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ABSTRACT Medical image registration and segmentation are two of the most frequent tasks in medical
image analysis. As these tasks are complementary and correlated, it would be beneficial to apply them
simultaneously in a joint manner. In this paper, we formulate registration and segmentation as a joint
problem via a Multi-Task Learning (MTL) setting, allowing these tasks to leverage their strengths and
mitigate their weaknesses through the sharing of beneficial information. We propose to merge these tasks
not only on the loss level, but on the architectural level as well. We studied this approach in the context of
adaptive image-guided radiotherapy for prostate cancer, where planning and follow-up CT images as well as
their corresponding contours are available for training. At testing time the contours of the follow-up scans
are not available, which is a common scenario in adaptive radiotherapy. The study involves two datasets
from different manufacturers and institutes. The first dataset was divided into training (12 patients) and
validation (6 patients), and was used to optimize and validate the methodology, while the second dataset
(14 patients) was used as an independent test set. We carried out an extensive quantitative comparison
between the quality of the automatically generated contours from different network architectures as well as
loss weightingmethods.Moreover, we evaluated the quality of the generated deformation vector field (DVF).
We show that MTL algorithms outperform their Single-Task Learning (STL) counterparts and achieve
better generalization on the independent test set. The best algorithm achieved a mean surface distance of
1.06 ± 0.3 mm, 1.27 ± 0.4 mm, 0.91 ± 0.4 mm, and 1.76 ± 0.8 mm on the validation set for the prostate,
seminal vesicles, bladder, and rectum, respectively. The high accuracy of the proposed method combined
with the fast inference speed, makes it a promisingmethod for automatic re-contouring of follow-up scans for
adaptive radiotherapy, potentially reducing treatment related complications and therefore improving patients
quality-of-life after treatment. The source code is available at https://github.com/moelmahdy/JRS-MTL.

INDEX TERMS Image segmentation, deformable image registration, adaptive radiotherapy, contour prop-
agation, convolutional neural networks (CNN), multi task learning (MTL), uncertainty weighting, dynamic
weight averaging.

I. INTRODUCTION
Medical image analysis aims to extract clinically useful infor-
mation that aids the diagnosis, prognosis, monitoring and
treatment of diseases [1], [2]. Two of the most common tasks
in such analyses are image registration and segmentation [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiahai Zhuang .

Image segmentation aims to identify and cluster objects that
prevail similar characteristics into distinctive labels, where
these labels can be used for diagnosis or treatment plan-
ning. Image registration is the task of finding the geomet-
rical correspondence between images that were acquired at
different time steps or from different imaging modalities.
These two tasks are complementary, as for example image
atlases warped by image registration algorithms are often
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used for image segmentation [4], [5], while image contours
can be used to guide the image registrationmethod in addition
to the intensity images [6]–[8]. Contours are also used for
evaluating the quality of the registration [9], [10]. However,
each of these tasks has its own strengths and weaknesses. For
instance, image segmentation algorithms can directly delin-
eate images based on texture and surrounding anatomy, and
may therefore be robust to large organ deformations. How-
ever it sometimes has difficulties with low contrast areas and
irregularly shaped organs. On the other hand, image registra-
tion algorithms have the ability to encode prior knowledge
of the patient’s anatomy and therefore may perform better
on low quality images. However, such methods sometimes
have difficulty with large deformations. Therefore, coupling
of image registration and segmentation tasks and modeling
them in a single network could leverage their strengths and
mitigate their weaknesses through the sharing of beneficial
information.

Adaptive image-guided radiotherapy is an exemplar appli-
cation where the coupling of image registration and segmen-
tation is vital. In radiotherapy, treatment radiation dose is
delivered over a course of multiple inter-fraction sessions.
In an adaptive setting, re-imaging of the daily anatomy and
automatic re-contouring is crucial to compensate for patient
misalignment, to compensate for anatomical variations in
organ shape and position, and an enabler for the reduction
of treatment margins or robustness settings [11], [12]. These
have an important influence on the accuracy of the dose deliv-
ery, and improve the treatment quality, potentially reducing
treatment related side-effects and increasing quality-of-life
after treatment [13]. Automatic contouring can be done by
direct segmentation of the daily scan, or by registration of
the annotated planning scan with the daily scan followed by
contour propagation. Image registration has the advantage of
leveraging prior knowledge from the initial planning CT scan
and the corresponding clinical-quality delineations, which
may especially be helpful for challenging organs. On the
other hand, image segmentationmethodsmay better delineate
organs that vary substantially in shape and volume between
treatment fractions, which is often the case for the rectum and
the bladder. In this study, we propose to fuse these tasks at the
network architecture level as well as via the loss function. Our
key contributions in this paper are as follows:

1) We formulate image registration and segmentation as a
multi-task learning problem, which we explore in the
context of adaptive image-guided radiotherapy.

2) We explore different joint network architectures as well
as loss weighting methods for merging these tasks.

3) We adopt the cross-stitch network architecture for seg-
mentation and registration tasks and explore how these
cross-stitch units facilitate information flow between
these tasks.

4) Furthermore, we compare MTL algorithms against
single-task networks. We demonstrate that MTL algo-
rithms outperform STL networks for both segmentation

and registration tasks. To the best of our knowledge this
is the first study to investigate various MTL algorithms
on an architectural level as well as on a loss weighing
level for joint registration and segmentation tasks.

5) We thoroughly investigate the internals of the STL
and MTL networks and pinpoint the best strategy to
merge this information to maximize the information
flow between the two tasks.

Initial results of this work were presented in [14], focusing
on the cross-stitch unit in a proposed joint architecture. In the
current paper we extend this study to the architectural fusion
of these tasks as well as different loss weighting mechanisms.
Moreover, an extensive analysis of the different method-
ologies was performed, detailing the effect of architectural
choices, information flow between the two tasks, etc.

