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Chapter 2

Tropical limits of decimated
polynomials1

2.1 Introduction

Our reader at some point might have encountered the following mathemat-
ical puzzle:

Is it possible to tile the 8× 8 chessboard without two opposite corners with
2× 1 dominoes?

A simple parity argument shows that it is, indeed, not possible. A more
difficult question is in how many ways we can tile the usual 8×8, and, more
generally, 2n× 2n chessboard with the 2× 1 dominos?

In 1961, a Dutch physicist Piet Kasteleyn found complete solutions of sev-
eral ‘arrangement problems’ of such nature [53]. In particular, he showed
that the number of domino tilings of a chessboard of a size 2n× 2n is given
by

Zn =

n−1∏
m=0

n−1∏
k=0

(
4− 2 cos

(
2m+ 1

2n+ 1
π

)
− 2 cos

(
2k + 1

2n+ 1
π

))
. (2.1)

There is a one-to-one correspondence between the domino tilings and
dimer configurations, or, in other words, the perfect matchings of a corre-

1This chapter is based on: E. Arzhakova, E. Verbitskiy, Tropical Limits of Decimated Poly-
nomials. Arnold Math J. 5, 57–67 (2019). https://doi.org/10.1007/s40598-019-00108-9
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16 Chapter 2. Tropical limits of decimated polynomials

Figure 2.1: Correspondence between the domino tilings and the dimer
matchings on boxes 2n× 2n.

sponding graph, as Figure 2.1 demonstrates. A perfect matching of a graph
is a subset of its edges such that every vertex of the graph is incident to ex-
actly one edge of the subset.

The method developed by Kasteleyn is not only applicable to counting
the number of domino tilings, or equivalently, dimer configurations, but
can also be used to compute the weighted sum of the form

Zn =
∑

M∈M(G2n×2n)

w(M), (2.2)

where M(G2n×2n) is a collection of all dimer configurations of the square
box of size 2n× 2n. For any dimer configuration (matching)M , its weight is
given by

w(M) =
∏
e∈M

w(e), w(e) =

{
u, for horizontal edges,

v for vertical edges,
, u, v > 0.

Obtaining explicit expressions for the partition function Zn (2.2) is im-
portant in Statistical Physics, as it allows the computation of the free energy
F (u, v) given by

F (u, v) = − lim
n→∞

1

n2
logZn, (2.3)

and, by analysing the free energy, one is able to determine some important
macroscopic properties of the systems in the thermodynamic limit. In par-
ticular, the singularities of the free energy function indicate the presence of
the phase transitions.

It turns out [22, 55], that it is easier to compute a weighted partition func-
tion of the form (2.2) if we embed the 2n×2n square grid on a torus (see Fig.
2.2).



2.1. Introduction 17

Figure 2.2: A dimer configuration (matching) on the 4× 4 box on a torus.

The partition function ZT
n for weighted dimer matchings on a torus pos-

sesses an elegant explicit expression:

ZT
n =

1

2
(−fn(1, 1) + fn(−1, 1) + fn(1,−1) + fn(−1,−1)) , (2.4)

where, for every integer n > 1,

fn(x, y) =
n−1∏
m=0

n−1∏
k=0

f
(
e2πim

n x, e2πi k
n y
)
. (2.5)

with f being a Laurent polynomial in two variables x, y, namely,

f(x, y) = 4(u2 + v2)− u2(x+ x−1)− v2(y + y−1).

The limiting free energy F does not depend on whether we consider the
partition function Zn or ZT

n . In both cases,

lim
n→∞

1

n2
logZn = lim

n→∞

1

n2
logZT

n =

∫ 1

0

∫ 1

0
log |f(e2πiθ1 , e2πiθ2)|dθ1dθ2. (2.6)

More generally, expressions of a form (2.4) and (2.6) hold for all planar
simple bipartite Z2-periodic graphs and some associated polynomials f .
For example, for the honeycomb lattice, f(x, y) = a+bx+cy, where a, b, c are
the weights of the horizontal, north-east, and south-east edges, respectively.

Kenyon, Okounkov, and Sheffield (see [55]) obtained a beautiful limiting
shape result for the coefficients of fn(x, y) in (2.5) for the special ‘dimer’
polynomials f . In the present note we discuss the generalization of the re-
sult of Kenyon, Okounkov, and Sheffield to arbitrary Laurent polynomials in
d variables, where d > 2.
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2.2 Decimation of polynomials

A Laurent polynomial in d commuting variables z1, . . . , zd, can be presented
as a sum

f(z) =
∑
m∈Zd

fmzm,

where we use the multi-index notation m = (m1, . . . ,md). The sum has a
finite number of terms: there are only finitely many m’s with fm 6= 0. The
multi-indices m ∈ Zd with fm 6= 0 are called the exponent vectors. The set
of all exponent vectors is called the support of f and is denoted by supp(f).

