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Abstract

Meta-learning receives considerable attention as an approach to enable deep neural
networks to learn from a few data. Recent studies suggest that in specific cases,
simply fine-tuning a pre-trained network may be more effective at learning new
image classification tasks from limited data than more sophisticated meta-learning
techniques such as MAML. This is surprising as the learning behaviour of MAML
mimics that of fine-tuning. We investigate this phenomenon and show that the
pre-trained features are more diverse and discriminative than those learned by
MAML and Reptile, which specialize in adaptation in low-data regimes of similar
data distributions as the one used for training. Due to this specialization, MAML
and Reptile may be hampered in their ability to generalize to out-of-distribution
tasks, whereas fine-tuning can fall back on the diversity of the learned features.

1 Introduction

Deep learning techniques have enabled breakthroughs in various areas such as game-playing (Silver
et al., 2016; Mnih et al., 2015), image recognition (Krizhevsky et al., 2012; He et al., 2015), and
machine translation (Wu et al., 2016). However, deep neural networks are notoriously data-hungry
(LeCun et al., 2015), limiting their successes to domains where sufficient data and computing
resources are available (Hospedales et al., 2021; Huisman et al., 2021b). Meta-learning (Schaul and
Schmidhuber, 2010; Schmidhuber, 1987; Thrun, 1998) is one approach to reduce these limitations by
learning how to learn from a few data.

While the field has been attracting much attention, recent results (Chen et al., 2019; Tian et al., 2020;
Mangla et al., 2020) suggest that simply pre-training a network on a large data set and fine-tuning only
the head of the network may be more effective at learning new image classification tasks quickly than
more complicated meta-learning techniques such as MAML (Finn et al., 2017). This phenomenon is
not well understood and surprising as Raghu et al. (2020) have shown that the adaptation behaviour
of MAML resembles that of fine-tuning when learning new image classification tasks: most of the
changes take place in the head of the network while the body of the network is mostly kept frozen.

In this work, we aim to find an explanation for the fact that simple fine-tuning can outperform
gradient-based meta-learning techniques such as MAML (Finn et al., 2017) and Reptile (Nichol et al.,
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2018). For this, we analyse the learning objectives of the three techniques (fine-tuning, MAML,
Reptile) and show that they can be interpreted as maximizing initial performance, post-adaptation
performance (after a few training updates on a new task), and a combination of the two, respectively.
Based on this interpretation, we hypothesize that MAML and Reptile settle for inferior initial features
compared with fine-tuning due to their relative negligence of the initial performance.

The primary contribution of our work is that we show that the pre-trained features of the fine-tuning
technique are more diverse and discriminative than those learned by MAML and Reptile.1 We
show this using experiments on the miniImageNet and CUB benchmarks. Nonetheless, MAML
and Reptile can outperform fine-tuning when the backbone is shallow or the training and test data
distributions are similar (Chen et al., 2019), indicating that they have specialized for adaptation in
low-data regimes of the training distribution. However, when the test distribution diverges from the
training distribution, the advantage of having a broad and diverse feature space may outweigh the
quick adaptation specialism of the meta-learning techniques, allowing simple fine-tuning to bridge
the performance gap to MAML and Reptile, or even outperform them (Tian et al., 2020; Mangla
et al., 2020).

2 Related work

Meta-learning is a popular approach to enable deep neural networks to learn from a few data. Many
architectures and model types have been proposed, such as MAML (Finn et al., 2017), the meta-
learner LSTM (Ravi and Larochelle, 2017), TURTLE (Huisman et al., 2021a) and MetaOptNet (Lee
et al., 2019). However, our understanding of newly proposed techniques remains limited in some
cases. For example, different techniques use different backbones which raises the question of whether
performance differences between techniques are due to new model-types or due to the difference in
used backbones (Huisman et al., 2021b).

Chen et al. (2019) was one of the first that investigated this question by performing a fair comparison
between popular meta-learning techniques, including MAML (Finn et al., 2017), on few-shot image
classification benchmarks such as miniImageNet (Vinyals et al., 2016; Ravi and Larochelle, 2017)
and CUB (Wah et al., 2011). Their results show that MAML often outperforms fine-tuning when
the test tasks come from a similar data distribution as the training distribution when using shallow
backbones. When the backbone becomes deeper and/or the domain differences between training
and test tasks increase, however, this performance gap is reduced and, in some cases, fine-tuning
outperforms MAML.

