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Chapter 6

Connectivity of real isoperiodic
sets on a torus with 3 poles1

6.1 Introduction

A Riemann surface is a connected manifold of complex dimension one that
is equipped with a complex structure, i.e., with an atlas of open charts {Ui}
and a collection of homeomorphisms to the open disk fi : Ui → D ⊂ C; the
transition functions gij between the chartsUi andUj are given by the equal-
ity fi = gij ◦fj . The transition maps are required to be holomorphic, i.e., dif-
ferentiable at any point of their domain. Any open set in C is naturally a Rie-
mann surface; some of the examples include the unit disk D = {z : |z| < 1}
and the upper half-plane H = {z ∈ C : Imz > 0}. The simplest example of
a compact Riemann surface is the sphere Ĉ = C ∪ {∞} with charts U1 = C
and U2 = Ĉ − {0} and homeomorpisms f1 = z and f2 = 1/z. Then, both
transition maps g1,2 and g2,1 are given by a holomorphic function z 7→ 1/z.
By the classification theorem, any orientable compact surface X is homeo-
morphic to either a sphere Ĉ or a g-holed torus with g > 1 [27]. The number
g is called the genus of the surface. For some applications it is important
to consider pointed Riemann surfaces, i.e., the data of the Riemann surface
with a finite number of points on it.

It is convenient to consider Riemann surfaces with fixed genus g and fixed
number of marked points as elements of some space. There are many choices
of such spaces, the most notable ones include the Teichmuller space and

1This chapter is based on: E. Arzhakova, G. Calsamiglia, B. Deroin, Isoperiodic moduli
spaces of meromorphic forms, in progress
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126 Chapter 6. Connectivity of real isoperiodic sets on a torus with 3 poles

the moduli space.

• The Teichmuller space. Fix a reference surface – an oriented closed
surface S of genus g with n > 0 ordered distinct marked points. The
Teichmuller spaceT (S) associated toS is a space of equivalence classes
of pairs (X, f) where X is a Riemann surface with n ordered distinct
marked points and f : S → X is a diffeomorphism between the sur-
faces that maps the ordered marked points of S to the ordered marked
points ofX. The equivalence in T (S) is described as follows: two pairs
(X1, f1) and (X2, f2) are equivalent if f1 ◦ f−1

2 : X2 → X1 is isotopic to
a holomorphic diffeomorphism. The Teichmuller space is connected
and has a canonical complex manifold structure [3, 8].

Example 6.1.1 (Teichmuller space of a torus). Consider the reference
surface to be a torus T = R2/Z2. Any complex structure on a torus can
be realised by a Riemann surface of a form C/(Z + τZ) where τ ∈ C is
such that Imτ > 0. Note that such complex numbers form an upper
half-plane H = {z ∈ C : Imz > 0}. The map H → T (T) given by
τ 7→ C/〈1, τ〉 is a bijection and, therefore, T (T) = H.

• The moduli space. The mapping class group Mod(S) of a surface S
is the group of isotopy classes of homeomorphisms of S that fix each
marked point. In other words, Mod(S) = Homeo(S)/Homeo0(S) where
Homeo0(S) are the homeomorphisms isotopic to identity. The moduli
spaceMS is given by the quotient T (S)/Mod(S). In fact, the moduli
space depends only on the genus g and number of marked points n
of the surface S, therefore, it is usually denoted asMg,n. The moduli
space has an orbifold structure, it is typically not a manifold.

Example 6.1.2 (Moduli space of a torus). The mapping class group
of a torus Mod(T) is isomorphic to SL(2,Z). It follows that M1,0 =
H/SL(2,Z).

Differential forms can be defined on the Riemann surfaces, in particular,
the space of the 1-forms is the dual vector space to the tangent space of a
surface. In a local coordinate z given by the complex structure a differential
1-form can be written as ω = f(z) dz.

• A 1-form ω on a surfaceX is called a holomorphic differential if f(z) is
holomorphic, i.e., a complex differentiable function. Denote by N the
set of zeroes of ω; N = {x ∈ X : ω(x) = 0}. Then, X\N inherits a flat
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metric and in the neighbourhood of a zero this metric admits a coni-
cal singularity of angle 2π(k+ 1). In other words, in the neighborhood
of a zero the 1-form ω is locally given by zk dz, k > 1. In this case, we
say that k is the order of the zero. The flat metric defined locally by a
zero of order k is a ramified covering over a flat disk of order k+ 1 that
is ramified at zero.

• A 1-form ω on a surfaceX is called a meromorphic differential if f(z) is
a meromorphic function. i.e., it is holomorphic everywhere except in
a discrete set of points that are called the poles of the function. Locally
at the pole ω = z−k dz and k is the order of the pole. The singularities
of a pair (X,ω) consist of poles and zeroes; let us define the degree of a
singularity to be k if it is a zero of order k, and−k if it is a pole of order
k. Denote by ni the degree of the i-th singularity of X; then, as a con-
sequence of the Riemann-Roch theorem, we obtain that

∑
ni = 2g−2

[102].
Select a pole on X and denote it by p. Choose a short closed curve γp
going around p, i.e., a curve that has no other singularity in its inte-
rior and does not wind around genus. The complex number resp(ω) =

1
2πi

∫
γp
ω is called the residue of the form ω at p and it does not de-

pend on the choice of γp. Let (X,ω) be a Riemann surface with poles
p1, . . . , pn. Then, by the residue theorem,

∑n
1 resp(ω) = 0 [102].

Consider a closed curve c on a Riemann surfaceX and introduce a 1-form
νc such that for every closed 1-form α,

∫
c α = −

∫
α ∧ νc = (α, ?νc) where ?

is the Hodge star. Then, we define an intersection of two closed curves a
and b on X as a · b =

∫
νa ∧ νb. The intersection form is an anti-symmetric

form with its image contained in Z and the intersection of a and b depends
only on the homology classes of a and b. Denote a surface of genus g with
n poles as Σg,n. The intersection form enables us to select a basis of the
fundamental group π1(Σg,n) given by {a1, b1, . . . , ag, bg;π1, . . . , πn} such that
ai · bj = δi,j , ai · πj = bi · πj = π · πj = 0.

