Universiteit

w4 Leiden
The Netherlands

Scaling limits in algebra, geometry, and probability
Arzhakova, E.

Citation
Arzhakova, E. (2022, February 23). Scaling limits in algebra, geometry, and
probability. Retrieved from https://hdl.handle.net/1887/3276037

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral

License: thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/3276037

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3276037

Chapter 3

Decimation limits of principal
algebraic Z“-actions

Abstract

Let f be a Laurent polynomial in d commuting variables with integer coeffi-
cients. Associated to f is the principal algebraic Z?-action ay on a compact
subgroup X of TZ" determined by f. Let N > 1 and restrict points in X;
to coordinates in NZ¢. The resulting algebraic NZ?-action is again princi-
pal, and is associated to a polynomial g5 whose support grows with N and
whose coefficients grow exponentially with N. We prove that by suitably
renormalizing these decimations we can identify a limiting behavior given
by a continuous concave function on the Newton polytope of f, and show
that this decimation limit is the negative of the Legendre dual of the Ronkin
function of f. In certain cases with two variables, the decimation limit coin-
cides with the surface tension of random surfaces related to dimer models,
but the statistical physics methods used to prove this are quite different and
depend on special properties of the polynomial.

3.1 Introduction

Letd > land f € Zz7',...,2"] be a Laurent polynomial with integer
coefficients in d commuting variables. We write f(z1,...,z4) = f(x) =

'This chapter is based on: E. Arzhakova, D. Lind, K. Schmidt, E. Verbitskiy, Decimation
limits of principal algebraic Z?-actions, arXiv:2104.04408
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28 Chapter 3. Decimation limits of principal algebraic Z%-actions

> neza f(n)x®, where x* = 21 .. 2" and f(n) € Z foralln € Z? and is
nonzero for only finitely many n € Z.

Denote the additive torus R/Z by T. Use f to define a compact subgroup
X of T2 by

X = {t eT”: Y fu)tmin=0 forallme Zd} 3.1)

nezd

By its definition this subgroup is invariant under the natural shift-action o
of Z on T2 defined by 0™ (t)m = tm_n. Hence the restriction a; of o to X
gives an action of Z¢ by automorphisms of the compact abelian group X;.
We call (X, ar) the principal algebraic Z¢-action defined by f.

Such Z“-actions serve as a rich class of examples and have been studied
intensively. An observation of Halmos [46] shows that oy automatically pre-
serves Haar measure py on X;. It is known that the topological entropy
of oy coincides with its measure-theoretic entropy with respect to y¢. For
nonzero f this common value was computed in [64] to be the logarithmic
Mahler measure of f, defined as

1 1
:/ / log | f(€2™51, ... €25 ds, . . . dsg (3.2)
0 0

(when f = 0 the entropy is infinite).

It will be convenient to identify the Laurent polynomial ring Z[2!, . . le]
with the integral group rmg Z[Z%, where the monomial x® corresponds to
n € Z Thus f € Z[z7,...,23"] is identified with its coefficient function
fizt = 7. When emphasmng the behavior of coefficients we will always

use the notation f.

Fix a principal algebraic Z?-action (X7,as). Let N > 1 and ry: T2
TVZ* be the map restricting the coordinates of a point to only those in the
sublattice NZ¢. We call the image ry(Xy) the Nth decimation of X/, al-
though this is considerably more brutal that the term’s original meaning
since only every Nth coordinate survives. Clearly rn(X) is again a com-

pact abelian group, and it is invariant under the natural shift action of NZ¢
n TN,

Using commutative algebra applied to contracted ideals in integral exten-
sions, we show in §3.6 that 7y (X ) is a principal algebraic NZ¢-action with
some defining polynomial gy € Z[NZ9]. Typically the support of g grows
with N and its coefficient function gy grows exponentially in N. Our goal in
this paper is to prove that with suitable renormalizations the concave hulls
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of the resulting functions converge uniformly on the Newton polytope of f
to a continuous decimation limit Dy. Furthermore, Dy can be computed via
Legendre duality using a well-studied object called the Ronkin function of

1.

The analytical parts of our analysis apply to Laurent polynomials with
complex coefficients. For such an f € C[Z%] we define its Nth decimation

fn by

N-—1 N-1
fn(ar,omg) = ] - T £ Ny, ., 25N gy), (3.3)
k1=0 kq=0

Since fy is unchanged after multiplying each of its variables by an arbitrary
Nth root of unity, it follows that it is a polynomial in the Nth powers of the
r;, i.e., that fy € C[NZ9]. Decimations of polynomials have appeared in
many contexts, including Purbhoo’s approximations to shapes of complex
amoebas [92], Boyd’s proof that the Mahler measure of a polynomial is con-
tinuous in its coefficients [11], and dimer models in statistical physics [55].

For most f € Z[Z%) the generator gy of the Nth decimation of X coin-
cides with fx. But under special circumstances characterized in §3.6, in-
volving the support of f and the Galois properties of the coefficients of the
polynomials occurring in the factorization of f over the algebraic closure of
the rationals, it can happen that gy is a proper divisor of fy. To give a sim-
ple example when d = 1, let f(x) = 22 — 2. Then since f is already in Z[27Z]
we have that go(2) = f(z), while fo(z) = f(z)f(—z) = f(x)?. Nevertheless
even in these circumstances the renormalization behavior of the g5 can be
determined from that of the fy.

For f € C[Z letsupp f = {n € Z% : f(n) # 0} denote its support. The
Newton polytope Ny of f is the convex hull in R? of supp f. Since fy is the

product of N polynomials all of whose Newton polytopes are Ay, it follows
thathN = Nde.

The Ronkin function Ry: R? — R of 0 # f € C[Z] is defined by

1 1
Rf(uq, ... uq) == / . / log |f(e"1e®™s1 . eUde?™8d)|dsy ... dsq. (3.4)
0 0

This is a convex function on R?, and therefore has a Legendre dual R}* de-
fined by

Ri(r) :=sup{r-u— Rs(u):ue R%},

which turns out to be a convex function on Ny (and is co off Ny).
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To describe rescaling of polynomials g € C[Z?] it is convenient to extend
the domain of § from Z? to R by declaring its value to be 0 off supp g.

Let ¢: R? — C. For any a > 0 define the rescaling operator E, on ¢ by
(E.p)(r) = o(ar) for all r € RY. When dealing with concave functions it is
often convenient to use the extended range R = R U {—o0}, with the usual
algebraic rules for handling —oco and with the convention that log0 = —oco.
Then log |¢|: R? — R, and we define its concave hull CH(log |¢|) to be the
infimum of all affine functions on R? that dominate log |¢|.

Let f € C[Z and fy be its Nth decimation. Define the Nth logarithmic
rescaling Ly f of f by

e f = Ea (g Tog | Fvl).

Clearly Ly f(r) = —ooifr ¢ N, andis finite at every extreme point of Ny and
at only finitely many other points in N;. The Nth renormalized decimation
Dy f of f is the concave hull CH(Ly f) of Ly f. By our previous remark, Dy f
equals —oo off Ny and is finite at every point of ;.

With these preparations we can now state one of our main results.

Theorem 3.1.1. Let 0 # f € C[Z%). Then the Nth renormalized decimations
Dy f of f are concave polyhedral functions on the Newton polytope N} of
f that converge uniformly on Ny as N — oo to a continuous concave dec-
imation limit function Dy (and off N they are equal to —oco). Furthermore
Df = —R;Z, where R;E is the Legendre dual of the Ronkin function R; of f.

The proof of this theorem uses two main ideas: Mahler’s fundamental es-
timate [77] relating the largest coefficient of a polynomial to its Mahler mea-
sure and support, and a method used by Boyd [11], applied to decimations
along powers of 2, to prove that for polynomials whose support is contained
in a fixed finite subset of Z? the Mahler measure is a continuous function of
their coefficients.

If f € Z[Z% the decimation limit of f contains dynamical information
about ay.

Corollary 3.1.2. Let 0 # f € C[Z%. Then the maximum value of the deci-
mation limit D; on the Newton polytope N, equals the logarithmic Mahler
measure m(f) of f defined in (3.2). In particular, if f € Z[Z¢] then this max-
imum value equals the entropy of the principal algebraic Z¢-action a.

Duality allows us to compute the decimation limit of a product of two
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polynomials. Suppose that ¢, : R¢ — R both have finite supremum. De-
fine their tropical convolution ¢ ® ¢ by

(¢ ® ¥)(r) == sup{p(s) + ¥(r —s) : s € R}

This is the tropical analogue of standard convolution, but using tropical (or
max-plus) arithmetic in R.

Corollary 3.1.3. Let f and g be nonzero polynomials in C[Z%). Then Dy, =
Dy ® D,.

Thus decimation limits live in the tropics.

3.2 Examples

Here we give some examples to illustrate the phenomenon we are investi-
gating. They use either one or two variables, and for these we denote the
variables by z and y rather than z; and zo. Let Qy = {2™*/N : 0 < k < N}
denote the group of Nth roots of unity.

Example 3.2.1. Letd = 1 and f(z) = 22 — 2 — 1 = (z — \)(z — p), where
A= (1++5)/2and p = (1 — /5)/2. Then

fv@) =[] flwe)= ] we—N(we—p)

wEQN weNN
= (VN = M@V — ) =22 — (N + )N + (=D,

Hence
0 ifr =0o0r2,
(Lnf)(r) = § wlog |AN + pN| ifr =1,
—00 otherwise.

