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Chapter 3

Decimation limits of principal
algebraic Zd-actions1

Abstract

Let f be a Laurent polynomial in d commuting variables with integer coeffi-
cients. Associated to f is the principal algebraic Zd-action αf on a compact
subgroup Xf of TZd determined by f . Let N > 1 and restrict points in Xf

to coordinates in NZd. The resulting algebraic NZd-action is again princi-
pal, and is associated to a polynomial gN whose support grows with N and
whose coefficients grow exponentially with N . We prove that by suitably
renormalizing these decimations we can identify a limiting behavior given
by a continuous concave function on the Newton polytope of f , and show
that this decimation limit is the negative of the Legendre dual of the Ronkin
function of f . In certain cases with two variables, the decimation limit coin-
cides with the surface tension of random surfaces related to dimer models,
but the statistical physics methods used to prove this are quite different and
depend on special properties of the polynomial.

3.1 Introduction

Let d > 1 and f ∈ Z[x±1
1 , . . . , x±1

d ] be a Laurent polynomial with integer
coefficients in d commuting variables. We write f(x1, . . . , xd) = f(x) =

1This chapter is based on: E. Arzhakova, D. Lind, K. Schmidt, E. Verbitskiy, Decimation
limits of principal algebraic Zd-actions, arXiv:2104.04408
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28 Chapter 3. Decimation limits of principal algebraic Zd-actions∑
n∈Zd f̂(n)xn, where xn = xn1

1 . . . xndd and f̂(n) ∈ Z for all n ∈ Zd and is
nonzero for only finitely many n ∈ Zd.

Denote the additive torus R/Z by T. Use f to define a compact subgroup
Xf of TZd by

Xf :=
{
t ∈ TZd :

∑
n∈Zd

f̂(n)tm+n = 0 for all m ∈ Zd
}
. (3.1)

By its definition this subgroup is invariant under the natural shift-action σ

of Zd on TZd defined by σn(t)m = tm−n. Hence the restriction αf of σ to Xf

gives an action of Zd by automorphisms of the compact abelian group Xf .
We call (Xf , αf ) the principal algebraic Zd-action defined by f .

Such Zd-actions serve as a rich class of examples and have been studied
intensively. An observation of Halmos [46] shows that αf automatically pre-
serves Haar measure µf on Xf . It is known that the topological entropy
of αf coincides with its measure-theoretic entropy with respect to µf . For
nonzero f this common value was computed in [64] to be the logarithmic
Mahler measure of f , defined as

m(f) :=

∫ 1

0
· · ·
∫ 1

0
log |f(e2πis1 , . . . , e2πisd)| ds1 . . . dsd (3.2)

(when f = 0 the entropy is infinite).

It will be convenient to identify the Laurent polynomial ringZ[x±1
1 , . . . , x±1

d ]
with the integral group ring Z[Zd], where the monomial xn corresponds to
n ∈ Zd. Thus f ∈ Z[x±1

1 , . . . , x±1
d ] is identified with its coefficient function

f̂ : Zd → Z. When emphasizing the behavior of coefficients we will always
use the notation f̂ .

Fix a principal algebraic Zd-action (Xf , αf ). Let N > 1 and rN : TZd →
TNZd be the map restricting the coordinates of a point to only those in the
sublattice NZd. We call the image rN (Xf ) the N th decimation of Xf , al-
though this is considerably more brutal that the term’s original meaning
since only every N th coordinate survives. Clearly rN (Xf ) is again a com-
pact abelian group, and it is invariant under the natural shift action of NZd

on TNZd .

Using commutative algebra applied to contracted ideals in integral exten-
sions, we show in §3.6 that rN (Xf ) is a principal algebraic NZd-action with
some defining polynomial gN ∈ Z[NZd]. Typically the support of gN grows
withN and its coefficient function ĝN grows exponentially inN . Our goal in
this paper is to prove that with suitable renormalizations the concave hulls
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of the resulting functions converge uniformly on the Newton polytope of f
to a continuous decimation limit Df . Furthermore, Df can be computed via
Legendre duality using a well-studied object called the Ronkin function of
f .

The analytical parts of our analysis apply to Laurent polynomials with
complex coefficients. For such an f ∈ C[Zd] we define its N th decimation
fN by

fN (x1, . . . , xd) :=

N−1∏
k1=0

· · ·
N−1∏
kd=0

f(e2πik1/Nx1, . . . , e
2πikd/Nxd). (3.3)

Since fN is unchanged after multiplying each of its variables by an arbitrary
N th root of unity, it follows that it is a polynomial in the N th powers of the
xi, i.e., that fN ∈ C[NZd]. Decimations of polynomials have appeared in
many contexts, including Purbhoo’s approximations to shapes of complex
amoebas [92], Boyd’s proof that the Mahler measure of a polynomial is con-
tinuous in its coefficients [11], and dimer models in statistical physics [55].

For most f ∈ Z[Zd] the generator gN of the N th decimation of Xf coin-
cides with fN . But under special circumstances characterized in §3.6, in-
volving the support of f and the Galois properties of the coefficients of the
polynomials occurring in the factorization of f over the algebraic closure of
the rationals, it can happen that gN is a proper divisor of fN . To give a sim-
ple example when d = 1, let f(x) = x2 − 2. Then since f is already in Z[2Z]
we have that g2(x) = f(x), while f2(x) = f(x)f(−x) = f(x)2. Nevertheless
even in these circumstances the renormalization behavior of the gN can be
determined from that of the fN .

For f ∈ C[Zd] let supp f = {n ∈ Zd : f̂(n) 6= 0} denote its support. The
Newton polytope Nf of f is the convex hull in Rd of supp f . Since fN is the
product ofNd polynomials all of whose Newton polytopes areNf , it follows
thatNfN = NdNf .

The Ronkin function Rf : Rd → R of 0 6= f ∈ C[Zd] is defined by

Rf (u1, . . . , ud) :=

∫ 1

0
· · ·
∫ 1

0
log |f(eu1e2πis1 , . . . , eude2πisd)| ds1 . . . dsd. (3.4)

This is a convex function on Rd, and therefore has a Legendre dual R∗f de-
fined by

R∗f (r) := sup{r · u− Rf (u) : u ∈ Rd},

which turns out to be a convex function onNf (and is∞ offNf ).
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To describe rescaling of polynomials g ∈ C[Zd] it is convenient to extend
the domain of ĝ from Zd to Rd by declaring its value to be 0 off supp g.

Let ϕ : Rd → C. For any a > 0 define the rescaling operator Ea on ϕ by
(Eaϕ)(r) = ϕ(ar) for all r ∈ Rd. When dealing with concave functions it is
often convenient to use the extended range R = R ∪ {−∞}, with the usual
algebraic rules for handling −∞ and with the convention that log 0 = −∞.
Then log |ϕ| : Rd → R, and we define its concave hull CH(log |ϕ|) to be the
infimum of all affine functions on Rd that dominate log |ϕ|.

Let f ∈ C[Zd] and fN be its N th decimation. Define the N th logarithmic
rescaling LNf of f by

LNf := ENd

( 1

Nd
log |f̂N |

)
.

Clearly LNf(r) = −∞ if r /∈ Nf , and is finite at every extreme point ofNf and
at only finitely many other points inNf . The N th renormalized decimation
DNf of f is the concave hull CH(LNf) of LNf . By our previous remark, DNf
equals−∞ offNf and is finite at every point ofNf .

With these preparations we can now state one of our main results.

Theorem 3.1.1. Let 0 6= f ∈ C[Zd]. Then the Nth renormalized decimations
DNf of f are concave polyhedral functions on the Newton polytope Nf of
f that converge uniformly on Nf as N → ∞ to a continuous concave dec-
imation limit function Df (and off Nf they are equal to −∞). Furthermore
Df = −R∗f , where R∗f is the Legendre dual of the Ronkin function Rf of f .

The proof of this theorem uses two main ideas: Mahler’s fundamental es-
timate [77] relating the largest coefficient of a polynomial to its Mahler mea-
sure and support, and a method used by Boyd [11], applied to decimations
along powers of 2, to prove that for polynomials whose support is contained
in a fixed finite subset of Zd the Mahler measure is a continuous function of
their coefficients.

If f ∈ Z[Zd] the decimation limit of f contains dynamical information
about αf .

Corollary 3.1.2. Let 0 6= f ∈ C[Zd]. Then the maximum value of the deci-
mation limit Df on the Newton polytopeNf equals the logarithmic Mahler
measure m(f) of f defined in (3.2). In particular, if f ∈ Z[Zd] then this max-
imum value equals the entropy of the principal algebraic Zd-action αf .

Duality allows us to compute the decimation limit of a product of two
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polynomials. Suppose that ϕ,ψ : Rd → R both have finite supremum. De-
fine their tropical convolution ϕ~ ψ by

(ϕ~ ψ)(r) := sup{ϕ(s) + ψ(r− s) : s ∈ Rd}.

This is the tropical analogue of standard convolution, but using tropical (or
max-plus) arithmetic in R.

Corollary 3.1.3. Let f and g be nonzero polynomials in C[Zd]. Then Dfg =
Df ~ Dg.

Thus decimation limits live in the tropics.

3.2 Examples

Here we give some examples to illustrate the phenomenon we are investi-
gating. They use either one or two variables, and for these we denote the
variables by x and y rather than x1 and x2. Let ΩN = {e2πik/N : 0 6 k < N}
denote the group of N th roots of unity.

Example 3.2.1. Let d = 1 and f(x) = x2 − x − 1 = (x − λ)(x − µ), where
λ = (1 +

√
5)/2 and µ = (1−

√
5)/2. Then

fN (x) =
∏
ω∈ΩN

f(ωx) =
∏
ω∈ΩN

(ωx− λ)(ωx− µ)

= (xN − λN )(xN − µN ) = x2N − (λn + µN )xN + (−1)N .

Hence

(LNf)(r) =


0 if r = 0 or 2,
1
N log |λN + µN | if r = 1,

−∞ otherwise.

Since LNf(1)→ log λ asN →∞, the concave hulls DNf converge uniformly
onNf = [0, 2] to the decimation limit

Df (r) =


r log λ if 0 6 r 6 1,

(2− r) log λ if 1 6 r 6 2,

−∞ otherwise,

which is shown in Figure 3.1(a).
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To compute the Ronkin function Rf , recall Jensen’s formula that for every
ξ ∈ C we have that∫ 1

0
log |e2πis − ξ| ds = max{0, log |ξ|} := log+ |ξ|. (3.5)

Thus

Rf (u) =

∫ 1

0
log |f(eue2πis)| ds =

∫ 1

0
log |eue2πis − λ| ds+

∫ 1

0
log |eue2πis − µ| ds

= 2u+ log+ |e−uλ|+ log+ |e−uµ|,

whose polygonal graph is depicted in Figure 3.1(b). It is then easy to verify
using the definition of Legendre transform that Df = −R∗f .

