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Chapter 1

Introduction

"The theory of dynamical systems is a major mathematical
discipline closely intertwined with most of the main areas of
mathematics. Its mathematical core is the study of the global orbit
structure of maps and flows with emphasis on properties invariant
under coordinate changes."
A. Katok, B. Hasselblat, Introduction to the modern theory of
dynamical systems

A dynamical system is a system that undergoes time evolution. Formally
speaking, it is a three-tuple consisting of:

1. A phase space X where each point describes some configuration of
the system. This space is equipped with a measure µ together with a
σ-algebra B.

2. A parameter t that is often referred to as time. It typically belongs to
the real numbers R (continuous time) or the integers Z (discrete time).
However, this parameter can also be multi-dimensional (for example,
algebraic Zd-actions).

3. The time evolution law, i.e., a family of transformations {T t}t of the
phase space X that are parametrised by time t. The law allows to ob-
tain the state of the system Xt at any time t from the initial state X0

by computing T tX0. The measure µ is called T -invariant if µ(T−tA) =
µ(A) for any measurable A ⊂ X.

As the epigraph suggests, dynamical systems can be observed in many ar-
eas of mathematics and physics. The theory of dynamical systems unites
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6 Chapter 1. Introduction

these areas by studying similar problems associated to time evolution.

An important direction of the theory of dynamical systems is their classi-
fication, or, in other words, the identification of whether two dynamical sys-
tems are isomorphic. One can tackle the classification problem by studying
invariants, i.e., properties or quantities associated to a system which are in-
variant under system isomorphisms. One of such invariant quantities is the
Kolmogorov-Sinai entropy [58, 104]. It measures the limiting complexity of
a system and is the complete invariant for Bernoulli systems. Let us discuss
entropies of some solvable models investigated in the present thesis.

Consider the lattice Z2 as a graph, where the vertices are the nodes of
the lattice, and the edges connect vertices which are adjacent in vertical
and horizontal directions. A dimer configuration on Z2 is a subset of edges
which covers each node exactly once. The set of all dimer configurations on
Z2 is invariant under the Z2-action by shifts, and together with this action
it defines a dynamical system. The dimer model has been extensively stud-
ied in the context of symbolic dynamics and statistical mechanics (see, for
example, [55]). In particular, its topological entropy is given by

hd =
1

4

∫ 1

0

∫ 1

0
log (4− 2(cos 2πx1 + cos 2πx2)) dx1 dx2. (1.1)

The uniform spanning forest model on Z2 is similar to the dimer model.
It turns out that there exists a bijection between the set of spanning trees of
an n×n box and the set of dimer matchings of a (2n−1)×(2n−1) box with a
corner removed (the Temperley-Fisher bijection, see [107]). The entropy of
the uniform spanning forest model hs on Z2 is directly related to the dimer
entropy [16]:

hs = 4hd =

∫ 1

0

∫ 1

0
log (4− 2(cos 2πx1 + cos 2πx2)) dx1 dx2. (1.2)

Remarkably, a number of other systems share the same expression for en-
tropy, for example, the sandpile model [24]. Principal algebraic actions con-
sidered in the present thesis also provide an example of a system with the
same entropy. Denote the additive torus R/Z by T and consider a group

X =
{
x ∈ TZ2

: 4xn,m−xn+1,m−xn−1,m−xn,m+1−xn,m−1 = 0, (n,m) ∈ Z2
}
.

The group TZ2
admits an action of Z2 by shifts. Denote by α the restric-

tion of this action to the compact group X. The principal algebraic action
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Figure 1.1: Left: a dimer configuration is a subset of edges covering each
vertex exactly once. Right: a spanning tree is a subgraph that is a tree and
connects all vertices.

(X,α) has the same entropy expression as (1.2) [64]. Moreover, this alge-
braic system is measure-theoretically isomorphic both to the double shift
dimer model and to the uniform spanning forest model [99]. It is conjec-
tured that the link between these models is, in fact, even stronger [100].