The remainder of this paper is organized as follows:
Section II introduces single-task networks, multi-task net-
works, and loss weighting approaches. In Section III we
introduce the datasets and details about the implementation
as well as the experiments. In Sections V and VI, we discuss
our results, provide future research directions, and present our
conclusions.

A. RELATED WORK
In the last decade, researchers have been exploring the idea
of fusing image segmentation and registration. Lu et al. [15]
and Pohl et al. [16] proposed modeling these tasks using a
Bayesian framework such that these tasks would constrain
each other. Yezzi et al. [17] proposed to fuse these tasks using
active contours, while Unal et al. [18] proposed to generalize
the previous approach by using partial differential equations
without shape priors. Mahapatra et al. [8] proposed a Joint
Registration and Segmentation (JRS) framework for cardiac
perfusion images, where the temporal intensity images are
decomposed into sparse and low rank components corre-
sponding to the intensity change from the contrast agent and
the motion, respectively. They proposed to use the sparse
component for segmentation and the low rank component for
registration. However, most of the aforementioned methods
require complex parameter tuning and yield long computation
times.

Recently, deep learning-based networks have shown
unprecedented success in many fields especially in the med-
ical image analysis domain [19]–[24], where deep learn-
ing models perform on par with medical experts or even
surpassing them in some tasks [25]–[28]. Several deep
learning-based approaches have been proposed for joint reg-
istration and segmentation. The joining mechanisms in the
literature can be classified in two categories, namely join-
ing via the loss function and via the architecture as well
as the loss function. Selected exemplar methods of the first
approach are Hue et al. [29], who proposed to join seg-
mentation and registration via a multi-resolution Dice loss
function. Elmahdy et al. [6] proposed a framework that is
a hybrid between learning and iterative approaches, where
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a CNN network segments the bladder and feeds it to an
iterative-based registration algorithm. The authors integrated
domain-specific knowledge such as air pocket inpainting
as well as contrast clipping, moreover they added an extra
registration step in order to focus on the seminal vesicles
and rectum. Elmahdy et al. [7] and Mahapatra et al. [30]
proposed a GAN-based (Generative Adversarial Network)
approach, where a generative network predicts the corre-
spondence between a pair of images and a discriminator
network for giving feedback on the quality of the deformed
contours. Exemplar methods of the second category are Xu
andNiethammer [31], who presented a framework that simul-
taneously trains a registration and a segmentation network.
The authors proposed to jointly learn these tasks during train-
ing, however the networks can be used independently during
test time. This enables prediction of only the registration
output, when the labels are not available during test time.
Estienne et al. [32] proposed to merge affine and deformable
registration as well as segmentation in a 3D end-to-end
CNN network. Recently Liu et al. [33] proposed an end-
to-end framework called JSSR that registers and segments
multi-modal images. This framework is composed of three
networks: a generator network, that synthesizes the moving
image to match the modality of the fixed image, a registration
network that registers the synthesized image to the fixed
image, and finally a segmentation network that segments the
fixed, moving, and synthesized images.

All the previous methods explored the idea of joining
segmentation and registration, where to the best of our knowl-
edge none have explored how these tasks are best connected
and how to optimize the information flow between them on
both the loss and architectural levels.

II. METHODS
A. BASE NETWORK ARCHITECTURE
The base architecture for the networks in this paper is a 3D
CNN network inspired by the U-Net and BIRNet architec-
tures [34], [35]. Figure 1a shows the architecture of the base
network. The network encodes the input through 3 × 3 × 3
convolution layers with no padding. LeakyReLU [36] and
batch normalization [37] are applied after each convolutional
layer. We used strided convolutions in the down-sampling
path and trilinear upsampling layers in the upsampling path.
Through the upsampling path, the number of feature maps
increases while the size of the feature maps decreases, and
vice versa for the down-sampling path. The network has three
output resolutions and is deeply supervised at each resolution.
Each resolution is preceded by a 1 × 1 × 1 fully convolu-
tion layer (Fconv) so that at coarse resolution, the network
can focus on large organs as well as large deformations,
while vice versa at fine resolution. In order to extract the
groundtruth for different resolutions, we perform cropping of
different sizes as well as strided sampling so that for every
input patch of size n3, the sizes of the coarse, mid, and fine
resolution are ( n4 −7)

3, ( n2 −18)
3, and (n−40)3, respectively.

B. SINGLE TASK LEARNING
Single-task networks are designed to solve one task and
therefore require a large amount of labeled training samples,
which are scarce in the medical domain since it takes time
and trained medical personnel to contour these images. The
segmentation and registration networks have the same archi-
tecture as the base network depicted in Figure 1a, but differ
in the input and output layers. Here, single-task networks
are considered baseline networks for comparing with the
performance of the proposed multi-task networks.

1) SEGMENTATION NETWORK
The input to the segmentation network is the daily CT scan,
referred to as the fixed image If , where the network pre-
dicts the corresponding segmentation Spredf . Spredf represents
the probability maps for the background, target organs, and
organs-at-risk. The network was trained using the Dice Sim-
ilarity Coefficient (DSC) loss, which quantifies the overlap
between the network prediction Spredf and the groundtruth Sf
as follows:

LDSC = 1−
1
K

K∑
k=1

2 ∗
∑

x S
pred
k (x) · Sk (x)∑

x S
pred
k (x)+

∑
x Sk (x)

, (1)

where K is the number of structures to be segmented, x
is the voxel coordinate, Sk is the ground truth segmenta-
tion, and Spredk the predicted probabilities. The network has
779,436 trainable parameters.