Finally, the decimation limits Dx−λ and Dx−µ are computed similarly, and
shown in Figures 3.1(c) and 3.1(d). It is easy to check using the definition
of tropical convolution that Dx−λ ~ Dx−µ = D(x−λ)(x−µ) = Df , in agreement
with Corollary 3.1.3.

r

−∞ −∞

1

log λ

2

Df (r)

(a)

u
log |µ| log λ

2 log λ

Rf (u)

(b)

r

log λ

1

Dx−λ(r)

(c)

r

− log λ

1

Dx−µ(r)

(d)

Figure 3.1: Graphs in Example 3.2.1

More generally, if f(x) =
∏m
j=1(x− λj) and |λ1| > |λ2| > · · · > |λm|, then a

computation similar to that in Example 3.2.1 shows that (LNf)(m) = 0 and
that (LNf)(k) converges to log |λ1λ2 . . . λm−k| for k = 0, 1, . . . ,m−1, and this
gives uniform convergence of DNf to Df on Nf = [0,m]. However, if some
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roots of f have equal absolute value, then convergence is more delicate, or
may even fail, as the next two examples show.

Example 3.2.2. Let d = 1 and f(x) = x4 − 4x3 − 2x2 − 4x + 1, which is
irreducible in Z[Z]. The roots of f are λ = 1 +

√
2 +

√
2
√

2 + 2 ≈ 4.611,
µ = 1 +

√
2−

√
2
√

2 + 2 ≈ 0.217, and 1−
√

2± i
√

2
√

2− 2 = e±2πiθ, where θ
is irrational. Simple estimates show that (LNf)(k) converges for k = 0, 1, 3, 4
with limits 0, log λ, log λ, 0, respectively. However, the dominant term con-
trolling the behavior of (LNf)(2) is

1

N
log |2λN cos(2πNθ)|.

Since θ is irrational, the factor cos(2πNθ) occasionally becomes very small,
and so convergence is in question.

In fact, (LNf)(2) does converge, but the proof requires a deep result of Gel-
fond [37, Thm. III, p. 28] on the diophantine properties of algebraic num-
bers on the unit circle. According to this result, if ξ is an algebraic num-
ber (such as e2πiθ above) such that |ξ| = 1 and ξ is not a root of unity, and
if ε > 0, then |ξn − 1| > e−nε for all but finitely many n. From this it is
easy to deduce that |e2πiNθ − i| > e−Nε for almost every N , and hence that
(1/N) log | cos(2πNθ)| → 0 as N → ∞. This convergence is illustrated in
Figure 3.2(a).

Both (LNf)(1) and (LNf)(3) converge to log λ, and clearly it holds that
lim supN→∞(LNf)(2) 6 log λ. Hence any lack of convergence of (LNf)(2)
would not affect the limiting behavior of the concave hull DNf , nor uni-
form convergence of DNf to Df on [0, 4]. Thus such diophantine issues are
covered up by taking concave hulls.

log λ

0 1 2 3 4

(a)

2 log 2

20 1

(b)

Figure 3.2: (a) Convergence in Example 3.2.2, and (b) lack of convergence in
Example 3.2.3

The next example shows that if we allow the coefficients of f to be arbi-
trary complex numbers instead of integers, then (LNf)(k) can fail badly to
converge at some k.
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(a) (b)

Figure 3.3: (a) Polyhedral approximation D5f , and (b) limiting smooth sur-
face Df for f(x, y) = 1 + x+ y in Example 3.2.4

Example 3.2.3. Let d = 1 and f(x) = (x− 2e2πiθ)(x− 2e−2πiθ), where we will
determine θ. Then (LNf)(0) = 2 log 2 and (LNf)(2) = 0 for all N > 1, while

(LNf)(1) =
1

N
log |2N · 2 cos(2πNθ)|.

It is possible to construct an irrational θ and a sequence Nj → ∞ such that
1
Nj

log | cos(2πNjθ)| → −∞ as j → ∞ Hence using this value of θ to define
f we see that (LNf)(1) does not converge, as depicted in Figure 3.2(b), al-
though the concave hulls DNf do converge uniformly to Df .

Using arguments similar to those above, it is possible to give an elemen-
tary direct proof of Theorem 3.1.1 in the case d = 1.

Example 3.2.4. Let d = 2 and f(x, y) = 1 + x + y. Then fN is a polynomial
in xN and yN of degree N2. For example,

f〈5〉(x, y) = x25 + 5x20y5 + 5x20 + 10x15y10 − 605x15y5 + 10x15 + 10x10y15

+ 1905x10y10 + 1905x10y5 + 10x10 + 5x5y20 − 605x5y15 + 1905x5y10

− 605x5y5 + 5x5 + y25 + 5y20 + 10y15 + 10y10 + 5y5 + 1.

The N th logarithmic rescaling LNf of f is finite at points in the unit sim-
plex ∆ = Nf whose coordinates are integer multiples of 1/N . Thus its con-
cave hull DNf is a polyhedral surface over ∆, and as N → ∞ these surfaces
converge uniformly on ∆ to the graph of the concave decimation limit Df .
Figure 3.3(a) shows the polyhedral surface D5f corresponding to the calcu-
lation of f〈5〉 above, and Figure 3(b) depicts the limiting smooth surface for
Df .

For this example it is possible to derive an explicit formula for Df . Clearly
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Df (r, s) is symmetric in r and s, so we may assume that s 6 r. Let

∆1 = {(r, s) ∈ ∆ : s 6 r and s 6 (1− r)/2}, (3.6)

∆2 = {(r, s) ∈ ∆ : s 6 r and s > (1− r)/2}. (3.7)

For (r, s) ∈ ∆1 ∪∆2 with r + s < 1 define

b(r, s) = csc[π(r + s)] sin(πs).

Then it turns out that 0 6 b(r, s) 6 1 for (r, s) ∈ ∆1 while 1 6 b(r, s) <∞ for
(r, s) ∈ ∆2.

Using Legendre duality and calculations of Rf by Lundqvist [70], we will
show in Appendix A that if (r, s) ∈ ∆1 then

Df (r, s) =

∞∑
n=1

(−1)n+1

πn2
b(r, s)n sin[nπ(1− r)]− s log b(r, s), (3.8)

while if (r, s) ∈ ∆2 then

Df (r, s) =
∞∑
n=1

(−1)n+1

πn2
b(r, s)−n sin[nπ(1− r)] + (1− r − s) log b(r, s). (3.9)

We will prove in Corollary 3.1.2 that the maximum value of Df equals the
entropy of αf , which is the logarithmic Mahler measure m(f) of f defined in
(3.2). In this example, the maximum value is attained at (1/3, 1/3), which is
in both ∆1 and ∆2. Either formula therefore applies, and each gives Smyth’s
calculation [105] that

m(1 + x+ y) = Df (1/3, 1/3) =
3
√

3

4π

∞∑
n=1

χ3(n)

n2
=

3
√

3

4π
L(2, χ3) ≈ 0.3230,

(3.10)
where χ3 is the nontrivial character of Z/3Z and L(s, χ3) is the L-function
associated with χ3.

Unlike the previous example, some decimation limits exhibit non-smooth
behavior.

Example 3.2.5. Let d = 2 and f(x, y) = 5 + x + x−1 + y + y−1. The dec-
imation limit Df is depicted in Figure 3.4(a). The non-smooth peak at the
origin is due to a “hole” in the amoeba of f , as defined in §3.4 and shown in
Figure 3.4(b).

As in the previous example, the decimation limit describes the surface
tension for a physical model, in this case dimer tilings of the square-octagon
graph (see [55, Fig. 3].
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(a) (b)

Figure 3.4: (a) The decimation limit for f(x, y) = 5 + x+ x−1 + y + y−1 from
Example 3.2.5 , and (b) the “hole” in its amoeba causing the peak.

Remark 3.2.6. Dimer models have a long history in statistical physics. A
particularly important instance involves f(x, y) = 1 + x + y from Example
3.2.4, and has been studied in enormous detail by many authors, including
Kenyon, Okounkov, and Sheffield [55].

To describe this model, let H denote the regular hexagonal lattice in R2.
We can assign the vertices of H alternating colors red and black, much like
a checkerboard. A perfect matching on H is an assignment of each red ver-
tex to a unique adjacent black vertex, these forming an edge or dimer. A
perfect matching is equivalent to a tiling of R2 by three types of lozenges,
one type for each of the three edges incident to each vertex. Using a nat-
ural height function, such a lozenge tiling gives a surface, and the study of
the statistical properties of such random surfaces has resulted in many re-
markable discoveries (see Kenyon’s survey [56], Okounkov’s survey [86], or
Gorin’s detailed account of lozenge tilings [39]).

Kasteleyn discovered that by cleverly assigning signs to the edges of H ,
he could compute the number of perfect matchings on a finite approxima-
tion using periodic boundary conditions by a determinant formula. Fur-
thermore, this determinant can be explicitly evaluated to have the form of a
decimation of f(x, y) = 1 + x + y. Each of the three terms of f correspond
to one of the three types of lozenges in the random tiling. It then turns out
that in the logarithmic scaling limit Df (r, s) counts the growth rate of per-
fect matchings for which the frequencies of the three lozenge types are r, s,
and 1− r − s. As such, it is called the surface tension for this model.
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The two-variable polynomials with integer coefficients arising from such
dimer models, such as the preceding two examples, define curves of a very
special type called Harnack curves. For these there are probabilistic inter-
pretations of the coefficients of decimations. The additional structure en-
ables one to show that the individual nonzero coefficients of fN grow at a
rate predicted by Df . Example 3.2.3 shows this can fail if complex coeffi-
cients are allowed. But whether or not this is true for every polynomial in
Z[Zd] for all d > 1 appears to be quite an interesting problem (see Question
3.9.3 for a precise formulation).

3.3 Convex functions and Legendre duals

We briefly review some basic facts about convex functions and their Legen-
dre duals. Rockafellar’s classic book [94] contains a comprehensive account
of this theory.

Let R denote R ∪ {∞}, with the standard conventions about arithmetic
operations and inequalities involving∞. Let ϕ : Rd → R be a function, and
define its epigraph by

epiϕ := {(u, t) : u ∈ Rd, t ∈ R, and t > ϕ(u)} ⊂ Rd × R.