In the present thesis we investigate the limiting behaviour of some mod-
els. In particular, we consider the following problems:

• Existence of a scaling limit of principal actions (Chapters 2, 3).

• Existence and properties of a limiting measure or a limiting distribu-
tion (Chapters 4, 5).

• Properties of a foliation of a moduli space (Chapter 6).

1.1 Dimer configurations and decimations

Consider a planar weighted simple bipartite graph G = (V,E), where V is
the set of vertices and E is the set of unoriented edges of G. By definition,
a dimer configuration of G is a subset of E that covers each vertex exactly
once (see Figure 1.1).

One defines a partition functionZG of a graphG as a formal sum of weights
of dimer configurations, namely,

ZG =
∑

M∈M(G)

ν(M) =
∑

M∈M(G)

∏
e∈M

ν(e),

whereM(G) is the collection of all possible dimer configurations of G and
ν(e) is the weight of e ∈ E. Suppose that G is an infinite weighted Z2-
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periodic bipartite planar graph, and let GN = G/NZ2, N > 1, be its finite
periodic factor graph, which we view as a graph on the torus T2. It turns out
that for any N , the partition function ZGN can be computed explicitly (see
Section 6 in [93]).

In order to illustrate how ZGN is computed, let us consider the example of
the honeycomb lattice (see Figure 1.2 for G3). The graph GN has N2 black
vertices, N2 white vertices, and 3N2 edges. The positive weights a, b, c are
assigned periodically to the edges of GN as indicated in Figure 1.2. Denote
by Nb(M) and Nc(M) the number of edges of type b and c, respectively, of a
dimer configuration M of GN . The partition function ZGN is then a sum of
the weights of all possible dimer configurations of GN :

ZGN =
∑

M∈M(GN )

a3N2−Nb(M)−Nc(M)bNb(M)cNc(M).

x

y

b b b

a a ac c c c

b b b

a a a
c c c c

b b b

a a ac c c c

b b b

Figure 1.2: Periodic weighted hexagonal lattice.

It turns out that the partition function ZGN can be calculated by using the
characteristic polynomial of two variables P (z, w) that only depends on G1.
Namely,

ZGN =
1

2

(
−PN (1, 1) + PN (−1, 1) + PN (1,−1) + PN (−1,−1)

)
, (1.3)

where PN (±1,±1) =
∏
zN=±1

∏
wN=±1 P (z, w). In case of the hexagonal lat-

tice P (z, w) = a − bz − cw [55]. What is surprising is that not only the par-
tition function ZGN (the weighted number of configurations), but also the
coefficients of ZGN (z, w) have a physical meaning. Namely, if ZGN (z, w) =∑

n ZGN (n)zn1wn2 , then ZGN (n) =
∑

M∈Mn(GN ) ν(M), whereMn(GN ), n =
(n1, n2), is the collection of dimer configurations of GN that have precisely
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Nn1 edges with weight b and Nn2 edges with weight c. This means that
ZGN (n) is also a partition function. It turns out that the restricted partition
functions ZGN (n) have scaling limits: for (s, t) ∈ ∆P , i.e., in the Newton
polytope of the polynomial P ,

lim
N→∞

1

N2
logZGN ([Ns], [Nt]) = −R∗P (s, t), (1.4)

where [·] is the integer part and R∗P (s, t) is the Legendre dual of the Ronkin
function of P [55]. The coefficients of ZGN are directly related to the coeffi-
cients of the N th decimation PN of P (z, w), which is defined as PN (z, w) =∏
qN1 =1

∏
qN2 =1 P (q1z, q2w). The latter can be generalised to polynomials with

any number of variables. TheN-th decimation fN of a polynomial f is given
by the formula

fN (x1, . . . , xd) =
∏
qN1 =1

. . .
∏
qNd =1

f(q1x1, . . . , qdxd).