In addition to these findings by Chen et al. (2019), Tian et al. (2020) demonstrate that simply
fine-tuning a pre-trained feature embedding module yields better performance than popular meta-
learning techniques (including MAML) on few-shot benchmarks. Mangla et al. (2020) and Yang et al.
(2021) further support this finding as they have proposed new few-shot learning techniques based on
pre-training and fine-tuning which significantly outperform meta-learning techniques.

These performance differences between simple fine-tuning and more sophisticated techniques such
as MAML may be surprising, as Raghu et al. (2020) found that the learning behaviour of MAML is
similar to that of fine-tuning on image classification benchmarks. More specifically, they compared
the feature representations of MAML before and after task-specific adaptation, and show that MAML
relies mostly on feature re-use instead of quick adaptation because the body of the network is barely
adjusted, which resembles the learning dynamics of fine-tuning (see Section 3.2). Collins et al.
(2020) compared the feature representations of MAML and the finetuning method (expected risk
minimization) in linear regression settings and found that MAML finds an initialization closer to
the hard tasks, characterized by their gentle loss landscapes with small gradients. We demonstrate
a similar property: MAML has greater flexibility in picking an initialization as long as the post-
adaptation performance is good.

In this work, we aim to unite the findings of Raghu et al. (2020) and Chen et al. (2019) by finding an
answer to the question of why fine-tuning can outperform meta-learning techniques such as MAML
and Reptile (Nichol et al., 2018) in some image classification scenarios while it is outperformed in
other scenarios (when using a shallow backbone or when train/test task distributions are similar).

1All code for reproducing our results can be found at https://github.com/mikehuisman/
transfer-meta-feature-representations
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3 Background

In this section, we explain fine-tuning, MAML, and Reptile in the context of supervised learning.

3.1 Supervised learning

In the supervised learning setting, we have a joint probability distribution over inputs x and corre-
sponding outputs y, i.e., p(x,y). In the context of deep learning, the goal is to build deep neural
networks that can predict for any given input x the correct output y. Throughout this paper, we
assume that the neural network architecture f is fixed and that we only wish to find a set of parameters
θ such that the network predictions fθ(x) are as good as possible. This can be done by updating the
parameters θ to minimize a loss function L that captures how well the network is performing. Thus,
under the joint distribution p(x,y), we wish to find

argmin
θ

E
xi,yi

[Lxi,yi(θ)] , (1)

where xi,yi ∼ p(x,y).
The most common way to approximate these parameters is by performing gradient descent on that
loss function, which means that we update the parameters in the direction of the steepest descent

θ(t+1) = θ(t) − α∇θ(t) E
xi,yi

[
Lxi,yi

(θ(t))
]
. (2)

Here, ∇θ(t) is the gradient with respect to θ(t), t indicates the time step, and α the learning rate or
step size.

3.2 Fine-tuning

Minimizing the objective in Equation 1 using gradient-based optimization often requires large
amounts of data. This raises the question of how we can learn tasks for which only a few data
are available. The transfer learning technique called fine-tuning tackles this problem as follows.
In the pre-training phase, it minimizes Equation 1 on a given source distribution ps(x,y) using
gradient descent as shown in Equation 2. This leads to a sequence of updates that directly update the
initialization parameters. Then, it freezes the feature extraction module of the network: all parameters
of the network through the penultimate layer, i.e., θ(1:L−1) where L is the number of layers. When
presented with a target distribution pt(x,y) from which we can sample fewer data, we can simply
re-use the learned feature embedding module fθ(1:L−1) (all hidden layers of the network excluding
the output layer) for this new problem. Then, in the fine-tuning phase, it only trains the parameters in
the head of the network θ(L) (the final layer).

By reducing the number of trainable parameters on the target problem, this technique effectively
reduces the model complexity and prevents overfitting issues associated with the data scarcity in few-
shot learning scenarios. This comes at the cost of not being able to adjust the feature representations
of inputs. As a consequence, this approach fails when the pre-trained embedding module fails to
produce informative representations of the target problem inputs.