2) REGISTRATION NETWORK
The input to the registration network is the concatenation
of the planning scan, referred to as the moving image Im
and the daily scan If . The network predicts the geometrical
correspondence between the input images. This correspon-
dence is represented by the displacement vector field (DVF),
referred to as φpred. This DVF is then used to warp Im.
In an ideal scenario, the warped moving image Iwarpedm would
be identical to If . The network is trained using Normalized
Cross Correlation (NCC) in order to quantify the dissimilarity
between Iwarpedm and If . Since the images are from a single
imaging modality (CT) with a similar intensity distribution,
NCC is an obvious choice abundantly used in the registration
literature. Moreover, the implementation is straightforward
and efficient when using plain convolution operations. NCC
is defined by the following equation:

LNCC = 1−

∑
x[(If (x)− If ) · (I

warped
m (x)− Iwarpedm )]

σIf σIwarpedm

,

(2)

where x is the voxel coordinate, and σIf and σ
Iwarpedm

are
the standard deviation of the fixed and warped images,
respectively. In order to encourage the network to predict
a smooth DVF, a bending energy penalty term is added for
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FIGURE 1. The proposed network architectures introduced in the paper. (a) is the base STL network architecture for either segmentation or
registration, but also represents the dense parameter sharing MTL network architecture; (b) is the architecture with a shared encoder, while (c) is
the Cross-stitch network architecture. Details about the number of feature maps are presented in Section III-B.

regularization:

LBE =
1
N

∑
x

‖H (φpred (x))‖22, (3)

whereH is the Hessian matrix. Now the total registration loss
becomes:

LRegistration = LNCC + w · LBE, (4)

where w is the bending energy weight. For more details
on the selection of w, see Section IV-A. The network has
779,733 trainable parameters.

C. MULTI TASK LEARNING
In Multi-Task Learning (MTL), related tasks regularize each
other by introducing an inductive bias, thus making the
model agnostic to overfitting compared to its STL coun-
terparts [38]. MTL can also be considered as an implicit
data augmentation strategy, since it effectively increases the
training sample size while encouraging the model to ignore
data-dependent noise. Because different tasks have different
noise patterns, modeling these tasks simultaneously enables
the model to generalize well [39]. Moreover, in MTLmodels,
some features can be more easily learned by one task than
another, thus encouraging information cross-talk between
tasks [40].

Also, in real-world scenarios, physicians usually incorpo-
rate knowledge from different imaging modalities or previ-
ous tasks in order to come up with a diagnosis or better

understanding of the underlying problem. This illustrates that
the knowledge embedded in one task can be leveraged by
other tasks and hence it is beneficial to jointly learn related
tasks.

Choosing the architecture of an MTL network is based on
the following two factors [41]: what to share and how to
share. What to share defines the form in which knowledge
is shared between tasks. This knowledge sharing can be
done through hand-crafted features, input images, and model
parameters. How to share determines the optimal manner in
which this knowledge is shared. In this paper, we focus on
parameter-based sharing.

In the following sections, we investigate different MTL
network architectures in order to best understand how seg-
mentation and registration tasks share information on the
architectural level. The investigated networks predict two sets
of contours, one set resulting from the segmentation task
and one from the registration task. In this paper, we select
the best set of contours as the final output, based on the
validation results. More sophisticated strategies are discussed
in Section V.

1) JOINT REGISTRATION AND SEGMENTATION VIA THE
REGISTRATION NETWORK
The network in this method, dubbed JRS-reg, has the
same architecture as the STL registration network from
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Section II-B2, except that this network is optimized using a
joint loss as presented in Eq. 6.

2) DENSE PARAMETER SHARING
In this architecture both segmentation and registration tasks
aremodeled using a single network, where both tasks share all
parameters except for the task-specific parameters in the out-
put layer, see Figure 1a. The network architecture is the same
as the base network (see Section II-A) except for the input
and output layers. This dense sharing eliminates overfitting
issues since it enforces the parameters to model all the tasks
at once, however it does not guarantee the best representation
for individual tasks [41]. The input to the network is the
concatenation of Im, If , and Sm. The network predicts the
φpred between input images as well as Spredf . The network has
781,164 trainable parameters.

3) ENCODER PARAMETER SHARING
Since the input to the segmentation and registration tasks are
both CT scans, this means they both encode similar features
in the down-sampling path of the network. Therefore in this
network both tasks share the encoding path and then splits
into two upsampling task specific decoder paths. We call
this network the Shared Encoder Double Decoder (SEDD)
network. Figure 1b shows the architecture of the network.
The input to the network is the concatenation of Im, If , and Sm.
The network predicts φpred between the input images from the
registration path while predicting Spredf from the segmentation
path. The network has 722,936 trainable parameters.

4) CROSS-STITCH NETWORK
A flexible approach to share parameters is via a Cross-Stitch
(CS) network [42]. In contrast to the heuristic approach of
manually choosing which layers are shared and which are
task-specific, the CS network introduces a learning-based
unit to determine the amount of feature sharing between tasks.
The CS units learn to linearly combine feature maps from the
two networks, one for segmentation and one for registration,
as shown in Figure 1c. The unit itself is defined as:[

X̄`,kS

X̄`,kR

]
=

[
α
`,k
SS α

`,k
SR

α
`,k
RS α

`,k
RR

][
X`,kS

X`,kR

]
, (5)

where X`,kS and X`,kR represent the feature maps k at layer l
for the segmentation and registration networks, respectively.
α
`,k
SS , α

`,k
SR , α

`,k
RS , and α

`,k
RR represent the learnable parameters

of the CS unit. X̄`,kS and X̄`,kR are the output feature maps for
the segmentation and registration networks, respectively. The
advantage of CS units is that the network can dynamically
learn to share the feature maps in case this is beneficial in
terms of the final loss value. In case there is no benefit,
an identity matrix can be learned, so that the feature maps
become task-specific. This allows the network to learn a
smooth sharing between the tasks at a negligible increase
in the number of parameters. As suggested by the original
paper, we placed the CS units after the downsampling and

upsampling layers resulting in a total of 4 CS units. The CS
network has 779,000 trainable parameters.

