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Abstract. We present an online optimization method for time-evolving
data streams that can automatically adapt the hyper-parameters of an
embedding model. More specifically, we employ the Nelder-Mead algo-
rithm, which uses a set of heuristics to produce and exploit several
potentially good configurations, from which the best one is selected and
deployed. This step is repeated whenever the distribution of the data is
changing. We evaluate our approach on streams of real-world as well as
synthetic data, where the latter is generated in such way that its char-
acteristics change over time (concept drift). Overall, we achieve good
performance in terms of accuracy compared to state-of-the-art AutoML
techniques.

Keywords: AutoML · Hyper-parameter optimization · Latent
spaces · Nelder-Mead algorithm · SMAC · Recommender systems

1 Introduction

In many application scenarios, machine learning systems have to deal with large
amounts of continuous data, so-called data streams, whose properties or dis-
tribution can change and evolve. This is especially relevant for recommender
systems, which usually have to deal with evolving data.

Recommender systems help users to select items among a set of choices,
according to their preferences. On e-commerce platforms such as Netflix or Ama-
zon, where the number of items to select is very large, personalized recommen-
dation is almost mandatory.

How these recommendations are made follows one of three types of
approaches: i) content-based: items are recommended based on the similarity
between their features; ii) collaborative filtering: items are recommended to a
user based on known preferences of similar users for those items; iii) hybrid: a
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combination of the content-based and collaborative filtering. In this work, we use
a collaborative filtering approach. Collaborative filtering is based on a very large
sparse users × items matrix. A typical approach to deal with this huge matrix
is matrix factorization, which constructs a user embedding matrix and an item
embedding matrix, such that users are embedded into the same latent space as
items [21]. Through the dot product of the matrices of these embeddings, it is
then possible to obtain, by approximation, the ratings (preferences).

The hyper-parameter optimization (HPO) problem seeks to choose optimal
settings for the hyper-parameters of a given machine learning system or algo-
rithm, such that the best possible performance is obtained on previously unseen
data. The literature suggests approaches such as i) grid search [17], ii) gradient
search [24], iii) random search [4] and iv) Bayesian optimization algorithms [13]
for hyper-parameter optimization.

In this work, we describe a method for online optimization that can auto-
matically adapt the hyper-parameters of an embedding model to changes in the
data. We employ the Nelder-Mead algorithm, which uses a set of operators to
produce a potentially good configuration to be deployed. This step is repeated
whenever the distribution of the data changes. To evaluate our approach, we
developed a synthetic data generator capable of producing realistic data streams
with characteristics that change over time (concept drift).

Specifically, we make the following contributions:

– online optimization of the hyper-parameters for matrix factorization on large
data sets;

– drift detection, that is, our proposed method reacts to changes in the process
producing a given data stream.

The remainder of this paper is structured into five sections. Section 2 pro-
vides a systematic literature review on latent space models, automated machine
learning in the context of online hyper-parameter optimization, and streaming
approaches. Section 3 formulates the problem and describes our proposed solu-
tion. Section 4 details our experiments and discusses the results we obtained.
Finally, Sect. 5 draws some general conclusions and outlines directions for future
work.

2 Background and Related Work

In this section, we cover work related to latent variable spaces in recommender
systems, online AutoML techniques, and streaming approaches.

Latent Space Models. In this work, we focus on latent variable models, which
are historically proven to work effectively in modeling user preferences and pro-
viding reliable recommendations (see, e.g., [3] for a survey). Essentially, these
approaches embed users and items into latent spaces that translate relatedness
to geometrical proximity. Latent embeddings can be used to decompose the large
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sparse preference matrix [1,35], to devise item similarity [20,27], or more gener-
ally, to parameterize probability distributions for item preference [16,29,40] and
to sharpen the prediction quality employing meaningful priors.

The recent literature has shifted to more complex models based on deep learn-
ing [41], which in principle could show substantial advantages over traditional
approaches. For example, neural collaborative filtering (NCF) [15] generalizes
matrix factorization to a non-linear setting, where users, items, and preferences
are modeled through a simple multilayer perceptron network that exploits latent
factor transformations. Despite this progress, collaborative filtering based on
simple latent variable modeling still represents a reference framework in the are
of recommender systems. Notably, recent studies [30,31] showed that carefully
tuned basic matrix factorization models can outperform more complex models
based on sophisticated deep learning architectures. This capability, combined
with the intrinsic simplicity of the model and the underlying learning process,
is the main reason why we focus on them in our work presented here.

