as a result of a minor mechanical
inaccuracy. This caused each time steps’ 300 projection angles to be slightly
displaced with respect to the previous time step, resulting in interlaced sampling.
Training was performed on the first 3.6 seconds of the 18s acquisition (36 out of
180 time steps).

A comparison of GridRec, Paganin+GridRec, and Noise2Inverse can be found
in Figure 4.5. It shows a reconstruction of a horizontal slice, and several time
steps of a magnified region of interest, in which the formation of a water bubble
takes place. The GridRec reconstruction suffered severely from noise carried over
into the reconstruction, and the Paganin+GridRec reconstruction was blurred,
although the water dynamics were discoverable. The Noise2Inverse reconstruction
was substantially sharper, and the water dynamics in the magnified views were clear.
In panel (b), several crops show the difference in blurring between Noise2Inverse
and Paganin+GridRec on a vertical cross-section.

XRD-CT An X-ray diffraction tomography dataset was acquired of an ar-
chaeological ceramic, whose fragments are kept at the University of Milan. The
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Micro-tomography reconstructions of dynamic fuel cell
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Figure 4.5: Comparison of reconstructions of an operating fuel cell using GridRec, Pa-
ganin+GridRec, and Noise2Inverse. a, Reconstructions of the fuel cell in operation. The
yellow region of interest is magnified in the windows on the right, and shows the formation of a
water bubble over several time steps. b, A vertical cross-section of the dynamic reconstruction is
displayed with magnified regions of interest shown in the middle.
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XRD-CT reconstructions
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Figure 4.6: X-ray diffraction tomography reconstructions of a single channel of a single slice of
a ceramic fragment. The leftmost column shows the reconstruction of the originally acquired
data, and the next two columns show reconstructions with synthetic noise. The rightmost three
columns show magnifications of the yellow region of interest.

acquisition resulted in a dataset containing 3 horizontal slices with 11 channels each.
Acquisition of each slice took 20 minutes. Two noisier datasets were obtained by
applying synthetic noise to the sinograms. These were estimated to correspond to a
virtual acquisition time of 70% and 20%, respectively, as described in Appendix A.3.
The relative variance of the noise of the synthetic datasets is displayed in Figure A1.

The results are shown in Figure 4.6. As the virtual acquisition time was de-
creased, the quality of the FBP reconstruction suffered due to measurement noise
that was carried over into the reconstruction. Compared to the FBP reconstruc-
tions, the degradation in image quality of the Noise2Inverse reconstructions was
substantially less severe.

4.3.1 Training time, intermediate results, and overfitting

Differences of Noise2Inverse training between the three previous experiments are
summarized in Table 4.1. The training times were realized on a system with 192
GB of RAM and four Nvidia GeForce GTX 1080 Ti GPUs. The reported training
times are indicative, and are specific to the hardware. For instance, a networked
storage bottleneck caused training on the dynamic dataset to take twice as long
as on the static dataset, even though a similar number of training iterations was
spent on both datasets.

Although training times were substantial for all three datasets, we note that
training time did not increase linearly with the size of the training dataset. For
instance, the dynamic dataset was 10,000 times larger than the XRD-CT dataset,
yet training time took less than 30 times longer. An important factor is that
training time dominates reconstruction time: the static fuel cell took 20 hours to
train, but inference took only 5 minutes for instance. As shown in Table 4.1, the
CNNs had roughly the same number of parameters for all three datasets. That
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Static Dynamic XRD-CT

Noise2Inverse

Channels (input, target) 11,1 11,1 11, 11

Relative section size (input : target) 1:1 1:5 2:1
Size

Sinograms (32-bit float) 6.3GB 342GB 9.2MB

Training volume size (voxels) 6.86-10%8  2.47-10'° 2.46 - 106

CNN Parameters 5.48 - 10% 5.48 - 10% 5.60 - 10*
Duration

Training iterations 220,000 171,600 30,000

Training 4+ Reconstruction duration  ~ 20 hours ~ 43 hours ~ 90 minutes

Table 4.1: Details of Noise2Inverse training on the static and dynamic micro-tomography datasets
of a fuel cell and X-ray diffraction tomography dataset of a ceramic. The relative section size
reports the ratio of the size of the input section relative to the target section. The size of the
training volumes varies widely, whereas the number of parameters in the CNN is stable. Reported
training times are indicative, and are specific to the hardware.

may be the reason that the number of required training iterations does not scale
with the size of the dataset, but reaches a point of diminishing returns. Therefore,
training does not necessarily take much longer for larger datasets.

The number of training iterations was fixed in advance for each experiment.
On intermediate results on the XRD-CT dataset, we observed that most of the
improvement occurred in the first 20% of training, in which all noise was removed,
but the images were slightly blurred. Small details evolved in the remaining 80%
of training time. In [75], it is reported that prolonged training can obtain some
improvement in image metrics. In our experience, however, training for longer
periods had no substantial influence on image quality. Because no ground truth
data was available, changes in the output of the network were difficult to quantify.
On the XRD-CT dataset, an additional training session was continued for ten times
as many iterations (300,000). As training progressed, no reintroduction of noise
into the reconstructed images was observed, and some small details were better
resolved, indicating that overfitting was unlikely to occur.

4.3.2 Comparison to Total-Variation Minimization

In this section, Noise2Inverse is compared to a traditional iterative reconstruction
approach. We implemented Total-Variation Minimization (TV-MIN) using the
Chambolle-Pock algorithm [168]. For each dataset, we used 500 iterations and
determined the optimal regularization parameter A visually, as described in Ap-
pendix A.4. Reconstructions for several values of the regularization parameter are
displayed in Figure A2. The TV-MIN reconstruction was performed on a single
slice of the reconstruction and did not take into account additional space, time,
or diffractogram information that was present in the static micro-tomography,
dynamic micro-tomography, or the XRD-CT dataset, respectively.

An indication of the reconstruction time is given in the top right corner of each
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Static fuel cell Dynamic fuel cell XRD-CT
(T = 69) (Virtual acquisition time: ~70%)

Figure 4.7: Comparison between Total-Variation Minimization reconstructions (a — ¢) and
Noise2Inverse (d — g) reconstructions of the static and dynamic micro-tomography datasets of a
fuel cell and X-ray diffraction tomography dataset of a ceramic. The displayed regions correspond
to the reconstructions displayed in Figures 4.4, 4.5, and 4.6. Magnifications of the yellow regions
of interest are displayed in the lower-left corner of the panels. In the top right corner of each panel,
an indication of the reconstruction time of the full dataset is given using four Nvidia GeForce
GTX 1080 Ti GPUs. The indicated time was realized for the Noise2Inverse reconstruction and
estimated for the TV-MIN reconstruction.

panel in Figure 4.7. For the Noise2Inverse reconstruction, the realized reconstruction
time is reported. For the TV-MIN reconstruction, an idealized reconstruction time
is calculated by performing a single-slice reconstruction on a single GPU. To arrive
at the reconstruction time for the full dataset, this number is multiplied by the
total number of slices and divided by four to correct for the number of GPUs. We
see that TV-MIN is faster in each case, but that the relative difference diminishes
substantially for larger datasets.

The TV-MIN and Noise2Inverse reconstructions of the static fuel cell are
visually comparable. In the other two cases, the TV-MIN reconstruction suffers
from residual noise and stair-casing artifacts, which diminish the visibility of
fine details. These results confirm the findings in [75], where it was found that
Noise2Inverse could substantially outperform TV-MIN in terms of common image
metrics. Image metrics cannot be computed in this case, because ground-truth
images are not available.
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4.4 Discussion and Conclusion

In this chapter, we have shown that Noise2Inverse can be extended in space, time,
and spectrum-like domains. As a result, it can be effectively applied to tomographic
imaging techniques in common use at synchrotron X-ray facilities. In the case of
static and dynamic micro-tomography, we have shown that Noise2Inverse offers
significant improvements in the quality of denoising over alternative reconstruction
methods. In the case of X-ray diffraction tomography, we have shown that the
acquisition time can be substantially reduced while maintaining image quality.

Using the Noise2Inverse conditions, we have discussed the considerations that
enter into successful application of the method to several synchrotron imaging
techniques. As noted in [75], the Noise2Inverse method benefits from high-resolution
angular sampling, even at the cost of more measurement noise, but fares worse
when angular sampling is sparse. We have shown that the effects of angular
undersampling can be mitigated by exploiting interlaced angular sampling. We
emphasize that Noise2Inverse does not assume a Gaussian noise model. The only
assumption is that the noise does not result in a systematic upward or downward
bias in the sinogram pixel intensities. Bias can result also from preprocessing, e.g.,
log correction and correcting for photon starvation, but for most realistic scenarios,
the resulting bias is less than 1%, as discussed in Section 1.1.3.

Apart from measurement noise, vibrations and drifts of the sample constitute
another substantial experimental uncertainty in dynamic micro-tomography. We
note that the proposed approach does not deal with this issue directly: vibration
of the sample can be visually identified between time steps in the Noise2Inverse
reconstructions of the dynamic fuel cell dataset. It has been noted in previous work,
however, that the improved visual reconstruction quality due to Noise2Inverse
has enabled determining the correct center of rotation with greater precision [75].
Precise correction for sample vibration and drift as a preprocessing step is a topic
for future work.

An open question is to what extent successful application to dynamic tomogra-
phy depends on the similarity of the training time steps to later time steps. In our
experiments, water was not present in the training data, but it was present in the
rest of the sequence. We did not notice a deterioration of denoising accuracy for
the water compared to other structures. This may be different in cases where the
dynamics introduce more substantial changes in the sample structure. In general,
we remark that the generalizability of the trained network mainly depends on the
data that it is trained with and less so on whether it is trained in a supervised way
or using Noise2Inverse.

In this chapter, we have demonstrated several strengths of the Noise2Inverse
method. First of all, its versatility was shown on both large and small datasets that
were obtained using different imaging techniques. In this work, it was applied to a
dynamic tomography dataset hundreds of gigabytes in size, and an XRD-CT dataset
of less than 10 MB. In addition, the method requires no CNN hyper-parameter
tuning for training, which substantially simplifies its use in practice. We were able
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to achieve all results in this work using the same network architecture and the
same CNN hyper-parameters, illustrating the sample-independence of the method.
Finally, since the MS-D network architecture has a small number of parameters,
it is unlikely to overfit to the noise. Therefore, prevention of overfitting through
early stopping is not necessary, reducing the necessity for continuous observation
of intermediate training results. All in all, the proposed method not only produces
accurately denoised reconstructions, but can also be used in a “launch and forget”
style, approaching the convenience of conventional reconstruction methods in a way
that is uncommon for CNN-based methods. To scientists at synchrotron facilities,
the sample-independence of the method could be appealing, as it opens up the
possibility of blind application of the method to a variety of different samples.



TOMOSIPO: FLEXIBLE
TOMOGRAPHY IN PYTHON

“The difference between right and “Het verschil tussen goed en fout
wrong often lies in less than five ligt vaak in niet meer dan vijf
meters.” meter.”

Johan Cruijff,
Vrij Nederland, 21 Dec 1974

Tomographic imaging enables the examination of the internal structure of
an object. The object is typically placed between a source and detector, and
its structure is reconstructed using projection images from a range of different
positions. Collectively, the position information of the source, object, and detector
determine the acquisition geometry.