D. LOSS WEIGHTING
The loss function for the MTL networks is defined by:

L=w0 · LNCC+w1 · LDSC−R+w2 · LDSC−S+w3 · LBE,

(6)

where wi are the loss weights. They are chosen based on the
relative contribution of their corresponding tasks, so that dif-
ferent tasks would learn at the same pace. These weights can
be chosen manually based on empirical knowledge, or auto-
matically. A simple choice would be to weigh the losses
equally with a fixed weight of 1. Following are some exem-
plar algorithms for choosing the loss weights automatically.
Chen et al. proposed GradNorm [43] to weigh different tasks
by dynamic tuning of the gradient magnitudes of the tasks.
This tuning is achieved by dynamically changing the learning
rate for each task so that all tasks would be learning at the
same speed. The drawback of this approach is that it requires
access to the internal gradients of the shared layers which
could be cumbersome. Moreover, one needs to choose which
shared layer to back propagate to in case of multiple shared
layers. Kendall et al. [44] proposed to weigh each task by
considering the homoscedastic uncertainty of that task, so that
tasks with high output variance will be weighted less than
tasks with low variance. This approach only adds few train-
able parameters, namely equal to the number of loss func-
tions. Inspired by GradNorm, Liu et al. proposed Dynamic
Weight Averaging (DWA) [45], where each task is weighted
over time by considering the rate of change of the relative
loss weights. Contrary to GradNorm, DWA only requires
the numerical values of the loss functions rather than their
derivatives. In this paper, we compared equal weights versus
homoscedastic uncertainty andDWA. For all the experiments,
we set the weight of the bending energy to a fixed value of 0.5
(for more details see Section IV-A) instead of a trainable one.
This is to prevent the network to set it too low in order to
improve the DSC of the deformed contours on the account of
the smoothness of the predicted DVF.

1) HOMOSCEDASTIC UNCERTAINTY
Homoscedastic uncertainty was proposed as a loss weight-
ing method by Kendall et al. [44]. This is a task-dependant
uncertainty which is not dependant on the input data but
rather varies between tasks. The authors derived their find-
ing by maximizing the Gaussian likelihood while consid-
ering the observational noise scalar σ that represents the
homoscedastic uncertainty term related to each task. The fol-
lowing equation describes the weight loss using homoscedas-
tic uncertainty, where σ is a trainable parameter:

Lhomoscedastic =

T∑
i=1

1

σ 2
i

Li + log σi, (7)
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where T is the number of tasks. The higher the uncertainty of
task i, the lower the contribution of its associated lossLi to the
overall loss. The log term can be viewed as a regularization
term, so that the network would not learn a trivial solution by
setting the uncertainty of all tasks to extreme values.

2) DYNAMIC WEIGHT AVERAGING
Dynamic Weight Averaging (DWA) was proposed by
Liu et al. [45]. Similar to GradNorm [43], DWA weights the
losses via the rate of change of the loss of each task over the
training iterations t . In contrast to GradNorm, DWA does not
require access to the internal gradients of the network, but
only requires the numerical loss values. According to DWA,
the weightw of the lossL associated with the task k is defined
as:

wk (t) =
K exp(rk (t − 1)/tmp)∑

i exp(ri(t − 1)/tmp)
, rk (t − 1) =

Lk (t − 1)
Lk (t − 2)

,

(8)

where rk is the relative loss ratio and tmp is the temperature
that controls the smoothness of the task weighting. Here,
we set tmp = 1 as suggested by the original paper. For the
initial two iterations, rk (t) is set to 1.

III. DATASETS, IMPLEMENTATION, AND EVALUATION
A. DATASETS
This study involves two datasets from two different institutes
and scanners for patients who underwent intensity-modulated
radiotherapy for prostate cancer. The first dataset is from
Haukeland Medical Center (HMC), Norway. The dataset has
18 patients with 8-11 daily CT scans, each corresponding
to a treatment fraction. These scans were acquired using a
GE scanner and have 90 to 180 slices with a voxel size
of approximately 0.9 × 0.9 × 2.0 mm. The second dataset
is from Erasmus Medical Center (EMC), The Netherlands.
This dataset consists of 14 patients with 3 daily CT scans
each. The scans were acquired using a Siemens scanner, and
have 91 to 218 slices with a voxel size of approximately 0.9
× 0.9 × 1.5 mm. The target structures (prostate and seminal
vesicles) as well as organs-at-risk (bladder and rectum) were
manually delineated by radiation oncologists. All datasets
were resampled to an isotropic voxel size of 1 × 1 × 1 mm.
All scans and corresponding contours were affinely regis-
tered beforehand using elastix [46], so that corresponding
anatomical structures would fit in the network’s field of view.
The scan intensities were clipped to [-1000, 1000].