In the follow-up we are interested in comparing integrals of 1-forms over
a basis of H1(X,Z). Therefore, it is natural to seek some space of Riemann
surfaces that identifies the curves inH1(X,Z) for differentX. The most con-
venient space for this goal is the Torelli space and it is defined as follows.
Denote by Σg,n∗ a surface obtained by making punctures at each marked
point of Σg,n, i.e., Σg,n∗ = Σg,n\N where N is the set of n marked points.
The subgroup Ig,n of Mod(Σg,n) that acts trivially on H1(Σg,n∗) is called the
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Torelli group of Σg,n∗ . The Torelli space Sg,n is given by Tg,n/Ig,n and the
pullback of the 1-form bundle ΩMg,n over the moduli space by the cover
Sg,n∗ →Mg,n is denoted by ΩSg,n∗ . A point in ΩSg,n∗ is therefore described
by a fourtuple (X,N, [f ], ω) where [f ] is the equivalence class of the homo-
topical collapse map f under the action of the Torelli group.

Definition 6.1.3. The map Perg.n : ΩSg,n → Hom(H1(Σg,n∗ ,C) is defined by
the formula

Perg,n(X,N, [f ], ω) =
{
p : γ → p(γ) =

∫
f∗γ

ω
}
.

The map p is called the period map of ω and it provides coordinates on
the space ΩSg,n. Notably, the period coordinates do not allow to recover
the differential even on infinitesimal level [17]. Indeed, the isoperiodic de-
formations define a foliation of ΩSg,n which is called the isoperiodic folia-
tion. Some of the first results on the isoperiodic foliation of holomorphic
differentials over the moduli space include that the isoperiodic leaves are
Euclidean spaces with complete metric [81]. This work also includes the
study of the isoperiodic sets in the holomorphic case with g = 2. Then,
in a fundamental work of Calsamiglia, Deroin, and Francaviglia [17] it was
shown that the leaves of the isoperiodic foliation of holomorphic differen-
tials are connected for g > 2 and primitive degree at least three. The method
used in [17] involves the degeneration of the Riemann surface into a nodal
curve which allows to simplify the problem to surfaces of lower genera.

The method proposed in [17] cannot be applied to the meromorphic case
because meromorphic differentials can have real periods (i.e., the image
Imp is contained in R). It is not possible to degenerate a meromorphic
form with real periods into a union of forms that includes holomorphic
parts because holomorphic forms do not admit real periods (a consequence
of Riemann’s bilinear relations, [9]). Therefore, the case of real periods of
meromorphic forms requires new tools in order to prove connectivity of the
isoperiodic sets. In [18] the non-emptiness and connectivity of the isoperi-
odic leaves in ΩSg,n is shown for meromorphic forms with 2 poles and g > 1
of degree at least 3. However, the method of proof relies on the combinato-
rial properties of having exactly two poles. Our result is the extension of the
study of connectivity of the isoperiodic leaves to a higher number of poles
in the case of real period. Denote by Σ1,3 a surface of genus 1 with 3 marked
points:

Theorem 6.1.4. Denote by Π the peripheral module of Σ1,3, i.e., a module
Π such that H1(Σ1,3,Z) = H1(Σ1,Z) + Π; let p ∈ Hom(H1(Σ1,3∗ ,Z),C) be a
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period map. If the image of p inC is real, then the level Per−1(p) is connected
in ΩS1,3 if the image of p is not contained in the Q-vector space generated
by p(Π).

This result is a new step towards proving the connectivity of the isoperi-
odic sets in general case. The strategy of treating the cases of higher genera
and larger number of poles often relies on the degeneration into simpler
bits and applying induction. Therefore, the result of Theorem 6.1.4 is meant
to serve as a base of induction for our work in progress that studies the con-
nectivity of the leaves of the isoperiodic foliations with real periods. We em-
phasise that the benefit of the geometrical method used in the present work
is that it can be applied to the surfaces of any (small) genus and number of
poles unlike the methods used in [18,59]. However, we believe that the com-
plexity of the proof is growing very fast with larger genus and larger number
of poles. To demonstrate the universality of the method for low g, n, we sup-
plement the proof of Theorem 6.1.4 with Appendix which contains the proof
of a similar statement for Σ1,2.

The strategy of the present work relies on applying a local surgery called
the Schiffer variation [103]. The Schiffer variation is an isoperiodic surgery
of the surface which provides a tool to connect two different forms in ΩS1,3

by an isoperiodic path. It is performed by selecting two twins leaving or en-
tering the zero in the same direction with an angle 2π between them and
making two cuts of the same length along them. Then the sides of the two
cuts are re-glued: the left side of the first cut is glued to the right side of the
second cut, and vice verca. In this manner the zero can be isoperiodically
moved to a different position on the surface.

The main directions of our further study is proving the connectivity of the
isoperiodic sets both in real and complex cases for larger genus and num-
ber of poles using induction. Another interesting direction of research is
to check the ergodicity of the isoperiodic foliation following [17, 18, 48]. An
interesting approach of proving ergodicity of a real isoperiodic foliation of
forms with a single double pole is proposed in [59] and involves using the
cut diagrams.
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6.2 Rigid forms

In this Section we introduce am important subclass in ΩS1,3 of rigid forms,
i.e., forms with one zero. We show that any form in ΩS1,3 can be connected
to a rigid form; therefore, in order to prove Theorem 6.1.4 it suffices to prove
the isoperiodic connectedness of the rigid forms. Therefore, it is natural to
study possible topological types of the rigid forms.

Definition 6.2.1 (A rigid form). A rigid form (X,N, [f ], ω) ∈ ΩSg,n is a form
with a single zero. By the Riemann-Roch theorem, the multiplicity of the
single zero is equal to 2g − 2 + n and the angle at the zero is 2π(2g − 1 + n).

Example 6.2.2. A rigid form in ΩS1,3 has a single zero of order 3 with an
angle 8π around it.

The importance of the subclass of the rigid forms in the context of Theo-
rem 6.1.4 is explained in the following lemma:

Lemma 6.2.3. Any form in ΩS1,3 with real period map is isoperiodically con-
nected to a rigid form.

Proof. A generic form in ΩS1,3 has three simple zeroes and the distances
between zeroes do not coincide. Let us select two zeroes with the shortest
saddle connection between them. This saddle connection has a twin of the
same length emerging at an angle 2π from one of the two zeroes. If this twin
ends at a regular point, performing Schiffer variation along the saddle con-
nection and its twin yields a double zero which is not a node. In the same
manner we can connect the double zero to the remaining simple zero, thus,
obtaining a rigid form. If the twin described above ends in the same zero,
i.e., forms a loop, an infinitesimal perturbation of the form will ensure that
it ends at a regular point. Then, the previous argument applies.