Now, fix an arbitrary integer n > 1. Then, the n-th decimation of a Laurent
polynomial f(z1, . . . , zd) is defined as

fn(z1, . . . , zd) =
n∏

k1=1

. . .
n∏

kd=1

f
(
e2πik1/nz1, . . . , e

2πikd/nzd

)
. (2.7)

Our interest in these polynomials arose when studying decimations (renor-
malization transformation) of the so-called principle algebraic actions – a
natural class of algebraic dynamics, see [1] for more details. Such polyno-
mials have been considered earlier by Purbhoo [92] who studied approxi-
mations of amoebas. In the present paper, we will discuss properties of the
decimated polynomials.

For every n, a decimated polynomial fn is again a Laurent polynomial

fn(z) =
∑
m∈Zd

fmn z
m.

Moreover, the resulting exponent vectors of fn are entry-wise divisible by n.
In other words, fn is a Laurent polynomial in zn1 , . . . , z

n
d .

Example 2.2.1. Consider a polynomial f(x, y) = 1 − x − y. Then, the first
three decimations are (see Fig. 2.3):

1. f1(x, y) = 1− x− y;

2. f2(x, y) = 1− 2x2 − 2y2 − 2x2y2 + y4 + x4;

3. f3(x, y) = 1− 3x3− 3y3 + 3x6 + 3y6− 3x6y3− 3x3y6− 21x3y3− y9− x9.
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Figure 2.3: Black circles correspond to the exponent vectors of f = f1,
namely, (0, 0),(1, 0), and (0, 1); the exponent vectors of f2 and f3 are denoted
by the grey and the white circles, respectively.

We remind the reader that the Newton polytope N (f) of a Laurent poly-
nomial f(z1, . . . , zd) is a subset of Rd which is a convex hull of the exponent
vectors of f(z1, . . . , zd). Note that the Newton polytopes of fn and of f satisfy
the following relation:

N (fn) = ndN (f).

Therefore, when n increases, the Newton polytope of fn grows, and so do
the absolute values of the non-zero coefficients fmn . In fact, their growth
rate is exponential in n. The natural question is whether there is a scaling
limit of the coefficients of fn. Namely, whether the limits

lim
n→∞

1

nd
log |fmn

n |, (2.8)

exist for sequencesmn ∈ supp(fn) such that mn

nd
→ u ∈ N (f).

2.3 The scaling limit

In tropical algebra, the standard addition and multiplication of real num-
bers are redefined as follows:

• tropical addition: a⊕ b = max{a, b};
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• tropical multiplication: a� b = a+ b.

Hence, 2 ⊕ 5 = 5 and 2 � 5 = 7. The tropical operations allow to define
tropical polynomials. For example, consider f(x, y) = 2x2 − 4x2y + y; its
tropical analogue is then

F (x, y) = (2� x� x)⊕ (−4� x� x� y)⊕ (1� y).

Using the tropical operations, defined above, one can easily evaluate F at
any (x, y) ∈ R2

F (x, y) = max{2 + 2x,−4 + 2x+ y, y}.

Tropical geometry incorporates many facets of algebraic geometry and con-
vex analysis [74].

Let us consider a Laurent polynomial f(z) =
∑
m fmzm. The tropicaliza-

tion of f(z), denoted by trop(f)(t), is a function on Rd defined as follows: for
any t = (t1, . . . , td) ∈ Rd, take

trop(f)(t) =
⊕

m∈supp(f)

log |fm| � tm

= max
m∈supp(f)

(
log |fm|+m1t1 + . . .mdtd

)
= max
m∈supp(f)

(
log |fm|+ 〈m, t〉

)
,

(2.9)

where 〈·, ·〉 denotes the standard scalar product on Rd.
Tropicalization of f is thus a tropical analogue of the Laurent polynomial∑
m log |fm|zm.

The tropical variety of f(z) is the set of all points t ∈ Rd such that the max-
imum in (2.9) is achieved at at least two monomials. Therefore, the tropi-
calization of f is a piecewise affine convex function on Rd; each component
of the complement of the tropical variety defines a domain where a certain
monomial of f is maximal, c.f. (2.9). Figure 2.4 shows the tropical varieties
of the first 4 decimations of a polynomial 1 + x+ y.