Note that fN is a polynomial with integer coefficients with all powers of
monomials pointwise divisible by N . A natural question is to understand
whether the coefficients of fN for arbitrary f also have scaling limits similar
to (1.4). The methods used in [55] can only be applied for a class of poly-
nomials in two variables that arise as characteristic polynomials of dimer
models and cannot be generalised outside of this context. It is not difficult
to demonstrate that (1.4) does not hold for arbitrary decimated polynomi-
als (see, for instance, Example 3.2.3 of Chapter 3). However, in Chapters 2
and 3 we show that the convex hulls of decimated scaled coefficients always
exist (Theorems 2.3.1 and 3.1.1). Chapter 2 is a geometric introduction to
the problem of decimations of polynomials. It contains a proof of the ex-
istence of convex hulls of decimated scaled coefficients that relies on an
analytic argument to bound Riemann sums. Chapter 3 views the problem
of decimations from the algebraic point of view of Zd-actions. Even though
the statement of its Theorem 3.1.1 of Chapter 3 coincides with the state-
ment of Theorem 2.3.1 of Chapter 2, it features a different proof that only
uses Mahler’s estimates. Moreover, Chapter 3 provides a link between the
decimation of a polynomial f and the decimation of a principal action as-
sociated to f stated in Theorem 3.8.12.

1.2 Spanning trees and determinantal point processes

Given a set E, a point process X = {0, 1}E is called determinantal if the
probability P(X(e1) = 1, . . . , X(en) = 1) is given by a determinant of an
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n × n matrix with entries given by a correlation function K. Namely, the
(i, j)-th entry is equal toK(ei, ej). Determinantal point processes (DPP) first
emerged in 1960s in the framework of mathematical physics (see [30,38] for
the first well known examples) and in 1975 the general notion of DPP was
first introduced for modelling fermion distributions at thermal equilibrium
[79]. Even though DPPs have been studied for many years, most applica-
tions are unexplored yet promising (for instance, to statistics and machine
learning).

In Chapter 4 we are concerned with a probabilistic problem of a DPP as-
sociated to uniform spanning forest measures. A spanning tree on a graph
G = (V,E) is a subset of edges E′ ⊂ E such that the graph (V,E′) is a con-
nected tree (see Figure 1.1). The subject of random spanning trees of a graph
goes back to Kirchhoff in 1847, who showed its surprising relation to elec-
trical networks. One of Kirchhoff’s results expresses the probability that a
uniformly chosen spanning tree contains a given edge in terms of the elec-
trical current in the graph.The number of spanning trees τ(G) of a finite
graphG can be calculated by applying the Kirchhoff’s Matrix-Tree theorem:
τ(G) = |V (G)|−1 det′∆G, where det′∆G is the product of all non-zero eigen-
values of the Laplacian of G.

Given a Zd-periodic infinite graph G, one can consider its approximation
by finite graphs: G1 ⊂ G2 ⊂ . . . ⊂ G, where V (Gn) = {v ∈ Zd : max |vi| 6 n},
with either free or wired boundary conditions. A number of properties of
the spanning forest (a collection of spanning trees) structure onG has been
established: for instance, the asymptotic limit of the number of spanning
trees of Gn on Z2 is the entropy

∫ 1
0

∫ 1
0 log (4− 2(cos 2πx1 + cos 2πx2)) dx1dx2

as discussed above. Moreover, the probability measures associated to span-
ning trees on the finite graphs Gn converge to a uniform spanning forest
measure on G that depends on the chosen boundary conditions. The re-
sulting measures are determinantal (see Theorems 4.1.1 and 4.1.2 in Chap-
ter 4, and [16, 89]), and the corresponding correlation kernels are expressed
in terms of operator projections (Theorem 4.1.6 in Chapter 4). Despite the
simple projection formulas of Theorem 4.1.6, the corresponding correla-
tions kernels are difficult to compute explicitly even for simple graphs (see
Example 4.1.3 of Chapter 4 for Zd and [57] for computations on ladder-like
graphs). Our result – Theorem 4.4.3, uses a functional-analytic generalisa-
tion of a simple linear algebra statement, which allows to effectively cal-
culate correlation kernels of DPPs and correlations associated to uniform
spanning forest measures on infinite graphs with Zd-symmetry. The goal
of Chapter 4 is not only to provide a new method of computing the corre-
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lations, but also to demonstrate the application of the method. Therefore,
Chapter 4 is equipped with a number of examples of computations for dif-
ferent Zd-periodic graphs.

