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Chapter 1

Introduction

"The theory of dynamical systems is a major mathematical
discipline closely intertwined with most of the main areas of
mathematics. Its mathematical core is the study of the global orbit
structure of maps and flows with emphasis on properties invariant
under coordinate changes."
A. Katok, B. Hasselblat, Introduction to the modern theory of
dynamical systems

A dynamical system is a system that undergoes time evolution. Formally
speaking, it is a three-tuple consisting of:

1. A phase space X where each point describes some configuration of
the system. This space is equipped with a measure µ together with a
σ-algebra B.

2. A parameter t that is often referred to as time. It typically belongs to
the real numbers R (continuous time) or the integers Z (discrete time).
However, this parameter can also be multi-dimensional (for example,
algebraic Zd-actions).

3. The time evolution law, i.e., a family of transformations {T t}t of the
phase space X that are parametrised by time t. The law allows to ob-
tain the state of the system Xt at any time t from the initial state X0

by computing T tX0. The measure µ is called T -invariant if µ(T−tA) =
µ(A) for any measurable A ⊂ X.

As the epigraph suggests, dynamical systems can be observed in many ar-
eas of mathematics and physics. The theory of dynamical systems unites

5



6 Chapter 1. Introduction

these areas by studying similar problems associated to time evolution.

An important direction of the theory of dynamical systems is their classi-
fication, or, in other words, the identification of whether two dynamical sys-
tems are isomorphic. One can tackle the classification problem by studying
invariants, i.e., properties or quantities associated to a system which are in-
variant under system isomorphisms. One of such invariant quantities is the
Kolmogorov-Sinai entropy [58, 104]. It measures the limiting complexity of
a system and is the complete invariant for Bernoulli systems. Let us discuss
entropies of some solvable models investigated in the present thesis.

Consider the lattice Z2 as a graph, where the vertices are the nodes of
the lattice, and the edges connect vertices which are adjacent in vertical
and horizontal directions. A dimer configuration on Z2 is a subset of edges
which covers each node exactly once. The set of all dimer configurations on
Z2 is invariant under the Z2-action by shifts, and together with this action
it defines a dynamical system. The dimer model has been extensively stud-
ied in the context of symbolic dynamics and statistical mechanics (see, for
example, [55]). In particular, its topological entropy is given by

hd =
1

4

∫ 1

0

∫ 1

0
log (4− 2(cos 2πx1 + cos 2πx2)) dx1 dx2. (1.1)

The uniform spanning forest model on Z2 is similar to the dimer model.
It turns out that there exists a bijection between the set of spanning trees of
an n×n box and the set of dimer matchings of a (2n−1)×(2n−1) box with a
corner removed (the Temperley-Fisher bijection, see [107]). The entropy of
the uniform spanning forest model hs on Z2 is directly related to the dimer
entropy [16]:

hs = 4hd =

∫ 1

0

∫ 1

0
log (4− 2(cos 2πx1 + cos 2πx2)) dx1 dx2. (1.2)

Remarkably, a number of other systems share the same expression for en-
tropy, for example, the sandpile model [24]. Principal algebraic actions con-
sidered in the present thesis also provide an example of a system with the
same entropy. Denote the additive torus R/Z by T and consider a group

X =
{
x ∈ TZ2

: 4xn,m−xn+1,m−xn−1,m−xn,m+1−xn,m−1 = 0, (n,m) ∈ Z2
}
.

The group TZ2
admits an action of Z2 by shifts. Denote by α the restric-

tion of this action to the compact group X. The principal algebraic action



1.1. Dimer configurations and decimations 7

Figure 1.1: Left: a dimer configuration is a subset of edges covering each
vertex exactly once. Right: a spanning tree is a subgraph that is a tree and
connects all vertices.

(X,α) has the same entropy expression as (1.2) [64]. Moreover, this alge-
braic system is measure-theoretically isomorphic both to the double shift
dimer model and to the uniform spanning forest model [99]. It is conjec-
tured that the link between these models is, in fact, even stronger [100].

In the present thesis we investigate the limiting behaviour of some mod-
els. In particular, we consider the following problems:

• Existence of a scaling limit of principal actions (Chapters 2, 3).

• Existence and properties of a limiting measure or a limiting distribu-
tion (Chapters 4, 5).

• Properties of a foliation of a moduli space (Chapter 6).