Since Ly f(1) — log Aas N — oo, the concave hulls Dy f converge uniformly
on Ny = [0, 2] to the decimation limit

rlog A ifo<r<1,
Di(r) =< (2—r)logh ifl1<r <2,
—00 otherwise,

which is shown in Figure 3.1(a).
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To compute the Ronkin function Ry, recall Jensen’s formula that for every
¢ € Cwe have that

1
/ log |€*™ — €| ds = max{0, log |£]} := log™ |£]. (3.5)
0
Thus

1 1 1
Rf(u) = /0 log | f(e“e*™ )| ds = /0 log [e“e®™* — )| ds +/0 log |e“e®™ — p| ds
=2u+log™ |e "\ +log™ |e " pul,

whose polygonal graph is depicted in Figure 3.1(b). It is then easy to verify
using the definition of Legendre transform that D, = —Rj.

Finally, the decimation limits D, and D,_, are computed similarly, and
shown in Figures 3.1(c) and 3.1(d). It is easy to check using the definition
of tropical convolution that D, ® Dy, = D(z_x)(z—u) = Dy, in agreement
with Corollary 3.1.3.

log A + Dy(r) 2log A |
s r
1 ) Ry (u)
4 f T U
_ _ lo log A
%) @ %) g |l (b) g
log A (D, (1)
1
g r 5 r
1
—log A Dx,u(r)

(©) (d)

Figure 3.1: Graphs in Example 3.2.1

More generally, if f(z) = [[}L,(z — A;) and [A1] > [A2| > -+ > |An|, thena
computation similar to that in Example 3.2.1 shows that (Ly f)(m) = 0 and
that (Ly f)(k) converges to log | A1 A2 ... A\p—i|fork =0,1,...,m—1, and this
gives uniform convergence of Dy f to Dy on Ny = [0, m]. However, if some
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roots of f have equal absolute value, then convergence is more delicate, or
may even fail, as the next two examples show.

Example 3.2.2. Letd = 1 and f(z) = 2* — 42® — 222 — 42 + 1, which is
irreducible in Z[Z]. The roots of f are A\ = 1 + V2 + V22 + 2 ~ 4.611,
p=1+v2—v2v2+2~0217,and 1 — v2 £iy/2v/2 — 2 = 2™ where ¢
isirrational. Simple estimates show that (Ly f)(k) converges for k = 0,1, 3,4

with limits 0, log A\, log A, 0, respectively. However, the dominant term con-
trolling the behavior of (Ly f)(2) is

1
N log |2\ cos(27NG)|.

Since 6 is irrational, the factor cos(27 N6) occasionally becomes very small,
and so convergence is in question.

Infact, (Ly f)(2) does converge, but the proof requires a deep result of Gel-
fond [37, Thm. III, p. 28] on the diophantine properties of algebraic num-
bers on the unit circle. According to this result, if £ is an algebraic num-
ber (such as 2™ above) such that || = 1 and ¢ is not a root of unity, and
ife > 0, then [¢" — 1| > e "¢ for all but finitely many n. From this it is
easy to deduce that [e2™N? — j| > ¢~V for almost every N, and hence that
(1/N)log|cos(2rN@)| — 0as N — oo. This convergence is illustrated in
Figure 3.2(a).

Both (Lyf)(1) and (Lyf)(3) converge to log A, and clearly it holds that
limsupy_(Lnf)(2) < log\. Hence any lack of convergence of (Ly f)(2)
would not affect the limiting behavior of the concave hull Dy f, nor uni-
form convergence of Dy f to Dy on [0, 4]. Thus such diophantine issues are
covered up by taking concave hulls.

2log2
log A

(a) (b)

Figure 3.2: (a) Convergence in Example 3.2.2, and (b) lack of convergence in
Example 3.2.3

The next example shows that if we allow the coefficients of f to be arbi-
trary complex numbers instead of integers, then (Ly f)(k) can fail badly to
converge at some k.
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(a) (b)

Figure 3.3: (a) Polyhedral approximation D; f, and (b) limiting smooth sur-
face Dy for f(z,y) =1+ x + y in Example 3.2.4

Example 3.2.3. Letd = 1 and f(z) = (z — 2¢*™) (2 — 2¢=2™%), where we will
determine 6. Then (Ly f)(0) = 2log2and (Ly f)(2) = 0forall N > 1, while

(Lnf)(1) = %log 12V . 2 cos(27NB)|.

It is possible to construct an irrational ¢ and a sequence N; — oo such that
N%. log | cos(2mrN;6)| — —oo as j — oo Hence using this value of # to define
f we see that (Ly f)(1) does not converge, as depicted in Figure 3.2(b), al-
though the concave hulls Dy f do converge uniformly to Dy.

Using arguments similar to those above, it is possible to give an elemen-
tary direct proof of Theorem 3.1.1 in the case d = 1.

Example 3.2.4. Letd = 2 and f(z,y) = 1 + = + y. Then fy is a polynomial
in 2"V and 4"V of degree N2. For example,

fisy(w,y) = 22 + 522095 + 5220 + 1021910 — 6052'%y° + 10215 + 1021%1°
+ 190521919 + 19052%%° + 102 + 52550 — 6052595 + 190525y
— 6052°y° + 52° + y?° + 5y + 109" + 10y'° + 5y° + 1.

The Nth logarithmic rescaling Ly f of f is finite at points in the unit sim-
plex A = Ny whose coordinates are integer multiples of 1/N. Thus its con-
cave hull Dy f is a polyhedral surface over A, and as N — oo these surfaces
converge uniformly on A to the graph of the concave decimation limit Dy.
Figure 3.3(a) shows the polyhedral surface D5 f corresponding to the calcu-
lation of f5) above, and Figure 3(b) depicts the limiting smooth surface for
Dy.

For this example it is possible to derive an explicit formula for D;. Clearly
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D¢ (r, s) is symmetric in r and s, so we may assume that s < r. Let

Ay ={(r,s) e A:s<rands < (1—-r)/2}, (3.6)
Ay ={(r,s) e A:s<rands> (1-r)/2}. 3.7)

For (r,s) € Ay UAg withr + s < 1 define
b(r,s) = csc[n(r + s)] sin(ws).

Then it turns out that 0 < b(r, s) < 1for (r,s) € A; while 1 < b(r, s) < oo for
(r,s) € As.

Using Legendre duality and calculations of Ry by Lundqvist [70], we will
show in Appendix A that if (r, s) € A; then

X 1\n+l
D¢(r,s) = Z ( ;1)12 b(r,s)" sin[nm(1 —r)] — slogb(r,s), (3.8)
n=1

while if (r, s) € Ay then

-y

n=1

n+1

r,s) "sinfnm(1 —7)] + (1 —r —s)logb(r,s). (3.9)

We will prove in Corollary 3.1.2 that the maximum value of D equals the
entropy of a ¢, which is the logarithmic Mahler measure m(f) of f defined in
(3.2). In this example, the maximum value is attained at (1/3, 1/3), which is
in both A; and As. Either formula therefore applies, and each gives Smyth’s
calculation [105] that

3[ xs(n)  3v3

m(l+z+y) = Ds(1/3,1/3) = nz T 4r

L(2, x3) ~ 0.3230,
n=1
(3.10)
where 3 is the nontrivial character of Z/3Z and L(s, x3) is the L-function

associated with ys.

Unlike the previous example, some decimation limits exhibit non-smooth
behavior.

Example 3.2.5. Let d = 2 and f(z,y) = 54+ 2 + 2~ ' + y + y~'. The dec-
imation limit Dy is depicted in Figure 3.4(a). The non-smooth peak at the
origin is due to a “hole” in the amoeba of f, as defined in §3.4 and shown in
Figure 3.4(b).

As in the previous example, the decimation limit describes the surface
tension for a physical model, in this case dimer tilings of the square-octagon
graph (see [55, Fig. 3].



36 Chapter 3. Decimation limits of principal algebraic Z%-actions

(a) (b)

Figure 3.4: (a) The decimation limit for f(z,y) =5+ 2+ 2 ! +y +y~! from
Example 3.2.5, and (b) the “hole” in its amoeba causing the peak.

Remark 3.2.6. Dimer models have a long history in statistical physics. A
particularly important instance involves f(z,y) = 1 4+ = + y from Example
3.2.4, and has been studied in enormous detail by many authors, including
Kenyon, Okounkov, and Sheffield [55].

To describe this model, let # denote the regular hexagonal lattice in R
We can assign the vertices of 77 alternating colors red and black, much like
a checkerboard. A perfect matching on ¢ is an assignment of each red ver-
tex to a unique adjacent black vertex, these forming an edge or dimer. A
perfect matching is equivalent to a tiling of R? by three types of lozenges,
one type for each of the three edges incident to each vertex. Using a nat-
ural height function, such a lozenge tiling gives a surface, and the study of
the statistical properties of such random surfaces has resulted in many re-
markable discoveries (see Kenyon’s survey [56], Okounkov’s survey [86], or
Gorin’s detailed account of lozenge tilings [39]).

Kasteleyn discovered that by cleverly assigning signs to the edges of /7,
he could compute the number of perfect matchings on a finite approxima-
tion using periodic boundary conditions by a determinant formula. Fur-
thermore, this determinant can be explicitly evaluated to have the form of a
decimation of f(z,y) = 1 + = + y. Each of the three terms of f correspond
to one of the three types of lozenges in the random tiling. It then turns out
that in the logarithmic scaling limit D (r, s) counts the growth rate of per-
fect matchings for which the frequencies of the three lozenge types are , s,
and 1 — r — s. As such, it is called the surface tension for this model.
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The two-variable polynomials with integer coefficients arising from such
dimer models, such as the preceding two examples, define curves of a very
special type called Harnack curves. For these there are probabilistic inter-
pretations of the coefficients of decimations. The additional structure en-
ables one to show that the individual nonzero coefficients of fy grow at a
rate predicted by D;. Example 3.2.3 shows this can fail if complex coeffi-
cients are allowed. But whether or not this is true for every polynomial in
Z[7%] for all d > 1 appears to be quite an interesting problem (see Question
3.9.3 for a precise formulation).