Most common tomographic techniques rely on a selection of standard acquisition
geometries, such as circular cone beam or single-axis parallel beam [31]. In recent
years, several scientific and industrial applications have emerged whose needs are
not met by the standard selection of paths. Such scientific applications include
diffraction contrast tomography (DCT) [184] and X-ray scattering tensor tomogra-
phy (XSTT) [93]. These techniques measure X-ray effects other than absorption,
which necessarily give rise to more complex acquisition geometries. Complex geome-
tries also arise in industrial applications like automotive and aerospace testing [52,

This chapter is based on:
A. A. Hendriksen, D. Schut, W. J. Palenstijn, N. Vigan6, D. M. Kim Jisoo Pelt, T.
van Leeuwen, and K. J. Batenburg. “Tomosipo: Fast, Flexible, and Convenient 3D
Tomography for Complex Scanning Geometries in Python”. Optics Express (2021).
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101], as objects may be too large to fit in conventional scanners. Instead, a robot
arm moves the source and detector along an irregular path around the object.

Efficient reconstruction algorithms exist for many common acquisition geome-
tries [31, 89]. Such filtered backprojection (FBP)-type algorithms are typically
fast to compute [138], but require the source and detector to follow a regular path.
Algorithms that permit flexible acquisition geometries, such as SIRT [60] and total
variation minimization (TV-MIN) [168], typically follow an iterative reconstruction
scheme. As iterative algorithms tend to be more computationally demanding than
FBP-type algorithms, they benefit more from an efficient implementation.

Software packages for computing reconstructions can be roughly subdivided
by their target audience. For application scientists in electron tomography [119]
and synchrotron tomography [64, 130, 186, 188], software exists that provides
pre-processing and reconstruction capabilities. For scientists developing new re-
construction algorithms, packages exist that integrate tomography in optimization
methods [150, 193] and neural networks [175], or implement tomographic primitives
on the graphics processing unit (GPU), such as the TIGRE and ASTRA Toolbox |1,
2, 20].

Existing tomography software is typically limited in its ability to represent,
create, visualize, and reconstruct using complex acquisition geometries. Software
for application scientists usually includes optimized reconstruction routines for a
selection of acquisition geometries, but generally does not provide the flexibility
to represent arbitrary acquisition geometries. Some software packages providing
tomographic primitives, like the ASTRA Toolbox, can represent arbitrarily complex
acquisition geometries, but do not provide effective tools to create them. In fact,
the positions and orientations of the object and detector are usually computed
using trigonometric formulas, requiring tedious and error-prone handwork [1]. In
addition, limited facilities are included to visualize geometries, making it difficult
to validate the computed geometry. Therefore, defining unconventional acquisition
geometries requires extraordinary attentiveness. The lack of validation capabilities
can also be problematic when processing data from advanced experiments, as it
can be difficult or impossible to determine whether certain reconstruction artifacts
are caused by an incorrect modeling of the acquisition geometry, or are due to
other common sources of artifacts (e.g., sample motion, beam stability, etc). This
may lead to sub-optimal reconstruction results and could prohibit further analysis
of the data.

In this chapter, we introduce the tomosipo Python package!, which is designed
to alleviate the problems in defining complex acquisition geometries for tomography.
Specifically, the package provides convenient primitives for the representation,
creation, visualization, and reconstruction of complex acquisition geometries, as
described below.

Representation and creation. Tomosipo allows the user to assemble in-
creasingly complex acquisition geometries by composing geometric transforms and
applying them to primitive acquisition geometries. Several standard geometric

1 Tomésipo is pronounced with the stress on the second syllable.
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transformations can be defined, such as rotation, translation, scaling, and reflection.
Tomosipo’s representation of the acquisition geometries is flexible. Therefore, the
result of applying a geometric transform, e.g., rotation, to an acquisition geome-
try can be represented in tomosipo. In addition to flexible geometries, tomosipo
provides convenience methods to create standard acquisition geometries, such as
circular cone beam and single-axis parallel beam geometries.

Visualization. To aid in validation and communication, visualization of the
resulting geometry is crucial. With tomosipo, the defined geometry can be viewed
in a 3D environment or a Jupyter notebook [145], and saved to disk as a video or
scalable vector graphic (SVG).

Reconstruction. Tomosipo provides a concise and efficient application pro-
gramming interface (API) for computing reconstructions. Its design is similar to
Matlab’s Spot operators [21] and the computations are powered by the ASTRA
Toolbox. In addition, tomosipo integrates with several packages for GPU comput-
ing, such as PyTorch [139] and CuPy, enabling the user to implement reconstruction
algorithms without moving intermediate results to and from the GPU, yielding
immediate speed benefits. These speed benefits are observed both in iterative and
FBP-type reconstruction methods, as implemented in the separate ts_algorithms
package?.

This chapter provides an overview of the design of tomosipo and case studies of
possible applications. First, the tomography problem is introduced in Section 5.1.
In Section 5.2, key concepts of the package are described. In Section 5.3, these
concepts are demonstrated on two simple absorption contrast tomography examples
and two complex acquisition schemes exploiting X-ray diffraction and scattering. In
Section 5.4, reconstructions are shown of experimental data using several algorithms.
In Section 5.5, the use of tomosipo on the GPU is demonstrated and its speed
is compared to existing reconstruction algorithms in the ASTRA Toolbox. We
conclude with a discussion in Section 5.6.

5.1 Standard tomography problem

Common tomography setups expose a sample to a beam of high energy particles,
e.g., photons, electrons, or neutrons, which are collected on a detector. Contrast in
the measured projection images is generated by differences in attenuation, refraction
index or scattering of the object (e.g. phase and diffraction, respectively), or the
emission of secondary signals (e.g. X-ray fluorescence, Compton, Auger). Many
of these problems can be modeled as a collection of line integrals through space
where the ith measurement y; € R is obtained as a line integral

Y = /R;v(si +tn,) dt (5.1)

through a point s; € R? with direction 1, € R®. The canonical case is absorption
contrast tomography, which we describe here.

?https://github.com/ahendriksen/ts_algorithms
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In absorption contrast tomography, the reconstruction problem can be posed as
a linear discrete inverse problem. Suppose measurements y € RVe*%, » are acquired
from Ny positions using a square detector that is divided into Ng pixels. Define
the cubic reconstruction volume x € RN on a voxel grid and let A denote the
projection matrix such that A;; describes the absorption by object voxel j of the
ray to measurement . The goal is to determine the value of x that gave rise to the
measurement

Ax=y. (5.2)

The computation of the linear operator A depends strongly on the geometry of
the acquisition. This includes the direction of the rays, the position and orientation
of the reconstruction volume, and the position and orientation of the detector.

5.2 Framework concepts

Three concepts are essential to the tomosipo package. These are geometries,
geometric transformations, and the projection operator A. Geometries represent
the position of the source, sample, and detector at each time step. The sample’s
position and orientation is represented by a volume geometry, and the X-ray source
and flat panel detector are represented by a projection geometry, which can model
both point sources (cone beam geometry) and parallel box beams (parallel beam
geometry). All geometries have two representations: a simple representation that
defines a standard trajectory, and a flexible representation that permits arbitrary
movement and orientation. Volume and projection geometries are discussed in
Section 5.2.2.

Geometries can be manipulated using geometric transforms, as well as split
and joined using subsampling and concatenation. In this way, complicated acqui-
sition geometries can be assembled from simple geometries. This is described in
Sections 5.2.3 and 5.2.5.

Together, a volume and projection geometry define the projection operator
A. In tomosipo, the computation using A is GPU-accelerated using the ASTRA
Toolbox. Most tomosipo geometries have an ASTRA counterpart, except for the
flexible volume geometry whose movement and orientation is compensated for
by exploiting the flexibility of ASTRA’s projection geometries. The creation of
projection operators is discussed in the next section, and the integration with the
ASTRA Toolbox and Python array libraries in Section 5.2.4. The main concepts
of tomosipo and their relation to the ASTRA toolbox and the physical geometry
are summarized in Figure 5.1.

5.2.1 Tomographic projection

In this section, we describe the creation and use of the projection operator A.
Tomosipo provides a convenient representation of the projection operator A, offering
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Tomosipo Transform Recombine Visualize
Actions Translation Rotation Scaling Subsampling SVG 3D
Reflection  Perspective Concatenation Video
Acquisition geometry X-ray projection
Concepts Cone beam Parallel beam Fixed volume || Flexible volume Operator
Simple + flexible Simple + flexible

ASTRA Cone beam Parallel beam Fixed volume || | Projector
Toolbox Simple + flexible Simple + flexible " )

Physical | point source + Box-beam + Fixed object Moving object X-ray absorption
world Flat panel detector | | Flat panel detector

Figure 5.1: The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the acquisition
geometry and the X-ray projection and can be directly mapped onto ASTRA primitives, except
for the flexible (moving) volume, which has no ASTRA counterpart. The actions provide the
means to transform, recombine, and visualize tomosipo’s geometry primitives.

an API that is similar to the opTomo Spot operator in the ASTRA Toolbox [21].
Given a volume geometry vg and projection geometry pg, the linear operator A
from Equation (5.2) can be obtained as follows:

import tomosipo as ts

vg = ts.volume([...]) # Argument details are described
pg = ts.parallel([...]) # in next section

A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape
properties that facilitate the creation of data of the right shape in its mathematical
domain and range, i.e., image space and sinogram space.

X = np.ones (A.domain_shape, dtype=np.float32)

It can be applied to data as follows:

y = A(X)
backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox.

The operator A can be used to solve the inverse problem posed in Equation 5.2.
In the code below, this is demonstrated by computing a simple Landweber itera-
tion [105] with step size eta.

x_rec = np.zeros (A.domain_shape, np.float32)
for 1 in range (num_iterations) :
x_rec = x_rec + eta x» A.T(y — A(x_rec))

In the next section, we describe how to define the volume and projection
geometries that are required to create a projection operator.
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Standard geometries

# Volume geometry

# Single-axis parallel beam # Circular cone beam

ts.volume( ts.parallel(

shape=(2, 2, 2), angles=[0, .., 0.8 * np.pil],
size=(2, 2, 2), shape=(2, 2),
pos=(0, 0, 0), size=(2, 2),
) )
size

shape

Vector (arbitrarily oriented) geometries

# Parallel vector geometry
ts.parallel_vec(

shape=(2, 2),

ray _dir=[(0, 1, 0)],

# Volume vector geometry
ts.volume_vec(
shape=(2, 2, 2),
pos=[(0, 0, 0)],

w=[(1, 6, 0)], det_pos=[(0, 2, 0)I,
v=[(0, 1, 0)1, det_v=[(1, 0, 0)],
u=[(0, 0, 1)1, det u=[(0, 0, 1)],
) )
\ \

cone_pg = ts.cone(

angles=100,
shape=2,
src_orig dist=1,
src_det dist=4,

src_orig dist
—

.‘ src_det dist

# Cone vector geometry
ts.cone_vec(

shape=(2, 2),
src_pos=[(0, -2, 0)],
det_pos=[(0, 2, 0)],
det_v=[(1, 0, 0)],
det_u=[(0, 0, 1)],

shape u

. N
™ .
—‘! ray_dir src_pos .
w L.i det_pos
v

Figure 5.2: Creation of typical tomographic geometries. From left to right: a volume geometry,
single-axis parallel beam geometry, and a circular cone beam geometry. Below, arbitrarily oriented
vector geometries are shown. The parameters are specified using keyword-only arguments [179)].
The pos parameter, for instance, determines the position of a volume, other parameters have
accompanying labels in the diagrams.

5.2.2 Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-
axis parallel beam geometry, and the circular cone beam geometry. In addition,
these geometries have a flexible counterpart that permits arbitrary orientation and
movement. The flexible geometries are known as vector geometries, following the
terminology of [1]. All geometry primitives are defined in the ASTRA Toolbox
as well, except for the volume vector geometry that can represent an arbitrarily
oriented moving reconstruction grid. The geometries are illustrated in Figure 5.2
with accompanying code.

In contrast to the standard projection geometries, whose movement is param-
eterized by the rotation angle, vector geometries move arbitrarily in time. We
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therefore refer to the state of the acquisition geometry at a specific time as a time
step. Furthermore, geometries have a num_steps property that describes in how
many time steps their movement is discretized.