1.1 Dimer configurations and decimations

Consider a planar weighted simple bipartite graph G = (V,E), where V is
the set of vertices and E is the set of unoriented edges of G. By definition,
a dimer configuration of G is a subset of E that covers each vertex exactly
once (see Figure 1.1).

One defines a partition functionZG of a graphG as a formal sum of weights
of dimer configurations, namely,

ZG =
∑

M∈M(G)

ν(M) =
∑

M∈M(G)

∏
e∈M

ν(e),

whereM(G) is the collection of all possible dimer configurations of G and
ν(e) is the weight of e ∈ E. Suppose that G is an infinite weighted Z2-
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periodic bipartite planar graph, and let GN = G/NZ2, N > 1, be its finite
periodic factor graph, which we view as a graph on the torus T2. It turns out
that for any N , the partition function ZGN can be computed explicitly (see
Section 6 in [93]).

In order to illustrate how ZGN is computed, let us consider the example of
the honeycomb lattice (see Figure 1.2 for G3). The graph GN has N2 black
vertices, N2 white vertices, and 3N2 edges. The positive weights a, b, c are
assigned periodically to the edges of GN as indicated in Figure 1.2. Denote
by Nb(M) and Nc(M) the number of edges of type b and c, respectively, of a
dimer configuration M of GN . The partition function ZGN is then a sum of
the weights of all possible dimer configurations of GN :

ZGN =
∑

M∈M(GN )

a3N2−Nb(M)−Nc(M)bNb(M)cNc(M).

x

y

b b b

a a ac c c c

b b b

a a a
c c c c

b b b

a a ac c c c

b b b

Figure 1.2: Periodic weighted hexagonal lattice.

It turns out that the partition function ZGN can be calculated by using the
characteristic polynomial of two variables P (z, w) that only depends on G1.
Namely,

ZGN =
1

2

(
−PN (1, 1) + PN (−1, 1) + PN (1,−1) + PN (−1,−1)

)
, (1.3)

where PN (±1,±1) =
∏
zN=±1

∏
wN=±1 P (z, w). In case of the hexagonal lat-

tice P (z, w) = a − bz − cw [55]. What is surprising is that not only the par-
tition function ZGN (the weighted number of configurations), but also the
coefficients of ZGN (z, w) have a physical meaning. Namely, if ZGN (z, w) =∑

n ZGN (n)zn1wn2 , then ZGN (n) =
∑

M∈Mn(GN ) ν(M), whereMn(GN ), n =
(n1, n2), is the collection of dimer configurations of GN that have precisely
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Nn1 edges with weight b and Nn2 edges with weight c. This means that
ZGN (n) is also a partition function. It turns out that the restricted partition
functions ZGN (n) have scaling limits: for (s, t) ∈ ∆P , i.e., in the Newton
polytope of the polynomial P ,

lim
N→∞

1

N2
logZGN ([Ns], [Nt]) = −R∗P (s, t), (1.4)

where [·] is the integer part and R∗P (s, t) is the Legendre dual of the Ronkin
function of P [55]. The coefficients of ZGN are directly related to the coeffi-
cients of the N th decimation PN of P (z, w), which is defined as PN (z, w) =∏
qN1 =1

∏
qN2 =1 P (q1z, q2w). The latter can be generalised to polynomials with

any number of variables. TheN-th decimation fN of a polynomial f is given
by the formula

fN (x1, . . . , xd) =
∏
qN1 =1

. . .
∏
qNd =1

f(q1x1, . . . , qdxd).

Note that fN is a polynomial with integer coefficients with all powers of
monomials pointwise divisible by N . A natural question is to understand
whether the coefficients of fN for arbitrary f also have scaling limits similar
to (1.4). The methods used in [55] can only be applied for a class of poly-
nomials in two variables that arise as characteristic polynomials of dimer
models and cannot be generalised outside of this context. It is not difficult
to demonstrate that (1.4) does not hold for arbitrary decimated polynomi-
als (see, for instance, Example 3.2.3 of Chapter 3). However, in Chapters 2
and 3 we show that the convex hulls of decimated scaled coefficients always
exist (Theorems 2.3.1 and 3.1.1). Chapter 2 is a geometric introduction to
the problem of decimations of polynomials. It contains a proof of the ex-
istence of convex hulls of decimated scaled coefficients that relies on an
analytic argument to bound Riemann sums. Chapter 3 views the problem
of decimations from the algebraic point of view of Zd-actions. Even though
the statement of its Theorem 3.1.1 of Chapter 3 coincides with the state-
ment of Theorem 2.3.1 of Chapter 2, it features a different proof that only
uses Mahler’s estimates. Moreover, Chapter 3 provides a link between the
decimation of a polynomial f and the decimation of a principal action as-
sociated to f stated in Theorem 3.8.12.