B. IMPLEMENTATION AND TRAINING DETAILS
All experiments were developed using Tensorflow (version
1.14) [47]. The convolutional layers were initialized with
a random normal distribution (µ = 0.0, σ = 0.02). All
parameters of the Cross-stitch units were initialized using
a truncated normal distribution (µ = 0.5, σ = 0.25) in
order to encourage the network to share information at the
beginning of the training. In order to ensure fairness regarding
the number of parameters in all the networks, the number

of filters for the Cross-stitch network were set to [16, 32,
64, 32, 16], while for the other networks the numbers were
scaled by

√
2 resulting in [23, 45, 91, 45, 23] filtermaps. This

results in approximately 7.8 × 105 trainable parameters for
each network. The networks were trained using the RAdam
optimizer [48] with a fixed learning rate of 10−4. Patches
were sampled equally from the target organs, organs-at-risk
and torso. All networks were trained for 200K iterations using
an initial batch size of 2. The batch size is then doubled by
switching the fixed and moving patches so that the network
wouldwarp the fixed patch to themoving patch and vice versa
at the same training iteration.

The networks were trained and optimized on the HMC
dataset, while the EMC dataset was used as an independent
test set. Training was performed on a subset of 111 image
pairs from 12 patients, while validation and optimization was
carried out on the remaining 50 image pairs from 6 patients.

From each image, 1,000 patches of size 96 × 96 ×
96 voxels were sampled. The size of the patch was chosen
so that it would fit in the GPU memory, while still pro-
ducing a patch size of 173 at the lowest resolution, which
is a reasonable size to encode the deformation from the
surrounding region. Losses from the deeply supervised res-
olutions were weighted equally, 1

3 each. Training was per-
formed on a cluster equipped with NVIDIA RTX6000, Tesla
V100, and GTX1080 Ti GPUs with 24, 16 and 11 GB
of memory, respectively. The source code is available at
https://github.com/moelmahdy/JRS-MTL.

C. EVALUATION METRICS
The automatically generated contours are evaluated geomet-
rically by comparing them against the manual contours for
the prostate, seminal vesicle, rectum, and bladder. The Dice
similarity coefficient (DSC) measures the overlap between
contours:

DSC =
∑ 2 | Sf ∩ Sg |
| Sf | + | Sg |

, (9)

where Sg is the generated contour from either the segmen-
tation or the registration network. The distance between the
contours is measured by the Mean Surface Distance (MSD)
and Hausdorff Distance (HD) defined as follows:

MSD =
1
2

(
1
N

n∑
i=1

d
(
ai, Sg

)
+

1
M

m∑
i=1

d
(
bi, Sf

))
, (10)

HD = max
{
max
i

{
d
(
ai, Sg

)}
,max

j

{
d
(
bi, Sf

)}}
, (11)

where {a1; a2; . . . ; an} and {b1; b2; . . . ; bm} are the surface
mesh points of the manual and generated contours, respec-
tively, and d

(
ai, Sg

)
= minj ‖bj − ai‖. For all the experi-

ments, we apply the largest connected component operation
on the network prediction.

In order to evaluate the quality of the deformations,
we calculate the determinant of the Jacobian matrix. A Jaco-
bian of 1 indicates that no volume change has occurred; a
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Jacobian > 1 indicates expansion, a Jacobian between 0 and
1 indicates shrinkage, and a Jacobian ≤ 0 indicates a sin-
gularity, i.e. a place where folding has occurred. We can
quantify the smoothness and quality of the DVF by indicating
the fraction of foldings per image and by calculating the
standard deviation of the Jacobian alongside the MSD of the
segmentation.

A repeated one-way ANOVA test was performed using a
significance level of p = 0.05. P-values are only stated for
the comparisons between the best network with the other
networks.

IV. EXPERIMENTS AND RESULTS
In the paper we present two single-task networks dubbed
Seg and Reg networks (see Sections II-B1 and II-B2 for
more details). Moreover, we investigated multiple multi-task
networks, namely JRS-reg, dense, SEDD, and Cross-stitch
(see Sections II-C1, II-C2, II-C3, and II-C4 for more
details). We compared our proposed methods against three
state-of-the-art methods that were developed for prostate
CT contouring. These methods represent three approaches,
namely an iterative conventional registration method, a deep
learning-based registration method, and a hybrid method.
For the iterative method, we used elastix software [46]
with the NCC similarity loss using the settings proposed by
Qiao et. al. [49]. In the deep learning method proposed by
Elmahdy et. al. [7], a generative network is trained for contour
propagation by registration, while a discrimination network
evaluates the quality of the propagated contours. Finally,
we compare our methods against the hybrid method proposed
by Elmahdy et. al. [6], where a CNN network segments the
bladder and then feeds it to the iterative registration method
as prior knowledge.

Following, we optimize some of the network settings on
the validation set (HMC), in order to investigate the influence
of the bending energy weight, network inputs, weighting
strategy and network architecture on the results. Then, on the
independent test set, we present the final results comparing
with methods from the literature.

A. BENDING ENERGY WEIGHT
Wecompared the single-task registration, the JRS-regmethod
and the Cross-stitch network for a set of bending energy
weights, see Equations (4) and (6), while the weights of
the other loss functions are set to 1. Figure 2 shows the
performance of the aforementioned methods using different
bending energy weights. The optimal performance of the
registration network occurs at a bending weight of 0.5, while
the optimal bending weight for both JRS-reg and Cross-stitch
network is much lower but with higher standard deviation of
the Jacobian. Therefore, for the remainder of the paper we set
the weight of the bending energy to 0.5 since it achieves the
best compromise between the contour performance in terms
of MSD and the registration performance in terms of the std.
of the Jacobian determinant.

FIGURE 2. The performance of the registration, JRS-registration and
Cross-stitch networks with different bending energy weights on the
validation set (HMC), in terms of mean MSD averaged over the four
organs. The annotation at each point represents the standard deviation of
the determinant of the Jacobian.

B. OPTIMIZATION OF THE NETWORKS INPUTS
During training, validation, and testing, we have access to
the fixed image If , the moving image Im, and the moving
segmentation Sm. In Table 1 we compared different sets of
inputs on the validation dataset. This experiment helps to bet-
ter understand how these network interpret and utilize these
inputs and how this would reflect on the network outcome
represented by the MSD metric. For this experiment we used
equal loss weights for the MTL networks.