Standard geometries

Volume geometry. A volume geometry describes the position and size of an
axis-aligned voxel grid on which the object is reconstructed. A volume geometry
can be created with size, pos, and shape parameters, which define its physical
size, center position, and the number of voxels in each direction. By default, the
volume is centered on the origin, and if the size is not specified, it is set to equal
the shape, causing the voxel size to equal 1. Other parametrizations, such as in
terms of the volume’s extents, are described in the documentation.

Single-axis parallel beam. In the parallel beam geometry, X-rays run along
parallel lines and are collected on a flat panel detector that rotates around a single
axis on the origin. It can be created with size, shape, and angles parameters,
which define the detector’s physical size, the number of pixels in each dimension,
and the rotation angles. If an integer argument is provided for angles, equispaced
rotation angles in the interval [0,7) are used. Otherwise, a provided array is
interpreted as containing the rotation angles in radians.

Circular cone beam. Like the parallel beam geometry, the flat panel detector
of a cone beam geometry rotates around an axis located on the origin and the
angles, shape, and size parameters behave similarly. In contrast to the parallel
beam geometry, the rays in a cone beam geometry are emitted from a point source,
and the source-to-origin distance and source-to-detector distances can be specified
using the src_orig_dist and src_det_dist parameters. Also, when angles is
provided as an integer, a rotation is performed along a full arc [0, 27) as opposed
to [0, 7).

Flexible vector geometries

Any geometry g can be converted to a vector geometry by calling g.to_vec().
Vector geometries can also be created directly as described below.

Volume vector geometry. In contrast to a volume geometry, which is static,
a volume vector geometry may move over time and the reconstruction grid may be
arbitrarily oriented. It can be created by providing the shape of the voxel grid and
3 vectors describing the local frame of reference of the grid at each point in time.
In practice, a vector volume geometry is easier to obtain by applying a geometric
transformation to a standard volume geometry.

The ASTRA Toolbox, tomosipo’s computational back end, does not support
non-axis-aligned volume geometries. Internally, tomosipo aligns the volume to the
origin and moves the projection geometry with it. The transformed geometries are
handed to ASTRA, causing the projection operation to be performed in the frame
of reference of the object.
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Arbitrarily oriented parallel beam. In a parallel vector geometry, the
detector can be arbitrarily oriented and positioned. In addition, the direction of
the incoming rays can be adjusted to a direction that is not necessarily orthogonal
to the detector plane. It can be created by specifying a fixed detector shape and
varying ray directions, detector positions, and detector orientations at each time
step. The orientation is determined by parameters det_u and det_v that specify
the vector from detector pixel (0,0) to (0,1) and (0,0) to (1,0), respectively. An
example is the dual-axis parallel beam geometry, which is common in electron
tomography [128].

Arbitrarily oriented cone beam. In a cone vector geometry, the detector
can be arbitrarily oriented and the source can be placed in an arbitrary location.
For instance, this geometry can represent a helical cone beam acquisition, as we
show in Section 5.3.1. It can be created like the parallel vector geometry: instead of
a ray direction, however, a source position must be provided for each time step. In
the next section, we describe in more detail how vector geometries can be obtained
as transformations of simple geometries.

5.2.3 Geometric transforms

Tomosipo defines geometric transforms that can rotate, translate, scale, and reflect
the previously introduced geometries. In addition, the package provides a perspec-
tive transform to switch between different frames of reference. The transforms are
stand-alone objects instead of functions that act on geometries directly. We first
discuss the internal representation of the transforms and then we introduce the
built-in functions to create transforms.

Representation. Internally, homogeneous coordinates [154] are used so that a
4 x 4 matrix M describes a single time step of a transformation. An orientation vec-
tor v = (v, vs, v3) is represented in homogeneous coordinates by v = (v, v, v3,0),
whereas a position p = (p1, p2,p3) is represented by p = (p1,p2,ps3,1). This way,
application of a geometric transform — notably translation — to points and vectors
can be performed by matrix multiplication. That is, in homogeneous coordinates,
the transformed vector equals Mv and the transformed point equals Mp. In code,
a vector and point in Euclidean coordinates are transformed as follows

transformed_v = T.transform_vec (v)
transformed_p = T.transform_point (p)

Application of a transform to a geometry is expressed in code as

transformed_vg = T x vg

In the internal representation, the composition of two transforms is also com-
puted by matrix multiplication. The matrix representation of the composition
T =T o Ty of two transforms T4, T represented by matrices M, Mj is equal to
the matrix product of the matrices, i.e., M = M1Ms,. In code, this is expressed as

T =T1 % T2
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# Translate # Rotate # Scale

T = ts.translate( R = ts.rotate( S = ts.scale(
axis=(0, 1, 0), pos=0, (1, 1, 1),
alpha=[-1, 0.5, 2.0]) axis=(1, 0, 0), alpha=[1, 1.5]

) angles=[0, np.pi / 3] )

ts.svg(T * vg) ) ts.svg(S * vg)

ts.svg(R * vg)

EUSI &

# Reflect # Perspective of volume # Perspective of detector
mirror = ts.volume([...]) vg = ts.volume(size=0.5) P = ts.from_perspective(
M = ts.reflect( pg = ts.cone([...]) vol=pg.to vol(),
pos=mirror.pos, )
axis=(0, 1, 0), ts.svg(vg, pg) ts.svg(P * vg, P * pg)
)
Mirror \ \

vg ’: M * vg

Figure 5.3: Overview of geometric transforms in tomosipo. From left to right, translation, rotation,
scaling, and reflection. In the two panes in the bottom right, a typical cone beam acquisition is
shown from two perspectives: a static volume with the source and detector rotating around it
and a static source and detector with a volume rotating in between. A perspective transform P
allows switching between the two frames of reference. The vector illustrations are created using
the ts.svg() function.

Composition of transforms is demonstrated in Section 5.3.1, where a helical cone
beam geometry is created.

Rigid and scaling transforms. Tomosipo provides functions to create a
translation, rotation, scaling, or reflection transform. These are illustrated in
Figure 5.3. A transform may change over time, i.e., at each time step it can define
a different geometric transformation. The functions that create the transforms are
designed to facilitate defining transforms that vary over time.

A translation transform is parameterized by an axis and an array alpha. The
displacement vector at time step i is defined by alpha[i] * axis.

A rotation transform is created using the axis angle representation. The axis,
pos, and angles parameters describe the orientation and location of the rotation
axis, as well as the angle of rotation. Each of these parameters may be provided as
an array to define the rotation at multiple time steps. The angles are expressed in
radians and the direction of rotation is right-handed by default.

A scaling transform describes a scaling operation centered on a position. The
scaling is not necessarily isotropic: some directions can be scaled more than others.
An alpha parameter can be used to modulate the scaling at each time step.
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A reflection transform describes a reflection in a plane that is parameterized
by a position pos and a normal vector axis. Both can be specified as an array,
defining a reflection in a moving plane at several time steps.

Perspective. The ts.from_perspective function creates a perspective trans-
form. This function takes a volume and returns the transform that moves the
volume back to the origin and rotates it back into a single axis-aligned orientation.
All projection geometries have a to_vol() method that describes the frame of
reference of the detector at each time step. This makes it easy to create a transform
that converts to the detector’s frame of reference. In the case of a circular cone
beam trajectory, for example, the source and detector rotate around the volume,
from the volume’s perspective. From the perspective of the detector, on the other
hand, the volume rotates. This change in perspective is illustrated in the last two
panes of Figure 5.3. Both perspectives yield the same projection operator A.

5.2.4 Interoperability and GPU-acceleration

In this section, we discuss tomosipo’s interoperability with NumPy arrays [65]
and GPU-accelerated Python packages. In addition, we discuss the performance
benefits of using GPU-accelerated arrays and also some trade-offs in favor of CPU
arrays.

Projection operations are calculated using the ASTRA Toolbox. We have
extended the ASTRA Toolbox API to enable direct operation on NumPy arrays.
Before any ASTRA operation, the input arrays are automatically linked to the
ASTRA runtime, and unlinked afterwards. This represents a substantial ergonomic
improvement over the existing API. Apart from NumPy arrays, array types from
other Python packages can also be linked. Out of the box, tomosipo interoperates
with PyTorch and CuPy [136, 139]. More integrations can be added though an
API, which can be used in the future to add interoperability with a variety of array
libraries through the currently developing Python array API standard?.

Integration with GPU array libraries can enable substantial performance im-
provements. In the snippet below, a NumPy array and a PyTorch array are forward
projected. The NumPy array is located in RAM attached to the CPU, and the
PyTorch array is located on the GPU.

y_numpy
y_torch

A(np.ones (A.domain_shape, dtype=[...]))
A(torch.ones (A.domain_shape, device="cuda"))

On line 1, the data is first moved to the GPU, the forward projection is calculated,
and the data is moved back to the CPU. On line 2, no data movement takes place:
the forward projection is calculated on the GPU. In iterative algorithms, where
the forward and backprojection are repeatedly executed substeps of the algorithm,
the latency imposed by CPU-GPU communication can dominate the computation
time, as we demonstrate in Section 5.5. Note that PyTorch arrays can also be
created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.

Shttps://data-apis.org/array-api/latest/purpose_and_scope.html
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There are cases where it is beneficial to keep data on CPU. When data is too
big to fit in GPU memory, the ASTRA Toolbox automatically splits data residing
on CPU and performs the computation on the GPU in a streaming fashion. In this
case, the user does not have to split up the data manually. When multiple GPUs
are present on the system, they can be used automatically. In the code below, the
ASTRA Toolbox is instructed to use four GPUs on line 1. The computation of the
forward projection on line 2 is distributed over the four GPUs.

astra.set_gpu_index ([0, 1, 2, 3])
y_numpy = A(np.ones (A.domain_shape, dtype=[...]))

5.2.5 Splitting and joining geometries

The ability to split and join geometries in tomosipo’s API allows users to customize
their design easily. Tomosipo allows subsampling a geometry to obtain a sub-
geometry. In addition, it allows joining the time steps of sequences of geometries
into a single geometry. First, we demonstrate subsampling of projection geometries.
Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry can be subsampled to
obtain a geometry describing a subset of the detector surface. In the code below,
the detector surface is cropped, removing a border of 100 pixels from each side.
On the next line, the detector surface is subsampled, selecting every other row and
column of pixels. Subsampling induces a slight shift in the detector’s center, which
is taken into account and described in detail in the documentation.

pg_cropped = pgl[:, 100:-100, 100:-100]
pg_subsampled = pgl:, ::2, ::2]

Subsampling the angular dimension is also possible. In this dimension, subsampling
supports both slicing as well as Boolean masks [65]. In the code below, the angular
direction is subsampled, obtaining a geometry that contains every other projection
angle. In the line below, angles are selected when a condition array equals True.

pg_even_angles = pgl[::2]
pg_boolean = pgl[condition == True]

In Section 5.3.3, Boolean masking is demonstrated in the case study of X-ray
diffraction tomography, where diffraction occurs in a subset of projection angles.

In addition to indexing, tomosipo also includes functionality to concatenate
geometries and transforms. The concatenation of multiple projection geometries
combines their time steps into a single geometry. In the code below, two projection
geometries are combined. In the next line, a rotation R is repeatedly composed
with different translations T1, T2, T3.

pg_combined = ts.concatenate ([pgl, pg2])
TR_combined = ts.concatenate ([Tl * R, T2 * R, T3 = R])
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¢ In (1) dmport tomosipo as ts
vg = ts.volume(size=0.5)

pg = ts.cone(angles=25, size=2, src_orig_dist=2,src_det_dist=5)
ts.svg(va, pg)

out(1]: (|
L

o

1 8
|
anim = animate(*vg, pg) anim = animate(vg, pg) svg = ts.svg(vg, pg)
anim.window() anim.save("video.mp4") svg.save("fig.svg")

Figure 5.4: Visualization options in tomosipo: (a) interactive 3D environment, (b) video, (c)
interactive animation in a Jupyter Notebook. A single-particle Cryo-EM setup [17] is shown in
panes (a) and (b), and a circular cone beam acquisition is shown in pane (c). Code snippets
demonstrate how visualizations are created.