1.2 Spanning trees and determinantal point processes

Given a set E, a point process X = {0, 1}E is called determinantal if the
probability P(X(e1) = 1, . . . , X(en) = 1) is given by a determinant of an
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n × n matrix with entries given by a correlation function K. Namely, the
(i, j)-th entry is equal toK(ei, ej). Determinantal point processes (DPP) first
emerged in 1960s in the framework of mathematical physics (see [30,38] for
the first well known examples) and in 1975 the general notion of DPP was
first introduced for modelling fermion distributions at thermal equilibrium
[79]. Even though DPPs have been studied for many years, most applica-
tions are unexplored yet promising (for instance, to statistics and machine
learning).

In Chapter 4 we are concerned with a probabilistic problem of a DPP as-
sociated to uniform spanning forest measures. A spanning tree on a graph
G = (V,E) is a subset of edges E′ ⊂ E such that the graph (V,E′) is a con-
nected tree (see Figure 1.1). The subject of random spanning trees of a graph
goes back to Kirchhoff in 1847, who showed its surprising relation to elec-
trical networks. One of Kirchhoff’s results expresses the probability that a
uniformly chosen spanning tree contains a given edge in terms of the elec-
trical current in the graph.The number of spanning trees τ(G) of a finite
graphG can be calculated by applying the Kirchhoff’s Matrix-Tree theorem:
τ(G) = |V (G)|−1 det′∆G, where det′∆G is the product of all non-zero eigen-
values of the Laplacian of G.

Given a Zd-periodic infinite graph G, one can consider its approximation
by finite graphs: G1 ⊂ G2 ⊂ . . . ⊂ G, where V (Gn) = {v ∈ Zd : max |vi| 6 n},
with either free or wired boundary conditions. A number of properties of
the spanning forest (a collection of spanning trees) structure onG has been
established: for instance, the asymptotic limit of the number of spanning
trees of Gn on Z2 is the entropy

∫ 1
0

∫ 1
0 log (4− 2(cos 2πx1 + cos 2πx2)) dx1dx2

as discussed above. Moreover, the probability measures associated to span-
ning trees on the finite graphs Gn converge to a uniform spanning forest
measure on G that depends on the chosen boundary conditions. The re-
sulting measures are determinantal (see Theorems 4.1.1 and 4.1.2 in Chap-
ter 4, and [16, 89]), and the corresponding correlation kernels are expressed
in terms of operator projections (Theorem 4.1.6 in Chapter 4). Despite the
simple projection formulas of Theorem 4.1.6, the corresponding correla-
tions kernels are difficult to compute explicitly even for simple graphs (see
Example 4.1.3 of Chapter 4 for Zd and [57] for computations on ladder-like
graphs). Our result – Theorem 4.4.3, uses a functional-analytic generalisa-
tion of a simple linear algebra statement, which allows to effectively cal-
culate correlation kernels of DPPs and correlations associated to uniform
spanning forest measures on infinite graphs with Zd-symmetry. The goal
of Chapter 4 is not only to provide a new method of computing the corre-
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lations, but also to demonstrate the application of the method. Therefore,
Chapter 4 is equipped with a number of examples of computations for dif-
ferent Zd-periodic graphs.

1.3 Central Limit Theorem for dynamical systems

A probabilistic question closely related to the existence of a limiting mea-
sure is the question of existence of a limiting distribution. Consider a se-
quence of independent and identically distributed random variablesY1, Y2, . . .
with zero mean and variance 0 < σ2 < ∞. These satisfy the Central Limit
Theorem (CLT)

1√
n

n∑
i=1

Yi
d−→ N (0, σ2),

i.e., 1√
n

∑n
i=1 Yi converges in distribution to a normal law. The same ques-

tion can be asked in the framework of a dynamical system (X,µ, T ) (where
µ is T -invariant), for a sequence of centered functions f ◦ T i, f ∈ L2(X,µ),
that can be treated as random variables. We say that f satisfies the CLT if

1√
n

∑n−1
i=0 f ◦ T i → N (0, σ2) for 0 < σ2 < ∞. There are relatively straightfor-

ward methods to prove the CLT for independent identically distributed ran-
dom variables, but the variables Yi = f ◦T i might not be independent. How-
ever, the CLT still holds in certain cases, for example, when the sequence of
random variables possesses sufficiently strong mixing properties (see, for
instance, [51, 97]) or forms a martingale (see [40]).