Then ϕ is convex provided that epiϕ is a convex subset of Rd × R. Similarly,
a function ψ : Rd → R is concave if−ψ : Rd → R is convex.

The effective domain of a convex function ϕ is defined by

domϕ := {u ∈ Rd : ϕ(u) <∞}.

By allowing ϕ to take the value∞, we may assume that it is defined on all of
Rd, enabling us to combine convex functions without needing to take into
account their effective domains. A convex function is closed if its epigraph
is a closed subset of Rd × R. This property normalizes the behavior of a
convex function at the boundary of its effective domain, and holds for all
convex (and concave) functions that arise here.

Suppose that ϕ : R → R is convex. Its Legendre dual (or, more accurately,
its Legendre-Fenchel dual) ϕ∗ is defined for all r ∈ Rd by

ϕ∗(r) := sup{r · u− ϕ(u) : u ∈ Rd}. (3.11)

The Legendre dual ϕ∗ is also a convex function, and provides an alterna-
tive description of epiϕ in terms of its support hyperplanes. Furthermore,
Legendre duality states that ϕ∗∗ = ϕ for closed convex functions.
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-3 -2 -1 1 2 3

-3
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-1

1

2

3

(a) (b)

Figure 3.5: (a) The amoeba of 1 + x+ y, and (b) its Ronkin function

The Legendre dual of a concave function ψ : Rd → R is similarly defined
as

ψ∗(r) = inf{r · u− ψ(u) : u ∈ Rd}. (3.12)

Then ϕ = −ψ is convex, and a simple manipulation shows that their Legen-
dre duals are related by ψ∗(r) = −ϕ∗(−r).

3.4 Amoebas and Ronkin functions

Let 0 6= f ∈ C[Zd]. Put C∗ = C r {0} and define V (f) := {z ∈ (C∗)d : f(z) =
0}. Let Log : (C∗)d → Rd be the map Log(z1, . . . , zd) = (log |z1|, . . . , log |zd|).

In 1993 Gelfand, Kapranov, and Zelevinsky [36] introduced the notion of
the amoeba Af of f , defined as

Af := Log
(
V (f)

)
⊂ Rd.

The amoeba of 1 + x + y is depicted in Figure 3.5(a). The complement
Acf = RdrAf ofAf consists of a finite number of connected components, all
convex. The unbounded components are created by “tentacles” ofAf . Un-
fortunately, biological amoebas look nothing like their mathematical name-
sakes.

Closely related toAf is the Ronkin function Rf of f , introduced by Ronkin
[95] in 2001, and defined earlier in (3.4). The Ronkin function of 1 + x+ y is
shown in Figure 3.5(b).
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The Ronkin function of a polynomial f is known to be a convex function
on Rd and affine on each connected component of Acf (for this and much
more see [88]). Moreover, on each connected component of Acf the (con-
stant) gradient of Rf is contained in Nf ∩ Zd, and the convex hull of these
values equals Nf . From this we conclude that the Legendre dual R∗f of Rf
has effective domainNf .

3.5 Decimation limits of polynomials

In this section we prove Theorem 3.1.1, one of our main results, and Corol-
laries 3.1.2 and 3.1.3. If 0 6= f ∈ C[Zd] we will show that the N th renormal-
ized decimation DNf = CH(LNf) converges uniformly onNf to a continu-
ous concave limit function Df , and that Df = −R∗f .

The first ingredient in our proof is the basic estimate of Mahler relating the
largest coefficient of a polynomial to its Mahler measure and its support. Let
us begin with some terminology. For 0 6= g ∈ C[Zd] define its height H(g) by
H(g) = max{ |ĝ(k)| : k ∈ Zd}. The Mahler measure of g is M(g) = exp

(
m(g)

)
,

where m(g) is the logarithmic Mahler measure defined in (3.2).

Proposition 3.5.1 (Mahler [77]). Suppose that 0 6= g ∈ C[Zd] and that supp g ⊂
[0, C − 1]d ∩ Zd. Then

2−dCH(g) 6 M(g) 6 CdH(g). (3.13)

Proof. Let k = (k1, . . . , kd) ∈ supp g. Then by [77, Eqn. (3)],

|ĝ(k)| 6
(
C − 1

k1

)(
C − 1

k2

)
. . .

(
C − 1

kd

)
M(g).

Since each binomial coefficient is bounded above by 2C , the first inequality
in (3.13) follows.

The second inequality is a simple consequence of the triangle inequality,
since

M(g) 6
∑

k∈[0,C−1]d∩Zd
|ĝ(k)| 6 |[0, C − 1]d ∩ Zd| · H(g) = CdH(g).

Consider (C∗)d as a group under coordinate-wise multiplication. Define
the action of z ∈ (C∗)d on f ∈ C[Zd] by (z · f)(x1, . . . , xd) = f(z1x1, . . . , zdxd).
This action is commutative since

z · (z′ · f) = (zz′) · f = z′ · (z · f),
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and also z ·(fg) = (z ·f)(z ·g) for all f, g ∈ C[Zd]. Hence the map f 7→ z ·f is a
ring isomorphism of C[Zd]. Furthermore, (z · f) (̂k) = zkf̂(k) for all k ∈ Zd,
and soNz·f = Nf for all z ∈ (C∗)d.

Recall that ΩN denotes the group of N th roots of unity. For ω ∈ Ωd
N ⊂

(C∗)d we callω ·f the rotate of f byω. Then fN =
∏
ω∈ΩdN

ω ·f is the product

of all rotates of f by elements in Ωd
N .

If g, h ∈ C[Zd] then is it well known that Ngh = Nf + Ng (the Minkowski
sum), and trivially Rgh = Rg + Rh. By our previous remarks,

NfN =
∑
ω∈ΩdN

Nω·f =
∑
ω∈ΩdN

Nf = NdNf .

Also, Rω·f = Rf , and hence RfN = NdRf .

For u ∈ Rd put eu = (eu1 , . . . , eud). Then (eu · f )̂ (k) = eu·kf̂(k). Commu-
tativity of the action of (C∗)d on f then shows that (eu · f)〈N〉 = eu · (fN ).
Also

Rf (u) = log M(eu · f) =
1

Nd
log M

(
(eu · f)〈N〉

)
=

1

Nd
log M(eu · fN ).

Observe that

log H(eu · fN ) = max{u · k + log |f̂N (k)| : k ∈ Zd},

indicating a connection with Legendre duals.

Proof of Theorem 3.1.1. Let 0 6= f ∈ C[Zd]. For m ∈ Zd let g(x) = xmf(x).
It is straightforward to verify that (DNg)(r) = (DNf)(r − m) for all r ∈
Rd. Therefore by adjusting f by suitable monomial, we may assume that
supp f ⊂ [0, B − 1]d ∩ Zd for some B > 1. Then supp(eu · fN ) ⊂ [0, Nd(B −
1)]d ∩ Zd ⊂ [0, NdB − 1]d ∩ Zd for every u ∈ Rd. By Prop.3.5.1,

Rf (u) =
1

Nd
log M(eu · fN ) 6

1

Nd

{
log
[
(NdB)d

]
+ log H(eu · fN )

}
=

log
[
(NdB)d

]
Nd

+
1

Nd
max
k∈Zd
{u · k + log |f̂N (k)|},

where the error term bN := N−d log
[
(NdB)d

]
→ 0 as N → ∞, uniformly for

u ∈ Rd.

An opposite inequality is based of the following fundamental observation,
used both by Boyd [11] and Purbhoo [92] for different purposes. As we no-
ticed before, fN is a polynomial in the N th powers of the variables. There-
fore EN f̂N is again a polynomial to which we can apply Prop. 3.5.1, but with
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improved constants since the support has now shrunk by a factor ofN . This
improvement is crucial.

Specifically,

supp(eu · fN ) ⊂ [0, Nd(B − 1)]d ∩ (NZd),

so that
supp(eu · ENfN ) ⊂ [0, Nd−1(B − 1)] ∩ Zd.

Applying Prop. 3.5.1,

H(eu · fN ) = H(eu · ENfN ) 6 2dN
d−1BM(eu · ENfN ) = 2dN

d−1BM(eu · f)N
d
.

Hence

1

Nd
log H(eu · fN ) 6

dNd−1B log 2

Nd
+ log M(eu · f) = aN + Rf (u),

where again the error term aN := (dB log 2)/N → 0 uniformly for u ∈ Rd.
We can summarize these estimates as∣∣∣Rf (u)− 1

Nd
max
k∈Zd

{
u · k + log |f̂N (k)

}∣∣∣ 6 max{aN , bN} → 0 (3.14)

as N →∞ uniformly in u ∈ Rd.

Next we relate the first max occurring in (3.14) with the N th normalized
decimation DNf . We have that

1

Nd
max
k∈Zd
{u · k + log |f̂N (k)|} = max

k∈Zd

{
u ·
( k

Nd

)
+

1

Nd
log |f̂N (k)|

}
= max

k∈Zd

{
u ·
( k

Nd

)
+

1

Nd
ENd log

∣∣f̂N( 1

Nd
k
)∣∣∣}

= max
k∈Zd

{
u ·
( k

Nd

)
+ (DNf)

( 1

Nd
k
)}

= max
r∈Rd
{u · r + DNf(r)} = −(DNf)∗(−u).

Hence by (3.14), −(DNf)∗(−u) converges to Rf (u) uniformly for u ∈ Rd,
or, equivalently,

(DNf)∗(u)→ −Rf (−u) uniformly for u ∈ Rd. (3.15)

If ϕ and ψ are concave functions on Rd such that |ϕ(u) − ψ(u)| 6 ε for all
u ∈ Rd, it is easy to check from the definitions that ϕ∗ and ψ∗ have the same
effective domain, and that |ϕ∗(r) − ψ∗(r)| 6 ε for all r ∈ domϕ∗ = domψ∗.
Applying this to (3.15) and using duality we finally obtain that (DNf)∗∗ =
DNf → −R∗f uniformly onNf , completing the proof.
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Proof of Cor. 3.1.2: By Theorem 3.1.1, Legendre duality, and (3.12),

−m(f) = −Rf (0, 0) = D∗f (0, 0) = inf
(r,s)∈Nf

−Df (r, s) = − sup
(r,s)∈Nf

Df (r, s).

We remark that differentiability of Df at the maximum value is not assumed
for Legendre duality to apply here, and Example 3.2.5 provides a case when
differentiability fails.