Online AutoML. The field of AutoML is generally concerned with automati-
cally constructing machine learning pipelines that efficiently map raw input data
to desired outputs [19], such as class labels, and can therefore be seen as an exten-
sion of plain hyper-parameter optimization (HPO) [9]. The task of automatically
constructing a machine learning pipeline is formally modeled by the combined
algorithm selection and hyper-parameter optimization (CASH) problem, which
formalizes the search for the most effective algorithm and its associated hyper-
parameter configuration as a joint optimization task [22].

In principle, there are various ways to tackle both the HPO and CASH prob-
lems. One of the most prominent approaches is through sequential model-based
algorithm configuration (SMAC) [18], which is a widely known, freely avail-
able, state-of-the-art general-purpose configuration procedure based on sequen-
tial model-based (or Bayesian) optimization. The main idea of SMAC is to con-
struct and iteratively update a probabilistic model of target algorithm perfor-
mance to guide the search for good configurations. In the case of SMAC, this
so-called surrogate model is implemented using a random forest regressor [5].

AutoML methods have been shown to be able to efficiently assemble and con-
figure full machine learning pipelines (see, e.g., [10]), including automated data
pre-processing, feature selection, and hyper-parameter optimization. However,
the performance of these systems is usually evaluated in static environments,
i.e., on data that does not change over time.

While there exists a vast body of research on processing streams and data in
the presence of drift, there has been relatively little work on online AutoML, i.e.,
AutoML methods that can automatically adapt machine learning algorithms to
dynamic changes in the data on which they are deployed. Recently, some first
attempts have been made to extend AutoML methods to dynamic data streams
[8,25]. The main idea behind online AutoML is to not only automatically build a
machine learning pipeline, but also to adjust or replace it when its performance
degrades due to changes in the data. There are different adaption strategies
suggested in the literature, which can be broadly divided into model replacement
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and model management strategies [25], where the former globally replace the
model with a new one and the latter updates ensemble weights of the initially
learned model based on new data.

As our work presented here focuses on a specific algorithm, i.e., matrix fac-
torization, we do not configure a machine learning ensemble, but instead, seek
to dynamically optimize the hyper-parameters of the embedding model.

Streaming Approaches. With the development of modern computer archi-
tectures and with the substantial increase in the acquisition of sensor data, it
becomes evident that offline model training and selection will become largely
obsolete in the near future. React is one of the first approaches to model selec-
tion that explored the emergence of new multi-core architectures to compute
several models in parallel [11,12]. This model selection technique implements a
tournament-type process to decide which are the most effective hyper-parameter
configurations. The major drawback of this technique is the computational cost
associated with running multiple model configurations in parallel.

In the literature, we can also find several works proposing incremental model
selection for classification tasks. The IL-MS algorithm [23] uses a k-fold cross-
validation procedure to compute additional support vector machine (SVM) mod-
els with different configurations to select the best model. This procedure is run
periodically, to minimize the computational cost; however, the evaluation proce-
dure performs a double pass over the data (offline learning), which increases com-
putational cost. A different approach uses meta-learning and weighting strategies
to rank a set of heterogeneous ensembles [32,33]. However, this strategy requires
the extraction of computationally expensive meta-features, which can pose chal-
lenges for stream-based scenarios. More recently, the same authors [34] proposed
a way for measuring the score of ensemble members on a recent time window
and combining their votes.

The confStream algorithm [6,7] was developed to automatically configure a
stream-based clustering algorithm using ensembles. Each ensemble has different
configurations, which are periodically evaluated and changed, based on the per-
formance on the last window. These performance observations are used to train
a regression model, which suggests a set of unknown good configurations for the
new ensemble models.