The concatenation of transforms is demonstrated in the case study of X-ray
scattering tensor tomography in Section 5.3.4, where it is used to define a repeated
rotation at several tilt angles.

5.2.6 Visualization

Tomosipo provides extensive support for visualizing geometries. Animations can be
saved as a video or as a scalable vector graphic (SVG). In addition, geometries can
be investigated in a 3D-accelerated environment on the desktop, allowing the user
to zoom, pan, and rotate the view. Finally, an interactive SVG animation can be
shown in an online Jupyter notebook, allowing for quick inspection of intermediate
results. These options are illustrated in Figure 5.4. All other illustrations in this
chapter have been generated using tomosipo. They were saved in the SVG format
and extended using Inkscape.

5.3 Case studies

In this section, the concepts developed in the previous section are put into practice.
We describe two simple examples and two complex acquisition schemes that are in
use at synchrotron tomography beamlines. The first example demonstrates how
geometric transforms can be composed to create a helical cone beam geometry. The
second example models single-axis parallel beam tomography with a non-standard
center of rotation in the frame of reference of the laboratory. In the first case study,
we describe X-ray diffraction contrast tomography, which demonstrates the use
of reflection and subsampling using a Boolean mask. In the second case study,
we describe X-ray scattering tensor tomography, which demonstrates the use of
concatenation. The case studies demonstrate that X-ray diffraction and scattering
can be modeled using tomosipo’s projection operators.
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t = np.linspace(-1, 1, 100) # Time t = -1.0, -.98, ..., 1 \
s =2 *np.pi*t # Angle

radius = 2 # Radius of helix

h=1.0 # Vertical "speed"

vg = ts.volume()
pg = ts.cone(src_orig dist=radius, src_det dist=2 * radius)

ts.rotate(pos=0, axis=(1, 0, 0), angles=s)
ts.translate(axis=(1, 0, 0), alpha =h * s / (2 * np.pi))
T*R

—
o n

ts.svg(vg, H * pg.to_vec())

Figure 5.5: A helical cone beam geometry can be obtained as a composition of translation and
rotation. The volume and cone beam geometries are defined to be non-moving. At each time step,
the helical transform H applies a rotation R and then a translation 7" to the cone beam geometry.

5.3.1 Basic example: Helical cone beam geometry

As a demonstration of the composition of two primitive transforms, we define the
helical cone beam geometry [88]. Here, the source and detector follow a helical path
around the object. Using the notation of [88], we describe the helical geometry as
a composition of translation and rotation in Figure 5.5. First, a static volume and
a static cone beam geometry are defined. Next, a rotation R and translation T are
defined, which rotate around and translate along the z-axis. The helical transform
H is defined such that it applies the rotation R; and then a translation T; at time
step <. When it is applied to the cone beam geometry, the resulting trajectory
of the source and detector is helical. We note that the helical trajectory could
have been obtained as a translation of a non-static cone beam geometry, effectively
hiding the rotation in the cone beam geometry.

5.3.2 Basic example: Parallel beam in the lab frame

Acquisition using the single-axis parallel beam geometry is common at synchrotron
beam lines. The detector is often positioned at a fixed location and the sample is
mounted on a movable rotation stage. Typically, it is assumed that the center of
rotation and the center of the detector coincide. In many cases in practice, however,
it is difficult to achieve this with the described setup. Therefore, the offset between
the center of rotation and the center of the detector has to be taken into account
in order to achieve an accurate reconstruction. This is possible in tomosipo by
positioning the detector, volume, and rotation axis independently from each other.

In Figure 5.6, the acquisition geometry is defined in the frame of reference of
the laboratory. First, a static detector is translated from the origin to its final
position by a transform T. Next, a static volume geometry is created at the initial
position of the sample. A rotation is defined with a specific position of the rotation
axis. Finally, the rotation is applied to the static volume, obtaining a rotating
volume whose center rotates around the rotation axis.

There is an advantage to this formulation. In existing tomography packages,
the position of the volume is commonly chosen to coincide with the rotation axis.
However, this causes the reconstructed images to be translated when a different
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# Static detector at custom position \
T = ts.translate(det pos)

static_pg = ts.parallel(angles=1, shape=det_shape)

pg = T * pg_static.to _vec()

# Static volume at custom position
vg_static = ts.volume(pos=vol pos, shape=vol_shape)

pEd

# Rotate the volume
R = ts.rotate(pos=rot axis pos, axis=z_axis, angles=angles) ‘
vg = R * vg_static.to_vec()

A = ts.operator(vg, pg)

Figure 5.6: A single-axis parallel beam acquisition with a custom center of rotation. An object,
whose changing position during rotation is indicated in blue, is rotated around a non-standard
axis of rotation (in red). The center of the detector is indicated in green.

center of rotation is provided. This can cause problems when the determination of
the correct center of rotation is based on the reconstructed images. In contrast, the
proposed formulation opens up the possibility of determining the correct center of
rotation by maximizing the auto-correlation in the reconstruction at several values
of the center of rotation.

5.3.3 Complex case study: Diffraction contrast tomography

X-ray diffraction contrast tomography (DCT) [184] is an imaging technique used
to investigate the internal structure of poly-crystalline materials. The crystal
lattice is divided into grains, homogeneous regions where the lattice has a similar
orientation. The orientation, size, shape, and arrangement of individual grains
strongly influence macroscopic properties of the material. Therefore, mapping the
orientation of grains is important to characterize a poly-crystalline material [124].
Here, we take as an example the three-dimensional DCT acquisition geometry as
described in [184] to demonstrate specific features of tomosipo.

The goal of DCT is to reconstruct a vector field representing the intra-granular
orientation of the crystal lattice. This is achieved by discretizing the orientation
space on a regular grid that can be represented by unit vectors 61,...,6y,. For
each orientation O, a scalar field, i.e., a volume, is reconstructed that represents the
diffraction “intensity” at that orientation. A variational reconstruction algorithm
ensures that neighboring voxels have similar orientations. A crystal lattice reflects
an incoming X-ray beam at specific incidence directions, characterized by the
so-called Bragg angles. When the diffraction geometry of the material under
investigation is known beforehand, the intra-granular orientation of the crystal
lattice can be recovered from those projection images at which Bragg diffraction is
expected to occur.

As shown in Figure 5.7, the acquisition uses a monochromatic parallel box
beam and the diffracted signal of the sample is measured on a flat-panel detector.
As the sample is rotated, the reflection of the incoming beam in a voxel with
local orientation 6 forms a figure of eight on the detector. Bragg diffraction only
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Figure 5.7: (a) In X-ray diffraction contrast tomography, a crystal sample is illuminated by a
monochromatic X-ray box beam. The crystal sample is divided into grains, which have a minimal
spread in local orientation. As the sample is rotated, the incoming beam is diffracted when its
incident angle with the local lattice plane equals the Bragg angle. The intersection points of the
reflected beam with the detector form a figure of eight, on which Bragg diffraction occurs only
twice (marked in red) as the sample is rotated. (b) For a random sample of 20 orientations, the
occurrence of Bragg diffraction at a rotation angle is indicated in black. Here, diffraction occurs
in just 3.3% of the orientation-rotation combinations.

occurs in the instances where the beam and local lattice are in Bragg condition.
Occurrence of the Bragg condition is relatively rare, as shown in Figure 5.7 (b).
Both the reflection and its intermittent nature can be modeled in tomosipo.

Bragg diffraction (reflection). The diffraction, i.e., reflection, of an incident
X-ray beam can be represented in tomosipo. As shown in Figure 5.7, a parallel
bundle of rays remains parallel after it has been reflected. Therefore, the measure-
ment of a diffracted parallel beam can be modeled using a standard parallel-beam
geometry with altered ray direction.

The code below models the reflection of the incoming beam by a rotating crystal
lattice. The orientation of the lattice is represented by a plane normal vector. First,
the plane normal of the crystal lattice is rotated. Then, a reflection M is created
in the rotating plane normal. The position of the reflection is arbitrary, as it is
used to transform the direction of the beam and not its location. Finally, a static
parallel beam geometry is modified such that the ray direction corresponds to that
of the beam reflected in the rotating plane normal. The position and orientation of
the detector remain static.

# Rotation of the rotation stage
R = ts.rotate(pos=0, axis=(1l, 0, 0), angles=rot_angles)

def diffracted_pg(pg_static, plane_normal, R):
rotated_plane_normal = R.transform_vec (plane_normal)
M = ts.reflect (pos=0, axis=rotated_plane_normal)
return ts.parallel_vec(
shape=pg_static.det_shape,
ray_dir=M.transform_vec (pg_static.ray_dir),
det_pos=pg_static.det_pos,
det_v=pg_static.det_v,
det_u=pg_static.det_u,
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Bragg condition (Boolean masking). The occurrence of Bragg diffraction
can be considered as a Boolean mask, an example of which is shown in Figure 5.7 (b).
It is computed in the code below. First, the plane normal is rotated. Then, the
Bragg condition is determined at each rotation angle.

bragg_mask = np.empty ((num_orientations, num_angles), dtype=bool)

for i in range (num_orientations) :

rotated_normal = R.transform_vec (plane_normals[i])
for j in range (num_angles) :
bragg_mask[i, Jj] = in_bragg_condition (
rotated_normal[]j], incoming_ray_dir, bragg_angle

)

The created Boolean mask is used to select a subset of each projection geometry.
For each orientation, the code below creates an operator that computes the forward
projection only at rotation angles where Bragg diffraction occurs.

vg = R x ts.volume (shape=100) .to_vec ()
diffracted_pgs = [
diffracted_pg(pg_static, normal, R) for normal in plane_normals
1
# Compute an operator per orientation
operators = [
ts.operator (vglbragg _mask([i]], diffracted_pgs[i][bragg_mask[i]]
for i in range (num_orientations)

Multi-orientation tomography (sums of masked operators). The for-
ward projection computes the diffraction pattern of x € RNex¥ 3, representing all

discretized plane orientations at N2 locations, onto y € RNex Ny , representing the
N? pixel intensities at Ny rotation angles. The operation is a linear combination
of the masked operators defined above.

X = np.zeros ((num_orientations, *vg.shape), dtype=np.float32)

def fp(x):
y = np.zeros ((N_p, N_angles, N_p), dtype=np.float32)
for x_oriented, A, mask in zip(x, operators, bragg_mask):
y[:, mask] += A(x_oriented)
return y

y = fp(x)

In the interest of space, the backprojection operation is omitted. The full
code listing can be found in the Supplemental materials of [74]. Implementing
the variational reconstruction algorithm described in [184] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly
expressed using tomosipo’s rotation and reflection transformations. In addition,
we have used subsampling with a Boolean mask to limit the forward projection to
the few instances where Bragg diffraction occurs.
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5.3.4 Complex case study: X-ray scattering tensor tomogra-
phy

X-ray scattering tensor tomography (XSTT) is an imaging technique used to
investigate materials with micro- and nano-scale structures over an orders of
magnitude larger volumetric field of view, compared to conventional tomographic
modalities [110, 117]. Here, we take the XSTT acquisition geometry that is
described in [93] as an example to demonstrate specific features of tomosipo.