3.3 Convex functions and Legendre duals

We briefly review some basic facts about convex functions and their Legen-
dre duals. Rockafellar’s classic book [94] contains a comprehensive account
of this theory.

Let R denote R U {cc}, with the standard conventions about arithmetic
operations and inequalities involving cc. Let ¢: RY — R be a function, and
define its epigraph by

epip = {(u,t):uc R4t € R, and t > p(u)} C R? x R.

Then ¢ is convex provided that epi ¢ is a convex subset of R? x R. Similarly,
a function ¢: R — R is concave if —: R* — R is convex.

The effective domain of a convex function ¢ is defined by
dom ¢ := {u € R : p(u) < oo}.

By allowing ¢ to take the value oo, we may assume that it is defined on all of
RY, enabling us to combine convex functions without needing to take into
account their effective domains. A convex function is closed if its epigraph
is a closed subset of R x R. This property normalizes the behavior of a
convex function at the boundary of its effective domain, and holds for all
convex (and concave) functions that arise here.

Suppose that ¢: R — R is convex. Its Legendre dual (or, more accurately,
its Legendre-Fenchel dual) p* is defined for all r € R? by

©*(r) ;= sup{r-u— p(u) : u e R4}, (3.11)

The Legendre dual ¢* is also a convex function, and provides an alterna-
tive description of epi ¢ in terms of its support hyperplanes. Furthermore,
Legendre duality states that ¢** = ¢ for closed convex functions.
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(a) (b)

Figure 3.5: (a) The amoeba of 1 + = + y, and (b) its Ronkin function

The Legendre dual of a concave function ¢: R? — R is similarly defined
as

Y*(r) = inf{r-u —¢(u) : u € R}, (3.12)

Then ¢ = —1 is convex, and a simple manipulation shows that their Legen-
dre duals are related by ¢v*(r) = —¢*(—r).

3.4 Amoebas and Ronkin functions

Let 0 # f € C[Z%). Put C* = C ~ {0} and define V(f) := {z € (C*)?: f(z) =
0}. Let Log: (C*)? — R? be the map Log(z1,...,24) = (log |z, ...,log|z4|).

In 1993 Gelfand, Kapranov, and Zelevinsky [36] introduced the notion of
the amoeba Ay of f, defined as

Ay :=Log(V(f)) C RY.

The amoeba of 1 + = + y is depicted in Figure 3.5(a). The complement

¢ = RI\A, of A consists of a finite number of connected components, all
convex. The unbounded components are created by “tentacles” of .A;. Un-
fortunately, biological amoebas look nothing like their mathematical name-
sakes.

Closely related to Ay is the Ronkin function R; of f, introduced by Ronkin
[95] in 2001, and defined earlier in (3.4). The Ronkin function of 1 + = + y is
shown in Figure 3.5(b).
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The Ronkin function of a polynomial f is known to be a convex function
on R¢ and affine on each connected component of Aj§ (for this and much
more see [88]). Moreover, on each connected component of .A‘Ji the (con-

stant) gradient of R is contained in Ny N 7% and the convex hull of these
values equals NVy. From this we conclude that the Legendre dual R} of R,
has effective domain Ny.

3.5 Decimation limits of polynomials

In this section we prove Theorem 3.1.1, one of our main results, and Corol-
laries 3.1.2 and 3.1.3. If 0 # f € C[Z% we will show that the Nth renormal-
ized decimation Dy f = CH(Ly f) converges uniformly on Ay to a continu-
ous concave limit function Dy, and that Df = —R]*c.

The firstingredient in our proofis the basic estimate of Mahler relating the
largest coefficient of a polynomial to its Mahler measure and its support. Let
us begin with some terminology. For 0 # g € C[Z¢] define its height H(g) by
H(g) = max{[g(k)| : k € Z}. The Mahler measure of g is M(g) = exp(m(g)),
where m(g) is the logarithmic Mahler measure defined in (3.2).

Proposition 3.5.1 (Mahler [77]). Suppose that 0 # g € C[Z¢] and thatsupp g C
[0,C — 1] N Z%. Then

279 H(g) < M(g) < CH(y). (3.13)

Proof. Letk = (ki,...,kq) € suppg. Then by [77, Eqn. (3)],

aool< () () (O M.

Since each binomial coefficient is bounded above by 2¢, the first inequality
in (3.13) follows.

The second inequality is a simple consequence of the triangle inequality,
since

Mg)< > g <|0,C—19n2Z% - H(g) = C'H(g). O
ke0,C—1]4nz

Consider (C*)? as a group under coordinate-wise multiplication. Define
the action of z € (C*)?on f € C[Z9] by (z- f)(z1,...,7q) = f(z171, ..., 2424).
This action is commutative since

z- (2 f)=(22) f=2'-(z-f),
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andalsoz-(fg) = (z- f)(z-g) forall f,g € C[Z%]. Hence themap f + z- fisa

o~

ring isomorphism of C[Z?]. Furthermore, (z - f) (k) = z¥f (k) for all k € Z¢,
and so N,y = Ny forallz € (C*)%.

Recall that 2 denotes the group of Nth roots of unity. For w € Q% C
(C*)? we call w - f the rotate of f byw. Then fn = HWGQ% w - f is the product

of all rotates of f by elements in Q.

If g, h € C[Z%) then is it well known that NV, = Ny + N, (the Minkowski
sum), and trivially Ry, = R, + Ry. By our previous remarks,

NfN = Z Nw.f = Z Nf = Nde.
weQy weQy
Also, R,,.; = Ry, and hence Ry, = NRy.
Foru € R% put e" = (e*1, ..., ¢"). Then (e* - f1(k) = e**f(k). Commu-

tativity of the action of (C*)? on f then shows that (¢" - f)ny = € - (fn).
Also

1 1
R(u) =log M(e" - f) = N log M((e“ . f)<N>) = N log M(e" - fn).
Observe that
log H(e™ - fy) = max{u -k + log | fx (k)| : k € Z%},

indicating a connection with Legendre duals.

Proof of Theorem 3.1.1. Let 0 # f € C[Z%]. Form € Z9 let g(x) = x™f(x).
It is straightforward to verify that (Dyg)(r) = (Dnyf)(r — m) for all r €
R9. Therefore by adjusting f by suitable monomial, we may assume that
supp f C [0, B — 1] N Z¢ for some B > 1. Then supp(e® - fx) C [0, N4B —
D]*nzd c [0, NYB —1]¢ N 24 for every u € R%. By Prop.3.5.1,

1 u 1 dnp\d u
— 2 logM(e" - ) < <7 {log[(N"B)"] + log H(e™ - f) }

log (NdB)d 1 ~
_ []\]-d] + er(réaz}é{u -k + 10g|fN(k)‘}7

Ry(u)

where the error term by := N~%log[(N?B)?] — 0 as N — oo, uniformly for
u c RY,

An opposite inequality is based of the following fundamental observation,
used both by Boyd [11] and Purbhoo [92] for different purposes. As we no-
ticed before, fy is a polynomial in the Nth powers of the variables. There-
fore Ey fu is again a polynomial to which we can apply Prop. 3.5.1, but with
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improved constants since the support has now shrunk by a factor of N. This
improvement is crucial.

Specifically,
supp(e® - fiv) C [0, NU(B — 1)}* 0 (NZ?),

so that
supp(e® - Exfn) C [0, N*"Y(B —1)]nZ%
Applying Prop. 3.5.1,

H(e™ - fy) = H(e™ - Exfn) < 2V " BM(e™ - Exf) = 2N " BM(e™ - p)N°.
Hence
dN%1Blog?2
Nd
where again the error term ay := (dBlog2)/N — 0 uniformly for u € R%
We can summarize these estimates as

1 u u
Wlog H(e" - fn) < +logM(e" - f) = an + Ry(u),

1 .
Ry(w) — 577 masx{u-k + log ny(k)}‘ <max{ay,by} =0 (3.14)

as N — oc uniformly in u € R%

Next we relate the first max occurring in (3.14) with the Nth normalized
decimation Dy f. We have that

1 -~ k
sy st g 091} = - (55) + 5ol i}

= max{u () + a8 o8l ()|}

—max{u- (7;) + (Ov) (ak)}

= max{u-r+ Dy /(r)} = ~(Dn )" ().