3.3 Reptile

Instead of joint optimization on the source distribution, Reptile (Nichol et al., 2018) adheres to the
idea of meta-learning and thus aims to learn how to learn. For this, it splits the source distribution
ps(x,y) into a number of smaller task distributions p1(x,y), p2(x,y), . . . , pn(x,y), corresponding
to tasks T1, T2, . . . Tn. On a single task Tj for j ∈ {1, . . . , n}, its objective is to minimize Equation 1
under the task distribution pj(x,y) using T gradient descent update steps as shown in Equation 2.
This results in a sequence of weight updates θ → θ

(1)
j → . . .→ θ

(T )
j . After task-specific adaptation,

the initial parameters θ are moved into the direction of θ(T )
j

θ = θ + ε
(
θ
(T )
j − θ

)
, (3)

where ε is the step size. Intuitively, this update interpolates between the current initialization
parameters θ and the task-specific parameters θ(T )

j . The updated initialization θ is then used as
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starting point when presented with new tasks, and the same process is repeated. It is easy to show that
this update procedure corresponds to performing first-order optimization of the multi-step objective

argmin
θ

E
Tj∼p(T )

(
T−1∑
t=0

E
xi,yi∼pj

[
Lt+1(θ

(t)
j )
])

, (4)

where Lt+1 is shorthand for the loss on a mini-batch sampled at time step t.

3.4 MAML

Another popular gradient-based meta-learning technique is MAML (Finn et al., 2017). Just like
Reptile, MAML also learns a weight initialization θ from which new tasks can be learned more
efficiently. However, instead of optimizing a multi-step loss function, MAML only optimizes the
final performance after task-specific adaptation. More specifically, this means that MAML is only
interested in the performance of the final weights θ(T )

j on a task and not in intermediate performances

of weights θ(t)j for t < T . In other words, MAML aims to find

argmin
θ

E
Tj∼p(T )

(
E

xi,yi∼pj

[
LT (θ(T)

j )
])

. (5)

To find these parameters, MAML updates its initialization parameters as follows

θ = θ − β∇θLT+1(θ
(T )
j ), (6)

where β is the learning rate and ∇θLT+1(θ
(T )
j ) = ∇

θ
(T )
j
LT+1(θ

(T )
j )∇θθ(T )

j . The factor ∇θθ(T )
j

contains second-order gradients and can be ignored by assuming that ∇θθ(T )
j = I is the identity

matrix, in similar fashion to what Reptile does. This assumption gives rise to first-order MAML
(fo-MAML) and significantly increases the training efficiency in terms of running time and memory
usage, whilst achieving roughly the same performance as the second-order MAML version (Finn
et al., 2017). In short, first-order MAML updates its initialization in the gradient update direction of
the final task-specific parameters.

4 A common framework and interpretation

The three discussed techniques can be seen as part of a general gradient-based optimization framework,
as shown in Algorithm 1. All algorithms try to find a good set of initial parameters as specified
by their objective functions. The parameters are initialized randomly in line 1. Then, these initial
parameters are iteratively updated based on the learning objectives (the loop starting from line 2).

This iterative updating procedure continues as follows. First, the data distribution is selected to
sample data from (line 3). That is, fine-tuning uses the full joint distribution ps(x,y) of the source
problem, whereas Reptile and MAML select task distributions pj(x,y) (obtained by sub-sampling a
set of labels from the full distribution ps). Next, we make T task-specific updates on mini-batches
sampled from the distribution p that was selected in the previous stage (lines 4–8). Lastly, the initial
parameters θ are updated using the outcomes of the task-specific adaptation phase.

Note that in this general gradient-based optimization framework, all techniques update their initializa-
tion parameters based on a single distribution p at a time. One could also choose to use batches of
distributions, or meta-batches, to update the initialization θ. This can be incorporated by using the
average of the losses of the different distributions as an aggregated loss function.