In a joint work with Doug Lind and Klaus Schmidt [1] (see Chapter 3), we
established the following result on the existence of scaling limits of tropical-
izations of the decimated polynomials fn.
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Figure 2.4: Tropical varieties of trop(fn) for f = 1 + x+ y and n = 1, 2, 3, 4.

Theorem 2.3.1. For every non-zero Laurent polynomial f(z) and all t ∈ Rd,
there exists a limit

lim
n→∞

1

nd
trop(fn)(t) = Rf (t), (2.10)

where Rf : Rd → R is the Ronkin function of f , given by

Rf (t) =

∫ 1

0
· · ·
∫ 1

0
log |f(et1+2πiθ1 , . . . , etd+2πiθd)|dθ1 . . . dθd

=

∫
t∈Td

log
∣∣f(et+2πiθ)

∣∣dθ. (2.11)

Sketch of the proof. (The full proof can be found in [1], Chapter 3.) The
first observation relates the Ronkin functions of f and fn; namely, Rfn(t) =
ndRf (t). Hence, it suffices to compare trop(fn) and Rf .
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The Ronkin function can be easily bounded from above: indeed, let us
denote by ]supp(fn) the number of integer points inside the support of fn.
Then,

Rfn(t) =

∫
Td

log
∣∣∣∑
m

fmn e〈t,m〉e2πi〈m,th〉
∣∣∣dth

6
∫
Td

log
∑

m∈supp(fn)

∣∣∣fmn e〈t,m〉e2πi〈m,th〉
∣∣∣dth

=

∫
Td

log
∑

m∈supp(fn)

∣∣∣fmn e〈t,m〉
∣∣∣

6 log

(
]supp(fn) max

m∈supp(fn)
exp (log |fmn |+ 〈t,m〉)

)
= log ]supp(fn) + max

m∈supp(fn)
(log |fmn |+ 〈t,m〉)

= log ]supp(fn) + trop(fn)(t).

Hence, for all n ∈ Z and t ∈ Rd one has

Rf (t) =
1

nd
Rfn(t) 6

1

nd
log ]supp(fn) +

1

nd
trop(fn)(t).

Since the cardinality of the support of fn grows at most as const · nd, we
immediately conclude that

Rf (t) 6 lim inf
n→∞

1

nd
trop(fn)(t). (2.12)

Let us start the discussion of the lower bound of Rf (t) with the following
observation. Suppose that z = (z1, . . . , zd) ∈ (C∗)d is a d-tuple of non-zero
complex numbers; denote by tj ∈ R and ϕj ∈ T ∼ [0, 1) the modulus and
the argument of zj for every j = 1, . . . , d, i.e., zj = etj+2πiϕj . Note that

1

nd
| log fn(z)| = 1

nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

log
∣∣∣f (et1+2πiϕ1+2πik1/n, . . . , etd+2πiϕd+2πikd/n

)∣∣∣ .
(2.13)

The expression on the right hand side is a Riemann sum for the integral
(2.11) defining the Ronkin function Rf (t). Note also, that despite the fact f
may have zeros on a torus {z : |z| = et}, the function log |f | is still integrable
since the singularities are only logarithmic. One naturally expects that for
almost all z, the Riemann sums in (2.13) converge to Rf (t). However, es-
tablishing such convergence turns out to be a rather intricate Diophantine
problem [25, 65].
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Fortunately, in order to establish the lower bound, one does not have to
deal with a convergence problem in a complete generality. It suffices to
prove that the Riemann sums are bounded from above by Rf (t).

We say that the initial value z = (et1+2πiϕ1 , . . . , etd+2πiϕd) is good if the
points of the set

Qn(z) =
{(
et1+2πiϕ1+2πik1/n, . . . , etd+2πiϕd+2πikd/n

)
, k1, . . . kd = 0, . . . n−1

}
do not fall or come too close (depending on n) to the variety of f : Vf = {z ∈
(C∗)d : f(z) = 0}. For good points, it is relatively easy to show that the
Riemann sums are close to the value of the integral Rf (t). On the contrary,
for the ’bad’ initial values z, the points inQn(z), which are close to Vf , give a
negative contribution to the sum (2.13). Hence, one is able to conclude that
for all z with |z1| = et1 , . . . , |zd| = etd ,

lim sup
n→∞

1

nd
log |fn(z)| 6 Rf (t), (2.14)

or, equivalently,

|fn(z)| 6 exp
(
nd(Rf (t) + o(1)

)
. (2.15)

The final part of the argument is based on a relatively simple statement from
Fourier analysis: if the absolute value of a complex (trigonometric) polyno-
mial is bounded from above by some constant M on a torus Tt = {z : |z| =
et} then the absolute values of all of its monomials are also bounded from
above by the same constant. Therefore, applying this result to fn and the
inequality (2.15), we conclude that that for allm

|fmn e〈t,m〉| 6 exp
(
nd(Rf (t) + o(1)

)
,

and, hence,

trop(fn)(t) = max
m

(log |fmn |+ 〈t,m〉) 6 nd(Rf (t) + o(1)). (2.16)

Combining the inequalities (2.12) and (2.16), we obtain the desired result.