Proof of Cor. 3.1.3: Let f and g be nonzero polynomials in C[Zd]. Clearly
Rfg = Rf + Rg. By [94, Thm. 16.4], the Legendre dual of the sum ϕ + ψ
of two convex functions is their infimal convolution defined for r ∈ Rd by
inf{ϕ(s) + ψ(r − s) : s ∈ Rd}. Applying this with ϕ = −Rf and ψ = −Rg,
using Thm. 3.1.1, and taking negatives we obtain that Dfg = Df ~ Dg.

Remark 3.5.2. Our estimate (3.14) can be expressed in the language of trop-
icalization of polynomials (see [74, §3.1] for background and motivation).
Let 0 6= g(x) =

∑
k∈Zd ĝ(k)xk ∈ C[Zd]. Define the tropicalization of g to be

the function trop g : Rd → R given by

(trop g)(u) = max
k∈Zd

{
u · k + log |ĝ(k)|

}
,

which is a polyhedral convex function. Then by (3.14) we see that

1

Nd
trop fN → Rf uniformly on Rd, (3.16)

so that the normalized tropicalization of fN converges uniformly to the Ronkin
function of f . Figure 3.6(a) depicts this polyhedral approximation for f(x, y) =
1+x+y andN = 5 (compare with Figure 3.5(b)). The tropical variety of this
polyhedral approximation is the projection to the plane of the vertices and
edges of its graph, and is shown in 3.6(b). These tropical varieties converge
in the Hausdorff metric to the amoeba of f asN →∞ (compare with Figure
3.5(a)).

Remark 3.5.3. In [92] Purbhoo used decimations for a different purpose,
namely to find a computational way to detect whether or not a point is in
the amoeba of a given polynomial. Call a polynomial lopsided if it has one
coefficient whose absolute value strictly exceeds the sum of the absolute
values of all the other coefficients. Let f ∈ Z[Zd] and u ∈ Rd. Clearly if
eu · f is lopsided then u /∈ Af . Purbhoo used decimations to amplify size
differences among the coefficients. More precisely, he proves that given ε >
0 there is an N0, depending only on ε and the support of f , such that if the
distance fromu toAf is greater than ε then eu·fN is lopsided. Since f and fN
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(a) (b)

Figure 3.6: (a) Tropical approximation to the Ronkin function of 1 + x + y,
and (b) its corresponding tropical variety

have the same amoeba, this gives an effective algorithm for approximating
the complement ofAf .

One direct consequence of [92] is that the normalized tropicalizations in
(3.16) converge to the Ronkin function off the amoeba of f , while our result
is that this convergence is uniform on all of Rd. Roughly speaking, Purbhoo
is concerned with the coefficients of eu ·f for points u off the amoeba, while
our focus is on u within the amoeba.

Remark 3.5.4. Let F be a lower-dimensional face of the Newton polytope
Nf of f , and put f |F =

∑
n∈F f̂(n)xn. Clearly the restriction of Df to F is

just the decimation limit of f |F , or in symbols Df |F = Df |F . By Corollary
3.1.2, this generalizes [64, Rem. 5.5], which gave a dynamical proof of the
inequality due to Smyth [106, Thm. 2] that m(f) > m(fF ) for every face F of
Nf .

3.6 Decimations of principal actions and contracted ide-
als

We return to decimations of principal algebraic Zd-actions, and in this sec-
tion show that they are again principal. The proof uses machinery from
commutative algebra, including contractions of ideals.

Suppose thatX is a compact, shift-invariant subgroup of TZd . Using Pon-
tryagin duality we can obtain an alternative description of X as follows (for
a comprehensive account see [98, Chap. II)].
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As a discrete abelian group the Pontryagin dual of TZd is the direct sum of
Zd copies of Z, which we suggestively write as

⊕
k∈Zd Zxk = Z[Zd]. The (ad-

ditive) dual pairing betweenTZd andZ[Zd] is given by 〈t, g〉 =
∑

k∈Zd tk ĝ(k) ∈
T. Multiplication by the inverses of each of the variables xj on Z[Zd] gives a
Zd-action that is dual to the natural shift action σ on TZd defined earlier.

Since X is shift-invariant, {g ∈ Z[Zd] : 〈t, g〉 = 0 for all t ∈ X} is an ideal
a in Z[Zd], and the dual group of X equals Z[Zd]/a. Conversely, if a is an
arbitrary ideal in Z[Zd], then the compact dual groupXa of Z[Zd]/a is a shift-
invariant subgroup of TZd . Thus there is a one-to-one correspondence be-
tween shift-invariant compact subgroups of TZd and ideals in Z[Zd]. When
a is the principal ideal 〈f〉 generated by f , then Xa = Xf as defined above,
explaining the terminology “principal actions.”

Fix N > 1 and recall the restriction map rN : TZd → TNZd from §3.1. Let
f ∈ Z[Zd]. Then theN th decimation rN (Xf ) is a compact subgroup of TNZd

that is invariant under the shift-action of NZd. By our previous discussion,
the dual group of rN (Xf ) has the form Z[NZd]/aN , where aN is an ideal in
Z[NZd]. The following result identifies this ideal.

Lemma 3.6.1. Let f ∈ Z[Zd] and N > 1. Then the dual group of rN (Xf ) is
Z[NZd]/aN , where aN = 〈f〉 ∩ Z[NZd].

Proof. Let bN = {g ∈ Z[NZd] : 〈t, g〉 = 0 for all t ∈ rN (Xf )}. If g ∈ aN ,
then for every t ∈ Xf we have that 0 = 〈t, g〉 = 〈rN (t), g〉, so that g ∈ bN .
Conversely, if g ∈ bN and t ∈ Xf , then g annihilates the restriction of t to
every coset of NZd, and hence annihilates t, so that g ∈ aN .

The ideal 〈f〉 ∩ Z[NZd] defining rN (Xf ) is called the contraction of 〈f〉 to
Z[NZd]. The main result of this section is that this contraction is always
principal.

Proposition 3.6.2. Let f ∈ Z[Zd] and N > 1. Then the contracted ideal
〈f〉 ∩ Z[NZd] is a principal ideal in Z[NZd].

We begin by briefly sketching the necessary terminology and machinery
from commutative algebra, all of which is contained in [5] or can be easily
deduced from material there.

For brevity let R = Z[NZd] and S = Z[Zd]. Both R and S are unique fac-
torization domains, and therefore both are integrally closed [5, Prop. 5.12].
Furthermore, S is integral over R since each variable xj in S satisfies the
monic polynomial yN − xNj ∈ R[y].
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A prime ideal p in an integral domain has height one if there are no prime
ideals strictly between 0 and p. In a unique factorization domain the prime
ideals of height one are exactly the principal ideals generated by irreducible
elements. A proper ideal q in an integral domain is primary if whenever
ab ∈ q then either a ∈ q or bn ∈ q for some n > 1. In this case its radical
{a : an ∈ q for some n > 1} is a prime ideal, say p, and then q is called p-
primary. Examples show that in general a power of a prime ideal need not
be primary, that a primary ideal need not be the power of a prime ideal, and
that even if an ideal has prime radical it need not be primary. The notion of
primary ideal, although the correct one for decomposition theory, is quite
subtle. However, in our situation things are much simpler.

Lemma 3.6.3. Let P be a unique factorization domain, and let r ∈ P be
irreducible. Then the principal ideal p = 〈r〉 is prime, and the p-primary
ideals are exactly the powers pn of p for n > 1.

Proof. It is clear that p is prime. To prove that pn = 〈rn〉 is p-primary, sup-
pose that ab ∈ pn, but a /∈ pn. Then r | b, so bn ∈ pn, showing that pn is
primary. Clearly the radical of pn is p, and so pn is p-primary.

Conversely, suppose that q is a p-primary ideal. Since the radical of q is
p, it follows that rn ∈ q for some n > 1. Choose n to be the minimal such
power. Then pn ⊂ q, but there is an a ∈ qr pn−1. Write a = crm, where r - c.
Choose a so that m is the maximal such power, where obviously m 6 n− 1.
Now rn /∈ q by minimality of n, hence some power ck ∈ q ⊂ p since q is
primary. But this is absurd since r - c unless c is a unit. Thus q = pn−1.

If a is an ideal in S, we denote its contraction a ∩ R to R by ac. If q is a
p-primary ideal in S, then pc is prime and qc is pc-primary in R.

One of the important results in commutative algebra, essential to devel-
oping a dimension theory using chains of prime ideals, is the so-called “Go-
ing Down” theorem [5, Thm. 5.16]. Its hypotheses are satisfied in our situa-
tion, and it says the following. Suppose that p0 ( p1 ( p2 is a chain of prime
ideals in R, and that there is a prime ideal q2 in S with qc2 = p2. Then there
is a chain q0 ( q1 ( q2 of prime ideals in S such that qcj = pj for j = 0, 1, 2.
From this it follows that prime ideals in S of height one contract to prime
ideals inR of height one. In other words, if h ∈ S is irreducible, then 〈h〉S∩R
is a principal ideal 〈g〉R in R generated by an irreducible polynomial g in R.

Proof of Prop. 3.6.2. First suppose that f ∈ S is irreducible. As we just showed,
there is an irreducible g ∈ R such that 〈f〉S∩R = 〈g〉R. Furthermore, if n > 1
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then 〈fn〉S is 〈f〉S-primary, and so 〈fn〉S ∩ R is 〈g〉R-primary, hence equals
〈gk〉R for some k > 1.

The result is obvious if f = 0, so suppose that 0 6= f ∈ S, and let f =
fn1

1 · · · fnrr be its factorization in S into powers of distinct irreducibles fj .
Then there are irreducible polynomials gj ∈ R and kj > 1 such that 〈fnjj 〉S ∩
R = 〈gkjj 〉R. Hence

〈f〉S ∩R = 〈fn1
1 · · · f

nr
r 〉S ∩R =

(
〈fn1

1 〉S ∩ · · · 〈f
nr
r 〉S

)
∩R

=
(
〈fn1

1 〉S ∩R
)
∩ · · · ∩

(
〈fnrr 〉S ∩R

)
= 〈gk1

1 〉R ∩ · · · ∩ 〈g
kr
r 〉R = 〈LCM(gk1

1 , . . . , g
kr
r )〉R,

proving that 〈f〉S ∩R is principal.