If the twin ends at the second zero then the double zero formed by the
corresponding Schiffer variation is a node. Note that since the cycle formed
by two twins integrates to zero, the node has zero residue. We can show by
contradiction that it is a non-separating node. First, it cannot separate the
surface into a component with three poles and holomorphic component
since holomorphic component does not allow real periods. It also cannot
separate one pole from the other two by the residue theorem. We conclude
that it is a non-separating node. In this case, we apply the degeneration
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Figure 6.1: A decomposition of the surface Σ1,3 with a double zero into a
sphere with 2 poles and a torus with 2 poles and a double zero.

technique in order to connect such form to a rigid form.

Let us perform a Schiffer variation along two twins that leave the remain-
ing simple zero in the positive imaginary direction: it results in a decompo-
sition of the initial surface into a sphere with 2 poles and no zeroes and a
torus with 2 poles and a double zero which is a node (see Figure 6.1). The
toral component can be isoperiodically perturbed into a torus with 2 sim-
ple poles and 2 zeroes. In [18] it is shown that a torus with 2 simple poles
and 2 zeroes can be isoperiodically deformed into a rigid form with 2 simple
poles. In the end, we glue the two parts by selecting a geodesic in the pos-
itive imaginary direction emerging from an arbitrary point on the sphere,
and a geodesic on the torus leaving the double zero in the positive imagi-
nary direction. We glue the surfaces along these geodesics obtaining a torus
with three poles and a single zero of the third order.

Lemma 6.2.3 implies that to prove Theorem 6.1.4 it suffices to consider
only the rigid forms. Therefore, it is natural to study further the structure
and types of the rigid forms in ΩS1,3. We start the discussion with study-
ing the separatrices in real directions that pass through the zero of the rigid
form in ΩS1,3.

Select a regular point z0 on Σ1,3 and consider an integral f(z) =
∫ z
z0

Imω.
Since the periods of ω are real the imaginary part of ω does not have mon-
odromy, i.e., f is a real-valued univalent function f : X → R. The levels of
f are the leaves of the real foliation on X. Since residues around each pole
are real, one can view poles as semi-infinite annuli where all real leaves are
closed and compact manifolds of dimension 1 and no leaf is minimal even
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Figure 6.2: Integral
∫ z
z0

Im(ω) of the imaginary part of a 1-form ω defines a
function f(z) on the torus X. The levels of the function are the leaves of
the real foliation of ω. These leaves form closed compact 1-dimensional
manifolds in the neighbourhood of the poles.

locally (see Figure 6.2). We conclude that any saddle connection leaving a
zero in real direction cannot escape to a pole because it cannot transver-
sally cross the leaves of the real foliation. Instead, each saddle connection
leaving a zero in real direction has to end in some zero.

It follows for a rigid form in ΩS1,3 that all 4 separatrices that leave the zero
along real directions come back to the zero along the real directions. More-
over, the outgoing and ingoing real separatrices alternate in order.

6.2.1 Octopodes and butterflies

The outgoing separatrices in real directions have to return to the zero; in
this subsection we investigate in which order the separatrices return. The
order defines the topological type of the rigid form. There are two ways to
graphically depict a topological type of a rigid form (see Figure 6.4):
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Figure 6.3: The structure of a zero of a rigid form in ΩS1,3: the angle around
the zero is 8π and in real directions there are 4 outgoing and 4 ingoing sep-
aratrices that alternate in order.

• Radial diagram. The radial diagram features a zero in its center and
the saddle connections leaving the zero and entering the zero. The
order in which the in-going and out-going separatrices are connected
defines the topological type of the rigid form.

• Circle diagram. Both sets of in-going and out-going separatrices in
the neighborhood of the zero are presented as two sets of points on
a circle. Each out-going point is bijectively connected to an in-going
point. The order in which they are connected defines the topological
type of the rigid form.

The correspondence between the radial diagrams and the circle diagrams
is easy to establish: for the convenience of the reader, we demonstrate it on
Figure 6.4. In the Figures hereafter we will be using circle diagrams. It turns
out that the order in which the outgoing separatrices enter the zero is not
arbitrary, but restricted by the topology of Σ1,3 to few options as we see in
the following Lemma.

Lemma 6.2.4. Up to the change of orientation, there are only 2 possible
combinatorial types of rigid forms in Σ1,3.

Proof. Each separatrix that leaves the zero of the third order must eventually
come back: there are 4 separatrices leaving the zero and 4 entering it. Let us
number both sets counter-clockwise from 1 to 4. We need to understand in
which order the separatrices that leave the zero come back: it is natural to
think about this correspondence as of possible permutations on 4 elements.
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Figure 6.4: Correspondence between the radial (top) and the circle (bottom)
diagrams. Left: radial and circle diagrams of the butterflies form, right: ra-
dial and circle diagrams of the octopus form.

The geometrical type of the zero does not depend on the rotation of the
chosen numbering: therefore, one does not need to consider all possible 24
permutations separately. Instead, it suffices to consider only 10 conjugacy
classes by two cyclic permutations (1234) and (1432):

1. constant permutation (1)(2)(3)(4) forms a conjugacy class of 1 ele-
ment;

2. transpositions of 2 neighboring elements (12)(3)(4) → (23)(4)(1) →
(34)(1)(2)→ (41)(2)(3) form a class of 4 elements;

3. transpositions of 2 non-neighboring elements (13)(2)(4) → (24)(3)(1)
form a class of 2 elements;

4. 2 non-intersecting transpositions of two pairs of neighboring elements
(12)(34)→ (23)(14) form a class of 2 elements;

5. 2 non-intersecting transpositions of two pairs of non-neighboring el-
ements (13)(24) forms a class of 1 element;

6. three-cycles oriented counterclockwise (123)(4)→ (234)(1)→ (341)(2)→
(412)(3) form a class of 4 elements;
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7. three-cycles oriented clockwise (132)(4) → (243)(1) → (314)(2) →
(421)(3) form a class of 4 elements;

8. four-cycle oriented counterclockwise (1234) forms a class of 1 element;