Hence by (3.14), —(Dn f)*(—u) converges to R¢(u) uniformly for u € R,
or, equivalently,

(Dnf)*(u) = —Rs(—u) uniformly for u € R%. (3.15)

If  and ¢ are concave functions on R? such that |p(u) — ¥ (u)| < ¢ for all
u € R4 itis easy to check from the definitions that ¢* and ¢* have the same
effective domain, and that |p*(r) — ¢*(r)| < e forall r € dom ¢* = dom ¢)*.
Applying this to (3.15) and using duality we finally obtain that (Dy f)** =
Dy f — —Rj} uniformly on Ny, completing the proof. O
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Proof of Cor. 3.1.2: By Theorem 3.1.1, Legendre duality, and (3.12),

—m(f) = —Rs(0,0) = D3(0,0) = inf —Dg(r,s) =~ sup Dy(r,s).
(r,8)ENY (r,s)eNF

We remark that differentiability of D; at the maximum value is not assumed
for Legendre duality to apply here, and Example 3.2.5 provides a case when
differentiability fails. O

Proof of Cor. 3.1.3: Let f and g be nonzero polynomials in C[Z¢]. Clearly
Rrg = Ry + Ry. By [94, Thm. 16.4], the Legendre dual of the sum ¢ + ¢
of two convex functions is their infimal convolution defined for r € R? by
inf{o(s) + ¢(r —s) : s € R?}. Applying this with ¢ = —Ry and ¢ = —R,,
using Thm. 3.1.1, and taking negatives we obtain that Dy, = Dy ® D,,. O

Remark 3.5.2. Our estimate (3.14) can be expressed in the language of trop-
icalization of polynomials (see [74, §3.1] for background and motivation).
Let 0 # g(x) = Y eza 9(k)x* € C[Z%). Define the tropicalization of g to be
the function trop g: R? — R given by

t = -k + log |g(k
(trop g)(w) = max{u - k + log [g(k)[},
which is a polyhedral convex function. Then by (3.14) we see that

% trop fy — Ry uniformly on R, (3.16)
so that the normalized tropicalization of f» converges uniformly to the Ronkin
function of f. Figure 3.6(a) depicts this polyhedral approximation for f(x, y) =
1+z+yand N = 5 (compare with Figure 3.5(b)). The tropical variety of this
polyhedral approximation is the projection to the plane of the vertices and
edges of its graph, and is shown in 3.6(b). These tropical varieties converge
in the Hausdorff metric to the amoeba of f as N — oo (compare with Figure
3.5(a)).

Remark 3.5.3. In [92] Purbhoo used decimations for a different purpose,
namely to find a computational way to detect whether or not a point is in
the amoeba of a given polynomial. Call a polynomial lopsided if it has one
coefficient whose absolute value strictly exceeds the sum of the absolute
values of all the other coefficients. Let f € Z[Z%] and u € R?Y. Clearly if
e" - f is lopsided then u ¢ A;. Purbhoo used decimations to amplify size
differences among the coefficients. More precisely, he proves that given ¢ >
0 there is an Ny, depending only on ¢ and the support of f, such that if the
distance from u to Ay is greater than € then e"- fy islopsided. Since f and fy
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(a) (b)

Figure 3.6: (a) Tropical approximation to the Ronkin function of 1 + z= + y,
and (b) its corresponding tropical variety

have the same amoeba, this gives an effective algorithm for approximating
the complement of A;.

One direct consequence of [92] is that the normalized tropicalizations in
(3.16) converge to the Ronkin function off the amoeba of f, while our result
is that this convergence is uniform on all of R%. Roughly speaking, Purbhoo
is concerned with the coefficients of e" - f for points u off the amoeba, while
our focus is on u within the amoeba.

Remark 3.5.4. Let F' be a lower-dimensional face of the Newton polytope
Nyof f,and put flr = >, cp f(n)x“. Clearly the restriction of Dy to F is
just the decimation limit of f|r, or in symbols Dy|r = Dy,. By Corollary
3.1.2, this generalizes [64, Rem. 5.5], which gave a dynamical proof of the
inequality due to Smyth [106, Thm. 2] that m(f) > m(fFr) for every face F of
Ny.

3.6 Decimations of principal actions and contracted ide-
als

We return to decimations of principal algebraic Z¢-actions, and in this sec-
tion show that they are again principal. The proof uses machinery from
commutative algebra, including contractions of ideals.

Suppose that X is a compact, shift-invariant subgroup of T2, Using Pon-
tryagin duality we can obtain an alternative description of X as follows (for
a comprehensive account see [98, Chap. II)].
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As a discrete abelian group the Pontryagin dual of TZ" is the direct sum of
Z% copies of Z, which we suggestively write as P, ., Zx* = Z[Z%]. The (ad-
ditive) dual pairing between T%* and Z[Z) is given by (t, g) = >} <z tk §(k) €
T. Multiplication by the inverses of each of the variables x; on Z[Z?) gives a
7Z-action that is dual to the natural shift action o on T2 defined earlier.

Since X is shift-invariant, {g € Z[Z%) : (t,g) = Oforallt € X} is an ideal
a in Z[Z%, and the dual group of X equals Z[Z%]/a. Conversely, if a is an
arbitrary ideal in Z[Z“], then the compact dual group X, of Z[Z%]/a is a shift-
invariant subgroup of TZ. Thus there is a one-to-one correspondence be-
tween shift-invariant compact subgroups of T2 and ideals in Z[Z4]. When
a is the principal ideal (f) generated by f, then X, = X as defined above,
explaining the terminology “principal actions.”

Fix N > 1 and recall the restriction map ry: TZ* — TVZ” from §3.1. Let
f € Z|Z%. Then the Nth decimation ry (X ) is a compact subgroup of TN%*
that is invariant under the shift-action of NZ4. By our previous discussion,
the dual group of (X ) has the form Z[NZ%/ay, where ay is an ideal in
Z[NZ%. The following result identifies this ideal.

Lemma 3.6.1. Let f € Z[Z% and N > 1. Then the dual group of rn(Xy) is
Z[NZ% Jax, where ay = (f) N Z[NZ4].

Proof. Let by = {g € Z[NZ%) : (t,g) = Oforallt € ry(Xy)}. If g € ap,
then for every ¢t € X; we have that 0 = (¢t,9) = (rn(t),g), so thatg € by.
Conversely, if g € by and t € Xy, then g annihilates the restriction of ¢ to
every coset of N Z%, and hence annihilates ¢, so that g € ay. O

The ideal (f) N Z[NZ9] defining rn(X) is called the contraction of (f) to
Z[NZ9). The main result of this section is that this contraction is always
principal.

Proposition 3.6.2. Let f € Z[Z% and N > 1. Then the contracted ideal
(f) NZ[NZ4 is a principal ideal in Z[NZ4].

We begin by briefly sketching the necessary terminology and machinery
from commutative algebra, all of which is contained in [5] or can be easily
deduced from material there.

For brevity let R = Z[NZ% and S = Z|Z%). Both R and S are unique fac-
torization domains, and therefore both are integrally closed [5, Prop. 5.12].
Furthermore, S is integral over R since each variable z; in S satisfies the
monic polynomial 4" — z} € R[y].
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A prime ideal p in an integral domain has height one if there are no prime
ideals strictly between 0 and p. In a unique factorization domain the prime
ideals of height one are exactly the principal ideals generated by irreducible
elements. A proper ideal q in an integral domain is primary if whenever
ab € q then either a € q or b" € q for some n > 1. In this case its radical
{a : a" € qforsomen > 1} is a prime ideal, say p, and then q is called p-
primary. Examples show that in general a power of a prime ideal need not
be primary, that a primary ideal need not be the power of a prime ideal, and
that even if an ideal has prime radical it need not be primary. The notion of
primary ideal, although the correct one for decomposition theory, is quite
subtle. However, in our situation things are much simpler.

Lemma 3.6.3. Let P be a unique factorization domain, and let » € P be
irreducible. Then the principal ideal p = (r) is prime, and the p-primary
ideals are exactly the powers p™ of p for n > 1.

Proof. 1t is clear that p is prime. To prove that p™ = (r") is p-primary, sup-
pose that ab € p”, buta ¢ p™. Thenr | b, so b" € p”, showing that p” is
primary. Clearly the radical of p™ is p, and so p" is p-primary.

Conversely, suppose that q is a p-primary ideal. Since the radical of q is
p, it follows that " € g for some n > 1. Choose n to be the minimal such
power. Then p” C g, but thereis ana € q ~ p"~ L. Write a = ¢r™, where r { c.
Choose a so that m is the maximal such power, where obviously m < n — 1.
Now r" ¢ q by minimality of n, hence some power ¢* € q C p since q is
primary. But this is absurd since r { c unless cis a unit. Thusq = p"~1. O

If a is an ideal in S, we denote its contraction a N R to R by a¢. If qis a
p-primary ideal in S, then p€ is prime and g€ is p°-primary in R.

One of the important results in commutative algebra, essential to devel-
oping a dimension theory using chains of prime ideals, is the so-called “Go-
ing Down” theorem [5, Thm. 5.16]. Its hypotheses are satisfied in our situa-
tion, and it says the following. Suppose that pg C p; C po is a chain of prime
ideals in R, and that there is a prime ideal g2 in S with q§ = p,. Then there
isachainqo C q1 < g2 of prime ideals in S such that q5 = p, for j = 0, 1,2.
From this it follows that prime ideals in S of height one contract to prime
ideals in R of height one. In other words, if h € S'is irreducible, then (h)sNR
is a principal ideal (g) z in R generated by an irreducible polynomial g in R.

Proof of Prop. 3.6.2. Firstsuppose that f € Sisirreducible. As we just showed,
there is an irreducible g € R such that (f)sN R = (g)g. Furthermore, ifn > 1
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then (f")s is (f)s-primary, and so (f")s N R is (g) p-primary, hence equals
(g*) g for some k > 1.

The result is obvious if f = 0, so suppose that 0 # f € S, and let f =
- fi' be its factorization in S into powers of distinct irreducibles f;.

nj

Then there are irreducible polynomials g; € R and k; > 1 such that (f;”)s N
k.
R = (g;”)r. Hence

(fl)sNR= (" fimsNR=({fTsN--(f)s) "R
= ((fMsnR)N---N((fi")sNR)
= (gfYrN - N {gh)r = (LCM(g}", ..., g )R,

proving that (f)s N R is principal. O

Remarks 3.6.4. (1) It is possible for distinct principal prime ideals in S to
contract to the same prime ideal in R. As a simple example, letd = 1, N = 2,
fi(z) = 22 — 2 — 1, and f»(z) = 22 + = — 1. Then each is irreducible in S,
but both (f;)s and (f2)s contract in R = Z[2Z] to (z* — 322 + 1)g, where
x* — 322 + 1 is irreducible in Z[2Z] (but of course not in Z[Z)). In the proof
this is accounted for by using the least common multiple LCM in the last
line of the displayed equation above.