Remarks 3.6.4. (1) It is possible for distinct principal prime ideals in S to
contract to the same prime ideal inR. As a simple example, let d = 1,N = 2,
f1(x) = x2 − x − 1, and f2(x) = x2 + x − 1. Then each is irreducible in S,
but both 〈f1〉S and 〈f2〉S contract in R = Z[2Z] to 〈x4 − 3x2 + 1〉R, where
x4 − 3x2 + 1 is irreducible in Z[2Z] (but of course not in Z[Z]). In the proof
this is accounted for by using the least common multiple LCM in the last
line of the displayed equation above.

(2) A polynomial is primitive if the greatest common divisor of its coeffi-
cients is 1. If 0 6= f ∈ S is a nonconstant primitive polynomial with factor-
ization f = fn1

1 · · · fnrr into powers of distinct irreducible polynomials, then
by Gauss’s Lemma each fj is primitive as well. Furthermore, 〈fj〉S ∩ R =
〈gj〉R, where each gj is nonconstant and primitive. It then follows from the
proof that 〈f〉S ∩R is generated by a primitive element of R.

(3) There is a completely different proof of Prop. 3.6.2 using entropy that
is valid for all polynomials in S except for those of a very special and easily
determined form. Recall that the entropy of αf is the logarithmic Mahler
measure m(f) defined in (3.2). A generalized cyclotomic polynomial in S is
one of the form xnc(xk), where c is a cyclotomic polynomial in one variable
and k 6= 0. Smyth [106] proved that m(f) = 0 if and only if f is, up to sign,
a product generalized cyclotomic polynomials. Assume that f ∈ S is not
such a polynomial, so that the entropy of αf is strictly positive. A simple
argument using cosets of NZd shows that rN (Xf ) also has positive entropy.
Now rN (Xf ) = XaN by Lemma 3.6.1, where aN = 〈f〉S ∩ R. But an ideal a
in R for which the shift action of NZd on Xa has positive entropy must be
principal [64, Thm. 4.2].
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3.7 Absolutely irreducible factorizations
and Gauss’s Lemma

Suppose that f ∈ Z[Zd] is nonconstant and irreducible. Its factorization
into absolutely irreducible polynomials in an extension field of Q will play a
decisive role. A generalization of Gauss’s Lemma to number fields enables
us to deal with the algebraic properties of the coefficients of the factors.

Two polynomials in C[Zd] are distinct if one is not a nonzero scalar multi-
ple of the other. An element ϕ ∈ C[Zd] is adjusted if 0 is an extreme point of
its Newton polytopeNϕ, and is monic if it is both adjusted and ϕ̂(0) = 1.

A polynomial in C[Zd] is absolutely irreducible if it is irreducible in the
unique factorization domain C[Zd]. Hence every non-unit f ∈ C[Zd] has
some factorization f = ϕ1 · · ·ϕr into absolutely irreducible factors ϕj . The
method of Galois descent [20] shows that, after multiplying the factors by
suitable constants, there is a finite normal extension K of Q such that each
ϕj ∈ K[Zd], and also that the coefficients of the ϕj generate K, so that K is
the splitting field of f . Furthermore an elementary argument shows that if
f is adjusted, then we can multiply the ϕj by units in K[Zd] so that each ϕj
is monic,Nϕj ⊂ Nf , and f = f̂(0)ϕ1 · · ·ϕr.

Remarks 3.7.1. (1) When d = 1 this factorization is into the linear factors
guaranteed by the fundamental theorem of algebra.

(2) A simple sufficient condition for ϕ to be absolutely irreducible is that
Nϕ is not the nontrivial Minkowski sum of two integer polytopes (see [35]
for applications of this idea).

(3) There are reasonably good factoring algorithms which, on input f ,
produce a monic irreducible polynomial in Z[x] with root θ and an abso-
lutely irreducible ϕ ∈ Q(θ)[Zd] such that f = σ1(ϕ)σ2(ϕ) · · ·σr(ϕ), where
the σj are all the distinct field embeddings of Q(θ) into C (see [29] for an
overview of these methods).

The following shows that, unlike factoring, divisibility is not affected when
passing to an extension field.

Lemma 3.7.2. Suppose that L is an extension of the field K and that f, g ∈
K[Zd]. Then f divides g in K[Zd] if and only if f divides g in L[Zd].

Proof. For the nontrivial direction, suppose there is an h ∈ L[Zd] such that
fh = g. Equating coefficients of like monomials gives a system of K-linear
equations in the coefficients of h. Since this system has a solution over L,
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Gaussian elimination shows that that this (unique) solution is actually over
K, and so h ∈ K[Zd].

Proposition 3.7.3. Let f ∈ Z[Zd] be nonconstant, adjusted, and irreducible
in Z[Zd]. Then there is a finite normal extension field K of Q and monic ab-
solutely irreducible polynomialsϕ1, . . . , ϕr ∈ K[Zd] such that f = f̂(0)ϕ1 · · ·ϕr
andNϕf ⊂ Nf for 1 6 j 6 r. Furthermore, the Galois group Gal(K : Q) acts
transitively on the set of factors ϕj , and these factors are pairwise distinct.

Proof. Our earlier discussion shows there is a factorization f = f̂(0)ϕ1 · · ·ϕr
over the splitting field K of f , where each ϕj is monic and Nϕj ⊂ Nf for
1 6 j 6 r. Suppose that σ ∈ Gal(K : Q). Since σ(f) = f , it follows that
σ must permute the absolutely irreducible factors up to multiplication by
units. But if σ(ϕj) = cxnϕk, then n = 0 since the factors are adjusted and
c = 1 since they are monic. Hence σ permutes the factors themselves. If
there were a proper subset of factors that is invariant under Gal(K : Q),
then their product ψ would be in Q[Zd] since its coefficients are invariant
under Gal(K : Q). But then ψ would be a proper divisor of f in Q[Zd] by
Lemma 3.7.2, contradicting irreducibility of f by Gauss’s Lemma. A similar
argument shows that each factor appears with multiplicity one.

We now give a brief sketch of the extension of Gauss’s Lemma to number
fields and the consequences we use. Let K be a finite extension of Q, andOK
be the ring of algebraic integers in K. A fractional ideal a in K is a nonzero
OK-sumbodule such that there is an integer b for which ba ⊂ OK. Fractional
ideals can be added and multiplied, with OK being the multiplicative iden-
tity. A fractional ideal contained inOK is an ideal in the usual ring-theoretic
sense. The pivotal result is that the set of fractional ideals form a group, the
set of principal fractional ideals (those of the form OKβ for some β ∈ K)
form a subgroup, and the quotient of these groups is a finite abelian group
called the class group which measures how farOK is from being a principal
ideal domain.

Let ϕ ∈ K[Zd]. Define the content cK(ϕ) to be the fractional ideal in K
generated by the coefficients of ϕ. Say that ϕ is primitive if cK(ϕ) = OK.
It is easy to check that although content depends on the ambient field K,
primitivity does not: if ϕ ∈ K[Zd] and ϕ ∈ L[Zd], then cK(ϕ) = OK if and only
if cL(ϕ) = OL (see [75, Thm. 8.2]).

Theorem 3.7.4 (Gauss’s Lemma for number fields). Let K be a number field
and ϕ,ψ ∈ K[Zd]. The cK(ϕψ) = cK(ϕ)cK(ψ). In particular, if ϕ,ψ ∈ OK[Zd]
thenϕψ is primitive if and only if bothϕ andψ are primitive. Ifϕ,ψ ∈ OK[Zd]
are primitive, and if ϕ = βψ for some β ∈ K, then β is a unit inOK.
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Remark 3.7.5. Suppose that f ∈ Z[Zd] is primitive and thatN > 1. Let ζN =
e2πi/N , which is a unit in Q(ζN ). Hence each rotate ω · f , where ω ∈ Ωd

N , is
primitive in Q(ζN )[Zd]. The preceding theorem then shows that the product
fN of these rotates is also primitive in Q(ζN )[Zd], and hence in Z[Zd] (since
primitivity is independent of ambient field), a fact we already observed in
Remark 3.6.4(2).

3.8 Decimated polynomials and decimated actions

Let f ∈ Z[Zd] be irreducible. Here we explain the relationship between
the N th decimation fN of f and the generator gN of the contracted ideal
〈f〉 ∩ Z[NZd] that defines the N th decimation rN (Xf ) of (Xf , αf ). Roughly
speaking, gN is a constant times the product of all distinct rotates by el-
ements of Ωd

N of the absolutely irreducible factors ϕj of f as described in
Proposition 3.7.3. Each rotate appears with the same multiplicity eN that
can be computed from the ϕj . Thus fN = c geNN , and an application of
Gauss’s Lemma shows that we may take c = 1. Furthermore, there is an
integer Q(f), that can also be computed from the ϕj , such that fN = gN for
allN relatively prime toQ(f). Examples will illustrate the two sources of the
multiplicity eN .

In what follows we let ζN = e2πi/N , which is a generator of ΩN .

Lemma 3.8.1. If f ∈ Z[Zd] then fN ∈ Z[NZd].

Proof. Since fN =
∏
ω∈ΩdN

ω · f , it follows that fN = ω · fN for everyω ∈ Ωd
N .

Suppose that f̂N (k) 6= 0. Then since

f̂N (k) = (ω · fN )̂ (k) = ωk f̂N (k),

we see that ωk = 1 for every ω ∈ Ωd
N , and hence k ∈ NZd. Thus fN ∈

Q(ζN )[NZd].

The Galois group G := Gal
(
Q(ζN ) : Q

)
acts on Ωd

N coordinate-wise. If
σ ∈ G, then σ(ω · f) = σ(ω) · f since f has integer coefficients. Thus σ
permutes the rotates of f , and so σ(fN ) = fN for every σ ∈ G. It follows
that the coefficients of fN are both rational and algebraic integers, and so
fN ∈ Z[NZd].

Lemma 3.8.2. Let f ∈ Z[Zd] and gN be a generator of the contracted ideal
〈f〉 ∩ Z[NZd]. Then gN divides fN in Z[NZd].
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Proof. Since f is one of the factors in forming fN , it follows that f divides
fN in Q(ζN )[Zd]. Hence f divides fN in Q[Zd] by Lemma 3.7.2. The coeffi-
cients of fN/f are both rational and algebraic integers, and so fN/f ∈ Z[Zd].
Hence fN ∈ 〈f〉 ∩ Z[NZd], and it is thus divisible by the generator gN .

Remark 3.8.3. Since the generator of a principal ideal is unique only up to
units, it will be convenient to have a convention to pick a generator. In what
follows we will assume that f is adjusted and that f̂(0) > 0. Then clearly fN
has the same properties. By the previous lemma, we can also assume that
gN is adjusted, thatNgN ⊂ NfN , and that ĝN (0) > 0.