More recently, the problem of hyper-parameter tuning on data streams was
formulated as an optimization problem [37,38], using the well-known Nelder-
Mead algorithm [26] for optimizing a given loss function. This particular contri-
bution showed to be highly versatile and was applied to three different machine
learning tasks: classification [2,36], regression [37], and recommendation [39].
In the particular case of recommendation, the authors adopted an incremental
matrix factorization model with a static hyper-parameter configuration, i.e., the
hyper-parameters are configured at the beginning of the stream and are sub-
sequently kept unchanged. In the following, we will use embedding models in
combination with a concept drift detector, based on the Page-Hinkley test [28],
to restart the optimization process.
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3 Hyper-parameter Optimization for Latent Spaces
in Recommender Systems

We start by introducing notation to be used throughout the remainder of this
paper. In the following, u ∈ U = {1, . . . , N} indexes a user and i ∈ I =
{1, . . . , M} indexes an item for which a user can express a preference. Let
Ru,i ∈ {rmin, . . . , rmax} denote the preference (rating) of user u for item i.
The range {rmin, . . . , rmax} represents a preference rank: when Ru,i = rmin,
user u maximally dislikes item i, while Ru,i = rmax denotes maximal preference
for the item. Typical ranges are {0, 1} (implicit preference) or {1, ..., 5}.

The set of all preferences can be represented as a rating matrix R, or alterna-
tively, as a set of triplets R = {(u1, i1, R1), . . . , (un, in, Rn)} where Rj = Ruj ,ij

When N and M are large, R only represents a partial and extremely small view
of all possible ratings. With an abuse of notation, we shall denote by (u, i) ∈ R
the fact that there exists a triplet (u, i, Ru,i) in R. The underlying learning prob-
lem is hence to provide a reliable estimate (completion) R̂u,i for each possible
pair (u, i), given the current partial view R not containing the pair.

The standard matrix factorization framework for predicting such values
assumes the following. Each user u and item i admit a representation in a
K-dimensional space. We denote such representations by embedding vectors
pu,qi ∈ R

K , which represent the row of the embedding matrices P ∈ R
N×K and

Q ∈ R
M×K . Given user u and item i, the corresponding preference can be mod-

eled as a random variable with a fixed distribution whose parameters rely on the
embeddings pu and qi. In the following, we assume that Ru,i ∼ N (μ, σ), where
σ is fixed and μ = pu · qi [35]. Other modeling choices are possible and do not
substantially change the overall framework (see, e.g., [29]). Finally, the learning
objective can be specified as finding optimal embedding matrices P∗ and Q∗

that maximize the likelihood of the partial observations R, or that minimize the
MSE loss:

�(P,Q;R) =
1

|R| ·
∑

(u,i)∈R

(Ru,i − pu · qi)
2

This optimization problem can be easily solved via stochastic gradient descent,
using a given learning rate η. In general, for a given R, the optimal embedding
depends on both the embedding size K and the learning rate η. A proper explo-
ration of the search space induced by these parameters enables the discovery of
the most appropriate model for R.

An additional assumption that we make in this work is that the partial
view R can be continuously updated. That is, either new unknown entries can
be disclosed (for example, some users can express preferences for previously
unseen items) or former preferences change (for example, due to change of
tastes by the user, or due to a more accurate evaluation). Thus, we assume
that the history of preferences produces a continuous stream of snapshots
R(1), R(2), . . . , R(t), . . ., where R(t) represents the view of R at time t. As already
mentioned, snapshots can overlap, i.e., it can happen that both R

(n)
u,i and R

(m)
u,i

exist for m �= n, and R
(n)
u,i �= R

(m)
u,i . We then define

⊔
n≤t R(n) as a merge among
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R(1), R(2), . . . , R(t) that preserves recency. That is, by denoting
⊔

n≤t R(n) as

V (t), we define V
(t)
u,i = R

(t∗)
u,i , where t∗ = max{t | (u, i) ∈ R(t)}. If no such t∗

exists, then V
(t)
u,i is undefined. The problem hence becomes: Given the current

history R(1), R(2), . . . , R(t), can we predict the missing entries of
⊔

n≤t R(n) and
provide a reliable estimate R̂ of the preferences at time t? More specifically, what
is the embedding size K and learning rate η that produce optimal embeddings
P,Q minimizing the loss �

(
P,Q;

⊔
n≤t R(n)

)
?

3.1 The Nelder-Mead Approach

The problem of hyper-parameter tuning we consider can be stated as follows:
given a machine learning algorithm Alg with a default hyper-parameter config-
uration Conf , represented by AlgConf , and a data stream S consisting of an
infinite set of mini-batches MB, the goal is to find an optimal configuration
Alg∗

Conf , where Alg∗
Conf yields better performance compared to past configu-

rations. In our situation, the model is represented by the embedding matrices
P and Q, Conf is represented by the embedding size K and the learning rate
η, and Alg is essentially stochastic gradient descent applied to the embedding
matrices with learning rate η.