Table 1 gives an overview of the three algorithms. As we can see, fine-tuning only optimizes for the
initial performance and does not take into account the performance after adaptation. This means that
its goal is to correctly classify any input x from the source problem distribution ps. Reptile, on the
other hand, optimizes both for initial performance, as well as the performance after every update step.
This means that Reptile may settle for an initialization with somewhat worse initial performance
compared with fine-tuning, as long as the performance during task-specific adaptation makes up for
this initial deficit. MAML is the most extreme in the sense that it can settle for an initialization with
poor initial performance, as long as the final performance is good.
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Table 1: Overview of the loss functions and corresponding focus of fine-tuning, Reptile, and MAML.
Algorithm Loss function Focus
Fine-tuning E

xi,yi

[Lxi,yi(θ)] Initial performance

Reptile E
Tj∼p(T )

(
T−1∑
t=0

E
xi,yi∼pj

[
Lt+1(θ

(t)
j )
])

Initial, intermediate, and final performance

MAML E
Tj∼p(T )

(
E

xi,yi∼pj

[
LT (θ(T)

j )
])

Final performance

Algorithm 1 General gradient-based optimization: fine-tuning reptile MAML

1: Randomly initialize θ
2: while not converged do
3: Select data distribution p = ps pj ∼ p(T ) pj ∼ p(T )
4: Set θ(0) = θ
5: for t = 0, ..., T − 1 do
6: Sample a batch of data x,y ∼ p
7: Compute θ(t+1) = θ(t) −∇θ(t)Lt+1(θ

(t))
8: end for
9: Update θ by θ = θ(T ) Equation 3 Equation 6

10: end while

5 Experiments

In this section, we compare the learning behaviours of fine-tuning, MAML, and Reptile. All
experiments are conducted using single PNY GeForce RTX 2080TI GPUs.

5.1 Toy example

First, we study the behaviour of fine-tuning, Reptile, and MAML in two synthetic scenarios a and b,
consisting of two tasks each. Here, these tasks can be considered the meta-train set, and the goal of
the algorithms is to find an initialization of a network that performs well on both tasks. We represent
tasks by their loss landscape, which we have constructed by hand for illustrative purposes. In scenario
a, the two task loss landscapes are quadratic functions of a single parameter x. More specifically,
the losses for this scenario are given by `a1(x) = 1.3(x− 5)2 and `a2(x) = (x− 100)2. In scenario b,
the first task loss landscape is the same `b1 = `a1 while the second task represents a more complex
function:

`b2(x) =

{
(x− 100)2 x > 50

−5x+ 2750 x ≤ 50
(7)

The respective algorithms train by sampling tasks in an interleaved fashion, and by adapting the
parameter x based on the loss landscape of the sampled task. We investigate the behaviour of Reptile
and MAML when they make T = 5 or T = 25 task-specific adaptation steps. For this, we average
the found solutions of the techniques over 100 different runs with initial x values that are equally
spaced in the interval [−200,+200]. We find that finetuning converges to the same point regardless of
the initialization and are thus represented by a single vertical line. For Reptile and MAML, the found
solution depends on the initialization, which is why we represent the found solution as a probability
density. A Jupyter notebook for reproducing these results can be found on our Github page.

Based on the learning objectives of the techniques, we expect finetuning to settle for an initialization
that has a good initial performance on both tasks (small loss values). Furthermore, we expect that
MAML will pick any initialization point from which it can reach minimal loss on both tasks within T
steps. Reptile is expected to find a mid-way solution between finetuning and MAML.
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(a) Scenario a, with T = 5
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(b) Scenario a, with T = 25
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(c) Scenario b, with T = 5
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(d) Scenario b, with T = 25

Figure 1: Average initialization that fine-tuning, Reptile, and MAML converge to when using T = 5
or T = 25 adaptation steps per task. In scenario a (top figures), fine-tuning and Reptile pick an
initialization in the centre of the two optima where the initial loss is minimal. MAML neglects the
initial performance and thus is freer to select an initialization point, especially when T is larger. In
scenario b (bottom figures) the loss of task 2 is no longer convex and has a reasonably flat plateau.
Fine-tuning and Reptile get stuck in the optimum of the first task and fail to learn the second task
successfully, while MAML finds a location from which it can arrive at both optima.