9. four-cycle oriented clockwise (1432) forms a class of 1 element;

10. four-cycles with transposition (1243) → (2314) → (3421) → (4132)
form a class of 4 elements.
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Figure 6.5: Possible combinatorics at a zero of order 3. Figures 1-4, 7,9 cor-
respond to g = 0, n = 4, Figures 5,6,8,10 correspond to g = 1, n = 3.
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If we cut the surface along the paths following the directions of separa-
trices on the left hand side and on the right hand side we will obtain the
decomposition of the surface into several semi-infinite cylinders. The con-
sidered surface Σ1,3 can only be decomposed into 3 semi-infinite cylinders
because it has three poles. The Figure 6.5 shows that there are only 2 possi-
ble combinatorial types where the surface decomposes into 3 semi-infinite
cylinders: the first corresponding to cases (5), (8) and the second corre-
sponding to the cases (6), (10). The rest of diagrams represent spheres with
5 punctures.

Let us discuss the two topological types of rigid forms more closely. In
order to do it we agree on the following conventions and notations:

The surface Σ1,3 has three poles whose real residues sum up to zero, so
it either has 1 or 2 poles with positive residues. The number of poles with
positive residue defines the orientation of the associated form; without loss
of generality we assume that all rigid forms have 1 positive pole and 2 neg-
ative poles. Then, changing the signs of all residues corresponds merely to
switching the orientation of the surface.

Denote the positive pole by s+ and the two negative poles by s<− and s>−
where s>− stands for the negative pole with a residue equal or larger in ab-
solute value than the residue of s<−. Denote the short closed curves going
around the poles as π+, π<− and π>− , respectively, and note that p(π+) +
p(π<−) + p(π>−) = 0 by the residue theorem.

Let us define the two types of the rigid forms:

• Butterflies We say that a rigid form associated with marking (a, b, c, d)
is in ΩS1,3 and is of type "butterflies" if

– a · b = b · c = c · d = d · a = 1, a · c = b · d = 0;

– a+ c = −π>−, b+ d = −π<−, a+ b+ c+ d = π+;

– p(a), p(b), p(c), p(d) > 0.

An example of radial and circle diagrams of butterflies is provided on
Figure 6.4. For convenience, we denote by B(a, c | b, d) a butterflies
form that satisfies the three conditions listed above.

• Octopus We say that a rigid form associated with marking of curves
(a, b, c, d) is in ΩS1,3 and is of type "octopus" if
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– a · b = b · c = c · a = 1, a · d = b · d = c · d = 0;

– a+ b+ c = −π>−, d = −π<− or
a+ b+ c = −π<−, d = −π>− ;

– a+ b+ c+ d = π+;

– p(a), p(b), p(c), p(d) > 0.

An example of radial and circle diagrams of octopus is provided on
Figure 6.4. Note that the connection d is distinguished from the other
three connections: it is the connection that starts and finishes at ad-
jacent points. We call the connection d the head of the octopus. The
head of the octopus generates a closed curve that goes around a pole.
By the length considerations, this pole cannot be positive, so it is one
of the negative poles (see Figure 6.6). Therefore, there are two distinct
cases: a+ b+ c = −π>−, d = −π<− and a+ b+ c = −π<−, d = −π>− . We call
a form associated to the first case the small head octopus (SHO) and a
form associated to the second case the large head octopus (LHO). For
convenience, we denote by O(a, b, c | d) an octopus form that satisfies
the three conditions listed above. When the distinction between the
large head octopodes and the small head octopodes is important, we
use LHO(a, b, c | d) and SHO(a, b, c | d), respectively.

Note that any octopus admits two different orientations and it has
to do with the signs of the residues at the three poles (one positive
and two negative, or two positive and one negative). However, there
is an equivalence between the "left-handed" and "right-handed" oc-
topodes achieved by switching the signs of the residues; hence, there
is no necessity to distinguish between these two cases.

6.2.2 Schiffer variation on circle diagram.

To perform the Schiffer variation at a zero on the circle diagram we select
two neighbouring (i.e., with angle 2π in between) separatrices of the same
direction and of different lengths. Denote the point corresponding to the
shorter separatrix as "Short" and the point corresponding to the shorter
separatrix as "Long". Denote the shorter separatrix by S and the longer sep-
aratrix by L. There is a unique separatrix between them that goes in an op-
posite direction - denote it by C and the corresponding point by "Central".
Perform the Schiffer variation along L and S along the whole length of S: it
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Figure 6.6: The blue curve inside the head of the octopus goes around one of
the poles. The blue curve is shorter than the orange curve whose fragment is
shown on the Figure. Since π+ = π<− + π>− , the blue curve cannot go around
n+ by the length consideration.

Figure 6.7: The Schiffer variation on a circle diagram: the group (L,C) of the
endpoints of the long and the central connections are "sliding" all the way
to the opposite endpoint of the short connection.

yields a new rigid form where the zero is in the same position but the length
and order of the saddle connections is changed.

The lengths of the saddle connections will be p(L′) = p(L)− p(S), p(S′) =
p(S), p(C ′) = p(C + S). The positions of the points "Long" and "Central"
shift to the opposite end of the short connection S (see Figure 6.7).

Remark 6.2.5. Note that if the two points "Long" and "Central" are the only
two points inside the arch of S then the order of the points does not change.

6.2.3 Connecting different types of rigid forms in ΩS1,3.

According to Lemma 6.2.4, each rigid form in ΩS1,3 is either butterflies or
octopus. In this subsection we show how to isoperiodically connect any
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rigid form to a large head octopus under mild conditions. The first step
is to connect a small head octopus to butterflies and the second step is to
connect the butterflies to the large head octopus.

Lemma 6.2.6. If the period map of a small head octopus form p is not con-
tained in the Q-vector space generated by p(Π), it can be connected to a
butterflies form.