1.3 Central Limit Theorem for dynamical systems

A probabilistic question closely related to the existence of a limiting mea-
sure is the question of existence of a limiting distribution. Consider a se-
quence of independent and identically distributed random variablesY1, Y2, . . .
with zero mean and variance 0 < σ2 < ∞. These satisfy the Central Limit
Theorem (CLT)

1√
n

n∑
i=1

Yi
d−→ N (0, σ2),

i.e., 1√
n

∑n
i=1 Yi converges in distribution to a normal law. The same ques-

tion can be asked in the framework of a dynamical system (X,µ, T ) (where
µ is T -invariant), for a sequence of centered functions f ◦ T i, f ∈ L2(X,µ),
that can be treated as random variables. We say that f satisfies the CLT if

1√
n

∑n−1
i=0 f ◦ T i → N (0, σ2) for 0 < σ2 < ∞. There are relatively straightfor-

ward methods to prove the CLT for independent identically distributed ran-
dom variables, but the variables Yi = f ◦T i might not be independent. How-
ever, the CLT still holds in certain cases, for example, when the sequence of
random variables possesses sufficiently strong mixing properties (see, for
instance, [51, 97]) or forms a martingale (see [40]).

The models considered in Chapters 2, 3, 4 are the so-called solvable mod-
els, i.e, their free energy can be expressed in terms of some known function,
usually a polynomial. The polynomials appearing in solvable models are
typically non-expansive, i.e., some roots have unit absolute value. It is well
known that expansive and non-expansive actions can have very different
dynamical properties. In particular, in Chapter 5 we consider the CLT for
ergodic (both expansive and non-expansive) toral automorphisms: the CLT
has been established for ergodic toral automorphisms by using the mar-
tingale method (see [10, 62] for the CLT and its refinements for sufficiently
smooth functions and [44] for general nilmanifords and Hölder functions).

When considering the CLT, we find that the difference between the hyper-
bolic (expansive) and non-hyperbolic (non-expansive) automorphisms be-
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Figure 1.3: Flat surface - each pair of parallel sides is identified by trans-
lation. The resulting surface is a 2-torus (a sphere with 2 handles) with a
conical singularity of angle 6π.

comes vivid. The hyperbolic toral automorphisms possess certain dynam-
ical properties, such as a Markov partition and a spectral gap (in some Ba-
nach spaces), which allow one to prove the CLT in a variety of ways that do
not apply in the context of the whole family of ergodic toral automorphisms
(see Section 5.2 of Chapter 5 for detailed comparison of methods). In Chap-
ter 5 we prove the CLT and obtain a new result – the rates of convergence
– for Hölder functions in a special family of ergodic toral automorphisms,
without applying the classic martingale method but rather by using Stein’s
method as in [49] and the mixing properties of Hölder functions [26, 90].
Moreover, it seems that the proof of the CLT and the rates of convergence
in Chapter 5 can be generalised for the whole class of ergodic toral auto-
morphisms, and also for the case of non-linear toral automorphisms and
multivariate Hölder observables.

1.4 Dynamics on moduli space

In Chapter 5 we discussed dynamics on a torus, which is the simplest exam-
ple of a flat surface, i.e., a surface obtained by pairwise identification of par-
allel sides of a collection of polygons in Euclidean plane (for an example less
trivial than a torus, see Figure 1.3). Flat surfaces naturally appear in many
areas of mathematics and physics, including billiards in rational polygons
and electron transport in metal [85]. Despite the apparent simplicity of the
definition, flat surfaces pose a number of mathematical questions that are
still not answered, for example, questions on typical behaviour of a generic