Before continuing, we remark that if f is a constant integer n, then fN =

nN
d

while gN = n. Let us call a polynomial f ∈ Z[Zd] nonconstant if | supp f | >
1, and it is these we now turn to.

Let f ∈ Z[Zd] be adjusted. Define its support group Γf to be the subgroup
of Zd generated by supp f . It is easy to check that the support group is inde-
pendent of which extreme point of Nf is used to adjust f . We say that f is
full if Γf = Zd.

The following shows that in some cases, including f(x, y) = 1+x+y from
Example 3.2.4, fN = gN for all N > 1.

Proposition 3.8.4. Let f ∈ Z[Zd] be adjusted, irreducible, and full. Further
assume that f is absolutely irreducible in C[Zd]. Then fN = gN for every
N > 1.

Proof. Since the map f 7→ ω · f is a ring isomorphism of C[Zd], each ω · f is
absolutely irreducible. Suppose thatω ·f = ω′ ·f . Sinceωkf̂(k) = (ω′)kf̂(k),
it follow that ωk = (ω′)k for all k ∈ supp f , hence for all k ∈ Γf = Zd, and so
ω = ω′. Thus the rotates of ω · f for ω ∈ Ωd

N are pairwise distinct absolutely
irreducible polynomials in C[Zd] whose product is fN .

By Lemma 3.8.2, gN divides fN in C[Zd]. Hence some rotate ω · f divides
gN . Since gN ∈ Z[NZd], it is invariant under all rotations in Ωd

N . Hence gN
is divisible by all rotates ω · f , and so gN and fN have the same absolute
factorizations in C[Zd], and hence fN = c gN for some constant c ∈ C. Re-
calling our conventions in Remark 3.8.3, comparing constant terms shows
that c = f̂(0)N

d
/ ĝN (0) ∈ Q. But fN and gN are both primitive in Z[NZd],

and so c = ±1, and our convention on positivity of constant terms then
gives c = 1.

The following example shows that when the polynomial is not full there
can be multiplicity eN > 1.
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Example 3.8.5. Let d = 2 and f(x, y) = 1+x+y2. SinceNf is not a nontrivial
Minkowski sum of integer polytopes, we see that f is absolutely irreducible.
Suppose that N is odd. Since −1 /∈ ΩN , all rotates ω · f for ω ∈ Ω2

N are
distinct, and the same arguments as in the previous proposition show that
fN = gN .

However, if N is even, then−1 ∈ ΩN and the rotate of f by (ω1, ω2) equals
that by (ω1,−ω2). As we will see in Proposition 3.8.7, the product of the dis-
tinct rotates of f equals gN , and so fN = g2

N when N is even.

Next we characterize when rotates can coincide.

Lemma 3.8.6. Let ϕ ∈ C[Zd] be adjusted, and Γϕ be its support group. Then
the dual of the stabilizer group SN (ϕ) := {ω ∈ Ωd

N : ω · ϕ = ϕ} is Zd/(Γϕ +
NZd). Two rotates of ϕ differ by a multiplicative unit in C[Zd] if and only if
they are equal. If Γϕ has finite index K in Zd, then SN (ϕ) is trivial for every
N relatively prime to K.

Proof. Suppose that ω ∈ SN (ϕ). Since ϕ̂(k) = (ω · ϕ)̂ (k) = ωkϕ̂(k), it
follows that ωk = 1 for every k ∈ suppϕ. Hence ω annihilates Γϕ as well as
NZd, thus their sum. Conversely, every ω annihilating Γϕ + NZd must be
in SN (ϕ). Hence the annihilator of SN (ϕ) equals Γϕ + NZd, and so its dual
group is Zd/(Γϕ +NZd).

The multiplicative units in C[Zd] have the form cxn for some c ∈ C, so the
second statement is obvious since ϕ is adjusted.

Suppose that Γϕ has finite indexK in Zd. IfN is relatively prime toK, then
multiplication byN on Zd/Γϕ is injective, hence surjective. Thus modulo Γϕ
every element in Zd is a multiple of N , and hence Γϕ +NZd = Zd.

Proposition 3.8.7. Let f ∈ Z[Zd] be adjusted and irreducible, and further
assume that f is absolutely irreducible in C[Zd]. Then fN = geNN , where
eN = |SN (f)| = |Zd/(Γf +NZd)|.

Proof. Recall our conventions in Remark 3.8.3. Since gN divides fN , it must
be divisible by at least one (absolutely irreducible) rotate of f . Invariance of
gN by every rotate in Ωd

N shows that gN is therefore divisible by the product
h of all the distinct rotates of f . The arguments in Lemmas 3.8.1 and 3.8.2
apply to show that h ∈ 〈f〉 ∩ Z[NZd]. Thus gN divides h in C[Zd] as well, and
so gN = c h for some c ∈ C. Evaluating constant terms shows that c ∈ Q.
Since gN is irreducible in Z[NZd], it is primitive. Each rotate of f is primitive
in Q(ζN )[Zd], and so h is primitive by Theorem 3.7.4. Hence c = ±1, and
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then c = 1 follows from our sign conventions. By Lemma 3.8.6, each rotate
of f is repeated exactly eN times, and so fN = geNN .

When f is absolutely irreducible, the only source of multiplicity eN > 1 is
its support group. However, if f has several absolutely irreducible factors, a
new source of multiplicity can occur, namely that one factor could rotate to
another factor. This possibility is illustrated in the following three examples.

Example 3.8.8. Let d = 1 and

f(x) = 1− 2x2 = (1 +
√

2x)(1−
√

2x) = ϕ1(x)ϕ2(x).

Let σ ∈ Gal(Q(
√

2) : Q) be given by σ(
√

2) = −
√

2. Then σ(ϕ1) = ϕ2 =
(−1) · ϕ1. Now fN is the product of ζjN · ϕk for 0 6 j < N and k = 1, 2. If N is
odd, then−1 /∈ ΩN and so all 2N factors are distinct. Our earlier arguments
then show that fN = gN . However, if N is even, then −1 ∈ ΩN , and the set
of rotates of ϕ1 coincide with set of those of ϕ2, and so fN = g2

N for even
N . Here f is an irreducible polynomial with a pair of roots whose ratio is a
nontrivial root of unity.

The commingling of absolutely irreducible factors under rotations can
happen in more subtle ways.

Example 3.8.9. Let d = 1 and f(x) = 1 − 2x + 4x2 − 3x3 + x4, which is full
and irreducible in Z[Z]. Let λ = (1 +

√
5)/2, µ = (1−

√
5)/2, and ζ = ζ5. The

absolutely irreducible factorization of f is

f(x) = (1− ζλx)((1− ζ4λx)(1− ζ2µx)(1− ζ3µx) = ϕ1(x)ϕ2(x)ϕ3(x)ϕ4(x).

Note that ζ3 · ϕ1 = ϕ2 and that ζ · ϕ3 = ϕ4. If N is relatively prime to 5, then
ζ /∈ ΩN , and so all 4N rotates are distinct and fN = gN as before. However,
if 5 | N then ζ ∈ ΩN and each rotate is repeated twice, and so fN = g2

N in
this case.

What is driving this example is the inclusion Q(
√

5) ⊂ Q(ζ), and so the
Galois automorphism

√
5 7→ −

√
5 of Q(

√
5) is the restriction of the auto-

morphism ζ 7→ ζ2 of Q(ζ).

Remark 3.8.10. Irreducible polynomials in Z[x] having distinct roots whose
ratio is a root of unity, such as those in the previous two examples, are called
degenerate. Such polynomials have an extensive literature (see for instance
[32, §1.1.9]), and appear in the celebrated Skolem-Mahler-Lech Theorem
that the set of indices at which a recurring sequence of integers vanishes is,
modulo a finite set, the union of arithmetic progressions [7].
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There is a simple way to detect whether f(x) ∈ Z[x] is degenerate. Intro-
duce a new variable t, and compute the resultant g(x) ∈ Z[x] of the polyno-
mials f(tx) and f(t) with respect to t, which can be done efficiently using
rational arithmetic. The roots of g(x) are the ratios of all pairs of roots of f .
Thus f(x) is degenerate if and only if g(x) contains a nontrivial cyclotomic
factor. Applying this to f(x) from the previous example gives

g(x) = (x−1)5(x4−4x3+6x2+x+1)(x4+x3+6x2−4x+1)(x4+x3+x2+x+1).

The last factor reveals that f(x) has two roots whose ratio is a nontrivial 5th
root of unity.

Example 3.8.11. Let d = 2 and f(x, y) = 1−x−y−xy+x2 +y2, which is full
and irreducible in Z[Z2]. Let ζ = ζ3. The absolutely irreducible factorization
of f is

f(x, y) = (1 + ζx+ ζ2y)(1 + ζ2x+ ζy) = ϕ1(x, y)ϕ2(x, y).

Here ϕ1 is mapped to ϕ2 by the element σ in Gal(Q(ζ) : Q) mapping ζ to ζ2,
and also σ(ϕ1) = ϕ2 = (ζ, ζ2) · ϕ1. By the now familiar arguments, if N is
relatively prime to 3 then ζ /∈ ΩN , and so all rotates are distinct and hence
fN = gN . However, if 3 divides N , then distrinct rotates are repeated twice,
and so fN = g2

N . For instance

f3 = (1 + 3x3 + 3y3 + 3x6 − 21x3y3 + 3y3 + x9 + 3x3y6 + 3x6y3 + y9)2 = g2
3.

With these examples in mind, we come to the main result of this section.

Theorem 3.8.12. Let f ∈ Z[Zd] be irreducible, which we may assume is ad-
justed with positive constant term. For every N > 1 there is an irreducible
gN ∈ Z[NZd] and eN > 1 such that

〈f〉Z[Zd] ∩ Z[NZd] = 〈g〉Z[NZd] and fN = geNN .

The multiplicity eN can be computed from the absolutely irreducible factor-
ization of f in C[Zd]. If the support of f generates a finite-index subgroup
of Zd, then there is an integer Q(f), which can also be computed from the
absolutely irreducible factors of f , such that eN = 1 for every N that is rela-
tively prime to Q(f). Finally,

〈fk〉Z[Zd] ∩ Z[NZd] = 〈gkN 〉Z[NZd]

for every k > 1.
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Proof. Recall our conventions in Remark 3.8.3. Let K be the splitting field
of f , and f = f̂(0)ϕ1 · · ·ϕr be the factorization of f using monic absolutely
irreducible ϕj ∈ K[Zd] from Proposition 3.7.3. Let Φ = {ϕ1, . . . , ϕr}. Since
the ϕj are monic, Gal(K : Q) permutes the elements of Φ, and this action is
transitive by irreducibility of f .