Remark 2.3.2. Theorem 2.3.1 provides some insight on the geometry of
tropical varieties of fn. In Figure 2.4, the similarity between the shapes of
tropical varieties of decimations of f = 1+x+y for various n is not acciden-
tal. Let us recall the notion of an amoeba of a Laurent polynomial f of d vari-
ables that was first suggested by Gelfand, Kapranov, and Zelevinsky in [36].
An amoeba of f denoted by Af is an image of the variety Vf under the map
Log : Vf 7→ Rd given by the formula Log(z1, . . . , zd) = (log |z1|, . . . , log |zd|).
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The amoeba Af is a closed subset of Rd with a non-empty convex comple-
ment (see Figure 2.5). The Ronkin functionRf is strictly convex overAf and
affine on each component of Rd\Af [83].

Figure 2.5: Amoeba Af for f = 1 + x+ y.

It is easy to see that Af coincides with Afn for every positive n. Accord-
ing to Theorem 2.3.1, 1

nd
trop(fn)(t) is a sequence of piecewise-affine convex

functions converging to the Ronkin functionRf which is affine on the com-
plement of Af and strictly convex inside Af . Therefore, the outer boundary
of the tropical varieties 1

nd
trop(fn) converge to the boundary of Af as n ap-

proaches infinity.

2.3.1 Surface tension

The Legendre transform (or a dual) of a function F : Rd → R is defined as

F ∗(t) = sup
u∈Rd

(〈t,u〉 − F (u)) .

The Legendre transform F ∗ is always a convex function; moreover, for a
convex closed function F , the Legendre transform is an involution

F ∗∗(u) = F (u).

Suppose f is a Laurent polynomial. Then, the tropicalization of f is, in fact,
a Legendre transform of the function F defined as follows:

F (u) =

{
− log |fm|, if u = m ∈ supp(f),

+∞, otherwise,
.

Indeed, one has

F ∗(t) = sup
u∈Rd

(〈t,u〉 − F (u)) = sup
m∈supp(f)

(〈t,m〉 − (− log |fm|)) = trop(f)(t).
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Applying the Legendre transform once again, we obtain F ∗∗ = trop(f)∗.
Since F , in general, is not convex, F ∗∗ 6= F . However, F ∗∗ is easy to de-
scribe; namely, F ∗∗ = conv(F ), where conv(F ) is the so-called greatest con-
vex minorant or a convex hull of F : the largest convex function satisfying
conv(F )(u) 6 F (u) for all u. Clearly, conv(F )(u) = +∞ for al u 6∈ N (f) and
is finite onN (f).

Using the above arguments for the polynomials fn and the result of the
Theorem 2.3.1, one immediately obtains the following result:

Corollary 2.3.3. Let conv(Fn) be the greatest convex minorant of

F (n) =

{
− log |fmn |, if u = m ∈ supp(fn),

+∞, otherwise.

Then, for all u ∈ Rd,

σf (u) := lim
n→∞

1

nd
conv(Fn)(ndu) = −R∗f (u).

By analogy with [55], we refer to the function σf as to the surface tension
of f .

Corollary 2.3.3 should be seen as a weaker, but at the same time, a more
general version of the result established in [55] for polynomials appearing
in dimer problems. It turns out that these polynomials are rather special
in the following sense: for such polynomials, one is able to define the sur-
face tension using the coefficients of fn without the need to resort to convex
hulls of the coefficients. In other words, some form of convexity is already
present in the coefficients of fn. It is, of course, very interesting to identify
such polynomials. Okounkov and Kenyon [87] showed that for every Har-
nack curve, one can construct a polynomial of 2 variables, whose algebraic
variety is the given Harnack curve, and for which the surface tension is well
defined. At the present moment, it is not clear which conditions could play
a similar role in higher dimensions.

Finally, we would like to remark that the use of tropical geometric meth-
ods to study limits of partition functions or similar quantities is very natural,
and has been proposed in [34].
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