1.4. Dynamics on moduli space 13

geodesic, ergodicity of the geodesic flow, and existence, number and length
of closed geodesics [108]. It turns out that the dynamics on a flat surface
is closely connected to the dynamics in the stratum of the moduli space of
flat surfaces. Let us illustrate the latter statement with two examples. A fa-
mous theorem called Masur’s criterion implies that if the vertical flow on a
flat surface S is minimal but not ergodic, then the Teichmüller geodesic

{gtS}t∈R =

{(
et 0
0 e−t

)
S

}

eventually leaves any fixed compact subset K ⊂ Mg in the moduli space
and never visits it again [80]. Another example of the connection between
the dynamics on a flat surface and on the moduli space is (a version of)
Veech’s dichotomy: if the GL+(2,R)-orbit ofS is closed in the stratumH(κ) ⊂
Mg, then any directional flow on S is either completely periodic or uniquely
ergodic. Therefore, it is reasonable to associate problems of dynamics on a
flat surface with corresponding problems of dynamics on the moduli space
Mg or in the stratum. In particular, a full understanding of the dynamics on
Mg is crucial for the study of the dynamical properties of the geodesic flow
on flat surfaces.

The moduli spaceMg normally has a complicated topological structure
being a non-compact orbifold, so it is often convenient to consider its com-
pactification. For g > 1, consider the bundle ΩMg,n → Mg,n whose fiber
over (S, x1, . . . , xn) is the space of meromorphic forms ω on S having simple
poles at x1, . . . , xn. The moduli space ΩMg,n appears naturally as a bound-
ary component in the Deligne-Mumford compactification of moduli spaces
ΩMg of holomorphic 1-forms. The moduli spaces of 1-forms have a natu-
ral period coordinate system, namely, to each pair (S, ω) ∈ ΩMg,n one can
associate a period map p ∈ Hom(H1(Σg,n∗),C), where p(γ) =

∫
f∗γ ω and

f is a map from the reference surface Σg,n∗ to S. Therefore period coordi-
nates appear naturally as a coordinate system of ΩMg,n. However, knowing
the period coordinates of (S, ω) does not allow us to recover the pair (S, ω)
even infinitesimally. In other words, it is always possible to find non-trivial
isoperiodic deformations on ΩMg,n that give rise to the isoperiodic folia-
tion on ΩMg,n [17]. When considering Deligne-Mumford compactification
of ΩMg, we see that the different isoperiodic foliations glue together and
define a global algebraic foliation of a resulting compact space.

It is known that for degree at least 3 the isoperiodic sets of ΩMg, g > 2,
with no marked points are connected (see [17] for the proof and other dy-
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namic properties, such as ergodicity of the foliation). However, it turns out
that the same methods do not apply to the study of the isoperiodic foliations
of moduli spaces of meromorphic 1-forms. Notably, not much is known
about the isoperiodic foliations on ΩMg,n, n > 1 (an overview can be found
in the introduction of Chapter 6). The methods that were proposed to study
the isoperiodic foliations of ΩMg,n, n > 1, heavily depend on the values
of g, n (known results are restricted to n 6 2; see [18]). In Chapter 6 we
propose a new geometric method of studying the isoperiodic sets of ΩMg,n

that can be applied to ΩMg,n for any (small) value of g, n. We demonstrate
the method by proving a new result, namely, that the real isoperiodic sets
of ΩM1,3 are connected (Theorem 6.1.4). The significance of the result of
Chapter 6 is not only the novelty of the method: it seems that the general
statements for arbitrary g, n can be proved by induction upon providing a
sufficient induction base (similarly to [17]). Thus, Theorem 6.1.4 serves as
the base of induction for our further research.

In conclusion, the present thesis addresses problems that arise in differ-
ent mathematical areas - algebra, probability, geometry, statistical mechan-
ics, graph theory. Nevertheless, the problems that we treat are similar in na-
ture and are aimed at understanding limiting behaviour associated to dy-
namical systems. As this thesis demonstrates, the methods that apply in
different mathematical contexts are diverse, and range from Diophantine
approximations to combinatorics, linear algebra, functional analysis, and
more.