Feeding Sm to the segmentation network improves the
results substantially compared to only feeding If , especially
for the seminal vesicles, while feeding Im deteriorates the
results. For the registration and JRS-reg networks, feeding
Sm alongside If and Im resulted in a similar performance
compared to not feeding it. Since the Cross-stitch network
is composed of two networks, one for segmentation and the
other for registration, we experimented with various combi-
nations of inputs. The results are very consistent with our
previous findings on the single-task networks on the effect
of using Sm as an input.
For the remainder of this paper, we chose to use If as

input for the segmentation network, and If and Im as inputs
for the registration network. Although adding Sm proved to
be better especially for the segmentation network, here we
exclude it, since these two methods act as a baseline and
this is the standard setting in single-task networks. For dense,
SEDD, and JRS-reg networks, we select a concatenation of
Im, If , and Sm for the final network. For the Cross-stitch
network, we select If for the segmentation network and the
concatenation of Im, If , and Sm for the registration network.
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TABLE 1. The effect of network input for the different architectures on the validation set (HMC) in terms of MSD (mm). Lower values are better. Here, ⊕ is
the concatenation operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and the inputs to the registration network (right of ‖).
Stars denote one-way ANOVA statistical significance with respect to the Cross-stitch network with If || If ⊕ Im ⊕ Sm as inputs.

TABLE 2. MSD (mm) values for the different networks and loss weighting methods for the HMC dataset. Lower values are better. Stars and daggers
denote one-way ANOVA statistical significance for inter-network experiments with respect to Homoscedastic weights and intra-network experiments with
respect to Cross-stitch with Equal weights, respectively. Grey numbers represent the values of the worst path between the segmentation and registration
paths, while bold numbers represent the best results.

C. OPTIMIZATION OF LOSS WEIGHTING STRATEGY
In this experiment we investigate the performance of the
various loss weighting strategies introduced in Section II-D in
order to select the best weighting method for the underlying
tasks.

Table 2 shows the results of the different weighting
strategies for the MTL networks in terms of MSD. For
the JRS-reg network architecture, weighting the losses with
homoscedastic uncertainty achieved comparable results to

using equal weights, while DWA scored somewhat less. For
the dense and SEDD architectures, homoscedastic weighting
achieved a slightly better performance, while equal weights
was best for the Cross-stitch network. For these architectures
(dense, SEDD, and Cross-stitch), the segmentation output
path showed improvement over the registration output path.

Figure 3 illustrates the evolution of the loss weights wi
during training, for different multi-task network architectures
and weighting strategies.
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FIGURE 3. The evolution of the loss weights during training for different multi-task networks on the validation dataset (HMC).

FIGURE 4. The evolution of the Cross-stitch units weights during training
using equal weights. CS#1 and CS#2 are placed in the down-sampling
path, while CS#3 and CS#4 are placed in the upsampling path. The solid
lines represent the mean of the weights across the diagonal of the CS
unit, while the dashed lines represent the mean of the off-diagonal
weights.

For the remainder of this paper and based on the previous
findings, we chose the homoscedastic uncertainty weighting
strategy for the JRS-reg, dense and SEDD networks, while
using equal weights for the Cross-stitch network.

D. ANALYSIS OF CROSS-STITCH UNITS
Analysis of the behavior of the Cross-stitch units during
training facilitates the understanding of how the segmenta-
tion and registration networks interacts in the MTL settings.
Figure 4 shows the mean of the CS units across the diago-
nal and off-diagonal (See Equation (5)). Higher weights on
the diagonal means that the network tends to separate the
task-specific feature maps, while higher weights off-diagonal
means that the network tends to share the corresponding
feature maps.

FIGURE 5. The effect of the bladder volume deviation from the planning
volume on the performance of the Seg, Reg, and Cross-stitch networks for
the validation set (HMC).

E. EFFECT OF THE BLADDER FILLING
For the HMC dataset, which was used for training and valida-
tion, a bladder filling protocol was in place, meaning that the
deformation of the bladder between daily and planning scans
is not large. However, this is not the scenario for the EMC
dataset, the test set.

Figure 5 and 6 illustrates the effect of the bladder volume
variation from the planning scan on the performance of the
Seg, Reg, and Cross-stitch networks. The Cross-stitch net-
work is resilient to bladder filling for both the HMC and EMC
datasets.

F. EVALUATION OF THE QUALITY OF THE DVF
The smoothness of the predicted DVF is an important param-
eter to evaluate the predicted deformation field. Table 5 shows
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FIGURE 6. The effect of the bladder volume deviation from the planning
volume on the performance of the STL and the Seg, Reg, and Cross-stitch
networks for the independent test set (EMC).

a detailed analysis of the DVF in terms of the standard devia-
tion of the determinant of the Jacobian as well as the folding
fraction for the registration path of the different networks.

G. COMPARISON AGAINST THE STATE-OF-THE-ART
Table 3 and 4 show the results for the validation set (HMC)
and test set (EMC), respectively. The first two networks in
each table are single-task networks. For both sets, the reg-
istration network outperformed the segmentation network
for all organs except the bladder. The mean MSD for the
independent test set is higher than the corresponding numbers
in the validation set for most organs. However, the median
values are on par. For the MTL networks, the segmentation
path of the networks achieved better performance than the
registration path on both datasets except for the seminal
vesicles. The Cross-stitch network achieved the best results
compared to the other MTL networks.