The results of these experiments are displayed in Figure 1. In scenario a (top figures), we see that
both fine-tuning and Reptile prefer an initialization at the intersection of the two loss curves, where
the initial loss is minimal. MAML, on the other hand, neglects the initial performance when T = 25
and leans more to the right, whilst ensuring that it can reach the two optima within T steps. The
reason that it prefers an initialization on the right of the intersection is that the loss landscape of task
1 is steeper, which means that task adaptation steps will be larger. Thus, a location at the right of the
intersection ensures good learning of task 2 and yields comparatively fast learning on the first task.

In scenario b (bottom figures), the loss landscape of task 2 has a relatively flat plateau on the left-hand
side. Because of this, fine-tuning and Reptile will be pulled towards the optimum (also the joint
optimum) of the first task due to the larger gradients compared with the small gradients of the flat
region of the second task. When T = 25, we see that Reptile either finds an initialization at x = 50
(when the starting point x0 is on the right-hand side of the plateau) or at the joint optimum at x = 0
(when it starts with x0 on the plateau). In the latter case, the post-adaptation performance of Reptile
on both tasks is not optimal because it cannot reach the optimum of task 2. MAML, on the other hand,
does not suffer from this suboptimality because it neglects the initial and intermediate performance
and simply finds an initialization at x ≈ 85 from which it can reach both the optima of tasks 1 and 2.

5.2 Information content in the learned initializations

Next, we investigate the relationship between the few-shot image classification performance and the
discriminative power of the learned features by the three techniques.

To study this, we use the miniImageNet (Vinyals et al., 2016; Ravi and Larochelle, 2017) and CUB
(Wah et al., 2011) benchmarks and three different backbones (Conv-4, ResNet-10, ResNet-18 (He
et al., 2015)). We use Torchmeta for the implementation of the data loaders (Deleu et al., 2019). We
note that a single run of MAML and finetuning finish within one day, while Reptile finished within 4
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Figure 2: Flow chart for measuring the joint classification accuracy for meta-learning techniques.
First, we train the techniques in an episodic manner on all data in the meta-train set. Second, we copy
and freeze the learned initialization parameters and replace the output layer with a new one. Third, we
fine-tune this new output layer on all meta-test data in a non-episodic manner. As such, the meta-test
data is split into a non-episodic train and non-episodic test set. Finally, we evaluate the learned
evaluation on the hold-out test split of the meta-test data. We refer to the resulting performance
measure as the joint classification accuracy. Note that finetuning follows the same procedure, with
the exception that it trains non-episodically (on batches instead of tasks) on the meta-training data.

days, perhaps due to the absence of parallelism in our implementation. We tune the hyperparameters
of finetuning and MAML 5-way 1-shot image classification on the meta-validation tasks using
random search with a budget of 30 function evaluations for every backbone and dataset. Due to
the computational expenses, for Reptile, we use the best-reported hyperparameters on 5-way 1-shot
miniImageNet as found by (Nichol et al., 2018).

After deploying the three techniques on the data sets in a 5-way 1-shot manner, we measure the
discriminative power of the learned initializations. Figure 2 visualizes this procedure for MAML and
Reptile; finetuning follows a similar procedure. First, we extract the learned initialization parameters
from the techniques. Second, we load these initializations into the base-learner network, freeze all
hidden layers, and replace the output layer with a new one. The new output layer contains one node
for every of the |Ctest | classes in the meta-test data. Third, we fine-tune this new output layer on the
meta-test data in a non-episodic manner, which corresponds to regular supervised learning on the
meta-test data set. We use a 60/40 train/test split and evaluate the final performance on the latter. We
refer to the resulting performance measure as the joint classification accuracy, which aims to indicate
the discriminative power of the learned initialization, evaluated on data from unseen classes.

The results of this experiment are shown in Figure 3. From this figure, we see that fine-tuning yields
the best joint classification accuracy in all scenarios. This suggests that finetuning has learned a more
discriminative feature space for direct joint classification on a large set of classes than both MAML
and Reptile. However, we note that the joint classification performance either weakly correlates
or does not correlate with the few-shot learning performance across the different techniques. We
note that these correlation patterns may be affected by the fact that that we used the best-reported
hyperparameters for Reptile for the Conv-4 backbone, while we also use ResNet-10 and ResNet-18
backbones (He et al., 2015) in different settings. For finetuning, however, we do observe strong and
significant correlations between the joint classification accuracy and few-shot learning performance
(see Appendix A).