Proof. Consider an octopus SHO(a, b, c | d). If p(d) > p(c) (i.e., if the oppo-
site arm is shorter than the head), then if we perform the Schiffer variation
along d and c we will reach butterflies in one step. If p(d) 6 p(c) we treat
several cases:

• p(a) and p(b) are not rationally dependent. Without loss of general-
ity, assume p(a) > p(b). There are two possible types of Schiffer vari-
ations along a and b: one changes the order of the marking (namely,
O(a−b, b, c+b | d)), and the other does not (namely,O(b, c+b, a−b | d)).
By performing Schiffer variation along a and b that does not change
the order of the marking we can make p(a) and p(b) arbitrarily small
while p(c) grows (similar to Euclidean algorithm). Then, we perform
the Schiffer variation along a and b that changes the order of arms; de-
pending on their periods, one of them becomes the arm of the octopus
which is opposite to the head. The period of the opposite arm is now
smaller than the period of the head, therefore, it can be connected to
butterflies.

• If p(a) and p(b) are rationally dependent. All four periods p(a), p(b), p(c)
and p(d) cannot be rationally dependent because it contradicts the as-
sumption on the image of the period map not being contained in the
Q-vector space generated by p(Π). If p(c) is not rationally dependent
with p(a) we perform a Schiffer variation along a and c which does
not change the order of the marking. Now the two arms that are not
opposite of the head are not rationally dependent: we proceed as in
the previous cases. If p(c) is rationally dependent with p(a), then p(d)
is not rationally dependent with any of them. We perform a Schiffer
variation along c and d which results in an octopus with not all arms
rationally dependent. We proceed as in previous cases.

Lemma 6.2.7. If the image of p of the butterflies form is not contained in the
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Q-vector space generated by p(Π), the butterflies form can be connected to
a large head octopus form.

Proof. Label the butterflies as B(a, c | b, d) and assume wlog that p(a + c) >
p(b + d). With an appropriate choice of direction, performing a Schiffer
variation along neighbouring saddle connections yields an octopus. In this
manner one can reach at most 4 different octopodes in one Schiffer varia-
tion (see Figure 6.8):

• using saddle connections a and d: if p(a) < p(d), we can reach an oc-
topus O(d − a, b, a | a + c) with head (a + c),and if p(d) < p(a), we can
reach an octopus O(c, a− d, d | b+ d) with head (b+ d);

• using saddle connections a and b: if p(a) < p(b), we can reach an oc-
topus O(d, b − a, a | a + c) with head (a + c), and if p(b) < p(a), we can
reach an octopus O(a− b, c, b | b+ d) with head (b+ d);

• using saddle connections b and c: if p(b) < p(c), we can reach an oc-
topus O(a, c − b, b | b + d) with head (b + d), and if p(c) < p(b), we can
reach an octopus O(b− c, d, c | a+ c) with head (a+ c);

• using saddle connections c and d: if p(c) < p(d), we can reach an oc-
topus O(b, d − c, c | a + c) with head (a + c), and if p(d) < p(c), we can
reach an octopus O(c− d, a, d | b+ d) with head (b+ d).

There are two types of the head that we can obtain in this manner: a + c
and b + d, which corresponds to the large head octopodes and the small
head octopodes. If we are able to reach an octopus with the head a+ c, i.e.,
a large head octopus, we have confirmed the statement of the lemma. If
we are not able to reach a large head octopus, then by the list above it fol-
lows that p(b), p(d) 6 p(a), p(c). Note that it is not possible that all four pairs
(p(a), p(b)) , (p(a), p(d)) , (p(c), p(b)) , (p(c), p(d)) are rationally dependent be-
cause it contradicts the assumption of the lemma. Without loss of general-
ity, assume that the pair (p(a), p(b)) is rationally independent.

By assumption, p(b) < p(a); using Schiffer variations along a and b several
times we can go to another couple of butterflies B(a − q × b, c + q × b | b, d)
where q ∈ Z+ is chosen such that 0 < p(a − q × b) < p(b). Using the fact
that p(a− q× b) < p(b), we use a corresponding Schiffer variation to go to an
octopusO(d, (q+1)×b−a, a−q×b | a+c) which is a large head octopus.
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Figure 6.8: Possible octopodes that can be reached from a butterflies form.
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Corollary 6.2.8. To prove Theorem 6.1.4 it suffices to show that any two
LHO with same real periods are isoperiodically connected if the image of
their period map p is not contained in Qp(Π).
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Figure 6.9: Arm module Ms1−
and the corresponding decomposition of Σ1,3.

6.2.4 Arm modules

In order to study the octopodes and the isoperiodic connections between
them it is useful to introduce the arm modules. The idea is to degenerate
the surface Σ1,3 into a nodal stable curve. This degeneration induces a de-
composition of the group H1(Σ1,3,Z). Select one of the negative poles s1

− of
Σ1,3 and consider a curve that goes around it and the positive pole, does not
wind around genus and does not have zeroes and the third pole in its inte-
rior. Using Schiffer variation we can degenerate this curve to a node, thus,
decomposing Σ1,3 into the union of Σ1,s1−

and Σ0,s+,s2−
(see Figure 6.9).

Definition 6.2.9. An arm module Ms1−
associated to a negative pole s1

− is a
rank 3 submodule of H1(Σ1,3,Z) such that

H1(Σ1,3,Z) = Ms1−
+ Πs1−

, (6.1)

where Ms1−
has rank 3 and Πs1−

= {π(s1
−), π(s+)} has rank 2. The two mod-

ules intersect: Ms1−
∩ Πs1−

= Zπ(s2
−). The arm module Ms1−

has a basis a, b, c
where p(a), p(b), p(c) > 0 and a·b = b·c = c·a = 1. Moreover, a+b+c = −πs2− .

The map µs1− : H1(Σ1,3,Z) → H1(Σ1,2,Z) restricted to the arm module

Ms1−
is an isomorphism. The form pM

s1−
:= p ◦ µ−1

s1−
∈ Hom(H1(Σ1,2,Z),R)

is called the period of an arm module. Define the quotient arm modules
of Ms<−

and Ms>−
as Ms<−

/Zπ>− and Ms>−
/Zπ<− , respectively. Without loss of

generality, let us consider a quotient arm module Ms<−
/Zπ>− : the map q :

H1(Σ1,2,Z) → H1(Σ1,Z) has π>− in its kernel, and induces an isomorphism
between Ms<−

/Zπ>− and H1(Σ1,Z). The reduction pN := pM mod Zp(π>−) ∈
H1(Σ1,R/Zp(π>−)) is well-defined and called the period of the quotient arm
module.