The goal of XSTT is to reconstruct a vector field representing the directional
scattering intensity of a sample. This is achieved by reconstructing N3 > 6 scalar
fields that represent the squared scattering coefficient along unit vector 81, ...,8n;
at each voxel. After reconstruction, the directional scattering intensities are fine-
tuned using per-voxel PCA (principal component analysis) [187]. XSTT has various
biological and industrial applications [93]. As an example, the recovered local
directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement.
Fibers scatter X-rays the least along their primary fiber orientation. Therefore, the
local fiber orientation can be recovered from the shortest principal axis (smallest
scattering magnitude) of the fitted scattering ellipsoid. The possibility to investigate
these local structures over large enough volumes is valuable for the research and
development of new materials.

We describe the acquisition process to obtain one of the scalar fields xg, repre-
senting the squared scattering coefficient along a unit vector §. First, we discuss
the forward model at a single orientation of the sample, i.e., without any rotation
or tilting. Let x5 € RV ; represent the sample’s squared scattering coefficient along
a vector §. The sample is illuminated by a monochromatic parallel X-ray beam.
Before they are measured on a detector, the X-rays travel through a panel that is
etched with a periodic array of multi-circular gratings [93], generating a reference
pattern. The panel is placed at a fixed propagation distance from the detector to
maximize the visibility of the patterns. Different types of gratings require different
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Figure 5.8: In X-ray scattering tensor tomography, a sample is illuminated by a box beam. The
sample is repeatedly rotated at several tilt angles. The scattered signal passes through an array
of gratings before being measured on a detector. The detector pixels are grouped into 9 X 9 pixel
unit cells. In each unit cell, a directional intensity is measured along vectors g;. In each voxel,
scattering coefficients for multiple scattering sensitivity vectors §; are reconstructed.
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acquisition geometries. The acquisition discussed in this case study is specifically
geared to circular gratings.

With the use of circular gratings, the pixels of the detector are grouped into
9 x 9 pixel unit cells. In each unit cell, a 2D directional intensity is measured along
multiple unit vectors g;. The measured intensity y; along the vector g; on the
detector for a single beam direction b is computed by scaling the forward projection
with the scalar vy 4 5 [117], defined by

(

The scaling is the same for each unit cell on the detector and varies as the sample
(and thus 8) is rotated.

Rotation and tilt (concatenation). When using circular gratings, the
sample must be measured with multiple tilted rotation axes [93, 109]. In the XSTT
acquisition described in [93], the sample stage is rotated, while the stage is tilted
in steps. At each step, the stage makes a full rotation, as illustrated in Figure 5.8.
Each step can be represented in tomosipo by composing a single tilt operation with
a full rotation. In the code below, the full motion is computed by concatenating
each step.

2
b x é‘ <§,§i>) ApXs =Vp 45 ApXs =i (5.3)

»S, 84

tilt = ts.rotate(pos=0, axis=(0, 0, 1), angles=tilt_angles)

rotate = ts.rotate(pos=0, axis=(1, 0, 0), angles=rotation_angles)

# For each tilt angle, perform a full rotation:

TR = ts.concatenate([tilt_single % rotate for tilt_single in tilt])

At each tilt and rotation angle, the scaling v 4 & from Equation 5.3 is calculated
as follows:

def calculate_nu(b, s, g, TR):
nu = np.zeros (TR.num_steps)
for j, s_rot in enumerate (TR.transform_vec(s)):
nul[j] = (norm(np.cross (b, s_rot)) * np.dot(s_rot, g)) *x 2
return nu

Because the calculation is performed in the lab frame, the vector § is rotated rather
than the beam direction b or sensitivity vector g,

Scaled linear combinations. After v € RNs*NeXNuieNrot g calculated for all
values of §1,...,8n,, all §;, and all tilts and rotations, then the full projection can
be calculated. Here, the measurement along g; is the sum of the contributions
of the Nj scalar fields representing the scattering coefficients of the sample, as
calculated below. In the interest of space, the backprojection operation is omitted.
The full code listing can be found in the Supplemental materials of [74].

def fp(x, nu):
y = torch.zeros (num_g, *A.range_shape, device=x.device)
for k in range (num_s) :
for i in range (num_g) :
y[i] += nulk, i][None, :, None] = A(x[k])

return y




5.4. EXPERIMENTAL DATA 109

Data size. The reconstruction problem considered in [93] fits in memory
on modern GPUs. The measured data consists of 46 tilt angles, 50 rotation
angles, and 100 x 144 unit cells. Measuring along 8 §; vectors, the total number
of measured unit cells equals 46 x 50 x 100 x 144 x 8 =~ 256 x 10°, which requires
approximately 1 GB when stored in 32 bit precision. The reconstruction volume
consists of 44 x 71 x 71 voxels, repeated for each of N3 = 7 scattering directions.
In total, it requires roughly 6 MB to store in 32bit precision. The size of the
scaling matrix v is negligible in comparison. Modern data center GPUs range in
memory size from 16 GB to 80 GB. Therefore, it is possible to run an iterative
SIRT reconstruction of the full problem on GPU. Benchmarks comparing the
performance on GPU versus CPU are provided in Section 5.5.

5.4 Experimental data

In this section, we show reconstructions of experimental data acquired using
the standard circular cone beam and single-axis parallel beam trajectories, as
well as a reconstruction of an X-ray scattering tensor tomography dataset. The
reconstructions have been computed using the algorithms implemented in the
separate ts__algorithms package.

Circular cone beam. A laboratory micro-CT dataset of a bell pepper was
acquired at the FleX-ray laboratory[42] at the CWI, Amsterdam, The Netherlands.
A polychromatic microfocus X-ray point source with tube voltage and power of 90 kV
and 49.5 W was used. The data consisted of 3600 projection images of 1512 x 1912
pixels, acquired over a 360° rotation. A reconstruction was computed on a grid of
1512 x 1912 x 1912 voxels using FDK, a backprojection-type algorithm [53]. An
axial slice of the reconstruction is shown in Figure 5.9 (a).

Single axis parallel beam. A 3D micro-tomography dataset of a fuel cell
from the publicly available TomoBank [44] was used. This dataset (#81) was
acquired at the TOMCAT beamline at the Swiss Light Source (SLS) at the Paul
Scherrer Institut (PSI), Villigen, Switzerland [28]. The first 3600 projection images
of 1100 x 1440 pixels were used to compute a reconstruction on an axial slice of
1400 x 1400 pixels. The reconstructions were computed using FBP (Ram-Lak
filter), SIRT (200 iterations), and TV-MIN (500 iterations with A = 2 x 10~7), as
shown in Figure 5.9 (b — d).

X-ray scattering tensor tomography. The same validation sample was used
as in a previous publication [93], which was also acquired at the TOMCAT beamline.
It consisted of a 4 x 4 x 4mm? plastic box containing three orthogonally oriented
bundles of carbon fiber with a 12 pm diameter. The pixel and resulting unit cell
size was 11 x 11 pm? and 99 x 99 pm?2, generating the dataset size described at the
end of Section 5.3.4. An illustration of the validation sample and its reconstruction
using tomosipo is shown in Figure 5.10. The reconstructions show the orientation
of the fibers after post-processing using PCA and a similar thresholding strategy
as in [93]. Thresholding causes noise in the background to be suppressed, as the
X-ray scattering induced by plastic container is known to be negligible.
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Bell Pepper (FlexRay lab)

FDK FBP SIRT

Figure 5.9: Reconstructions of experimental data acquired using laboratory micro-CT (a) and
synchrotron micro-tomography (b — d). The yellow insets in the top-right corner show a magnified
region of interest. The yellow inset in the top-left of pane (b) displays a full view, showing
field-of-view artifacts due to the truncated projection images.
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Figure 5.10: X-ray scattering tensor tomography reconstruction of a validation sample. The sample
contains three orthogonally oriented carbon fiber bundles. A reconstruction of the orientation
map is shown in two axial slices.

5.5 Benchmarks

In this section, we give a demonstration of the computational speed of tomosipo.
First, we compare an implementation of SIRT in tomosipo to the built-in imple-
mentation in the ASTRA Toolbox. Using the tomosipo implementation, we also
investigate the impact of storing intermediate data on the CPU rather than on the
GPU. This comparison is run on the examples from Section 5.3 with data sizes
that fit on a single GPU. We exclude DCT, as its reconstruction algorithm is out
of the scope of this manuscript. We also benchmark a non-iterative algorithm on
a circular cone beam dataset that does not fit on the GPU. Here, we compare
the speed of the built-in FDK implementation of the ASTRA Toolbox to the
FDK implementation in ts_algorithms, tomosipo’s accompanying reconstruction
algorithms package.

We describe the algorithms, data size, and benchmark methodology. The
SIRT reconstructions were computed in 50 iterations. The implementation in
tomosipo used PyTorch and the ASTRA implementation used the SIRT3D_CUDA
algorithm. The FDK benchmark compared the FDK implementation provided
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Figure 5.11: Comparison of reconstruction times using SIRT on a GPU-sized problem and using
FDK on a lab-CT-sized problem. The SIRT implementations are compared on a parallel, helical
and X-ray scattering tensor tomography (XSTT) acquisition geometry. The XSTT reconstruction
cannot be implemented using the built-in ASTRA SIRT API. Because the FDK dataset is
too large, intermediate data cannot be stored on the GPU, and the ASTRA implementation is
compared to a tomosipo implementation that performs the filtering step on the CPU.

by ts_algorithms to ASTRA’s built-in accumulate_FDK implementation. The
dataset of the parallel beam and helical cone beam cases consisted of 768 x 768
pixel projection images acquired over 512 angles and was reconstructed on a 5123
voxel volume. The sizes of the XSTT and circular cone beam dataset are described
in Sections 5.3.4 and 5.4, respectively. The benchmarks were conducted on a
dual-socket system containing 8-core Intel Xeon Silver 4110 CPUs at 2.10 GHz
(Intel, Santa Clara, CA, USA) with 192 GB of RAM and four Nvidia GeForce GTX
1080 Ti GPUs (Nvidia, Santa Clara, CA, USA). Each benchmark was run once
without measurement to minimize startup and caching effects. The mean and
standard deviation of three trials are reported.

SIRT on GPU-sized problems. The results of the SIRT benchmark are
shown in Figure 5.11. The ASTRA Toolbox and the Tomosipo implementation
with intermediate data on the GPU are close in performance. They are are 2 — 9x
faster than the tomosipo implementation with intermediate data located on CPU
memory. This indicates that CPU-GPU communication latency is non-negligible
and that reconstruction algorithms benefit from being completely computed on the
GPU. We note that in all three implementations the forward and backprojection
are computed on the GPU using the ASTRA Toolbox. The native ASTRA SIRT
implementation does not have an option to store intermediate data on CPU memory.

FDK on a lab-CT-sized problem. The FDK dataset is too big to fit in
GPU memory. In tomosipo’s implementation, the filtering step is performed on the
CPU and the computation of the backprojection on chunks of projection data is
distributed over multiple GPUs. The FDK implementation in the ASTRA Toolbox,
on the other hand, first distributes chunks of projection data over available GPUs
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and performs the filtering and backprojection in a single step on each GPU.

Figure 5.11 shows the results of the FDK benchmark using one and four GPUs.
Using one GPU, tomosipo’s implementation of FDK is faster than ASTRA’s. This
can be attributed to fast filtering on the CPU, which is implemented using the Fast
Fourier Transform provided by PyTorch and is approximately as fast as filtering
on a single GPU. Using four GPUs, the run times of both implementations are
reduced, but the ASTRA implementation comes out ahead. When four GPUs are
available, the ASTRA implementation distributes the computation of the filter step
over four GPUs, whereas the tomosipo implementation still computes the filtering
step on the same amount of CPU cores.

The results show that a naive implementation of an iterative algorithm in
tomosipo is not necessarily slower than a native implementation in the ASTRA
Toolbox. In addition, the results illustrate the substantial negative impact that
CPU-GPU communication has on reconstruction speed. Finally, the FDK results
illustrate the benefits of interoperability with fast array libraries, but highlight the
need for effective APIs to address multi-device streaming computation.