(2) A polynomial is primitive if the greatest common divisor of its coeffi-
cientsis 1. If 0 # f € S is a nonconstant primitive polynomial with factor-
ization f = f}"* --- fI'* into powers of distinct irreducible polynomials, then
by Gauss’s Lemma each f; is primitive as well. Furthermore, (f;)s " R =
(9j)r» where each g; is nonconstant and primitive. It then follows from the
proof that (f)s N R is generated by a primitive element of R.

(3) There is a completely different proof of Prop. 3.6.2 using entropy that
is valid for all polynomials in S except for those of a very special and easily
determined form. Recall that the entropy of oy is the logarithmic Mahler
measure m(f) defined in (3.2). A generalized cyclotomic polynomial in S is
one of the form x"¢(x¥), where c is a cyclotomic polynomial in one variable
and k # 0. Smyth [106] proved that m(f) = 0 if and only if f is, up to sign,
a product generalized cyclotomic polynomials. Assume that f € S is not
such a polynomial, so that the entropy of o is strictly positive. A simple
argument using cosets of NZ? shows that ry (X ) also has positive entropy.
Now rn(X¢) = X,, by Lemma 3.6.1, where ay = (f)s N R. But an ideal a
in R for which the shift action of NZ? on X, has positive entropy must be
principal [64, Thm. 4.2].
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3.7 Absolutely irreducible factorizations
and Gauss’s Lemma

Suppose that f € Z[Z% is nonconstant and irreducible. Its factorization
into absolutely irreducible polynomials in an extension field of Q will play a
decisive role. A generalization of Gauss’s Lemma to number fields enables
us to deal with the algebraic properties of the coefficients of the factors.

Two polynomials in C|Z?) are distinct if one is not a nonzero scalar multi-
ple of the other. An element ¢ € C[Z%] is adjusted if 0 is an extreme point of
its Newton polytope N, and is monic if it is both adjusted and $(0) = 1.

A polynomial in C[Z9] is absolutely irreducible if it is irreducible in the
unique factorization domain C[Z¢]. Hence every non-unit f € C[Z%) has
some factorization f = ¢ - - - ¢, into absolutely irreducible factors ¢;. The
method of Galois descent [20] shows that, after multiplying the factors by
suitable constants, there is a finite normal extension K of Q such that each
¢; € K[Z%, and also that the coefficients of the (; generate K, so that K is
the splitting field of f. Furthermore an elementary argument shows that if
f is adjusted, then we can multiply the ¢; by units in K[Z?] so that each ¢,

o~

is monic, /\/% C Ny, and f = f(0)p1 - ¢y

Remarks 3.7.1. (1) When d = 1 this factorization is into the linear factors
guaranteed by the fundamental theorem of algebra.

(2) A simple sufficient condition for ¢ to be absolutely irreducible is that
N, is not the nontrivial Minkowski sum of two integer polytopes (see [35]
for applications of this idea).

(3) There are reasonably good factoring algorithms which, on input f,
produce a monic irreducible polynomial in Z[z] with root § and an abso-
lutely irreducible ¢ € Q(6)[Z9] such that f = o1(p)oa(p) - --0-(¢), where
the o; are all the distinct field embeddings of Q(#) into C (see [29] for an
overview of these methods).

The following shows that, unlike factoring, divisibility is not affected when
passing to an extension field.

Lemma 3.7.2. Suppose that L is an extension of the field K and that f,g €
K[Z4]. Then f divides g in K[Z%] if and only if f divides ¢ in L[Z4].

Proof. For the nontrivial direction, suppose there is an h € LL[Z?) such that
fh = g. Equating coefficients of like monomials gives a system of K-linear
equations in the coefficients of 4. Since this system has a solution over L,
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Gaussian elimination shows that that this (unique) solution is actually over
K, and so h € K[Z4]. O

Proposition 3.7.3. Let f € Z[Z% be nonconstant, adjusted, and irreducible
in Z[Z%). Then there is a finite normal extension field K of Q and monic ab-
solutely irreducible polynomials o1, . . ., ¢, € K[Z%] such that f = F0)p1 -,
and N,, C Ny for1 < j <r. Furthermore, the Galois group Gal(K : Q) acts
transitively on the set of factors ¢;, and these factors are pairwise distinct.

~

Proof. Our earlier discussion shows there is a factorization f = f(0)p1 - - ¢,
over the splitting field K of f, where each ¢; is monic and N,, C N for
1 < j < r. Suppose that 0 € Gal(K : Q). Since o(f) = f, it follows that
o must permute the absolutely irreducible factors up to multiplication by
units. But if o(¢;) = cx™¢y, then n = 0 since the factors are adjusted and
¢ = 1 since they are monic. Hence o permutes the factors themselves. If
there were a proper subset of factors that is invariant under Gal(K : Q),
then their product v would be in Q[Z?] since its coefficients are invariant
under Gal(K : Q). But then v would be a proper divisor of f in Q[Z% by
Lemma 3.7.2, contradicting irreducibility of f by Gauss’s Lemma. A similar
argument shows that each factor appears with multiplicity one. O

We now give a brief sketch of the extension of Gauss’s Lemma to number
fields and the consequences we use. Let K be a finite extension of Q, and Og
be the ring of algebraic integers in K. A fractional ideal a in K is a nonzero
Ok-sumbodule such that there is an integer b for which ba C Ok. Fractional
ideals can be added and multiplied, with Ok being the multiplicative iden-
tity. A fractional ideal contained in Oy is an ideal in the usual ring-theoretic
sense. The pivotal result is that the set of fractional ideals form a group, the
set of principal fractional ideals (those of the form Okg for some g € K)
form a subgroup, and the quotient of these groups is a finite abelian group
called the class group which measures how far Oy is from being a principal
ideal domain.

Let ¢ € K[Z9]. Define the content cx () to be the fractional ideal in K
generated by the coefficients of ¢. Say that ¢ is primitive if cx(p) = Ok.
It is easy to check that although content depends on the ambient field K,
primitivity does not: if ¢ € K[Z%] and ¢ € L[Z9], then ck(¢) = Ok if and only
if e, (¢) = O (see [75, Thm. 8.2]).

Theorem 3.7.4 (Gauss’s Lemma for number fields). Let K be a number field
and o, € K[Z9]. The k(o) = ck(¢)cx(t). In particular, if o, € Ox[Z9)]
then ¢ is primitive if and only if both ¢ and v are primitive. If o, ¢ € Og[Z9]
are primitive, and if ¢ = v for some 5 € K, then 3 is a unit in Ok.
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Remark 3.7.5. Suppose that f € Z[Z%] is primitive and that N > 1. Let (v =
e?™/N which is a unit in Q(¢y). Hence each rotate w - f, where w € Q% is
primitive in Q({y)[Z%). The preceding theorem then shows that the product
fn of these rotates is also primitive in Q(Cy)[Z%), and hence in Z[Z] (since
primitivity is independent of ambient field), a fact we already observed in
Remark 3.6.4(2).

3.8 Decimated polynomials and decimated actions

Let f € Z[Z% be irreducible. Here we explain the relationship between
the Nth decimation fy of f and the generator gy of the contracted ideal
(f) N Z[NZ that defines the Nth decimation 7y(X) of (X¢,ay). Roughly
speaking, gy is a constant times the product of all distinct rotates by el-
ements of Q4 of the absolutely irreducible factors ¢; of f as described in
Proposition 3.7.3. Each rotate appears with the same multiplicity ey that
can be computed from the ¢;. Thus fxy = cgy’, and an application of
Gauss’s Lemma shows that we may take ¢ = 1. Furthermore, there is an
integer )(f), that can also be computed from the ¢;, such that fy = g, for
all N relatively prime to Q(f). Examples will illustrate the two sources of the
multiplicity ey .

In what follows we let (y = ¢*™/N, which is a generator of Q.

Lemma3.8.1. If f € Z[Z%) then fy € Z[NZ).

Proof. Since fn = HWEQ% w- f, it follows that fx = w - fy foreveryw € Q4.
Suppose that fy (k) # 0. Then since

fn(k) = (- fn) (k) = w* fy(k),

we see that w® = 1 for every w € Q4,, and hence k € NZ¢. Thus fy €

Q(¢w)[INZ).

The Galois group G := Gal(Q((y) : Q) acts on Q% coordinate-wise. If
o € G, theno(w- f) = o(w) - f since f has integer coefficients. Thus ¢
permutes the rotates of f, and so o(fy) = fn for every o € G. It follows
that the coefficients of fy are both rational and algebraic integers, and so
fn € ZINZA). O

Lemma 3.8.2. Let f € Z[Z% and gy be a generator of the contracted ideal
(f) NZ[NZ9. Then gy divides fy in Z[NZ4].
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Proof. Since f is one of the factors in forming fy, it follows that f divides
fn in Q(¢y)[Z9]. Hence f divides fy in Q[Z?] by Lemma 3.7.2. The coeffi-
cients of fy/f are both rational and algebraic integers, and so fn/f € Z[Z4].
Hence fy € (f) N Z[NZ%), and it is thus divisible by the generator gy. O

Remark 3.8.3. Since the generator of a principal ideal is unique only up to
units, it will be convenient to have a convention to pick a generator. In what
follows we will assume that f is adjusted and that f(0) > 0. Then clearly fx
has the same properties. By the previous lemma, we can also assume that
gn is adjusted, that N, C Ny, and that g5 (0) > 0.