The proposed STL and MTL networks were compared
against other state-of-the-art methods that were evaluated
using the HMC dataset. For the validation set, the STL
network achieved comparable results, while the Cross-stitch
network outperformed these methods for both output paths.
On the test set, elastix [49] and the Hybrid method [6] per-
formed better except for the bladder, although the median
values of the MTL networks were better.

For the quality of the predicted contours, Figure 7 and 8
show example contours from the HMC and EMC datasets
for the Seg, Reg, and Cross-stitch networks. The examples
show that the Cross-stitch network achieves better results
compared to the Seg and Reg networks especially for the
seminal vesicles and rectum with large gas pockets.

V. DISCUSSION
In this study, we proposed to merge image registration and
segmentation on the architectural level as well as the loss,
via a multi-task learning setting in order to leverage their
strengths and mitigate their weaknesses through the shar-
ing of beneficial information. We studied different network
architectures and loss weighting methods in order to explore

how these tasks interact, and thereby leverage the shared
knowledge between them. Moreover, we carried out exten-
sive quantitative analysis in the context of adaptive radio-
therapy, and compared the proposed multi-task methods to
their single-task counterparts. In this paper, a substantial
number of experiments were executed, where we explored
the following methodological choices: the bending energy
weight, the input to the STL and MTL networks, and the loss
weighting method. We also performed a thorough analysis
on how Cross-stitch units and loss weights evolve during
training. Finally, we compared our proposed methods against
state-of-the-art methods.

In all the experiments we fixed the weight of the bending
energy weight so that the network would not set it too low in
order to improve the DSC of the deformed contours on the
account of the smoothness of the predicted DVF. As shown
in Figure 2 low bending energy weights result in better con-
tour quality on the account of the smoothness of the predicted
DVF.

For the inputs to the STL networks, additionally feeding
Sm to the segmentation network resulted in a statistically
significant improvement especially for the seminal vesicles.
Apparently the network considers Sm as an initial estimation
for Sf and subsequently uses it as a guidance for its final
prediction.When feeding Im the results deteriorated; this may
confuse the network as If and Im have the same anatomy
but with different shapes and local positions. The addition
of both Im and Sm performed similar to the addition of only
Sm, which indicates that the networks learned to ignore Im.
For the registration network, the addition of Sm resulted in a
sub-optimal result, since the Sm contours on its own does not
represent the underlying deformation well.

For the inputs to the MTL networks, in the JRS-reg net-
work, feeding Sm alongside If and Im resulted in a similar
performance compared to not feeding it. This indicates that
the incorporation of Sm via the DSC loss, already enables the
JRS-reg network to exploit this extra information, and that
additionally adding Sm as a network input does not provide
further benefits. In the Cross-stitch network, we found that
adding Sm to the registration network results in a statistically
significant improvement. Furthermore, feeding Sm to one of
the networks is sufficient, proving that segmentation and reg-
istration networks communicate their knowledge efficiently
through the Cross-stitch units.

We selected the STL networks with If (for segmentation)
and If alongside Im (for registration) as input to our baseline
methods. Between these two networks, the registration net-
work performed better overall, since the registration network
leverages prior knowledge from the organs in the moving
image. For the bladder, the segmentation network achieved
better results; Apparently the registration network had dif-
ficulties finding the correspondence between the bladder in
the fixed and moving images, since it tends to deform con-
siderably between visits. However, the segmentation network
failed to segment the seminal vesicles for five cases. That is
explained by the fact that the seminal vesicles is a difficult
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TABLE 3. MSD (mm) values for the different networks on the validation set (HMC). Lower values are better.

TABLE 4. MSD (mm) values for the different networks on the independent test set (EMC). Lower values are better. Results for JRS-GAN are not available
for this dataset.

TABLE 5. Analysis of the determinant of the Jacobian for the validation and the independent test sets. Lower values are better.

structure to segment, due to its relatively small size, unde-
fined borders, and poor contrast with its surroundings. The
registration network on the other hand is able to employ
the surrounding anatomy as context, to accurately warp the
seminal vesicles.

For the multi-task networks, we demonstrated that fus-
ing segmentation and registration tasks is performing better
than its single-task counterparts. Merging these tasks using
Cross-stitch network achieved the best results on both the
validation and testing datasets.

Different loss weighting methods achieved comparable
results as shown in Table 2. In Figure 3, homoscedastic
uncertainty tended to weigh all losses equally, using almost

a fixed weight of 0.9 during most of the training iterations.
On the contrary, DWA tended to fluctuate during training as
the weights are updated based on the ratio of the loss from
previous iterations, which fluctuates due to the batch-based
training. Since the fixed and moving images are affinely
registered beforehand, DWA tended to down-weigh the reg-
istration loss and the associated DSC at the beginning of the
training, while weighting the segmentation network lossmore
in order to improve its prediction. Later during training, all
the weights stabilized around 0.9 similar to homoscedastic
uncertainty. Although both methods stabilized by the end of
the training around the same value (0.9), the homoscedastic
uncertainty achieved slightly better results compared to DWA
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FIGURE 7. Example contours from the validation dataset (HMC) generated by the proposed STL and MTL networks. From left to right, the selected
cases are the first, second, and third quartile in terms of the prostate MSD of the Cross-stitch network. The contours of the bladder, prostate, seminal
vesicles, and rectum are colored in red, yellow, green, and blue, respectively.

FIGURE 8. Example contours from the independent test set (EMC) generated by the proposed STL and MTL networks. From left to right, the selected
cases are the first, second, and third quartile in terms of the prostate MSD of the Cross-stitch network.

and equal weighting methods, except for the Cross-stitch
network. Our reasoning behind this is that homoscedastic
uncertainty, unlike other methods, is learnable during the
training and highly dependent on the underlying task uncer-
tainty.