5.6 Discussion and conclusion

In short, tomosipo provides the expressive power to quickly and naturally define
complex geometries, thereby unlocking the flexibility provided by the ASTRA
Toolbox. We have demonstrated the ease of making common adjustments to an
acquisition geometry, such as changing the center of rotation. In addition, the
design and implementation of more complex geometries, such as the demonstrated
X-ray diffraction and scattering setups, is made considerably easier by using
tomosipo, especially compared to entering the formulas for all directional vectors
manually. Reconstructions of real-world data from synchrotron and laboratory
micro-CT sources are shown, computed using several common reconstruction
algorithms. Finally, bechmarks demonstrate that the package enables the user to
write fully GPU-accelerated reconstruction algorithms in Python whose speed is
on par with native implementations. Because of tomosipo’s interoperability with
GPU-accelerated Python array libraries, intermediate results can remain on the
GPU, avoiding the latency imposed by CPU-GPU communication.

The tomosipo package follows best practices. It has a comprehensive unit
test suite, it is installable through the Anaconda package manager, it follows
semantic versioning, it is developed in the open on GitHub, and it has extensive
documentation.

Future developments are expected to go hand in hand with improvements
in the ASTRA Toolbox. This includes support for curved detectors and more
fine grained control of streams on the GPU, allowing for concurrency through
pipelining. In addition, we intend to extend the interoperability of tomosipo’s
projection operator to more optimization packages. We note that the integration
of tomosipo’s projection operator in deep learning-based reconstruction methods
using PyTorch is possible and is described in the documentation.
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Compared to existing tomographic software packages, two features set tomosipo
apart. First, the facilities to manipulate geometries significantly simplify defining
complex acquisition geometries such as those in the described case studies. Although
other packages including the ASTRA Toolbox and the Core Imaging Library
(CIL) [82] can represent these acquisition geometries, they do not provide tools to
define them. Specifically, the geometric transforms, subsampling, concatenation,
and visualization features are not provided by the ASTRA Toolbox. Second, the
extensible integration of tomosipo with GPU-accelerated Python array libraries
provides two advantages. It enables the user to write custom reconstruction
algorithms in Python that are comparable in computational efficiency to a native
implementation. In addition, it enables integrating tomographic operators in
deep learning-based reconstruction methods. This is technically possible using the
ASTRA Toolbox, but the APIs that it exposes are designed to be wrapped by a
user-friendly library, such as tomosipo.

We stress that tomosipo aims to be a building block in a larger system. Therefore,
other software packages may be preferable for many purposes. Facilities for loading
of various file formats, preprocessing of tomographic data, or post-processing
of reconstructed images are present in TomoPy, Savu, and CIL [64, 82, 188].
Packages such as PyLops, CIL, and JUDI [82, 150, 193] provide building blocks
and built-in optimization algorithms that enable rapid prototyping of variational
reconstruction methods, among others. The reconstruction algorithms show-cased
in this manuscript, on the other hand, are implemented in a separate package [70].
An advantage of the focused scope of tomosipo, is that it has only two required
dependencies (NumPy and the ASTRA Toolbox), making it easy to install on
various platforms, but contains several integrations with third-party packages,
making it easy integrate into an existing system.

In summary, tomosipo provides scientists with an excellent tool to model
and visualize complex tomographic acquisition geometries while maintaining and
extending the fast reconstruction capabilities of the ASTRA Toolbox.
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“When the press wants to burn me, “Wanneer de pers me wil afbranden
I can have peace with that. But heb ik daar vrede mee, maar dan
then I want to be burned for my wil ik op mijn eigen visie afgebrand
own vision.” worden.”

Johan Cruijff,
Voetbal International, 14 Oct 1989

The main goal of the research presented in this thesis was to develop practical
deep learning techniques to improve tomographic reconstruction when acquir-
ing a dataset of additional measurements is not feasible. To support this aim,
a subordinate goal was to develop software that supports both the concise ex-
pression of complex tomographic acquisition geometries and the development of
computationally efficient reconstruction algorithms. In this chapter, we summarize
the contributions and limitations of this thesis and suggest directions for future
research.

6.1 Contributions and limitations

The contributions of the first three chapters of this thesis can be categorized along
two axes. The first is what factor that determines image quality is improved,
i.e., resolution or noise. The second is how the problem of limited training data
is circumvented. We propose two ways: the first is by changing the scanning
protocol and the second is by changing the neural network training scheme. In
Chapter 2, we propose to improve the resolution of reconstructed images by using
a custom scanning protocol to create a dataset of low- and high-resolution images.
In Chapters 3 and 4, we propose to remove noise from reconstructed images by
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training a neural network using a custom neural network training scheme.

The contributions of the final chapter cannot be categorized in this way. Instead,
its contribution is a software package that makes it substantially easier to (1)
compute reconstructions with a complex scanning protocol, and (2) incorporate
tomographic operators in neural networks. In this way, it supports the aims of the
previous chapters by enabling the custom scanning protocol and custom training
scheme. This section is organized as follows. First, we describe the contributions
in each chapter. Next, we describe remaining practical limitations.

In Chapter 2, we proposed a novel technique for improving the resolution of
tomographic reconstructions. To enable application on single objects, a custom
scanning procedure is developed that enables obtaining a low-resolution and a
high-resolution reconstruction of a small region of the object. On this region,
a data-efficient neural network is trained to transform low-resolution images to
high-resolution images. The trained network can then be applied to the full
low-resolution reconstruction. On both simulated and experimental data, the
results demonstrate that the proposed technique is able to significantly improve
the resolution of tomographic reconstructions of a single object.

The topic of Chapter 3 was the removal of noise from reconstructed images. It
consisted of an investigation of existing methods and the development of a custom
training strategy. First, self-supervised deep learning methods for photographic
image denoising were investigated. Such methods depend on the assumption that
noise in one pixel is not correlated to noise in another pixel. An experiment was
conducted in which a photographic image denoising method was applied to images
with Gaussian noise and images with comparable tomographic noise. The results
show that the method performs substantially worse on tomographic noise than on
Gaussian noise. This failure can be explained by the fact that tomographic noise
violates the no-correlation assumption.

Therefore, Noise2Inverse was developed, a method for training deep neural
networks to denoise reconstructed images using only noisy training images. Starting
from a single noisy tomographic acquisition, multiple reconstructions are computed
from mututally non-overlapping subsamples of the projection images. Images from
these separate noisy reconstruction volumes serve as input and target to train a
neural network. The noise in each reconstructed volume is uncorrelated to noise
in the other volumes, thereby enforcing non-correlation of the noise in the input
and target images. We developed a Bayesian argument that shows that therefore
such a training regime should result in a denoising neural network. Results on a
diverse set of simulated and real-world data confirm that this is indeed the case: the
denoising accuracy of the proposed method approaches that of a network trained
using ground truth images. In addition, a comparison to state-of-the-art image
denoising methods and conventional reconstruction methods, such as total-variation
minimization was performed. Here, Noise2Inverse demonstrated an improvement
in key image metrics, such as peak signal-to-noise ratio and structural similarity
index.

In Chapter 4, we investigated the applicability of Noise2Inverse to tomographic
imaging techniques in common use at synchrotron X-ray facilities. Specifically,



6.1. CONTRIBUTIONS AND LIMITATIONS 117

we investigated applications to static and dynamic micro-tomography and X-ray
diffraction tomography (XRD-CT). To obtain optimal results, we extended the
training strategy in space (micro-tomography), time (dynamic micro-tomography),
and spectrum-like domains (XRD-CT). In the case of static and dynamic micro-
tomography, results show that Noise2Inverse offers significant improvements in
the quality of denoising over alternative reconstruction methods. In the case of
XRD-CT, results suggest that the acquisition time can be substantially reduced
while maintaining image quality.

In Chapter 5, we presented the tomosipo software package. It supports the
development of reconstruction algorithms for data from advanced experiments.
Developing these algorithms can be slowed down by (1) the difficulty of defining
the acquisition geometry, i.e., the trajectory of the source and detector, and (2)
the inefficient interoperability of GPU-accelerated tomographic primitives with
GPU-accelerated array libraries. This is exactly where tomosipo excels, as it allows
the user to specify complex geometries in an intuitive and convenient framework.
We have demonstrated the ease of making common adjustments to an acquisition
geometry, e.g., changing the center of rotation, as well the ease of designing and
implementing more complex geometries, e.g., X-ray diffraction and scattering
setups. In addition, bechmarks demonstrate that tomosipo enables the user to
overconie existing performance challenges in reconstruction algorithm development.
The package enables the user to take full advantage of the GPU, achieving parity
with existing optimized implementations and providing a 2-9x speed up compared
to CPU-based implementations. Several common reconstruction algorithms are
already implemented and demonstrated on real-world data from synchrotron and
laboratory micro-CT sources.

The results in this thesis demonstrate that deep learning can be practically
applied to improve resolution and noise in reconstructed images. Specifically,
the developed techniques enable deep learning to be applied in situations where
limited training data would previously have hampered its adoption. Some practical
limitations still bear consideration though.

One challenge that becomes more prominent as a result of our work is the long
training times of neural networks. As we show in Chapter 4 for instance, applying
Noise2Inverse takes almost twice as long (~ 43 hours) as using a variational
reconstruction algorithm (~ 30 hours) in the best case. The majority of this
time is spent training the network and only a minor fraction of time is spent on
applying the trained network to obtain the final result. Compared to other works
that propose to train a network once and incorporate the trained network in a
reconstruction algorithm, our methods are in the atypical position that network
training can be part of the reconstruction algorithm itself. Therefore, a reduction
in training times would be a major improvement in practice.

An issue that is not analyzed in detail is generalization, i.e., to which extent
networks must be retrained when reconstructions of new structures are encountered.
This issue is discussed in Chapter 4 in relation to scanning of additional objects
under possibly different acquisition conditions. A more subtle issue arises in the
super-resolution techniques of Chapter 2, where the local structure may vary
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throughout the object, contrary to the assumption that the structure in the region
of interest is similar to the structure of the rest of the object. This may require
attentiveness on the part of the user to identify changing structures and acquire
a training dataset containing reconstructions of multiple regions of interest that
more accurately reflect the heterogeneous structure of the object.

Another challenge is the calibration of the acquisition geometry, e.g., the center
of rotation. When reconstructed images are extremely noisy, or blurred as a result
of denoising, then artifacts resulting from improper calibration of the acquisition
geometry are not immediately visible. In the results of Noise2Inverse, however,
these artifacts are often noticeable. This could be too late, however: it may not
feasible to repeat the computationally expensive neural network training with
different calibration values for the acquisition geometry. Therefore, Noise2Inverse
would benefit greatly from accurate and computationally efficient methods to detect
subtle misconfigurations of the acquisition geometry.

Finally, there is the issue of completeness. We have proposed techniques to
deal with insufficient detector resolution and measurement noise, but not angular
undersampling. Measuring fewer projection images is one of the easiest ways to
speed up tomographic acquisition and lower the total radiation dose. In addition,
it requires fewer bits and bytes to store measured data. The data size may be a
limitation in extremely fast experiments where the transmission of measurement
data is bandwidth-limited [131].

6.2 Outlook

Several promising research directions are unfolding to improve image quality and
reduce training time. In this section, we discuss these in turn. First, image quality
can be improved by forcing the neural network output a more “likely” image, or
output a distribution of several likely images. In addition, image quality can be
substantially improved by proper calibration of the acquisition geometry. Finally,
we discuss several approaches to reduce the training time of neural networks.