Before continuing, we remark that if f is a constant integer n, then fy =
nV" while g = n. Letus call a polynomial f € Z|Z% nonconstant if | supp f| >
1, and it is these we now turn to.

Let f € Z[Z%] be adjusted. Define its support group Ty to be the subgroup
of Z? generated by supp f. It is easy to check that the support group is inde-
pendent of which extreme point of \; is used to adjust f. We say that f is
full it Ty = 7.

The following shows that in some cases, including f(z,y) = 1 +x +y from
Example 3.2.4, fy = g, forall NV > 1.

Proposition 3.8.4. Let f ¢ Z[Z%) be adjusted, irreducible, and full. Further
assume that f is absolutely irreducible in C[Z9]. Then fy = g, for every
N > 1.

Proof. Since the map f — w - f is a ring isomorphism of (CLZd], eachw - fis
absolutely irreducible. Suppose thatw- f = ’- f. Since w* f (k) = (w')* f(k),
it follow that w* = (w’) for all k € supp f, hence for allk € Ty = Z¢, and so
w = w'. Thus the rotates of w - f for w € 04, are pairwise distinct absolutely

irreducible polynomials in C[Z4] whose product is fy.

By Lemma 3.8.2, gy divides fy in C[Z%]. Hence some rotate w - f divides
gn- Since gy € Z[NZ%, it is invariant under all rotations in Q4. Hence gy
is divisible by all rotates w - f, and so gy and fy have the same absolute
factorizations in C[Z?), and hence fy = cgy for some constant ¢ € C. Re-
calling our conventions in Remark 3.8.3, comparing constant terms shows
that ¢ = f(0)N"/gn(0) € Q. But fy and gy are both primitive in Z[NZ9),
and so ¢ = +1, and our convention on positivity of constant terms then
gives ¢ = 1. O

The following example shows that when the polynomial is not full there
can be multiplicity e > 1.
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Example 3.8.5. Letd = 2and f(z,y) = 1+z+y>. Since Ny is not a nontrivial
Minkowski sum of integer polytopes, we see that f is absolutely irreducible.
Suppose that N is odd. Since —1 ¢ Qy, all rotates w - f for w € Q3% are
distinct, and the same arguments as in the previous proposition show that

N = gn-

However, if N is even, then —1 € Qy and the rotate of f by (w;,ws) equals
that by (w1, —w2). As we will see in Proposition 3.8.7, the product of the dis-
tinct rotates of f equals gy, and so fy = g3 when N is even.

Next we characterize when rotates can coincide.

Lemma 3.8.6. Let ¢ € C[Z¢] be adjusted, and T}, be its support group. Then
the dual of the stabilizer group Sy (p) := {w € Q4 1 w - p = p}is Z¢/(T, +
NZ%). Two rotates of ¢ differ by a multiplicative unit in C[Z] if and only if
they are equal. If I, has finite index K in Z¢, then Sy () is trivial for every
N relatively prime to K.

Proof. Suppose that w € Sy(p). Since p(k) = (w - @) (k) = w*P(k), it
follows that w* = 1 for every k € supp . Hence w annihilates I, as well as
NZ42, thus their sum. Conversely, every w annihilating I, + NZ? must be
in Sx (). Hence the annihilator of Sy(¢) equals I, + NZ%, and so its dual
group is Z¢/(T, + NZ9).

The multiplicative units in C[Z?) have the form c¢x™ for some c € C, so the
second statement is obvious since ¢ is adjusted.

Suppose that I, has finite index K in Z?. If N is relatively prime to K, then
multiplication by N on Z¢/T,, is injective, hence surjective. Thus modulo T},
every element in Z¢ is a multiple of N, and hence I, + NZ¢ = Z. O

Proposition 3.8.7. Let f ¢ Z[Z9 be adjusted and irreducible, and further
assume that f is absolutely irreducible in C[Z%. Then fy = g%, where
en = |Sn(f) = Z¢/(Ty + NZ7).

Proof. Recall our conventions in Remark 3.8.3. Since gy divides fy, it must
be divisible by at least one (absolutely irreducible) rotate of f. Invariance of
gn by every rotate in Q4; shows that gy is therefore divisible by the product
h of all the distinct rotates of f. The arguments in Lemmas 3.8.1 and 3.8.2
apply to show that h € (f) N Z[NZ?). Thus gy divides h in C[Z4] as well, and
so gy = ch for some ¢ € C. Evaluating constant terms shows that ¢ € Q.
Since gy is irreducible in Z[NZ%), it is primitive. Each rotate of f is primitive
in Q(¢x)[Z4], and so h is primitive by Theorem 3.7.4. Hence ¢ = +1, and
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then ¢ = 1 follows from our sign conventions. By Lemma 3.8.6, each rotate
of f is repeated exactly ey times, and so fx = g3 O

When f is absolutely irreducible, the only source of multiplicity ey > 11is
its support group. However, if f has several absolutely irreducible factors, a
new source of multiplicity can occur, namely that one factor could rotate to
another factor. This possibility is illustrated in the following three examples.

Example 3.8.8. Letd = 1 and
f(@) = 1—22% = (14 V22)(1 - V22) = 1 (x)p2(a).

Let 0 € Gal(Q(v2) : Q) be given by o(v2) = —v2. Then o(p1) = @2 =
(—1) - ¢1. Now fy is the product of (3, - ¢ for0 < j < Nand k = 1,2. If N is
odd, then —1 ¢ Qx and so all 2N factors are distinct. Our earlier arguments
then show that fy = gny. However, if IV is even, then —1 € Q, and the set
of rotates of ¢; coincide with set of those of ¢, and so fy = g3 for even
N. Here f is an irreducible polynomial with a pair of roots whose ratio is a
nontrivial root of unity.

The commingling of absolutely irreducible factors under rotations can
happen in more subtle ways.

Example 3.8.9. Letd = 1and f(z) = 1 — 2z + 422 — 323 + 2*, which is full
and irreducible in Z[Z]. Let A = (1 +/5)/2, p = (1 — v/5)/2, and ¢ = (5. The
absolutely irreducible factorization of f is

fl@) = (1 =) (1 - ) (1= Cua)(1 = Cpx) = pi(@)pa(@)ps (@) pa().

Note that ¢3 - ¢1 = o and that ¢ - p3 = 4. If N is relatively prime to 5, then
¢ ¢ Qn, and so all 4N rotates are distinct and fy = gy as before. However,
if 5 | N then ¢ € Qy and each rotate is repeated twice, and so fy = g% in
this case.

What is driving this example is the inclusion Q(v/5) ¢ Q(¢), and so the
Galois automorphism /5 — —/5 of Q(1/5) is the restriction of the auto-
morphism ¢ — (2 of Q(¢).

Remark 3.8.10. Irreducible polynomials in Z[x| having distinct roots whose
ratio is a root of unity, such as those in the previous two examples, are called
degenerate. Such polynomials have an extensive literature (see for instance
[32, §1.1.9]), and appear in the celebrated Skolem-Mahler-Lech Theorem
that the set of indices at which a recurring sequence of integers vanishes is,
modulo a finite set, the union of arithmetic progressions [7].
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There is a simple way to detect whether f(z) € Z|[x] is degenerate. Intro-
duce a new variable ¢, and compute the resultant g(z) € Z[z] of the polyno-
mials f(tx) and f(¢) with respect to ¢, which can be done efficiently using
rational arithmetic. The roots of g(z) are the ratios of all pairs of roots of f.
Thus f(z) is degenerate if and only if g(x) contains a nontrivial cyclotomic
factor. Applying this to f(z) from the previous example gives

g(z) = (x=1)° (2 —42® + 622 + 2 +1) (2 + 23+ 62° — 4z +1) (e + 23 + 2%+ +1).

The last factor reveals that f(z) has two roots whose ratio is a nontrivial 5th
root of unity.

Example3.8.11. Letd = 2and f(z,y) = 1 —x —y — 2y + 2> +y?, which is full
and irreducible in Z[Z?]. Let ¢ = (3. The absolutely irreducible factorization
of fis

flzy) = 1+ Cx+ Cy)(L+ Ca + Cy) = o1z, y)p2(z, y).

Here ¢ is mapped to @2 by the element ¢ in Gal(Q(¢) : Q) mapping ¢ to ¢?,
and also o(p1) = p2 = (¢,¢?) - p1. By the now familiar arguments, if N is
relatively prime to 3 then ¢ ¢ Qy, and so all rotates are distinct and hence
fn = gn. However, if 3 divides N, then distrinct rotates are repeated twice,
and so fy = g%. For instance

f3 = (14323 + 3y + 32° — 21233 + 393 + 2% + 32395 + 32593 + %) = 2.

With these examples in mind, we come to the main result of this section.

Theorem 3.8.12. Let f € Z[Z] be irreducible, which we may assume is ad-
justed with positive constant term. For every N > 1 there is an irreducible
gy € Z[NZ% and ey > 1 such that

(N2 NZINZY = (g)znze) and  fy = g3

The multiplicity e can be computed from the absolutely irreducible factor-
ization of f in C[Z]. If the support of f generates a finite-index subgroup
of Z4, then there is an integer Q(f), which can also be computed from the
absolutely irreducible factors of f, such that ey = 1 for every N that is rela-
tively prime to Q(f). Finally,

<fk>Z[Zd} NZINZ) = <95€\7>Z[NZ‘1]

forevery k > 1.
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Proof. Recall our conventions in Remark 3.8.3. Let K be the splitting field
of f,and f = f(0)¢1 - - - ¢, be the factorization of f using monic absolutely
irreducible ¢; € K[Z?] from Proposition 3.7.3. Let ® = {1, ..., ¢,}. Since
the ¢; are monic, Gal(K : Q) permutes the elements of ®, and this action is

transitive by irreducibility of f.