By analyzing the performance of the Cross-stitch units
as demonstrated in Figure 4, we found that the Cross-stitch
units tended to average feature maps for the down-sampling
path, while preferring to be more task-specific for the

upsampling path. This somewhat mimics the shared encoder
double decoder (SEDD) network, but in contrast to this net-
work, the Cross-stitch network does not completely split the
decoder paths. This finding confirms that the segmentation
and registration tasks are correlated and thereby encode sim-
ilar features.

We carried out an experiment to study the effect of the
bladder filling protocol between the HMC and EMC datasets.
As shown in Figure 5, the HMC dataset has a bladder
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TABLE 6. The effect of network input for the different architectures on the validation set (HMC) in terms of DSC. Higher values are better. Here, ⊕ is the
concatenation operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and the inputs to the registration network (right of ‖).

TABLE 7. The effect of network input for the different architectures on the validation set (HMC) in terms of %95 HD (mm). Lower values are better. Here,
⊕ is the concatenation operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and the inputs to the registration network
(right of ‖).

filling protocol so the volume of the bladder changes slightly
around 100 mL between different sessions, which is not the
case for the EMC dataset as shown in Figure 6. Since the
registration-based networks and joint networks were trained
on small bladder deformations, they failed on large defor-
mations, however the segmentation network was not affected
since it does not depend on the deformation but rather the
underlying texture to segment the bladder.

In terms of the smoothness of the predicted DVF shown
in Table 5, MTL networks achieved lower numbers for the
standard deviation of the Jacobian as well as for the folding
fraction, compared to the STL network (Reg), on both the
test and validation set. Our reasoning is that joining the seg-
mentation task to the registration task works as an additional
regularization to the registration network. Due to the fact that
the higher the quality of the predicted DVF, the higher the

quality of the propagated contours and subsequently the lower
the DSC loss. The numbers on the test set are slightly higher
than the validation set, but this is due to the variance between
the deformations between both sets and the fact that the
network has not seen the test set before. This can be addressed
using transfer learning as suggested by Elmahdy et al. [23] or
by using synthetic deformations that mimic the one presented
in the EMC dataset.

In the paper, we compared our algorithm against dif-
ferent algorithms from various categories: non-learning
(elastix [46], a popular conventional tool); hybrid [6], and
GAN-based [7]. The presented multi-task networks outper-
formed these approaches on the validation set and performed
on par to these methods for the test set. However, the test
time for the hybrid and elastix methods are in the order
of minutes, while the presented methods have the advantage
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TABLE 8. DSC values for the different networks and loss weighting methods for the HMC dataset. Higher values are better.

TABLE 9. %95 HD (mm) values for the different networks and loss weighting methods for the HMC dataset. Lower values are better.

of fast prediction in less than a second. This enables online
automatic re-contouring of daily scans for adaptive radio-
therapy. Moreover, in our hybrid study [6] we carried out
an extensive dosimetric evaluation alongside the geometric
evaluation. The predicted contours from that study met the
dose coverage constraints in 86%, 91%, and 99% of the
cases for the prostate, seminal vesicles, and lymph nodes,
respectively. Since our multi-task networks outperformed the
geometrical results in that study, we expect that our contours
would achieve a higher success rate in terms of the dose

coverage. This could potentially reduce treatment related
complications and therefore improve patient quality-of-life
after treatment.

A promising direction for future research is the addition
of a third task, potentially radiotherapy dose plan estimation.
Hence, we can generate contours that are consistent with an
optimal dose planning. Further studies could also focus on
sophisticated MTL network architectures similar to sluice
networks [50] or routing networks [51]. Moreover, we can
study how to fuse the contours from the segmentation and
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TABLE 10. DSC values for the different networks on the validation set (HMC). Higher values are better.

TABLE 11. % 95 HD (mm) values for the different networks on the validation set (HMC). Lower values are better.

TABLE 12. DSC values for the different networks on the independent test set (EMC). Higher values are better.

registration paths in a smarter way rather than simply select-
ing one of them based on the validation set.

VI. CONCLUSION
In this paper, we propose to formulate the registration and
segmentation tasks as a multi-task learning problem. We pre-
sented various approaches in order to do so, both on an
architectural level and via the loss function.We experimented

with different network architectures in order to investigate
the best setting that maximizes the information flow between
these tasks. Moreover, we compared different loss weighting
methods in order to optimally combine the losses from these
tasks.

We proved that multi-task learning approaches outperform
their single-task counterparts. Using an adaptive parameter
sharing mechanism via Cross-stitch units gives the networks
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TABLE 13. %95 HD (mm) values for the different networks on the independent test set (EMC). Lower values are better.

freedom to share information between these two tasks, which
resulted in the best performance. An equal loss weighting
approach had similar performance to more sophisticated
methods.

The cross stitch network with equal loss weights achieved
a median MSD of 0.99 mm, 0.82 mm, 1.13 mm and 1.47 mm
on the validation set and 1.09 mm, 1.24 mm, 1.02 mm, and
2.10 mm on the independent test set for the prostate, bladder,
seminal vesicles, and rectum, respectively. That is equal or
less than slice thickness (2 mm). Due to the fast inference
of the methods, the proposed method is highly promising
for automatic re-contouring of follow-up scans for adaptive
radiotherapy, potentially reducing treatment related compli-
cations and therefore improving patient quality-of-life after
treatment.

VII. OF THE PAPER ‘‘JOINT REGISTRATION AND
SEGMENTATION VIA MULTI-TASK LEARNING FOR
ADAPTIVE RADIOTHERAPY OF PROSTATE CANCER’’
In this appendix we provide a detailed results for the proposed
methods and associated experiments in terms of DSC and
%95 HD. See Tables 6–13.
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