The use of the mean-square error objective during training can lead to blurred
results. This is a consequence of the fact that the trained neural network ap-
proximates the conditional mean (Equation (1.15)). For instance, if an observed
low-quality image is equally likely to have resulted from two different high-quality
images, then traing will force a neural network to output the average of the two
images [106]. In super-resolution of photographic images, methods have been de-
veloped to work around this issue using generative adversarial networks (GANs) [7,
58]. GAN-based approaches force the trained network to output an image that
is likely to occur, rather than the average of likely images [84, 106]. In practice,
however, this technique should be approached with some caution, as it can output a
single very realistic looking result when the measurement supports multiple equally
likely reconstructions. It could therefore lead a user to become overconfident in
the results of a measurement.

To prevent overconfidence in a single result, multiple results can be sampled
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instead. Sampling approaches based on diffusion models have been demonstrated
for improving resolution [160], denoising [91], and linear inverse problems such as
deblurring [90], for instance. In these cases, output generation starts with Gaussian
noise and repeatedly refines the noisy image using a neural network while noise of
diminishing intensity is injected in the image. This process continues for up to a 100
steps [160], and under some regularity conditions the resulting image can be shown
to be sampled from the posterior distribution [171]. In practice, however, applying
a neural network a thousand times might be too computationally demanding.

The importance of accurate calibration of the acquisition geometry will increase
as a result of faster and finer-scale acquisition and the demands of dynamic quanti-
tative analysis. As discussed in Chapter 4, fast acquisition can cause vibrations
in the measured object as a result of the high rotation speed. When tracking the
internal structural dynamics of the object, it is essential to accurately overlay the
3D volumes at multiple time steps [115]. When vibration is an issue, the correct
alignment of two time steps requires not just the correction of some rigid movement
between the time steps, but also the correction of orientation changes between the
projection images within a single time step. Iterative approaches that incorporate
such calibration in the reconstruction, such as TIMBIR [3], have already been
developed, but in terms of computational demands it may be desirable to develop
preprocessing methods that do not require the simultaneous reconstruction of the
object. Preprocessing-type methods may also be easier to combine with techniques
such as Noise2Inverse and other deep learning-based methods.

Finally, to reduce the problem of long network training times, we discuss three
approaches. These are based on (1) network modifications to speed up training
(2) dataset modifications to improve generalization, and (3) transfer learning to
jump-start network training. An instance of network modification to speed up
training, is Noise2Filter [103], which uses a very small network that is adapted
to tomography [144] to reduce training times to a minute or less. A drawback of
these methods so far has been that the resulting image quality lags behind what
can be achieved using convolutional neural networks. In Cryo-electron microscopy,
a recent approach has been to train a single “super network” on a very large and
diverse set of data that can ideally be applied to a variety of new datasets [18].
As this method gains more popularity, a more accurate assessment can be made
whether it generalizes to unexpected datasets in practice. Finally, a hybrid between
training a network from scratch and using a super network is transfer learning.
Here, a network is first trained on a large and diverse dataset and the resulting
trained network is retrained on new datasets for specific tasks. These techniques
have been used in medical image classification [51, 63].
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SAMENVATTING

“And if I had wanted you to under- “En als ik zou willen dat je het
stand, then I would have explained begreep, legde ik het wel beter uit. ”
it better.”

Johan Cruijff,
Voetbal Magazine, June 1997

Introductie en toepassingen van computertomografie

In veel gevallen is het nuttig om een object van binnen te kunnen bekijken
zonder het te hoeven openen of beschadigen. Een veel gebruikte manier om dit
te bewerkstelligen is doormiddel van CT, oftewel computertomografie. CT wordt
ondermeer gebruikt in ziekenhuizen om patienten te scannen en diagnoses te stellen
van ziekten die van buiten niet te zien zijn. Actueel is het scannen van de longen,
waarmee schade van Covid-19 aan de longblaasjes kan worden geidentificeerd.

CT wordt veel gebruikt in de industrie en de wetenschap. Deze toepassingen
maken zowel gebruik van zogenaamde “micro-CT”, wat meestal wordt uitgevoerd
met een apparaat ter grootte van een flinke kledingkast, en van “synchrotron-
tomografie”, waar een deeltjesversneller met een lengte van vele honderden meters
aan te pas moet komen. Met behulp van micro-CT kunnen bijvoorbeeld gesteenten
gescand worden om de incidentie van bepaalde mineralen te quantificeren, of
kunst-historische objecten om vragen over hun binnenkant te kunnen beantwoorden
zonder het object te beschadigen. Synchrotron-tomografie is vele malen krachtiger
dan micro-CT. Daardoor duurt een scan in het synchrotron korter en kunnen
meer details worden ontwaard. Dit wordt bijvoorbeeld gebruikt bij het scannen
van werkende brandstofcellen (zoals in Hoofdstuk 4), waar het van belang is om
waterbubbels te identificeren die onststaan bij het omzetten van waterstof in water.

Computertomografie maakt gebruik van Rontgenstraling. In tegenstelling tot
zichtbaar licht, heeft Rontgenstraling de neiging om zich dwars door weefsel heen
te bewegen en wordt het slechts ten dele weerkaatst of opgenomen door de atomen
waarlangs het beweegt. Een zogenaamde “Rontgenfoto” wordt genomen door een
object tussen de stralingsbron en de detector in te plaatsen. De stralen bewegen
door het object en worden opgevangen door de detector. Het contrast, en daarmee
de zichtbaarheid, van de foto wordt bepaald door de mate waarin het object de
Rontgenstraling opneemt. Een bot heeft bijvoorbeeld een hoge dichtheid en neemt
veel straling op; lucht, daarentegen, laat bijna alle straling door.

Met één enkele Rontgenfoto kan men al veel over het binnenste van een object
te weten komen. Botbreuken worden bijvoorbeeld vaak gediagnosticeerd met één
foto. Echter, voor een gedetailleerd drie-dimensionaal beeld zijn meerdere foto’s
nodig. Hierbij wordt het object meestal op een draaitafel geplaatst en worden er
meerdere (soms zelfs duizenden) foto’s gemaakt. Om vervolgens van al deze foto’s
een accurate drie-dimensionale reconstructie van het binnenste van een object te
kunnen maken, zijn algoritmes uit de computertomografie onmisbaar.
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Medische CT
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Figuur S1: Drie toepassingsgebieden van computertomografie. Medische CT wordt gebruikt om
met zo min mogelijk straling een diagnose te stellen, resulterend in vrij grove beelden. Hier
draaien de bron en detector in een helix om de liggende patient heen. Een doorsnede van de heup
is te zien op de reconstructie rechts. Micro-CT wordt in de industrie en wetenschap gebruikt om
kleinere objecten op hogere resolutie te scannen dan in medische CT. Het object ligt vaak op een
draaitafel tussen de stralingsbron en detector in. Rechts is een dwardsdoorsnede van havermout te
zien met een pixelresolutie van 17 pm. Synchrotron-tomografie maakt scans mogelijk met extreem
veel straling en nog hogere resolutie. De stralingsbron staat zo ver weg dat de straling praktisch
parallel door het object heen gaat. Rechts zijn beelden uit een “reconstructiefilmpje” van een
brandstofcel te zien. De regio in het gele vierkant wordt op drie tijdstippen getoond, waardoor de
vorming van een waterbubbel te zien is (aangegeven door de gele cirkel).
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CT-reconstructie in gebrekkige omstandigheden en deep learning

De ontwikkeling van computertomografie-algoritmes is ver gevorderd. In zie-
kenhuizen wordt CT bijvoorbeeld al jaren gebruikt als diagnostisch hulpmiddel.
De crux van de huidige ontwikkelingen zit hem in het ontwerpen van algoritmes
die met geringe beeldinformatie complete reconstructies kunnen produceren. Een
verzameling algoritmes die in recente jaren voor spectaculaire ontwikkelingen heb-
ben gezorgd zijn zogenaamde “deep learning” algoritmes, in de volksmond ook
wel “zelf-lerende” algoritmes genoemd. Zij blijken ook erg goed te werken om
onvolkomenheden “weg te poetsen” uit tomografische reconstructies. Hieronder
wordt beschreven welke gebreken kunnen voorkomen in Rontgenfoto’s en hoe deze
onvolkomenheden met behulp van deep learning kunnen worden weggepoetst.

Binnen de computertomografie heeft een veelheid aan factoren invloed op
de beeldkwaliteit. De belangrijkste factoren voor dit proefschrift worden hier
besproken. In Sectiel.1.2 wordt dit onderwerp uitgebreider behandeld.

De eerste factor is ruis. Bij iedere CT-scan staat de afweging tussen het mini-
maliseren van de schade aan het object en het maximaliseren van de beeldkwaliteit
centraal. Te veel Rontgenstraling kan een object beschadigen, maar een tekort
aan straling zorgt er ook voor dat de beeldkwaliteit slechter wordt. Dit laatste
heeft de lezer wellicht zelf ook opgemerkt bij het maken van een nachtelijke foto:
er ontstaat ruis in het beeld omdat er te weinig licht in de sensor komt. Ruis
speelt precies dezelfde rol bij het maken van een Rontgenfoto. Daarom is het
ontwikkelen van reconstructie-algoritmes die de ruis kunnen onderdrukken een
belangrijk onderzoeksgebied.

Een tweede factor die aan bod komt is de resolutie van de detector (de dichtheid
van de pixels die het licht ontvangen). Hoe dichter deze pixels op elkaar staan,
hoe kleiner de details die kunnen worden onderscheiden op de Réntgenfoto en
daarmee ook de details die kunnen worden onderscheiden in de 3D reconstructie.
Een uitdagend probleem is om een fijnmazigere reconstructie te maken dan de
detector in eerste instantie toestaat (zogenaamde super-resolutie).

Op het gebied van zowel ruisonderdrukking als super-resolutie hebben deep
learning algoritmes de laatste jaren spectaculaire ontwikkelingen laten zien. Voor
beeldbewerking zijn specifiek de convolutionele neurale netwerken populair. Deze
netwerken kunnen gezien worden als lege hulzen met duizenden tot tientallen mil-
joenen vrije parameters, die de werking van het netwerk bepalen. Deze netwerken
kunnen een verscheidenheid aan vervormingen uitvoeren, waaronder ruisonderdruk-
king en super-resolutie.

Om de juiste parameters van een convolutioneel neuraal netwerk te bepalen,
moet het eerst “getraind” worden. Dit gebeurt met het verzamelen van een stapel
invoerbeelden en gewenste uitkomstbeelden. Afhankelijk van de toepassing kan het
benodigde aantal voorbeelden uiteenlopen van enkele honderden tot vele miljoenen.
Het netwerk wordt vervolgens toegepast op deze stapel plaatjes en de parameters
worden net zo lang aangepast totdat de uitvoer van het netwerk overeenkomt met
de gewenste uitkomstbeelden. Hierna kan het netwerk op nieuwe beelden worden
toegepast om bijvoorbeeld ruis te onderdrukken.
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Probleemstelling en samenvatting van de hoofdstukken

Een groot struikelblok bij het toepassen van deep learning algoritmes in de
tomografie is het verzamelen van de vereiste voorbeeldplaatjes. Vaak is het gewenste
uitkomstbeeld niet beschikbaar — als het immers wel beschikbaar was, zou er
iiberhaupt geen reden zijn om een deep learning algoritme te gebruiken. In dit
proefschrift worden technieken beschreven om het verzamelen van de vereiste
voorbeeldplaatjes mogelijk te maken (in het geval van super-resolutie) en om het
verzamelen van de gewenste uitkomstbeelden helemaal te omzeilen (in het geval
van ruisonderdrukking). Hierdoor kunnen deep learning algoritmes getrained en
toegepast worden op unieke objecten zonder eerst een bibliotheek van vergelijkbare
objecten te hoeven scannen.