Moreover, we see that MAML yields the best few-shot learning performance when using the shallow
Conv-4 backbone. As the used backbone becomes deeper, the features learned by MAML become
narrower, i.e., the joint classification accuracy decreases.

6 Discussion

We investigated observed performance differences between finetuning and gradient-based meta-
learning techniques (MAML and Reptile), both in within-distribution and out-of-distribution settings.
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(b) miniImageNet → CUB (r=0.39, p=9e-3)
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(c) CUB (r=0.07, p=0.63)
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(d) CUB → miniImageNet (r=0.53, p=2e-4)

Figure 3: The joint classification accuracy (x-axes) plotted against the 5-way 1-shot performance
(y-axis) on all test classes. For every technique, there are 15 results plotted, corresponding to 3
backbones (Conv-4=red, ResNet-10=green, ResNet-18=blue) and 5 runs per setting. The Pearson
correlation coefficients (r) and p-values are displayed in the subcaptions. The general correlations
between the few-shot learning performance and joint classification accuracy range from weak to mild.
The correlations for individual techniques correlations can be found (see Appendix A).

The optimization objectives of the three techniques can be interpreted as maximizing the direct
performance, post-adaptation performance, and a combination of the two, respectively. That is, fine-
tuning aims to maximize the direct performance whereas MAML aims to maximize the performance
after a few adaptation steps, making it a look-ahead objective. Reptile is a combination of the two
as it focuses on both the initial performance as well as the performance after every update step on a
given task. As a result, fine-tuning will favour an initialization that jointly minimizes the loss function,
whereas MAML may settle for an inferior initialization that yields more promising results after a few
gradient update steps. Reptile picks something in between the two extremes. Our synthetic example
in Section 5.1 shows that these interpretations of the learning objectives allow us to understand the
chosen initialization parameters.

Our empirical results show that these different objectives translate into different learned initializations.
More specifically, we have found that fine-tuning learns a broad and diverse set of features that
allows it to discriminate between many different classes. MAML and Reptile, in contrast, optimize
a look-ahead objective and settle for a less diverse and broad feature space as long as it facilitates
robust adaptation in low-data regimes of the same data distribution (as that is used to optimize the
look-ahead objective). Whilst for finetuning a larger diversity does often lead to increased few-shot
performance, a similar correlation is not found for MAML and Reptile.

Another result is that MAML yields the best few-shot learning performance when using the Conv-4
backbone in all settings. Interestingly, the features learned by MAML become less discriminative
as the depth of the backbone increases. This may indicate an over-specialization, and it may be
interesting to see whether adding a penalty for narrow features may prevent this and increase the
few-shot learning performance on out-of-distribution tasks.

In summary, our work shows that the broadness of features does not correlate with the ability to learn
new tasks quickly across techniques, although it is helpful when learning tasks that are outside of the
training distribution as finetuning outperforms MAML and Reptile in these scenarios.
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A Additional experimental results

Table 2 displays the Pearson correlation and corresponding p-values for individual techniques for the
experiment in Section 5.2. As we can see, there are strong and significant (α = 0.005) correlations
between the joint classification accuracy and the few-shot learning performance of finetuning in three
settings. For MAML, there are strong negative correlations on miniImageNet and miniImageNet→
CUB, indicating that a lower joint classification accuracy is often associated with better few-shot
learning performance. For Reptile, the correlations are non-significant and mild to weak.

Table 2: Individual correlations between the joint classification accuracy and the few-shot learning
performance. The Pearson correlation coefficients are indicated as r and corresponding p-values as p.
We note that the results for each of the three few-shot learning techniques are produced with three
different backbone networks. As such, correlations should be interpreted with utmost care. Significant
correlations (using a threshold of α = 0.005) are displayed in bold. “MIN": miniImageNet.

MIN MIN→ CUB CUB CUB→MIN

Finetuning r=0.82, p=2e-4 r=0.71, p=3e-3 r=0.96, p=7e-9 r=0.28, p=0.31
MAML r=-0.77, p=8e-4 r=-0.85, p=6e-5 r=0.36, p=0.18 r=0.90, p=4e-6
Reptile r=0.27, p=0.3 r=0.50, p=0.06 r=0.3, p=0.28 r=0.31, p=0.27
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