The set of arm modules and the set of quotient arm modules associated
to a given pole both have a natural structure of affine space directed by
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H1(Σ1,Z); in other words, given two arm modules M,M ′ (resp. quotient
arm modules N,N ′) associated to the pole s>−, there exists a unique ψ ∈
N∗ ' H1(Σ1,Z) such that M ′ (resp. N ′) is the image of M (resp. N ) by the
map id|M + (ψ ◦ q) · π>− (resp. id|N +ψ · π>−). We will denoteM ′ = M +ψ and
N ′ = N + ψ in the sequel.

Proposition 6.2.10. To each octopus one can associate an arm module: it is
Ms where s is the pole associated to the head. Two marked octopodes with
the same head and the same arm module can be connected with a finite
number of Schiffer variations.

Proof. By Figure 6.9 it suffices to appeal to the connectedness of the isope-
riodic space of meromorphic forms on a torus with two poles [18], and a
convenient attaching map (similar to Lemma 6.2.3 and Figure 6.1).

6.3 Proof of the connectivity of real isoperiodic sets in
ΩS1,3

This Section contains the proof of Theorem 6.1.4. Proving Theorem 6.1.4
is equivalent to proving Corollary 6.2.8, i.e., proving that the large head oc-
topodes are isoperiodically connected under the conditions of Theorem 6.1.4.
We do it in several steps:

1. we show that we can connect LHO(a, b, c | d) with head d and arm
module M = {a, b, c} to another LHO with arm module M + a∗ where
a∗ ∈ H1(Σ1,Z) is the dual of a with respect to he intersection form. In
other words, a∗(a) = 0, a∗(b) = 1, a∗(c) = −1 (Lemma 6.3.1);

2. using the previous step, we prove that a LHO with an arm module M
can be connected to a LHO with arm module M + ϕ if p(ϕ∗) /∈ Q/Z
(Lemma 6.3.2);

3. we conclude the proof of Corollary 6.2.8 by showing that any two LHO
can be connected if the image of the period map is not contained in
Qp(Π) (Lemma 6.3.3).

Let us start with establishing the first step:

Lemma 6.3.1. Consider LHO(a, b, c | d) with an arm module M generated
by a, b, c. Then there exists a concatenation of a finite number of Schiffer
variations that connects this octopus to a LHO with an arm submodule M ′

such that M ′ = M + ψ with ψ = a∗ where a∗ is defined as Ker(a∗) = a.
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Figure 6.10: Graphical proof of Lemma 6.3.1.

Proof. Since the octopus has a large head, let us perform a Schiffer variation
along the head d and the opposite arm c which will result in butterflies with
marking B(a, c|d − c, b + c). Consider the cases below - for graphical proof,
see Figure 6.10:

1. First, let us consider the case when p(d)− p(c) < p(b) + p(c). It follows
that we can perform a Schiffer variation along d − c and b + c which
will result in an octopus with a marking O(b+ 2c− d, a, d− c | d).

2. Consider the case p(d) − p(c) = p(b) + p(c); since p(d) − p(c) > p(a),
perform a Schiffer variation along a and d− cwhich results inB(a, b+
c | d− c− a, c+ a). Now p(d)− p(c)− p(a) < p(b) + p(c) and so we can
go to an octopus O(b+ 2c+ a− d, a, d− c− a | d).
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3. Now consider that p(d) − p(c) > p(b) + p(c). Let us perform k Schif-
fer variations that will result in B(a, b + c | d − c − k × (b + c), c +
k × (b + c)) where k ∈ Z+ is such that 0 < p(d) − p(c) − k(p(b) +
p(c)) < p(b) + p(c). After this we can perform a Schiffer variation along
d − c − k × (b + c) and b + c, which will result in an octopus with a
marking O ((k + 1)× (b+ c) + c− d, a, d− c− k × (b+ c) | d).

The octopodes obtained in all three cases have large heads. Observe that
in all cases ψ = a∗. Let us check it in the first case; M ′ is generated by
{a, d−c, b+2c−d}. We see thatψ(a) = 0, ψ(b) = 1, ψ(c) = −1 and, therefore,
ψ = a∗. The other two cases are similar.

Two arm modulesM andM ′ are connected (denoted byM ′ ∼M ) if some
LHO with an arm module M and head d is connected to some LHO with
an arm module M ′ and head d. The connectedness of the set of arm mod-
ules implies that each octopus with arm module M is connected to each
octopus with an arm module M ′ as we showed in Proposition 6.2.10. In the
following lemma’s we will be connecting two arm modules which should be
understood as finding and connecting two representatives of each module.

Lemma 6.3.2. Let M,M ′ be arm modules of two large head octopodes and
M ′ = M + ψ. If pM (ψ∗) /∈ Q/Z then M ′ ∼M .

Proof. We need to construct an arm basis {a, b, c} of M which satisfies the
following three properties:

1. a mod π>− = ψ∗;

2. a · b = b · c = c · a = 1;

3. p(a), p(b), p(c) > 0;

By definition, M mod π<− = N . Taking for simplicity p(−π<−) = 1 we see
that pN : N → R/Z. Assume that pN (ψ∗) /∈ Q and consider the case when ψ∗

is primitive.

Select a0 = ψ∗ and a = a0 + kaπ
>
− such that p(a) > 0. By assumption, the

number p(a0) is irrational. Select an element b0 ∈ N such that a · b0 = 1
and select kb such that p(b0 + kbπ

>
−) > 0. Note that a · (b0 + kbπ

>
−) = 1 since

π>− · a = 0.
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If p(a) + p(b0 + kbπ
>
−) < 1 then we can uniquely choose the last element c

such that p(c) = 1−p(a)−p(b0 +kbπ
>
−). If p(a)+p(b0 +kbπ

>
−) > 1 introduce a

constant k̄b such that 0 < p(b0+kbπ
>
−+k̄ba0) < 1−p(a) (denote b0+kbπ

>
−+k̄ba0

by b). This is possible since p(a0) is irrational by assumption. Note that a·b =
1. Now the reasoning follows the case p(a) + p(b0 + kbπ

>
−) < 1.

By Lemma 6.3.1 we can connect the LHO with the arm module a, b, c that
we constructed above to a LHO with an arm module M ′ such that M ′ =
M + ψ = M + a∗ which concludes the proof for primitive ψ∗. If ψ∗ is not
primitive, we can connect M and M ′ = M + ψ in several similar steps, but
for this we require that p(ψ∗) is irrational.