Now fix N > 1. Then K(() is anormal extension of Q. Let G = Gal(K((y) :
Q). Consider the set 24, x ®. The group Q4 acts on this set via w’ - (w, ;) =
(w'w, ;). The group G also acts on this set via o - (w, ¢;) = (o(w),o(p))).
More precisely, 0 € G acts of the first coordinate using its restriction to
Q(¢n) and on the second coordinate using its restriction to K. These ac-
tions combine to give an action of the semidirect product G x Q4; defined
using the action of G on Q4,, so that ow = o(w)o.

Define an equivalence relation ~ on Q4 x ® by (w, ;) ~ (W', px) if and
onlyifw-p; = w'-¢y. Itis routine to verify that G x Q4, preserves equivalence
classes. Since Gal(K : Q) acts transitively on ®, it follow that G x Q4; acts
transitively on Q4 x ®. Hence all equivalence classes have the same cardi-
nality, say ey > 1. Pick one representative (w, ¢;) from each equivalence
class, and let gy be the product of the corresponding polynomials w - ¢;.

Observe that by its construction gy is invariant under G x Q?V. Invariance
under Q4, implies that gy € K({y)[NZ%, and invariance under G further
implies that gy € Q[NZ]. Then transitivity of G x Q% on Q4, x ® shows that
gy is irreducible in Q[NZ4].

~

We have that fy = f(0)N* gx7" . Let g be the least positive integer such that
qgn € Z[NZ%, so that gy := qgy is primitive. Then

-~ d
v = (F0)Y" /q*) gy
But both fy and ¢} are primitive with positive constant terms, and hence
fn =gy

We now turn to computing ey. Each of the absolutely irreducible factors
¢; has the same support since they are all Galois conjugates. Let I', de-
note the common support group of each. By Lemma 3.8.6, each contributes
multiplicity |Z¢/ (T, + NZ<)|. Further multiplicity arises if one factor can be
rotated by an element of 24, to another. This property divides ® into equiv-
alence classes, with all classes having the same cardinality s. It then follows
thatey = |Z4/(L, + NZ%)|s.

Next, we determine sufficient conditions on N so that ey = 1. Assume
that I’y has finite index in Z¢. Clearly I'y C T, and so I, also has finite index.
By Lemma 3.8.6, if IV is relatively prime to the index [Z? : T,;] of [, then
1Z3/(T, + NZ%)| = 1.



3.9. Remarks and questions 55

To analyze when one ¢; can rotate to another, we need to consider the
group 2k of roots of unity in the splitting field K of f. This is a finite cyclic
group, and so equals ,, for some n > 1. Now [Q((,,) : Q] = ¢(n), where ¢
denotes the Euler function. Since Q(¢,,) C K, it follows that ¢(n) < [K: Q]. A
simple argument shows that ¢(n) > /n/2foralln > 1,and son < 4[K : Q)%
Hence if N is relatively prime to (4[K : Q]?)!, then QyNQx = {1}. Forsuch an
N suppose that w - p; = ¢, for some w € Q%. For each k € supp ¢; = supp p;
we have that w*@; (k) = @;(k), and so

W = 3;(k)/Pi(k) € Qv N O = {1}.
But this implies that ¢; = ¢;.

Putting these together, we let Q(f) = [Z¢ : T,](4[K : Q]?)!, and conclude
that if NV is relatively prime to Q(f) then ey = 1. O

3.9 Remarks and questions

Here we make some further remarks and ask several questions related to
decimations.

3.9.1 More general lattices

Let us call a finite-index subgroup of Z¢ a lattice. We have used the sequence
{NZ4} oflattices to define decimation, but these definitions easily extend to
all lattices. Let A € Z% be a lattice, and let 2, denote the dual group of 7 /A,
which has cardinality [Z?: A], the index of A in Z?. Define f(5) = [[eq, @ />
and

Lof = Ega. <;10 7, |). (3.17)
A [Zd: A [Z7: A] g 1J(A) .
For a sequence { Ay} oflattices, let us say Ay — oo if for every r > 0 we have
that {n € Ay : ||n|| < r} = {0} for all large enough N.

Question 3.9.1. Let 0 # f € C[Z%, and let {Ay} be a sequence of lattices
with Ay — oo. Do the concave hulls CH(L, ) converge uniformly on N5 to
Dy?

Our methods for NZ¢ do not extend directly to this more general situa-
tion. We made essential use of the property of fx that it is a polynomial in
the Nth powers of the variables, enabling us to apply the Mahler estimates
to the polynomial En fx of lower degree, gaining a crucial improvement.
There is no corresponding argument for general lattices.
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3.9.2 Partial decimation

By taking different sequences of lattices, we can in effect decimate along
lower rank subgroups. The following example illustrates this idea.

Letd = 2 and f(z,y) = 1+ = + y. We will use the sequence of lattices
Axy = NZ & Z, which corresponds to decimating with respect to z. Using
the notation from the previous section, 2, = Qx x {1}, and so

fomy@y) = [ O+ws+y) =0+~ £V,
wEQN

It is well-known that the growth rate of the binomial coefficients can be
computed using Stirling’s approximation to be

1 N
—1 ~ = —plogp — (1 —p)log(1l —
v log (p N) n(p) plogp — (1 —p)log(l —p)

for 0 < p < 1. Hence the decimation limit D](cl)(r, s) of f with respect to =

using this sequence of lattices is the concave hull of the curve (0, D, 77(]0)) for
0 < p < 1 together with the point (1,0, 0), as shown in Figure 3.7(a).

(a) (b)

Figure 3.7: (a) The partial decimation limit of 1 + = + y, and (b) its partial
Ronkin function

Define the partial Ronkin function of f with respect to z to be
1 ! ;
R (u,v) = /0 log | f(e“e*™? ¢)| df.

Figure 3.7(b) shows this in our case. One can show that here D](cl) =— (R}l)) *
on Ny.
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This example suggests a more general phenomenon. Let C(Z?) denote
the set of subgroups of Z¢. We can give a topology to C(Z?) by declaring two
subgroups to be close if they agree on a large ball around 0. For example,
in this topology Ay — {0} means Ay — oo from §3.9.1, and in the above
example N7Z & Z — 0 @ Z. This is a special case of the Chabauty topol-
ogy on the set C(G) of closed subgroups of a locally compact group G. This
topology is named after Claude Chabauty, who in 1950 introduced it [19] to
generalize Mahler’s compactness criterion [76] for lattices in R4 to lattices
in locally compact groups. The Chabauty space C(G) has been investigated
by many authors, for instance by Cornulier [21] when G is abelian. Even for
familiar groups their Chabauty space can be intricate to analyze. For exam-
ple, Hubbard and Pourezza [50] used a tricky argument to prove that C(R?)
is homeomorphic to the four-dimensional sphere.

Let K be a compact subgroup of T¢, and let ux denote normalized Haar
measure on K. Fors € K welet e?™Sumean (e?™1uy, ..., e*"%du,). We then
define the Ronkin function of f with respect to K to be

RYO(w) = [ togl7( )] diac(s).

Question 3.9.2. Is there a limiting shape for decimations corresponding to
a sequence of lattices {Ay} in Z¢ converging to a non-trivial subgroup I' €
C(7)?

3.9.3 Exponential size of decimation coefficients

In Example 3.2.3 we saw that if f € C[Z] is allowed to have complex coeffi-
cients, then some of the coefficients of fy may have exponential size dras-
tically different from that predicted by D;. However, if f € Z[Z] is restricted
to have integer coefficients, then this behavior cannot happen, as indicated
by Example 3.2.2. More precisely, using the diophantine results of Gelfond
mentioned there, one can show that if f € Z[Z] has supp f = {0,1,...,7}
and ¢ > 0, then for all sufficiently large N we have that |fx (kN)| is between
eN(Dr(k)£e) for each 0 < k < r for which fx (kN) # 0.

This raises the intriguing question of whether this extends to f € Z[Z%]
for d > 2, i.e., do all nonzero coefficients of fy have the approximate ex-
ponential size predicted by D;. The following gives a precise quantitative
formulation.

Question 3.9.3. Let f € Z[Z%). Fixrg € Ny, and lete > 0. Are there § > 0
and Ny > 1such thatif N > Ny andr € N=9Z% N N} with ||r — ro| < 9,
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and if Ly f(r) # —oo, then |Ly f(r) — D¢(r)| < €2 Can ¢ and Ny be chosen
uniformly forry € Ny?

Some evidence for a positive answer comes from polynomials in two vari-
ables related to dimer models, as discussed in Remark 3.2.6. Using the addi-
tional machinery afforded by the physical interpretation of the related par-
tition function and the resulting subadditivity, the exponential size of the
coefficients can be shown to obey the estimates in the question. In particu-
lar, this applies to f(z,y) = 1+ x + y, although we do not know of any direct
argument for this.

3.9.4 Continuity of exp[Dy| in the coefficients of f

Start by fixing a cube B,, = {—n,...,n}% C Z%. We can identify a polynomial
f € C[z%] whose support s in B,, with its coefficient function f € C?». Boyd
[11] showed that the function CB» — [0, c0) given by f — M(f) = exp[m(f)]
is continuous in the coefficients of f.