The models considered in Chapters 2, 3, 4 are the so-called solvable mod-
els, i.e, their free energy can be expressed in terms of some known function,
usually a polynomial. The polynomials appearing in solvable models are
typically non-expansive, i.e., some roots have unit absolute value. It is well
known that expansive and non-expansive actions can have very different
dynamical properties. In particular, in Chapter 5 we consider the CLT for
ergodic (both expansive and non-expansive) toral automorphisms: the CLT
has been established for ergodic toral automorphisms by using the mar-
tingale method (see [10, 62] for the CLT and its refinements for sufficiently
smooth functions and [44] for general nilmanifords and Hölder functions).

When considering the CLT, we find that the difference between the hyper-
bolic (expansive) and non-hyperbolic (non-expansive) automorphisms be-
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Figure 1.3: Flat surface - each pair of parallel sides is identified by trans-
lation. The resulting surface is a 2-torus (a sphere with 2 handles) with a
conical singularity of angle 6π.

comes vivid. The hyperbolic toral automorphisms possess certain dynam-
ical properties, such as a Markov partition and a spectral gap (in some Ba-
nach spaces), which allow one to prove the CLT in a variety of ways that do
not apply in the context of the whole family of ergodic toral automorphisms
(see Section 5.2 of Chapter 5 for detailed comparison of methods). In Chap-
ter 5 we prove the CLT and obtain a new result – the rates of convergence
– for Hölder functions in a special family of ergodic toral automorphisms,
without applying the classic martingale method but rather by using Stein’s
method as in [49] and the mixing properties of Hölder functions [26, 90].
Moreover, it seems that the proof of the CLT and the rates of convergence
in Chapter 5 can be generalised for the whole class of ergodic toral auto-
morphisms, and also for the case of non-linear toral automorphisms and
multivariate Hölder observables.

1.4 Dynamics on moduli space

In Chapter 5 we discussed dynamics on a torus, which is the simplest exam-
ple of a flat surface, i.e., a surface obtained by pairwise identification of par-
allel sides of a collection of polygons in Euclidean plane (for an example less
trivial than a torus, see Figure 1.3). Flat surfaces naturally appear in many
areas of mathematics and physics, including billiards in rational polygons
and electron transport in metal [85]. Despite the apparent simplicity of the
definition, flat surfaces pose a number of mathematical questions that are
still not answered, for example, questions on typical behaviour of a generic
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geodesic, ergodicity of the geodesic flow, and existence, number and length
of closed geodesics [108]. It turns out that the dynamics on a flat surface
is closely connected to the dynamics in the stratum of the moduli space of
flat surfaces. Let us illustrate the latter statement with two examples. A fa-
mous theorem called Masur’s criterion implies that if the vertical flow on a
flat surface S is minimal but not ergodic, then the Teichmüller geodesic

{gtS}t∈R =

{(
et 0
0 e−t

)
S

}

eventually leaves any fixed compact subset K ⊂ Mg in the moduli space
and never visits it again [80]. Another example of the connection between
the dynamics on a flat surface and on the moduli space is (a version of)
Veech’s dichotomy: if the GL+(2,R)-orbit ofS is closed in the stratumH(κ) ⊂
Mg, then any directional flow on S is either completely periodic or uniquely
ergodic. Therefore, it is reasonable to associate problems of dynamics on a
flat surface with corresponding problems of dynamics on the moduli space
Mg or in the stratum. In particular, a full understanding of the dynamics on
Mg is crucial for the study of the dynamical properties of the geodesic flow
on flat surfaces.