Now fixN > 1. ThenK(ζN ) is a normal extension ofQ. LetG = Gal(K(ζN ) :
Q). Consider the set Ωd

N ×Φ. The group Ωd
N acts on this set via ω′ · (ω, ϕj) =

(ω′ω, ϕj). The group G also acts on this set via σ · (ω, ϕj) = (σ(ω), σ(ϕj)).
More precisely, σ ∈ G acts of the first coordinate using its restriction to
Q(ζN ) and on the second coordinate using its restriction to K. These ac-
tions combine to give an action of the semidirect product G n Ωd

N defined
using the action of G on Ωd

N , so that σω = σ(ω)σ.

Define an equivalence relation ∼ on Ωd
N × Φ by (ω, ϕj) ∼ (ω′, ϕk) if and

only ifω·ϕj = ω′ ·ϕk. It is routine to verify thatGnΩd
N preserves equivalence

classes. Since Gal(K : Q) acts transitively on Φ, it follow that G n Ωd
N acts

transitively on Ωd
N × Φ. Hence all equivalence classes have the same cardi-

nality, say eN > 1. Pick one representative (ω, ϕj) from each equivalence
class, and let g̃N be the product of the corresponding polynomials ω · ϕj .

Observe that by its construction g̃N is invariant underGnΩd
N . Invariance

under Ωd
N implies that g̃N ∈ K(ζN )[NZd], and invariance under G further

implies that g̃N ∈ Q[NZd]. Then transitivity ofGnΩd
N on Ωd

N ×Φ shows that
g̃N is irreducible in Q[NZd].

We have that fN = f̂(0)N
d
g̃ eNN . Let q be the least positive integer such that

qg̃N ∈ Z[NZd], so that gN := qg̃N is primitive. Then

fN =
(
f̂(0)N

d
/qeN

)
geNN .

But both fN and geNN are primitive with positive constant terms, and hence
fN = geNN .

We now turn to computing eN . Each of the absolutely irreducible factors
ϕj has the same support since they are all Galois conjugates. Let Γϕ de-
note the common support group of each. By Lemma 3.8.6, each contributes
multiplicity |Zd/(Γϕ +NZd)|. Further multiplicity arises if one factor can be
rotated by an element of Ωd

N to another. This property divides Φ into equiv-
alence classes, with all classes having the same cardinality s. It then follows
that eN = |Zd/(Γϕ +NZd)|s.

Next, we determine sufficient conditions on N so that eN = 1. Assume
that Γf has finite index in Zd. Clearly Γf ⊂ Γϕ, and so Γϕ also has finite index.
By Lemma 3.8.6, if N is relatively prime to the index [Zd : Γϕ] of Γϕ, then
|Zd/(Γϕ +NZd)| = 1.
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To analyze when one ϕj can rotate to another, we need to consider the
group ΩK of roots of unity in the splitting field K of f . This is a finite cyclic
group, and so equals Ωn for some n > 1. Now [Q(ζn) : Q] = ϕ(n), where ϕ
denotes the Euler function. Since Q(ζn) ⊂ K, it follows thatϕ(n) 6 [K : Q]. A
simple argument shows that ϕ(n) >

√
n/2 for all n > 1, and so n 6 4[K : Q]2.

Hence ifN is relatively prime to (4[K : Q]2)!, then ΩN∩ΩK = {1}. For such an
N suppose thatω ·ϕi = ϕj for someω ∈ Ωd

N . For each k ∈ suppϕi = suppϕj
we have that ωkϕ̂i(k) = ϕ̂j(k), and so

ωk = ϕ̂j(k)/ϕ̂i(k) ∈ ΩN ∩ ΩK = {1}.

But this implies that ϕi = ϕj .

Putting these together, we let Q(f) = [Zd : Γϕ](4[K : Q]2)!, and conclude
that if N is relatively prime to Q(f) then eN = 1.

3.9 Remarks and questions

Here we make some further remarks and ask several questions related to
decimations.

3.9.1 More general lattices

Let us call a finite-index subgroup ofZd a lattice. We have used the sequence
{NZd} of lattices to define decimation, but these definitions easily extend to
all lattices. Let Λ ∈ Zd be a lattice, and let ΩΛ denote the dual group of Zd/Λ,
which has cardinality [Zd : Λ], the index of Λ inZd. Define f〈Λ〉 =

∏
ω∈ΩΛ

ω·f ,
and

LΛf = E[Zd : Λ]

( 1

[Zd : Λ]
log |f̂〈Λ〉|

)
. (3.17)

For a sequence {ΛN} of lattices, let us say ΛN →∞ if for every r > 0 we have
that {n ∈ ΛN : ‖n‖ < r} = {0} for all large enough N .

Question 3.9.1. Let 0 6= f ∈ C[Zd], and let {ΛN} be a sequence of lattices
with ΛN → ∞. Do the concave hulls CH(LΛN ) converge uniformly onNf to
Df ?

Our methods for NZd do not extend directly to this more general situa-
tion. We made essential use of the property of fN that it is a polynomial in
the N th powers of the variables, enabling us to apply the Mahler estimates
to the polynomial EN f̂N of lower degree, gaining a crucial improvement.
There is no corresponding argument for general lattices.
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3.9.2 Partial decimation

By taking different sequences of lattices, we can in effect decimate along
lower rank subgroups. The following example illustrates this idea.

Let d = 2 and f(x, y) = 1 + x + y. We will use the sequence of lattices
ΛN = NZ ⊕ Z, which corresponds to decimating with respect to x. Using
the notation from the previous section, ΩΛN = ΩN × {1}, and so

f〈ΛN 〉(x, y) =
∏
ω∈ΩN

(1 + ωx+ y) = (1 + y)N ± xN .

It is well-known that the growth rate of the binomial coefficients can be
computed using Stirling’s approximation to be

1

N
log

(
N

pN

)
≈ η(p) := −p log p− (1− p) log(1− p)

for 0 6 p 6 1. Hence the decimation limit D(1)
f (r, s) of f with respect to x

using this sequence of lattices is the concave hull of the curve
(
0, p, η(p)

)
for

0 6 p 6 1 together with the point (1, 0, 0), as shown in Figure 3.7(a).

(a) (b)

Figure 3.7: (a) The partial decimation limit of 1 + x + y, and (b) its partial
Ronkin function

Define the partial Ronkin function of f with respect to x to be

R(1)
f (u, v) =

∫ 1

0
log |f(eue2πiθ, ev)| dθ.

Figure 3.7(b) shows this in our case. One can show that here D(1)
f = −

(
R(1)
f

)∗
onNf .
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This example suggests a more general phenomenon. Let C(Zd) denote
the set of subgroups of Zd. We can give a topology to C(Zd) by declaring two
subgroups to be close if they agree on a large ball around 0. For example,
in this topology ΛN → {0} means ΛN → ∞ from §3.9.1, and in the above
example NZ ⊕ Z → 0 ⊕ Z. This is a special case of the Chabauty topol-
ogy on the set C(G) of closed subgroups of a locally compact group G. This
topology is named after Claude Chabauty, who in 1950 introduced it [19] to
generalize Mahler’s compactness criterion [76] for lattices in Rd to lattices
in locally compact groups. The Chabauty space C(G) has been investigated
by many authors, for instance by Cornulier [21] when G is abelian. Even for
familiar groups their Chabauty space can be intricate to analyze. For exam-
ple, Hubbard and Pourezza [50] used a tricky argument to prove that C(R2)
is homeomorphic to the four-dimensional sphere.

Let K be a compact subgroup of Td, and let µK denote normalized Haar
measure onK. For s ∈ K we let e2πisu mean (e2πis1u1, . . . , e

2πisdud). We then
define the Ronkin function of f with respect to K to be

R(K)
f (u) =

∫
K

log |f(e2πisu)| dµK(s).

Question 3.9.2. Is there a limiting shape for decimations corresponding to
a sequence of lattices {ΛN} in Zd converging to a non-trivial subgroup Γ ∈
C(Zd)?

3.9.3 Exponential size of decimation coefficients

In Example 3.2.3 we saw that if f ∈ C[Z] is allowed to have complex coeffi-
cients, then some of the coefficients of fN may have exponential size dras-
tically different from that predicted by Df . However, if f ∈ Z[Z] is restricted
to have integer coefficients, then this behavior cannot happen, as indicated
by Example 3.2.2. More precisely, using the diophantine results of Gelfond
mentioned there, one can show that if f ∈ Z[Z] has supp f = {0, 1, . . . , r}
and ε > 0, then for all sufficiently large N we have that |f̂N (kN)| is between
eN(Df (k)±ε) for each 0 6 k 6 r for which f̂N (kN) 6= 0.

This raises the intriguing question of whether this extends to f ∈ Z[Zd]
for d > 2, i.e., do all nonzero coefficients of fN have the approximate ex-
ponential size predicted by Df . The following gives a precise quantitative
formulation.

Question 3.9.3. Let f ∈ Z[Zd]. Fix r0 ∈ Nf , and let ε > 0. Are there δ > 0
and N0 > 1 such that if N > N0 and r ∈ N−dZd ∩ Nf with ‖r − r0‖ < δ,
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and if LNf(r) 6= −∞, then |LNf(r) − Df (r)| < ε? Can δ and N0 be chosen
uniformly for r0 ∈ Nf ?

Some evidence for a positive answer comes from polynomials in two vari-
ables related to dimer models, as discussed in Remark 3.2.6. Using the addi-
tional machinery afforded by the physical interpretation of the related par-
tition function and the resulting subadditivity, the exponential size of the
coefficients can be shown to obey the estimates in the question. In particu-
lar, this applies to f(x, y) = 1 +x+ y, although we do not know of any direct
argument for this.

3.9.4 Continuity of exp[Df ] in the coefficients of f

Start by fixing a cubeBn = {−n, . . . , n}d ⊂ Zd. We can identify a polynomial
f ∈ C[Zd] whose support is inBn with its coefficient function f̂ ∈ CBn . Boyd
[11] showed that the function CBn → [0,∞) given by f̂ 7→ M(f) = exp[m(f)]
is continuous in the coefficients of f .