Recalling that m(f) is the maximum value of Dy, this suggests looking at
exp|Dy], which is a nonnegative upper semicontinuous function on B,, (the
discontinuities occur at the boundary of Ny C B,,). A function ¢: B, — R
is upper semicontinuous if and only if its subgraph {(u,t) € B, xR : ¢t <
p(u)} is closed in B,, x R. The space USC(B,,) of all upper semicontinuous
functions on B,, carries a natural topology by declaring two elements to be
close if their subgraphs are close in the Hausdorff metric on closed subsets
of B,, x R (see [6] for details).

Question 3.9.4. Is the map f — exp[Dy] from CP to USC(B,,) continuous?

3.9.5 Nonprincipal actions

Decimation makes sense for every algebraic Z?-action (indeed for every al-
gebraic action of a countable residually finite group). Suppose that a is an
ideal in Z[Z4), and let X, be the dual group of Z[Z%)/a as described in §3.6.
The commutative algebra there shows that the Nth decimation ry(X,) is
defined by the contracted ideal a N Z[NZ?. However, there is no obvious
replacement for g to measure growth when a is not principal,

Question 3.9.5. If a is a nonprincipal ideal in Z[Z?], are there objects related
to the contractions a N Z[NZ? which can be normalized to converge to a
limiting object?
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If a is not principal, then the Z¢-shift action on X, has zero entropy. How-
ever, by restricting the shift to iterates close to lower dimensional subspaces
of R? the action can have positive entropy [13, §6]. This suggests that the
partial decimations from §3.9.2 may play a role here.

Examining concrete examples may shed some light on this question. These
include the case of commuting toral automorphisms (see [52, §6] for many
such examples), the Z?-action defined by multiplication by 2 and by 3 on T
(corresponding to a = (x—2,y—3)), and the so-called space helmet example
[31, Example 5.8] (corresponding to a = (1 + z + y, z — 2)).

An important example of a different character is due to Ledrappier [61],
which corresponds to the nonprincipal ideal (1 + = + y,2) C Z[Z?]. This
example has zero entropy as a Z2-action, but strictly positive entropy along
every 1-dimensional subspace of R? (see [13, Example 6.4] for the explicit
description). Another curious feature of this example is decimation self-
similarity. Because (1+ z +y)?" = 1 +2%" + y*" when taken mod 2, the 2"th
decimation of the example, when rescaled by 2", is just the original action.

3.10 Example of computing the decimation limit

There are few explicit calculations of the logarithmic Mahler measure, or
more generally of the Ronkin function, of polynomials in Z[Z%] when d > 2.
Depending on the relative sizes of the coefficients, evaluation of the inte-
grals involved typically requires the torus to be subdivided into a large num-
ber of subregions with complicated boundaries, and so simple formulas in
terms of familiar functions are rare.

Here we treat the case f(x,y) = 1 + = + y from Example 3.2.4, where these
calculations can be carried out, resulting in the formulas (3.8) and (3.9) for
Dy.

Smyth [105] first computed the logarithmic Mahler measure m(f) = Rf(0,0)
to have the value in (3.10). Twenty years later Maillot [78, §7.3], aided by
Cassigne, computed the entire Ronkin function Ry(u,v), providing in his
long memoir a concrete example of the canonical height of a hypersurface.
Their result involves the Bloch-Wigner dilogarithm function, which is an al-
ternative formulation of the series representation in our formulas. Lundqvist
[70] gave the formulas for the partial derivatives of R; we use here. He also
investigated the polynomial 1 + x + y + 2, and showed that the second or-
der partial derivatives of its Ronkin function can be expressed in terms of
standard elliptic functions.
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() (b)

Figure 3.8: Determining partial derivatives from angles and sides

Let A = N} be the unit simplex, and denote its interior by A°. Let A be
the amoeba of f, as shown in Figure 3.5, and A be its interior. To evaluate
R} (r,s) for (r,s) € A%, we need to know the value of (u,v) € A} at which
the partial derivatives of Ry(u,v) with respect to v and v equal r and s, re-
spectively. Fortunately, there is a simple relationship that was established
by Lundqyvist [70], whose treatment we follow.

Lemma 3.10.1. Let (u,v) € A;, so that 1, %, and e? form the sides of a
nondegenerate triangle. Let 7 and 7s be the angles in this triangle shown
in Figure 3.8(a). Then

ORy
E(u,v) =r and

OR;

W(u, v) = s. (3.18)

Proof. We will compute the partial derivatives by differentiating the inte-
grand in

1 1
Rf(u,v) = /0 /0 log |1 4 e“e2™ 1 e?e2™%| df dy

1 1
= Re {/ / log(1 + e“e?™ 4 ¢ve?™%) df dcp} .
0 Jo
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In the last line log represents a local inverse to exp, which is well-defined up
to the addition of an integral multiple of 27i. After taking partial derivatives,
we will get a result that is independent of this multiple.

By symmetry, it suffices to compute OR;/0u. Differentiating the integrand

gives
OR f el e2mit
ou u U Re / / 1 + eue2mib 4 pve2mip df d(p:| ’

Rewriting the integrals as contour integrals, we see that

el 27r7,9
1 1 dw
dddp = ——— —dz—
/ / 1 + eve?mit 4 eve2miv v (27i)? /|Z|eu /wev 1tz2tw  w

RETY O E A Y -
©2m0 Jjpmen L2700 e 2 — (1 —w)] w

The inner integral is the winding number of the circle of radius ¢* around
—1 —w = —1 — %>, and so has value 1 if |1 4 e?e?>"?| < e* and 0 if |1 +
e'e?™%| > e* (these are mistakenly reversed in [70]). A glance at Figure 3.8(b)
shows that the value is 1 for an interval of ¢ of length 27, and 0 otherwise.
Since (1/27i)(dw/w) is normalized Lebesgue measure dp, we obtain that
(OR¢/0u)(u,v) = r. O

To compute the decimation limit Dy, we need to express v and v in terms
of r and s. Let a = e" and b = ¢V be the sides of the triangle in Figure 3.8(a).
By the law of sines,

a b 1 1

sinr  sinwts  sinw(l—r—3s) sinw(r+s)’

and hence
— u(rs) _ ST 1
a=a(r,s)=e" ST 3) (3.19)
_ o u(rs) sin s
b=>b(r,s)=e = 7sin7r(r e (3.20)

For (u,v) € Aj it follows from the definition (3.11) that
—R} ) = inf R ) - — 9U,
(u,v) (r,gler ¢ (u,v) —ru— sv

and by calculus the infimum is attained at the (u,v) given by (3.18). Thus
for (r, s) € A° we have that

D¢(r,s) = —R;? (u(r, s), v(r, s)) = Rf(u(r, s), U(’I“.S)) —ru(r,s) —sv(r,s),
3.21)
where u(r, s) and v(r, s) are determined by (3.19) and (3.20).
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Remark 3.10.2. Observe that the functions u(r, s) and v(r, s) in (3.19) and
(3.20) are real analytic on A°. Also, Ry(u,v) is real analytic on Aj. Together
these show that Dy(r, s) is real analytic on A°.

It remains to compute R¢(u,v). By symmetry it suffices to assume that
u > v. Using Jensen’s formula (3.5), we see that

1 1
Rf(u,v) :/ / 10g|1 +€u627r19 +€U62ﬂ—l¢’d0 dgo
0 Jo
1 1 ) A
= U _|_/ / 10g |€—u 4 ev—ue2mg0 + €2mt9| do d(p
0 Jo
1 .
) +/ 10g+ |e—u + ev—ueQﬂup| dgo
0

Note that |e™* 4 e~ “e?™| > 1 if and only if |1 + e?e?>™#| > ¥, and another
glance at Figure 3.8(b) shows this occurs exactly when —7(1 — r) < 27y <
7(1 —r). Hence

3(1-7) .
Rf(u,v) =u+ / log|e™™ + e~ “e*™?| dy
—3(1-7)
3(1-7)
2 .
:u—(l—r)u—i—/ log |1 + €%e*™%| dyp
—3(1-7)
3(1-7) ,
= ru+/ log |1 + €%e?™%| de.
—3(1-7)

First suppose that e’ < 1, which corresponds to (r,s) € A9, where A, is
defined in (3.6). The series expansion of log(1 + z) for 1 + z in the domain of
integration converges uniformly, and the imaginary part vanishes by sym-
metry. Hence

e 627rzng0 dQD

%(l—r) n=1 n
oo
(_1)n+1 nv L.
- T e 1— 7).
ru+ ; e sin[rn(1 —r)]

Recalling that e*("™) = b(r, s) = (sinws)/ sin[x(r + s)], we conclude that
D¢(r,s) = Rf(u('r, s),v(r, s)) —ru(r,s) —sv(r,s)
B i (—1)m+! (3.22)

g b(r,s)" sin[rn(1 — r)] — s log[b(r, s)].

n=1
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Now suppose that e¥ > 1, which corresponds to (r,s) € A%, where Aj is
defined by (3.7). Then log |1 + €?e?>™?| = v + log |1 + e Ve~ 2™%|. Calculating
as before,

1(-r) o0 (—1)n+1

Rf(U,’U) =ru-+ (1 — ’I")’U + / e—Twe—Qwin@ dg&

“faenm
= rut =+ Y T g sinfrn(1 - )
=Tru T)U Z 7Tn2 r,Ss S |mn T)|.
Thus for (r, s) € A% we find that
Dy >—§:ﬂb( )" sinfrn(l —7)] + (1 -7 — 5) log[b(r, 5)]. (3.23)
(r, s —n:1 ey T, S sin|m™n T r — s)log[b(r, s)]. .

Finally, note that on the overlap A; N Ay inside A°, we have that b(r,s) = 1
and so the series in (3.6) and (3.7) converge and agree, hence give the value
of D¢ (r, s) by continuity of the Legendre transform.
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