The moduli spaceMg normally has a complicated topological structure
being a non-compact orbifold, so it is often convenient to consider its com-
pactification. For g > 1, consider the bundle ΩMg,n → Mg,n whose fiber
over (S, x1, . . . , xn) is the space of meromorphic forms ω on S having simple
poles at x1, . . . , xn. The moduli space ΩMg,n appears naturally as a bound-
ary component in the Deligne-Mumford compactification of moduli spaces
ΩMg of holomorphic 1-forms. The moduli spaces of 1-forms have a natu-
ral period coordinate system, namely, to each pair (S, ω) ∈ ΩMg,n one can
associate a period map p ∈ Hom(H1(Σg,n∗),C), where p(γ) =

∫
f∗γ ω and

f is a map from the reference surface Σg,n∗ to S. Therefore period coordi-
nates appear naturally as a coordinate system of ΩMg,n. However, knowing
the period coordinates of (S, ω) does not allow us to recover the pair (S, ω)
even infinitesimally. In other words, it is always possible to find non-trivial
isoperiodic deformations on ΩMg,n that give rise to the isoperiodic folia-
tion on ΩMg,n [17]. When considering Deligne-Mumford compactification
of ΩMg, we see that the different isoperiodic foliations glue together and
define a global algebraic foliation of a resulting compact space.

It is known that for degree at least 3 the isoperiodic sets of ΩMg, g > 2,
with no marked points are connected (see [17] for the proof and other dy-
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namic properties, such as ergodicity of the foliation). However, it turns out
that the same methods do not apply to the study of the isoperiodic foliations
of moduli spaces of meromorphic 1-forms. Notably, not much is known
about the isoperiodic foliations on ΩMg,n, n > 1 (an overview can be found
in the introduction of Chapter 6). The methods that were proposed to study
the isoperiodic foliations of ΩMg,n, n > 1, heavily depend on the values
of g, n (known results are restricted to n 6 2; see [18]). In Chapter 6 we
propose a new geometric method of studying the isoperiodic sets of ΩMg,n

that can be applied to ΩMg,n for any (small) value of g, n. We demonstrate
the method by proving a new result, namely, that the real isoperiodic sets
of ΩM1,3 are connected (Theorem 6.1.4). The significance of the result of
Chapter 6 is not only the novelty of the method: it seems that the general
statements for arbitrary g, n can be proved by induction upon providing a
sufficient induction base (similarly to [17]). Thus, Theorem 6.1.4 serves as
the base of induction for our further research.

In conclusion, the present thesis addresses problems that arise in differ-
ent mathematical areas - algebra, probability, geometry, statistical mechan-
ics, graph theory. Nevertheless, the problems that we treat are similar in na-
ture and are aimed at understanding limiting behaviour associated to dy-
namical systems. As this thesis demonstrates, the methods that apply in
different mathematical contexts are diverse, and range from Diophantine
approximations to combinatorics, linear algebra, functional analysis, and
more.



Chapter 2

Tropical limits of decimated
polynomials1

2.1 Introduction

Our reader at some point might have encountered the following mathemat-
ical puzzle:

Is it possible to tile the 8× 8 chessboard without two opposite corners with
2× 1 dominoes?

A simple parity argument shows that it is, indeed, not possible. A more
difficult question is in how many ways we can tile the usual 8×8, and, more
generally, 2n× 2n chessboard with the 2× 1 dominos?

In 1961, a Dutch physicist Piet Kasteleyn found complete solutions of sev-
eral ‘arrangement problems’ of such nature [53]. In particular, he showed
that the number of domino tilings of a chessboard of a size 2n× 2n is given
by

Zn =

n−1∏
m=0

n−1∏
k=0

(
4− 2 cos

(
2m+ 1

2n+ 1
π

)
− 2 cos

(
2k + 1

2n+ 1
π

))
. (2.1)

There is a one-to-one correspondence between the domino tilings and
dimer configurations, or, in other words, the perfect matchings of a corre-

1This chapter is based on: E. Arzhakova, E. Verbitskiy, Tropical Limits of Decimated Poly-
nomials. Arnold Math J. 5, 57–67 (2019). https://doi.org/10.1007/s40598-019-00108-9

15
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Figure 2.1: Correspondence between the domino tilings and the dimer
matchings on boxes 2n× 2n.

sponding graph, as Figure 2.1 demonstrates. A perfect matching of a graph
is a subset of its edges such that every vertex of the graph is incident to ex-
actly one edge of the subset.