Here, we adopt a stream-based version of the Nelder-Mead algorithm [37] to
find the optimal configuration Alg∗

Conf . This method consists of two phases: i)
exploration, where the algorithm tries different versions of Alg∗

Conf to minimize
a loss function, using a set of operators based on heuristics; and ii) deployment
of the best Alg∗

Conf over the following set of MB in the stream S.
The original Nelder-Mead algorithm requires n + 1 configurations Conf to

optimize a set of n hyper-parameters. Since we try to optimize the learning
rate (η) and embedding size (K), we need to maintain three configurations: B
(representing the configuration with the best score), W (the configuration with
the worst score) and G (with a score in between B and W ). The stream-based
version additionally computes in parallel the M,R,E, S,C auxiliary models for
the application of the Nelder-Mead operators. The underlying configurations for
these models are obtained by applying four different operations to the config-
urations B,G,W . These are contraction, shrinking, expansion and reflection.
Figure 1 illustrates how these models are obtained from B,G,W . Essentially,
each operation corresponds to modifying the values of η and K, by either enlarg-
ing or narrowing it, and then devising the optimal models corresponding to these
modified hyper-parameters.

In the streaming scenario, it is crucial to optimize the model incrementally.
Basic stochastic gradient descent (SGD) is well-suited to incremental adapta-
tion. This can be achieved by starting from a previous model and performing
additional updating steps, possibly while exploiting the new learning rate. How-
ever, adapting the embedding dimension K poses several challenges when we try
to apply the contraction or expansion operators, because it changes the struc-
ture of the model. This means that the SGD algorithm cannot exploit a previous



Hyper-parameter Optimization for Latent Spaces 255

(a) Expansion (b) Contraction

(c) Reflection (d) Shrinking

Fig. 1. Basic heuristic operations.

model, and consequently has to restart the entire optimization process. To cope
with this issue, we adopt two heuristic adaptation strategies:

– If any operation contracts the embedding size, we compute the new embed-
ding matrices from the original ones by dropping some columns. The dropped
columns correspond to the latent dimensions exhibiting the lowest variance
values. The intuition is that these dimension do not discriminate well among
users/items, and hence their contribution is likely to be redundant.

– If, on the other side, the embedding size needs to be expanded, we can keep all
previous dimensions and add new ones. To add new dimensions, we create a
set of vectors orthogonal to the existing latent vectors. In principle, orthogonal
vectors allow for more efficient exploration of the search space by inspecting
directions not covered before – for example, compared to randomly generated
vectors.

The overall procedure is illustrated in Algorithm 1. It starts with three randomly
generated configurations B,G,W . Then, the main cycle (lines 2–23) iterates over
all time windows (denoted by t), while performing two steps:

– In the exploration phase (lines 4–11 and 17–20), the search space is explored
to adapt the model with configurations coherent with the changes in the
distribution of the data. To detect if a concept drift occurs, we use the Page-
Hinkley test (PHt) [28] to report a concept drift if the observed prequential
loss at some instant is greater than a given user-defined threshold (accept-
able magnitude of change). When the mean of new data points exceeds the
predefined threshold, an alert is triggered, signaling that a concept drift has
been detected.

– In the exploitation phase (lines 13–16), the current best configuration is main-
tained, and the underlying model is optimized with respect to the current
batch. Exploitation only occurs when the differences between the configura-
tions B,G,W are negligible and, consequently, the simplex tends to converge
to a single point.
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Algorithm 1: Nelder-Mead Algorithm
Input: A stream R(1), R(2), . . . , R(t), . . ., where each R(t) is a partial matrix of ratings

1 Initialize the process by randomly creating configurations B, W, G
2 for t ≥ 1 do

/* Working on chunk V (t) */

3 S(t) = Sample
(⊔

n≤t−1 R(n)
)

4 if drift is detected then

/* Exploration is enabled */
5 Reconfigure G, W by random perturbations from B
6 simplex = {B, G, W}
7 Train(simplex)
8 simplex = UpdateSimplex(simplex)
9 aux = UpdateAux(simplex)

10 Train(aux)

11 end
12 else
13 if Convergence is detected on simplex then

/* Exploitation is enabled */
14 simplex = {B}
15 aux = ∅
16 end
17 else
18 simplex = UpdateSimplex(simplex ∪ aux)
19 aux = UpdateAux(simplex)