Lemma 6.3.3. Any two arm modulesM andM ′ associated to the same pole
are connected if the image of the period map is not contained in the rational
space QΠ generated by the peripheral periods.

Proof. Assume that M ′ = M + ψ. If pM (ψ∗) /∈ Q/Z, then, by Lemma 6.3.2,
M is connected to M ′, and the proof is complete. If pM (ψ∗) ∈ Q/Z, we con-
struct an auxiliary arm module M ′′ such that M ∼M ′′ and M ′′ ∼M ′.
Note that the auxiliary arm module M ′′ is completely defined by ϕ where
M ′′ = M ′ + ϕ; in this case, M ′′ = M + ϕ+ ψ. It follows that we need to find
ϕ such that pN ′(ϕ∗) is irrational and pN (ϕ∗ + ψ∗) is irrational; then, by the
previous Lemma, M ∼M ′′ ∼M ′.

Fix a basis {x, y}ofH1(Σ1,Z): then, in this basis the elementϕ∗ ∈ H1(Σ1,Z)
is given by a pair (nxx, nyy), nx, ny ∈ Z. Then, pN (ϕ∗) = nxα + nyβ where
α = pN (x) ∈ R/Z, β = pN (y) ∈ R/Z, and by the assumptions of the lemma
α /∈ QΠ or β /∈ QΠ. By the linearity, pN ′(ϕ∗) = pN (ϕ) + ψ(ϕ∗)p(d). Note that
ψ(ϕ∗)p(d) ∈ Zp(d); so, pN ′(ϕ∗) /∈ (Q + Qp(d))/Z is equivalent to pN (ϕ∗) /∈
(Q + Qp(d))/Z. Additionally, take pN (ψ∗) = γ ∈ R/Z. Then, we need to find
nx, ny ∈ Z such that

pN (ϕ∗ + ψ∗) = nxα+ nyβ + γ /∈ (Q + Qp(d))/Z and

pN (ϕ∗) = nxα+ nyβ /∈ (Q + Qp(d))/Z.
Denote the space (Q+Qp(d))/Z byQ. Select arbitrary (n′x, n

′
y) ∈ Z2; if αnx+

βny /∈ Q we fix this selection (nx, ny) = (n′x, n
′
y). If αn′x + βn′y ∈ Q then

α(n′x + 1) + βn′y /∈ Q since either α /∈ Q or β /∈ Q, so, wlog, we assume it for
α. Then, we fix the selection (nx, ny) = (n′x + 1, n′y). If αnx + βny + γ /∈ Q
then we found (nx, ny) that satisfy the conditions above and we are done. If
αnx+βny+γ ∈ Qwe conclude thatα2nx+β2ny+γ /∈ Q becauseαnx+βny /∈
Q by construction. Then, (2nx, 2ny) satisfy the conditions above and we are
done.
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Lemma 6.3.3 sums up the proof of Theorem 6.1.4.

6.4 Appendix: connectivity of real isoperiodic sets in
ΩS1,2

In this Section we show that the level Per−1(p) is connected in ΩS1,2 if the
image of p is contained in R. A simple argument can be found in Section 3
of [18]; here, we present a lengthier geometrical argument which inspired
the geometrical proof of Theorem 6.1.4. Using the notation proposed in the
introduction we formulate the following proposition:

Proposition 6.4.1. The level Per−1(p) is connected in ΩS1,2 if the image of p
is real.

Consider a torus Σ1,2 equipped with a meromorphic differential ω having
two simple poles s+ and s−. Let us denote by X∗ the torus with punctures
at s+ and s− and consider a marking of X∗, i. e., a basis m ∈ H1(X∗,Z).
As X is compact, the sum of the residues around the poles is equal to zero
by the residue theorem. The basis m has three components a, b, c such that
a+b+c = π+, where π+ is a curve going around a marked "positive" pole s+

(the choice of a “positive” and a “negative” pole is included in the marking).

Let us equip the group H1(X∗,Z) with a standard intersection form (·)
such that a · b = b · c = c · a = 1. Then, it is easy to check that π+ belongs to
the kernel of the intersection form. Moreover, Ker(·) = Zπ+. Fix three real
numbers (α, β, γ) ∈ R3 as the real period coordinates and consider M(α,β,γ)

- the Torelli space of marked meromorphic differentials (X∗, ω, a, b, c) with

p(a) = α, p(b) = β, p(c) = γ.

Note that
ress+ = α+ β + γ 6= 0,

because s+ is a simple pole of ω (see Figure 6.11). Without loss of generality
we can assume that ress+ = 1 and ress− = −1. The form ω that has 2 poles
also has two zeroes by the Riemann-Roch theorem. Assume that Im(

∫ z1
z2
ω)

is not zero: let us perform the Schiffer variations until Im(
∫ z1
z2
ω) = 0. It can

happen that after this operation the two zeroes coincide forming a zero of
order two. In this case is easy to see that
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Figure 6.11: A marking on Σ1,2.

Lemma 6.4.2. A zero of order two of a meromorphic differential with two
poles on a torus has a unique topological type.

Proof. The proof is similar to the proof of Lemma 6.2.4, therefore, we pro-
vide a short version here. Each separatrix that leaves the double zero in a
real direction has to come back along a real direction. Therefore, we have to
consider the three different orders (up to rotation) in which the three outgo-
ing separatrices come back (see Figure 6.12). Note that cutting the surface
along the left and the right directions along separatrices decomposes the
surface Σ1,2 into a union of semi-infinite cylinders. Since the number of
poles is 2, the number of semi-infinite cylinders is aso 2. We see that the
types 1 and 2 on Figure 6.12 are therefre no possible; the only possible com-
binatorics is type 3 on Figure 6.12.

Let us fix a marking m = (a, b, c) of H1(Σ1,2,Z). Any other marking m′ =
(a′, b′, c′) differs from m = (a, b, c) by an automorphism of (H1(X∗,Z), ·, π+),
i. e., by a positively oriented automorphism of the first homology group pre-
serving the intersection form and both cycles π+ and π−. Therefore, the set
of markings is Aut(H1(X∗,Z), ·, π+).