The method developed by Kasteleyn is not only applicable to counting
the number of domino tilings, or equivalently, dimer configurations, but
can also be used to compute the weighted sum of the form

Zn =
∑

M∈M(G2n×2n)

w(M), (2.2)

where M(G2n×2n) is a collection of all dimer configurations of the square
box of size 2n× 2n. For any dimer configuration (matching)M , its weight is
given by

w(M) =
∏
e∈M

w(e), w(e) =

{
u, for horizontal edges,

v for vertical edges,
, u, v > 0.

Obtaining explicit expressions for the partition function Zn (2.2) is im-
portant in Statistical Physics, as it allows the computation of the free energy
F (u, v) given by

F (u, v) = − lim
n→∞

1

n2
logZn, (2.3)

and, by analysing the free energy, one is able to determine some important
macroscopic properties of the systems in the thermodynamic limit. In par-
ticular, the singularities of the free energy function indicate the presence of
the phase transitions.

It turns out [22, 55], that it is easier to compute a weighted partition func-
tion of the form (2.2) if we embed the 2n×2n square grid on a torus (see Fig.
2.2).
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Figure 2.2: A dimer configuration (matching) on the 4× 4 box on a torus.

The partition function ZT
n for weighted dimer matchings on a torus pos-

sesses an elegant explicit expression:

ZT
n =

1

2
(−fn(1, 1) + fn(−1, 1) + fn(1,−1) + fn(−1,−1)) , (2.4)

where, for every integer n > 1,

fn(x, y) =
n−1∏
m=0

n−1∏
k=0

f
(
e2πim

n x, e2πi k
n y
)
. (2.5)

with f being a Laurent polynomial in two variables x, y, namely,

f(x, y) = 4(u2 + v2)− u2(x+ x−1)− v2(y + y−1).

The limiting free energy F does not depend on whether we consider the
partition function Zn or ZT

n . In both cases,

lim
n→∞

1

n2
logZn = lim

n→∞

1

n2
logZT

n =

∫ 1

0

∫ 1

0
log |f(e2πiθ1 , e2πiθ2)|dθ1dθ2. (2.6)

More generally, expressions of a form (2.4) and (2.6) hold for all planar
simple bipartite Z2-periodic graphs and some associated polynomials f .
For example, for the honeycomb lattice, f(x, y) = a+bx+cy, where a, b, c are
the weights of the horizontal, north-east, and south-east edges, respectively.

Kenyon, Okounkov, and Sheffield (see [55]) obtained a beautiful limiting
shape result for the coefficients of fn(x, y) in (2.5) for the special ‘dimer’
polynomials f . In the present note we discuss the generalization of the re-
sult of Kenyon, Okounkov, and Sheffield to arbitrary Laurent polynomials in
d variables, where d > 2.
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2.2 Decimation of polynomials

A Laurent polynomial in d commuting variables z1, . . . , zd, can be presented
as a sum

f(z) =
∑
m∈Zd

fmzm,

where we use the multi-index notation m = (m1, . . . ,md). The sum has a
finite number of terms: there are only finitely many m’s with fm 6= 0. The
multi-indices m ∈ Zd with fm 6= 0 are called the exponent vectors. The set
of all exponent vectors is called the support of f and is denoted by supp(f).

Now, fix an arbitrary integer n > 1. Then, the n-th decimation of a Laurent
polynomial f(z1, . . . , zd) is defined as

fn(z1, . . . , zd) =
n∏

k1=1

. . .
n∏

kd=1

f
(
e2πik1/nz1, . . . , e

2πikd/nzd

)
. (2.7)

Our interest in these polynomials arose when studying decimations (renor-
malization transformation) of the so-called principle algebraic actions – a
natural class of algebraic dynamics, see [1] for more details. Such polyno-
mials have been considered earlier by Purbhoo [92] who studied approxi-
mations of amoebas. In the present paper, we will discuss properties of the
decimated polynomials.

For every n, a decimated polynomial fn is again a Laurent polynomial

fn(z) =
∑
m∈Zd

fmn z
m.

Moreover, the resulting exponent vectors of fn are entry-wise divisible by n.
In other words, fn is a Laurent polynomial in zn1 , . . . , z

n
d .