In Hoofdstuk 2 wordt een techniek geintroduceerd om super-resolutie toe te
passen op een enkel object met behulp van deep learning. Hierbij wordt een object
op twee verschillende afstanden van een puntbron gescand. Bij de tweede afstand
wordt het beeld op de detector uitvergroot. Door de foto’s van de twee scans te
combineren kan een reconstructie van een deelgebied van het object worden gemaakt
op zowel de “normale” resolutie alsook op een hogere resolutie. Met behulp van
de beelden van dit deelgebied wordt een convolutioneel neuraal netwerk getraind
om de resolutie van een invoerbeeld te verhogen en zo meer details zichtbaar te
maken. Vervolgens kan dit netwerk op de rest van het object worden toegepast om
een reconstructie op hoge resolutie van het gehele object te verkrijgen.

We demonstreren de effectiviteit van de methode op zowel gesimuleerde als op
experimentele data. De resultaten tonen aan dat de methode de resolutie van de
reconstructies significant kan verbeteren.

In Hoofdstuk 3 wordt een techniek geintroduceerd om een convolutioneel
neuraal netwerk te leren om ruis te onderdrukken terwijl tijdens het trainen alleen
beelden met ruis worden gebruikt. De wetenschappelijke bijdrage van dit hoofdstuk
is tweeledig. Ten eerste wordt gedemonstreerd dat bestaande ruisonderdrukkings-
technieken niet werken als ze worden toegepast op tomografische reconstructies.
We tonen aan dat dit veroorzaakt wordt door de specifieke eigenschappen van ruis
in tomografische reconstructiebeelden. Ten tweede ontwikkelen we een manier om
reconstructies te splitsen waardoor er invoerbeelden en gewenste uitvoerbeelden
ontstaan (beide met ruis) die kunnen worden gebruikt om een neuraal netwerk te
trainen. We bewijzen dat deze manier van splitsen het netwerk leert om de ruis
te onderdrukken. De techniek kan worden toegepast op een scan van een enkel
object: eerst wordt het netwerk op de gesplitste ruizige reconstructies getraind
en vervolgens wordt het getrainde netwerk toegepast om een reconstructie zonder
ruis te verkrijgen. Daarnaast kan een getraind netwerk ook op nieuwe ongeziene
objecten worden toegepast.

In Hoofdstuk 4 passen we de ruisonderdrukkingstechniek toe op scans die
gemaakt zijn in verschillende synchrotrons. We beschrijven hoe de techniek kan
worden aangepast om optimaal gebruik te maken van extra dimensies in de ruimte,
tijd en spectrum (verstrooiing). Hierdoor wordt het mogelijk om de techniek toe
te passen op tomografische “films”, waarin het object een verandering ondergaat
terwijl het gescand wordt. Ook demonstreren we de techniek op XRD-CT scans,
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waar niet de absorptie maar juist de verstrooiing van Rontgenstraling een rol speelt.
Hiermee kan de mate van verstrooiing (hierboven aangeduid met spectrum) op elke
locatie van het object worden bepaald. Daardoor is het mogelijk om materialen
preciezer te onderscheiden.

In Hoofdstuk 5 wordt ten slotte een softwarepakket geintroduceerd dat het
maken van ingewikkelde reconstructies vergemakkelijkt. Het pakket bevat ab-
stracties die de dynamische locatie en orientatie van de bron, detector en object
beschrijven. Voorbeelden zijn de verplaatsing van het object (Hoofdstuk 2) tijdens
de scan of de verstrooiing van het licht (Hoofdstuk 4). Een nuttige toevoeging is
de mogelijkheid om de beschreven geometrie (locaties en orientaties) ook te visuali-
seren, zodat de geometrie kan worden gecontroleerd en ook kan worden getoond
aan anderen (zie bijvoorbeeld Figuur S1). Ten slotte maakt het softwarepakket een
nauwe integratie mogelijk tussen een bestaand tomografiesoftwarepakket en vele
dataverwerkingspakketten. Hierdoor kan een groot aantal wiskundige operaties
gecombineerd worden met tomografische operaties zonder dat er snelheidsverlies
optreedt. We demonstreren dit op een recente techniek die gebruik maakt van
verstrooiing van het licht, waarin de rekensnelheid met een factor 9 toeneemt.
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A.1 Data acquisition

X-ray tomography datasets were acquired at the TOMCAT beamline at the Swiss
Light Source (SLS) at the Paul Scherrer Institut (PSI), Villigen, Switzerland. In
addition, an X-ray diffraction tomography (XRD-CT) dataset was acquired at the
ID15A beamline at the European Synchrotron (ESRF), Grenoble, France.

Static X-ray 3D micro-tomography The data was acquired at the TOMCAT
beamline [28], and is publicly available [44]. The dataset contained 1001 projection
images across an angular range of 180° measuring 1100 x 1440 square pixels of
size 2.75 "m. The acquisition took 1s, the exposure time was 1 ms, and the mean
energy of the polychromatic beam was 30keV.

Dynamic X-ray micro-tomography This dataset was acquired at the TOM-
CAT beamline [28], and is publicly available [44]. A full scan was performed every
0.1s, resulting in a dataset of 180 time steps spanning approximately 32 seconds,
divided into three 6s chunks with 7s pauses in between. Each time step contained
300 projection images across an angular range of 180° measuring 1100 x 1440 square
pixels of size 2.75 "m. The mean energy of the polychromatic beam was 30keV.

The documented angular increment was 7/300 radians, consistent with the acqui-
sition of 300 projection images per half rotation [44]. We observed a small deviation
in this case. The angular increment was 7/299.924, which could be determined up to
five significant digits by visual inspection of the combined GridRec reconstruction
of several time steps.

XRD-CT High-energy X-ray diffraction measurements were taken at the ID15A
beamline using a monochromatic pencil beam (90keV energy). Data was collected
of 3 horizontal slices, spaced 7mm apart, and acquisition of each slice took 20
minutes. Acquisition was performed in 273 translation steps over a scan range of
12mm and in 225 rotational steps over an angular range of 180°. Sinograms were
computed from the acquired images using the pyFAI library [11]. A subset of the
sinograms was selected, containing 3 horizontal slices with 11 channels each. The
displayed FBP reconstructions were computed with the Shepp-Logan filter using
the ASTRA-toolbox [1].

A.2 Noise2lnverse training

Network and hyper-parameters On each dataset, CNN training was performed
using the same network architecture and the same hyper-parameters. An open
source implementation of the MS-D network was used [71, 143]. The networks
were trained using the ADAM algorithm [153] with a mini-batch size of 24 and a
learning rate of 1072. The networks had 100 single-channel intermediate layers,
and the convolution in layer ¢ was dilated by d; = 14 (¢ mod 10), as described
in [143].

Static X-ray micro-tomography Noise2Inverse training was performed using
the MS-D network architecture [143] with 54,796 parameters. 2.5D-CNN training
was performed using 10 context slices, of which 5 were below and 5 above the
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target slice. Reconstructions were computed using the GridRec algorithm [64,
118], resulting in a rectangular reconstruction volume of 1100 x 1440 x 433 voxels,
containing the region of interest in which the fuel cell was located.

Dynamic X-ray micro-tomography Dynamic Noise2Inverse training was
performed on the first 36 time steps of the experiments (3.6 seconds), in which
the sample was stationary. The time steps were divided into 26 batches, each
containing 6 time steps spaced one time step apart. The first batch contained
time steps 1,3,5,7,9,11, the second batch contained time steps 2,4, 6,8, 10,12, et
cetera. In this arrangement, the angles of the projection images were evenly divided
over a 360° arc. Within each batch, the individual time steps served alternately
as input, and the reconstruction of the combined remaining time steps served
as the target. As in the static case, 2.5D-CNN training was used to supply an
MS-D network with 10 context slices, and reconstruction was performed using the
GridRec reconstruction algorithm.

XRD-CT Noise2Inverse training was performed using the MS-D network with
11 input channels and 11 output channels, resulting in 56,046 parameters. Because
the number of projection angles (225) was divisible by three, the sinogram was split
in three parts in the angular domain. In each training iteration, two parts were used
in the input reconstruction, and one part was used in the target reconstruction. We
observed better performance using this scheme than by splitting the sinogram in
two. During training, reconstructions were computed using FBP with the Ram-Lak
filter [31] (instead of the Shepp-Logan filter) using the ASTRA-toolbox.

A.3 Synthetic noise procedure for XRD-CT

We describe the procedure for applying synthetic noise to the original XRD-CT
acquisition. In addition, we describe how we estimated the virtual acquisition time
using noise estimates from the reconstructed images.

Synthetic noise was applied to the acquired sinograms. The noisy value of a
pixel with intensity p at scattering angle § was determined by adding Gaussian
noise

Pnoisy =D + ﬂ/\/(oa 1)7
0-T
where A/(0,1) is a unit-normal Gaussian random variable, and T is a fixed constant
that determines the intensity of the noise. We used values T' = 1.0, 0.1, correspond-
ing to moderate and high noise, respectively. The Gaussian distribution is a good
approximation of the noise in practice, due to the azimuthal integration, which
averages multiple Poisson-distributed pixels.

We estimated the virtual acquisition time that corresponded to the applied
noise. The variance of the noise follows an inverse linear relation with respect
to the acquisition time: higher noise is associated with shorter acquisition times.
Therefore, we picked three uniformly constant regions of interest (ROIs) in the
three reconstructed slices for which we estimated the variance of the noise. This
estimation was performed on the original reconstructions and the reconstructions
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Relative variance estimate:

Relative variance estimate:
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Figure Al: Estimating the noise level from reconstructed images (original, moderate synthetic
noise, and high synthetic noise). In each of the three reconstructed slices, a region of interest
(ROI) was chosen — indicated in green, red, and blue — that was uniformly dark in each of
the 11 channels. In the left bottom panels, for each of these ROIs, the variance of the noise is
plotted for the original, moderate noise, and high noise acquisition. In the right two panels, a
box plot displays the uncertainty in the relative variance of the synthetic noise as it is divided by
the variance in the original reconstruction. In the box plot, the vertical dotted lines show the
conservative estimate of the relative variance, which was used to calculate the virtual acquisition
time.

with synthetic noise. The relative variance was estimated by dividing the variances
in the ROIs with synthetic noise by the variance of the ROI in the original
reconstruction. A box plot of the resulting estimates is shown in Figure Al. A
conservative estimate yields that the variance of the moderate noise was 1.4 times
higher than the original noise, and the variance of the high noise was 5 times higher
than the original noise. This corresponds to an estimated virtual acquisition time
of 70% and 20% of the original acquisition time, respectively.

A.4 Total-variation minimization

The Total-Variation Minimization (TV-MIN) reconstructions were computed using
the Chambolle-Pock algorithm [168], of which we used an open source implementa-
tion!. Because this implementation computes the full algorithm on the GPU, it is
faster than comparable implementations.

On a single slice of the XRD-CT dataset (225 angles, 273 detector pixels), a
reconstruction with 500 iterations takes roughly 1.7 seconds on a single GPU. The
same reconstruction takes 184 seconds when computed on a single thread on the
CPU with the widely used Tomopy package [64]. Assuming that work can be
distributed over 32 threads, the CPU implementation would take 5.8 seconds per
slice. This comparison was performed on a dual-socket system with Intel Xeon

lhttps://github.com/ahendriksen/ts_algorithms
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A: 1.00e-09 A: 5.62e-09 A: 3.16e-08 A: 1.78e-07 A: 1.00e-06

Dynamic fuel cell Static fuel cell

XRD-CT

Figure A2: Total-variation minimization reconstructions with various values of the A regularization
parameter. Bold font indicates the chosen reconstruction that is used in Figure 4.7.

Silver 4110 CPUs clocked at 2.10GHz and four Nvidia GeForce GTX 1080 Ti
GPUs.

Reconstructions were computed using various values of the regularization pa-
rameter A on a regular exponential grid. These reconstructions are displayed in
Figure A2. The chosen reconstruction is indicated in bold font.
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