20 end
21 Train(simplex ∪ aux)

22 end

23 end
24 Function Train(models):
25 for each model m ∈ models do

/* Update the current model using Gradient Descent */

26 P(t)
m ,Q(t)

m , l(t)m = Optimize(R(t) 	 S(t);P(t−1)
m ,Q(t−1)

m , ηm)

27 end

28 Shoul Function UpdateSimplex(models):

/* Select best, good and worst model */
29 Re-identify B, G, W from models based on the current associated losses
30 return {B, G, W}
31 Function UpdateAux(models):

/* Contraction, shrinking, expansion, reflection */
32 Generate auxiliary configurations M, E, R, S, C from models
33 return {M, E, R, S, C}

In both situations, the training of the model (line 26) starts from the optimal
embeddings for the same configuration, as computed in the preceding time win-
dow and adapted according to the previously described contraction and expan-
sion processes. Furthermore, training is performed on the same set of data points
as used in the evaluation step (line 3).

4 Empirical Evaluation

We conducted an extensive empirical evaluation of the proposed approach, with
the goal of answering the following research questions:
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RQ1: Does the exploitation phase of the Nelder-Mead algorithm converge to
high-quality solutions?

RQ2: When drift is present in the data, how well does the Nelder-Mead approach
adapt to the underlying changes?

RQ3: How does the Nelder-Mead algorithm compare to specific adaptations
of well-known baseline approaches from the literature for online automatic
model learning?

To foster reproducibility, we have publicly released all the data and code required
to reproduce our experiments.1

4.1 Baselines and Evaluation Protocol

Our evaluation was performed on synthetic and real-world datasets. For the
evaluation protocol, we considered the temporal data ordering and partitioned
each dataset into intervals of the same size. The proposed method was evaluated
with the predictive sequential (prequential) evaluation protocol for data streams
[14], and we used root-mean-square error (RMSE) as our evaluation metric.

To address the research questions stated above, we considered two baselines.
The first of these was aimed at verifying that our algorithm can make correct
predictions whenever the entire stream is considered to be resulting from a sta-
tionary process. To this end, we considered a statically tuned matrix factorization
model. As discussed in [30], a careful setup of the gradient-based algorithm for
this basic model can outperform several more sophisticated approaches, includ-
ing neural collaborative filtering approaches [31]. Hence, it is natural to ask
whether the Nelder-Mead approach proposed in Sect. 3 is sufficiently robust to
guarantee similar or better performance. To investigate this, we performed an
exhaustive hyper-parameter search on the basic matrix factorization model using
SMAC over the entire dataset. Hereby, we aimed to find a combination of glob-
ally optimal hyper-parameter settings, i.e., settings that perform well over the
entire data stream. After completion of this configuration process, these hyper-
parameter settings were used to initialize a static model and to start an online
training process, where each chunk was processed sequentially using stochastic
gradient descent.

As a second baseline, we chose SMAC, a state-of-the-art, general-purpose
algorithm configuration procedure that has been widely used for hyper-
parameter optimization (see also Sect. 2). The general workflow of SMAC starts
with picking a configuration AlgConf and an instance π (a sample of the data).
Next, the configurator performs a run of algorithm Alg with configuration Conf
on instance π and measures the resulting performance. The information gleaned
from such individual target algorithm runs is then used to iteratively build and
update a predictive model that provides the basis for identifying promising con-
figurations for subsequent runs, and to thus find configurations that perform well
on the given training instances. Once its configuration budget (e.g., the number

1 https://github.com/BrunoMVeloso/ECMLPKDD2021.

https://github.com/BrunoMVeloso/ECMLPKDD2021
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of evaluation runs) is exhausted, SMAC returns its current incumbent Conf ∗,
i.e., the best configuration found so far.

While the Nelder-Mead approach is intrinsically stream-based, the SMAC
procedure is static by design. That is, SMAC uses a fixed subset of the data to
find an optimal configuration, which is then deployed on the remaining data set.
Here, however, we are dealing with a data stream, in which data not only arrives
gradually over time, but is also expected to change. Therefore, we adapted the
original SMAC procedure to employ a model replacement strategy [25], in which
the optimization procedure is re-run from scratch when drift is detected to find
better hyper-parameter settings Conf ∗ and, subsequently, deploy a new instance
of Alg with Conf ∗.