Example 2.2.1. Consider a polynomial f(x, y) = 1 − x − y. Then, the first
three decimations are (see Fig. 2.3):

1. f1(x, y) = 1− x− y;

2. f2(x, y) = 1− 2x2 − 2y2 − 2x2y2 + y4 + x4;

3. f3(x, y) = 1− 3x3− 3y3 + 3x6 + 3y6− 3x6y3− 3x3y6− 21x3y3− y9− x9.
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Figure 2.3: Black circles correspond to the exponent vectors of f = f1,
namely, (0, 0),(1, 0), and (0, 1); the exponent vectors of f2 and f3 are denoted
by the grey and the white circles, respectively.

We remind the reader that the Newton polytope N (f) of a Laurent poly-
nomial f(z1, . . . , zd) is a subset of Rd which is a convex hull of the exponent
vectors of f(z1, . . . , zd). Note that the Newton polytopes of fn and of f satisfy
the following relation:

N (fn) = ndN (f).

Therefore, when n increases, the Newton polytope of fn grows, and so do
the absolute values of the non-zero coefficients fmn . In fact, their growth
rate is exponential in n. The natural question is whether there is a scaling
limit of the coefficients of fn. Namely, whether the limits

lim
n→∞

1

nd
log |fmn

n |, (2.8)

exist for sequencesmn ∈ supp(fn) such that mn

nd
→ u ∈ N (f).

2.3 The scaling limit

In tropical algebra, the standard addition and multiplication of real num-
bers are redefined as follows:

• tropical addition: a⊕ b = max{a, b};
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• tropical multiplication: a� b = a+ b.

Hence, 2 ⊕ 5 = 5 and 2 � 5 = 7. The tropical operations allow to define
tropical polynomials. For example, consider f(x, y) = 2x2 − 4x2y + y; its
tropical analogue is then

F (x, y) = (2� x� x)⊕ (−4� x� x� y)⊕ (1� y).

Using the tropical operations, defined above, one can easily evaluate F at
any (x, y) ∈ R2

F (x, y) = max{2 + 2x,−4 + 2x+ y, y}.

Tropical geometry incorporates many facets of algebraic geometry and con-
vex analysis [74].

Let us consider a Laurent polynomial f(z) =
∑
m fmzm. The tropicaliza-

tion of f(z), denoted by trop(f)(t), is a function on Rd defined as follows: for
any t = (t1, . . . , td) ∈ Rd, take

trop(f)(t) =
⊕

m∈supp(f)

log |fm| � tm

= max
m∈supp(f)

(
log |fm|+m1t1 + . . .mdtd

)
= max
m∈supp(f)

(
log |fm|+ 〈m, t〉

)
,

(2.9)

where 〈·, ·〉 denotes the standard scalar product on Rd.
Tropicalization of f is thus a tropical analogue of the Laurent polynomial∑
m log |fm|zm.

The tropical variety of f(z) is the set of all points t ∈ Rd such that the max-
imum in (2.9) is achieved at at least two monomials. Therefore, the tropi-
calization of f is a piecewise affine convex function on Rd; each component
of the complement of the tropical variety defines a domain where a certain
monomial of f is maximal, c.f. (2.9). Figure 2.4 shows the tropical varieties
of the first 4 decimations of a polynomial 1 + x+ y.

In a joint work with Doug Lind and Klaus Schmidt [1] (see Chapter 3), we
established the following result on the existence of scaling limits of tropical-
izations of the decimated polynomials fn.
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Figure 2.4: Tropical varieties of trop(fn) for f = 1 + x+ y and n = 1, 2, 3, 4.

Theorem 2.3.1. For every non-zero Laurent polynomial f(z) and all t ∈ Rd,
there exists a limit

lim
n→∞

1

nd
trop(fn)(t) = Rf (t), (2.10)

where Rf : Rd → R is the Ronkin function of f , given by

Rf (t) =

∫ 1

0
· · ·
∫ 1

0
log |f(et1+2πiθ1 , . . . , etd+2πiθd)|dθ1 . . . dθd

=

∫
t∈Td

log
∣∣f(et+2πiθ)

∣∣dθ. (2.11)

Sketch of the proof. (The full proof can be found in [1], Chapter 3.) The
first observation relates the Ronkin functions of f and fn; namely, Rfn(t) =
ndRf (t). Hence, it suffices to compare trop(fn) and Rf .
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The Ronkin function can be easily bounded from above: indeed, let us
denote by ]supp(fn) the number of integer points inside the support of fn.
Then,