Recalling that m(f) is the maximum value of Df , this suggests looking at
exp[Df ], which is a nonnegative upper semicontinuous function on Bn (the
discontinuities occur at the boundary of Nf ⊂ Bn). A function ϕ : Bn → R
is upper semicontinuous if and only if its subgraph {(u, t) ∈ Bn × R : t 6
ϕ(u)} is closed in Bn × R. The space USC(Bn) of all upper semicontinuous
functions on Bn carries a natural topology by declaring two elements to be
close if their subgraphs are close in the Hausdorff metric on closed subsets
of Bn × R (see [6] for details).

Question 3.9.4. Is the map f̂ → exp[Df ] from CBn to USC(Bn) continuous?

3.9.5 Nonprincipal actions

Decimation makes sense for every algebraic Zd-action (indeed for every al-
gebraic action of a countable residually finite group). Suppose that a is an
ideal in Z[Zd], and let Xa be the dual group of Z[Zd]/a as described in §3.6.
The commutative algebra there shows that the N th decimation rN (Xa) is
defined by the contracted ideal a ∩ Z[NZd]. However, there is no obvious
replacement for gN to measure growth when a is not principal,

Question 3.9.5. If a is a nonprincipal ideal in Z[Zd], are there objects related
to the contractions a ∩ Z[NZd] which can be normalized to converge to a
limiting object?
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If a is not principal, then the Zd-shift action onXa has zero entropy. How-
ever, by restricting the shift to iterates close to lower dimensional subspaces
of Rd the action can have positive entropy [13, §6]. This suggests that the
partial decimations from §3.9.2 may play a role here.

Examining concrete examples may shed some light on this question. These
include the case of commuting toral automorphisms (see [52, §6] for many
such examples), the Z2-action defined by multiplication by 2 and by 3 on T
(corresponding to a = 〈x−2, y−3〉), and the so-called space helmet example
[31, Example 5.8] (corresponding to a = 〈1 + x+ y, z − 2〉).

An important example of a different character is due to Ledrappier [61],
which corresponds to the nonprincipal ideal 〈1 + x + y, 2〉 ⊂ Z[Z2]. This
example has zero entropy as a Z2-action, but strictly positive entropy along
every 1-dimensional subspace of R2 (see [13, Example 6.4] for the explicit
description). Another curious feature of this example is decimation self-
similarity. Because (1 +x+ y)2n = 1 +x2n + y2n when taken mod 2, the 2nth
decimation of the example, when rescaled by 2n, is just the original action.

3.10 Example of computing the decimation limit

There are few explicit calculations of the logarithmic Mahler measure, or
more generally of the Ronkin function, of polynomials in Z[Zd] when d > 2.
Depending on the relative sizes of the coefficients, evaluation of the inte-
grals involved typically requires the torus to be subdivided into a large num-
ber of subregions with complicated boundaries, and so simple formulas in
terms of familiar functions are rare.

Here we treat the case f(x, y) = 1 +x+ y from Example 3.2.4, where these
calculations can be carried out, resulting in the formulas (3.8) and (3.9) for
Df .

Smyth [105] first computed the logarithmic Mahler measure m(f) = Rf (0, 0)
to have the value in (3.10). Twenty years later Maillot [78, §7.3], aided by
Cassigne, computed the entire Ronkin function Rf (u, v), providing in his
long memoir a concrete example of the canonical height of a hypersurface.
Their result involves the Bloch-Wigner dilogarithm function, which is an al-
ternative formulation of the series representation in our formulas. Lundqvist
[70] gave the formulas for the partial derivatives of Rf we use here. He also
investigated the polynomial 1 + x + y + z, and showed that the second or-
der partial derivatives of its Ronkin function can be expressed in terms of
standard elliptic functions.
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eveu

1

(a)

πrπs

(b)

eu

ev
2πr

1

Figure 3.8: Determining partial derivatives from angles and sides

Let ∆ = Nf be the unit simplex, and denote its interior by ∆◦. Let Af be
the amoeba of f , as shown in Figure 3.5, and A◦f be its interior. To evaluate
R∗f (r, s) for (r, s) ∈ ∆◦, we need to know the value of (u, v) ∈ A◦f at which
the partial derivatives of Rf (u, v) with respect to u and v equal r and s, re-
spectively. Fortunately, there is a simple relationship that was established
by Lundqvist [70], whose treatment we follow.

Lemma 3.10.1. Let (u, v) ∈ A◦f , so that 1, eu, and ev form the sides of a
nondegenerate triangle. Let πr and πs be the angles in this triangle shown
in Figure 3.8(a). Then

∂Rf
∂u

(u, v) = r and
∂Rf
∂v

(u, v) = s. (3.18)

Proof. We will compute the partial derivatives by differentiating the inte-
grand in

Rf (u, v) =

∫ 1

0

∫ 1

0
log |1 + eue2πiθ + eve2πiϕ| dθ dϕ

= Re
[∫ 1

0

∫ 1

0
log(1 + eue2πiθ + eve2πiϕ) dθ dϕ

]
.
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In the last line log represents a local inverse to exp, which is well-defined up
to the addition of an integral multiple of 2πi. After taking partial derivatives,
we will get a result that is independent of this multiple.

By symmetry, it suffices to compute ∂Rf/∂u. Differentiating the integrand
gives

∂Rf
∂u

(u, v) = Re
[∫ 1

0

∫ 1

0

eue2πiθ

1 + eue2πiθ + eve2πiϕ
dθ dϕ

]
.

Rewriting the integrals as contour integrals, we see that∫ 1

0

∫ 1

0

eue2πiθ

1 + eue2πiθ + eve2πiϕ
dθ dϕ =

1

(2πi)2

∫
|z|=eu

∫
|w|=ev

1

1 + z + w
dz
dw

w

=
1

2πi

∫
|w|=ev

[ 1

2πi

∫
|z|=eu

dz

z − (−1− w)

] dw
w
.

The inner integral is the winding number of the circle of radius eu around
−1 − w = −1 − eve2πiϕ, and so has value 1 if |1 + eve2πiϕ| < eu and 0 if |1 +
eve2πiϕ| > eu (these are mistakenly reversed in [70]). A glance at Figure 3.8(b)
shows that the value is 1 for an interval of ϕ of length 2πr, and 0 otherwise.
Since (1/2πi)(dw/w) is normalized Lebesgue measure dϕ, we obtain that
(∂Rf/∂u)(u, v) = r.

To compute the decimation limit Df , we need to express u and v in terms
of r and s. Let a = eu and b = ev be the sides of the triangle in Figure 3.8(a).
By the law of sines,

a

sinπr
=

b

sinπs
=

1

sinπ(1− r − s)
=

1

sinπ(r + s)
,

and hence

a = a(r, s) = eu(r,s) =
sinπr

sinπ(r + s)
, (3.19)

b = b(r, s) = ev(r,s) =
sinπs

sinπ(r + s)
. (3.20)

For (u, v) ∈ A◦f it follows from the definition (3.11) that

−R∗f (u, v) = inf
(r,s)∈∆◦

Rf (u, v)− ru− sv,

and by calculus the infimum is attained at the (u, v) given by (3.18). Thus
for (r, s) ∈ ∆◦ we have that

Df (r, s) = −R∗f
(
u(r, s), v(r, s)

)
= Rf

(
u(r, s), v(r.s)

)
− r u(r, s)− s v(r, s),

(3.21)
where u(r, s) and v(r, s) are determined by (3.19) and (3.20).
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Remark 3.10.2. Observe that the functions u(r, s) and v(r, s) in (3.19) and
(3.20) are real analytic on ∆◦. Also, Rf (u, v) is real analytic on A◦f . Together
these show that Df (r, s) is real analytic on ∆◦.

It remains to compute Rf (u, v). By symmetry it suffices to assume that
u > v. Using Jensen’s formula (3.5), we see that

Rf (u, v) =

∫ 1

0

∫ 1

0
log |1 + eue2πiθ + eve2πiϕ| dθ dϕ

= u+

∫ 1

0

∫ 1

0
log |e−u + ev−ue2πiϕ + e2πiθ| dθ dϕ

= u+

∫ 1

0
log+ |e−u + ev−ue2πiϕ| dϕ.

Note that |e−u + ev−ue2πiϕ| > 1 if and only if |1 + eve2πiϕ| > eu, and another
glance at Figure 3.8(b) shows this occurs exactly when −π(1 − r) 6 2πϕ 6
π(1− r). Hence

Rf (u, v) = u+

∫ 1
2

(1−r)

− 1
2

(1−r)
log |e−u + ev−ue2πiϕ| dϕ

= u− (1− r)u+

∫ 1
2

(1−r)

− 1
2

(1−r)
log |1 + eve2πiϕ| dϕ

= r u+

∫ 1
2

(1−r)

− 1
2

(1−r)
log |1 + eve2πiϕ| dϕ.

First suppose that ev < 1, which corresponds to (r, s) ∈ ∆◦1, where ∆1 is
defined in (3.6). The series expansion of log(1 + z) for 1 + z in the domain of
integration converges uniformly, and the imaginary part vanishes by sym-
metry. Hence

Rf (u, v) = r u+

∫ 1
2

(1−r)

− 1
2

(1−r)

∞∑
n=1

(−1)n+1

n
enve2πinϕ dϕ

= r u+

∞∑
n=1

(−1)n+1

n
env

1

πn
sin[πn(1− r)].

Recalling that ev(r,s) = b(r, s) = (sinπs)/ sin[π(r + s)], we conclude that

Df (r, s) = Rf
(
u(r, s), v(r, s)

)
− r u(r, s)− s v(r, s)

=

∞∑
n=1

(−1)n+1

πn2
b(r, s)n sin[πn(1− r)]− s log[b(r, s)].

(3.22)
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Now suppose that ev > 1, which corresponds to (r, s) ∈ ∆◦2, where ∆2 is
defined by (3.7). Then log |1 + eve2πiϕ| = v + log |1 + e−ve−2πiϕ|. Calculating
as before,

Rf (u, v) = r u+ (1− r)v +

∫ 1
2

(1−r)

− 1
2

(1−r)

∞∑
n=1

(−1)n+1

n
e−nve−2πinϕ dϕ

= r u+ (1− r)v +
∞∑
n=1

(−1)n+1

πn2
b(r, s)−n sin[πn(1− r)].

Thus for (r, s) ∈ ∆◦2 we find that

Df (r, s) =

∞∑
n=1

(−1)n+1

πn2
b(r, s)−n sin[πn(1− r)] + (1− r− s) log[b(r, s)]. (3.23)

Finally, note that on the overlap ∆1 ∩∆2 inside ∆◦, we have that b(r, s) = 1
and so the series in (3.6) and (3.7) converge and agree, hence give the value
of Df (r, s) by continuity of the Legendre transform.
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