The parameters of the model replacement strategy are chosen as follows.
First, SMAC finds a configuration Conf ∗ using the first chunk of the data stream;
i.e., the first n mini-batches, where n is the size of a chunk. It should be noted
that the value of n has an impact on the effectiveness of the configuration pro-
cedure; more precisely, a larger value for n allows for better generalization, but
at the same time increases computational cost, as each configuration has to be
evaluated on a larger amount of data.

Once drift has been detected, we re-start the configuration procedure using
the data chunk in which the drift occurred as the training set. Again, one could
increase n or even re-run the configurator using all stored data up to the current
batch. However, given an infinite stream of mini-batches, the computational
cost incurred by the re-configuration process would grow indefinitely, making
this approach infeasible for the scenario studied in this work.

4.2 Experiments on Real-World Data

In our first set of experiments, we evaluated our approach using Movielens1M2,
a standard benchmark dataset for collaborative filtering. Movielens is a time-
series dataset containing user-item rating pairs along with the corresponding
timestamps. The dataset comprises 6K users, 4K items, and 1 million ratings.

Figure 2 compares the results for this dataset obtained by the automatically
tuned matrix factorization model using Nelder-Mead and SMAC, as well as the
static matrix factorization model (trained with K = 35 and η = 0.0337).

The graph shows the average prequential loss, computed over a sliding win-
dow of fixed size. We can see that the proposed approach consistently outper-
forms the baselines after an initial burn-in period at the very beginning of the
stream. Interestingly, the predictive ability of Nelder-Mead surpasses the static
matrix factorization. This answers our first research question: the online version
of Nelder-Mead does converge to a high-quality solution.

2 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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Fig. 2. Moving-average error rate for the MovieLens dataset.

4.3 Experiments on Synthetic Data

In a second set of experiments, we carried out a careful comparison of the pro-
posed approaches by evaluating their performance in a more controlled way.
We tested our framework on datasets produced by a synthetic data generator,
designed to be able to create data streams with controllable characteristics. The
working principle of the generator is that ratings can be generated as the result
of a stochastic process influenced by preference changes, and hence governed by
evolving embedding matrices. The evolution essentially consists of the addition
or removal of features.

The data generation process starts with a fixed number of users N and items
M , and relies on the initial non-negative embedding matrices P ∈ R

N×K0 and
Q ∈ R

M×K0 , where K0 is the initial feature size. The latent features in the
data generation process resemble latent semantic topics [16]: Given a user u,
the embedding pu encodes the leanings of u for the given topic; in particular,
pu,k is non-zero if there is a leaning of u for topic (feature) k. Analogously, qi,k

represents the relatedness of item i to topic k. The generation process for P and
Q proceeds in two steps. First, we build a tripartite graph G = (V,E), where
V = (U, I, T ), with U representing the set of all users, I the set of all items, and
T = {1, . . . , K0} the set of all features. Edges only connect topics to users or
items and are generated through preferential attachment, by considering each
topic in order. For a given topic k, we first sample the number of user (resp.
item) neighbors nk from a Zipf distribution with parameter α. Then, for each of
these neighbors, we select a user (resp. an item) x and add the edge (x, k) to E.
The element x is stochastically selected from U (resp. from I):

– with probability p, we randomly sample x with uniform probability;
– otherwise (with probability 1−p), we sample x with probability proportional

to its current degree.

The embeddings P and Q are extracted from the adjacency matrix AG of G.
By construction, AG exhibits two main non-zero blocks, representing the edges
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from U to T and from I to T , respectively. P corresponds to the block con-
necting users to topics, whereas Q corresponds to the block connecting items
to topics. Figure 3 illustrates the process. In Fig. 3a, we see the tripartite graph
connecting 7 users (blue) and items (red) to 4 features (green). The correspond-
ing adjacency matrix is shown in Fig. 3b. The two main blocks of the matrix
represent both the user and item embeddings. Notice that both embeddings
are represented by binary matrices. Finally, a rating for a pair (u, i) is gener-
ated by sampling from a Gaussian distribution with fixed variance and mean
μ = (rmax − rmin) · puqi/‖qi‖ + rmin. The normalization of qi guarantees that
the maximal preference is only achieved when user and item completely overlap
over the features.