Lemma 6.4.3. The family of automorphisms gives rise to a short exact se-
quence:

0→ Z2 → Aut(H1(X∗,Z), ·, π+)→ Aut(H1(X∗,Z)/Ker(·), ·)→ 0
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Figure 6.12: Possible combinatorics of a double zero on Σ1,2. Since the num-
ber of poles is 2, tyes 1 and 2 are not possible, and type 3 is the only possible
combinatorics.
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The group Ker(·) is a free Z-module of rank 2 over the set of markings and,
hence, its action is isomorphic to Z2. Therefore, Aut(H1(X∗,Z)/Ker(·), ·) is
isomorphic to the group SL(2,Z).

Proof. The sum of any triple of periods α′ + β′ + γ′ is fixed to be equal to
1 because of the normalization. As the intersection form is preserved and
its kernel is generated by π+, for any other marking (a′, b′, c′) it holds that
a′ = a+ qπ+, and b′ = b+ rπ+. Then, c′ is determined to be c− (q + r)π+ to
satisfy the sum condition. Therefore, any element in the kernel of the action
of Ker(·) on the markings is determined by a pair of integers q, r. Vice verca,
any q, r ∈ Z define an element f(q,r) ∈ Ker2(·) that sends a triple (a, b, c) to a
triple (a+ qπ+, b+ rπ+, c− (q+ r)π+). The defined map is an isomorphism.
Therefore, the action of Ker(·) on the set of markings is isomorphic to Z2. It
follows that a group of automorphisms Aut(H1(X∗,Z)/Ker(·), ·) is isomor-
phic to SL(2,Z). It acts as a matrix on the first two entries a and b of the
marking; the third entry is defined via the sum condition.

Lemma 6.4.4. Let us call a marking (a′, b′, c′) positive if p(a), p(b), p(c) > 0
and their sum is equal to 1. There is a bijection between the set of positive
markings and a group PSL(2,Z)/Z3. Since the Cayley graph of PSL(2,Z)/Z3

with generators z → ±1 and z → z
z+1 is connected we conclude that the

isoperiodic foliation is also connected.

We start the proof by claiming that there is a bijection between the set of
the surfaces with a double zero and the positive markings up to a cyclic per-
mutation. Indeed, every meromorphic differential ω with two simple poles
and a double zero on a torus injectively corresponds to a positive marking
(without loss of generality, we can assume that the periods are positive for
every meromorphic differential).

To prove the second inclusion, let us construct a 1-form ω given a positive
marking (α′, β′, γ′). The marking determines the three loops at the double
zero and their ordering. Therefore, it determines π+ and π− in the neigh-
borhood of the loops. Take two semi-infinite cylinders C1 and C2 both with
the circular circumference of length 1. Glue the circular boundary of C1 to
π+ and the circular boundary of C2 to π−. The resulting surface is a torus
with two poles and marking (α′, β′, γ′). We conclude the bijection between
the set of positive markings and a factor of PSL(2,Z) with respect to Z3.

Fix a marking (a, b, c) in H1(X∗/Ker(·), ·) and act on it with PSL(2,Z). We
claim that in each fiber of this action there is a unique positive marking. Let
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(a′, b′, c′) be an image of (a, b, c) under an action of an element of PSL(2,Z).
Pass to a triple of lengths (α′, β′, γ′) and take their positive fractional parts,
arriving to a triple ([α′], [β′], [γ′]) (since π+ = 1 is in Ker(·)). It is clear that the
sum of the fractional parts is an integer; therefore, it is either 1 or 2. If it is 1,
then this marking is positive and it satisfies the sum condition; therefore, it
belongs to the image of PSL(2,Z). If the sum is 2, take ([α′]−1, [β′]−1, [γ′]−
1). For PSL(2,Z) it is equivalent to (1 − [α′], 1 − [β′], 1 − [γ′]), which is then
a positive marking satisfying the sum condition; therefore, it belongs to the
image of PSL(2,Z). Vice versa, every positive marking lies in the image of
PSL(2,Z) due to the short exact sequence.

Let us construct a graphG representing the surfaces for which Im(
∫ z1
z2
ω) =

0. This graph is a retraction of the Torelli space to the subspace given by the
condition Im(

∫ z1
z2
ω) = 0. The vertices of the graph are the surfaces hav-

ing a double zero. Two vertices are connected with an edge if one can be
transformed into another using the Schiffer variation in one step keeping
the condition Im(

∫ z1
z2
ω) = 0. Next step is to show that each vertex of the

graph belongs to three edges.

Indeed, without loss of generality, assume that α < β < γ. Then, to con-
serve the positivity of the triple, one can only obtain three other triples with
a single Schiffer variation, namely, (α, β − α, γ + α), (α, β + α, γ − α), and
(α+β, β, γ−β). The corresponding markings are (a, b−a, c+a), (a, b+a, c−a),
and (a + b, b, c − b). As the transformations are reversible, the graph is not
oriented. It follows that the graph G is a three-valent graph; moreover, we
continue to show that there is a bijection between its set of vertices and
PSL(2,Z)/Z3. We show that the graph G is connected; therefore, the corre-
sponding isoperiodic set is also connected.

To see it, take a standard fundamental domain of PSL(2,Z) on the upper
half plane. Acting on it with PSL(2,Z) we cover the whole upper half plane
with the images of the standard fundamental domain. Consider the bound-
ary of this covering as a graph G′ ignoring the edges that go to infinity on
the upper half-plane (i.e., vertical edges going upwards to infinity and the
edges reaching the bottom line).

Take a point eiπ/3 which is a vertex of G′. It is easy to see that the three
vertices connected to eiπ/3 are the images of eiπ/3 under the transformations
z → ±1 and z → z

z+1 . As the graph G′ is transitive with respect to the group
PSL(2,Z), this holds for every vertex and its three neighbours. However, the
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Figure 6.13: Fundamental domains of PSL(2,Z) covering the upper half
plane

same thing holds for the graph G: as the order in the triple is not relevant,
reorder it so that α < β < γ. Then, the allowed moves from the triple (a, b, c)
are: (a, b − a, c + a), (a, b + a, c − a), (a + b, b, c − b). If we restrict ourselves
to the first two entries, we have (a, b)→ (a, b+ a), (a, b− a), (a+ b, b), which,
in PSL(2,Z) correspond to z → ±1 and z → z

z+1 . Therefore, G′ and G are
the same graph. As G′ is connected, so is G. This concludes the proof of the
connectivity of the isoperiodic foliation of Σ1,2.