(a) User/Feature/Item graph

AG =

⎡
⎣

0 P 0
P′ 0 Q′

0 Q 0

⎤
⎦ P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1
0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
1 0 0 1
1 0 0 0
0 1 0 0
1 0 0 1
1 0 0 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) Adjacency matrix, user and item embeddings

(c) Feature dropping (d) Feature expansion

Fig. 3. An example illustrating the data generation process. (Color figure online)

Within the construction scheme outlined above, concept drift can be easily
modeled, by evolving the underlying tripartite graph. New ratings can be gener-
ated accordingly from the updated embedding matrices. We consider two main
drifting operations here: (1) elimination of a feature and (2) expansion with an
additional feature. Elimination is simple and essentially consists of removing
a feature node. The corresponding connections are rewired to an existing fea-
ture, according to a preferential attachment criterion (governed by parameters
pd and pr): Given an edge (x, k) connected to an eliminated feature k, the edge
is removed with probability pd. If not removed, it is rewired to a random feature
(either chosen uniformly with probability pr, or with probability proportional to
the feature degree with probability 1 − pr). Figure 3c shows an example where
feature 3 from Fig. 3a is eliminated.
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Fig. 4. Moving-average error rate for synthetic data (left: first experiment; right: second
experiment; for details, see text).

The expansion follows a similar scheme: for each newly added feature, we fix
the number of neighbors to connect, and select each such neighbor either ran-
domly or by preferential attachment. The connection produces a new edge with
probability pa, and otherwise rewires one of the existing neighbor connections
(with probability 1 − pa). Figure 3d illustrates how two new features are added
and some edges are rewired.

We performed two experiments on a synthetic dataset with 10 000 users and
2 000 items. In both of these, we set K0 = 100 and α = 1.1. We generated a
total of 8 000 chunks with 2 000 ratings each, with a drift every 2 000 chunks. In
the first experiment, we set p = 1, and drift was controlled by pd = pr = pa = 1.
In the second experiment, we set p = 0.9, and drift was controlled by pd = pr =
pa = 0.5. In both cases, we experimented with expansion, by adding K0 more
features at each drift.

Figure 4 shows that our framework correctly detects the drift and restarts
the hyper-parameter tuning process. More specifically, we observe that Nelder-
Mead exhibits fast convergence and consistently adapts to all the injected occur-
rences of drift, which answers our second research question. Furthermore, we can
notice a substantial difference between Nelder-Mead and SMAC baseline as well
as the static matrix factorization model, resolving the third research question.
Although the latter approach also adapts to changes, as a result of the SGD opti-
mization, the automatic hyper-parameter optimization provided by the Nelder-
Mead algorithm allows for a better adaptation to the changes triggered by the
new features, and consequently yields a lower error rate. When using SMAC
as an online configurator, we also find that model performance improves after
each drift, indicating that the re-configuration procedure effectively accounts for
the induced changes in the data. However, it does so less successfully than the
Nelder-Mead approach and the static approach, which could be explained by the
relatively small amount of data points SMAC is exposed to in the online setting.
Possibly, the performance of this approach could be improved by increasing the
chunk size n, thereby providing SMAC with a larger set of training data in the
(re-)configuration procedure.
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5 Conclusions

The objective of this research was to investigate and develop an online optimiza-
tion approach for latent spaces in dynamic recommender systems. We have intro-
duced an adaptation of the Nelder-Mead algorithm for data streams, which uses a
simplex search mechanism, combined with a concept drift detection mechanism,
to find hyper-parameter configurations that minimize the given loss function.
Through experiments on real-world and artificial data sets, we have shown that
the automatic selection of hyper-parameter settings has substantial impact on
the outcomes of stream-based recommendations. In particular, we have demon-
strated that i) our new approach achieves lower prediction error than a carefully
tuned static matrix factorization model as well as the state-of-the-art configura-
tor SMAC adapted to an online setting; ii) the concept drift detector is able to
automatically trigger the search for a new optimal solution, which is an advan-
tage when compared with static approaches.

The proposed approach can be adopted to other scenarios where an embed-
ding model is used for predictive purposes. We plan to further explore the appli-
cability of this optimization method in situations where the parameter space is
more complex than the simple embedding size; these situations arise, for exam-
ple, when using complex deep learning models requiring multiple components
and specific tuning of the underlying components, such as convolutional archi-
tectures, recurrent layers or even attention models based on transformers.
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