Rfn(t) =

∫
Td

log
∣∣∣∑
m

fmn e〈t,m〉e2πi〈m,th〉
∣∣∣dth

6
∫
Td

log
∑

m∈supp(fn)

∣∣∣fmn e〈t,m〉e2πi〈m,th〉
∣∣∣dth

=

∫
Td

log
∑

m∈supp(fn)

∣∣∣fmn e〈t,m〉
∣∣∣

6 log

(
]supp(fn) max

m∈supp(fn)
exp (log |fmn |+ 〈t,m〉)

)
= log ]supp(fn) + max

m∈supp(fn)
(log |fmn |+ 〈t,m〉)

= log ]supp(fn) + trop(fn)(t).

Hence, for all n ∈ Z and t ∈ Rd one has

Rf (t) =
1

nd
Rfn(t) 6

1

nd
log ]supp(fn) +

1

nd
trop(fn)(t).

Since the cardinality of the support of fn grows at most as const · nd, we
immediately conclude that

Rf (t) 6 lim inf
n→∞

1

nd
trop(fn)(t). (2.12)

Let us start the discussion of the lower bound of Rf (t) with the following
observation. Suppose that z = (z1, . . . , zd) ∈ (C∗)d is a d-tuple of non-zero
complex numbers; denote by tj ∈ R and ϕj ∈ T ∼ [0, 1) the modulus and
the argument of zj for every j = 1, . . . , d, i.e., zj = etj+2πiϕj . Note that

1

nd
| log fn(z)| = 1

nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

log
∣∣∣f (et1+2πiϕ1+2πik1/n, . . . , etd+2πiϕd+2πikd/n

)∣∣∣ .
(2.13)

The expression on the right hand side is a Riemann sum for the integral
(2.11) defining the Ronkin function Rf (t). Note also, that despite the fact f
may have zeros on a torus {z : |z| = et}, the function log |f | is still integrable
since the singularities are only logarithmic. One naturally expects that for
almost all z, the Riemann sums in (2.13) converge to Rf (t). However, es-
tablishing such convergence turns out to be a rather intricate Diophantine
problem [25, 65].
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Fortunately, in order to establish the lower bound, one does not have to
deal with a convergence problem in a complete generality. It suffices to
prove that the Riemann sums are bounded from above by Rf (t).

We say that the initial value z = (et1+2πiϕ1 , . . . , etd+2πiϕd) is good if the
points of the set

Qn(z) =
{(
et1+2πiϕ1+2πik1/n, . . . , etd+2πiϕd+2πikd/n

)
, k1, . . . kd = 0, . . . n−1

}
do not fall or come too close (depending on n) to the variety of f : Vf = {z ∈
(C∗)d : f(z) = 0}. For good points, it is relatively easy to show that the
Riemann sums are close to the value of the integral Rf (t). On the contrary,
for the ’bad’ initial values z, the points inQn(z), which are close to Vf , give a
negative contribution to the sum (2.13). Hence, one is able to conclude that
for all z with |z1| = et1 , . . . , |zd| = etd ,

lim sup
n→∞

1

nd
log |fn(z)| 6 Rf (t), (2.14)

or, equivalently,

|fn(z)| 6 exp
(
nd(Rf (t) + o(1)

)
. (2.15)

The final part of the argument is based on a relatively simple statement from
Fourier analysis: if the absolute value of a complex (trigonometric) polyno-
mial is bounded from above by some constant M on a torus Tt = {z : |z| =
et} then the absolute values of all of its monomials are also bounded from
above by the same constant. Therefore, applying this result to fn and the
inequality (2.15), we conclude that that for allm

|fmn e〈t,m〉| 6 exp
(
nd(Rf (t) + o(1)

)
,

and, hence,

trop(fn)(t) = max
m

(log |fmn |+ 〈t,m〉) 6 nd(Rf (t) + o(1)). (2.16)

Combining the inequalities (2.12) and (2.16), we obtain the desired result.

Remark 2.3.2. Theorem 2.3.1 provides some insight on the geometry of
tropical varieties of fn. In Figure 2.4, the similarity between the shapes of
tropical varieties of decimations of f = 1+x+y for various n is not acciden-
tal. Let us recall the notion of an amoeba of a Laurent polynomial f of d vari-
ables that was first suggested by Gelfand, Kapranov, and Zelevinsky in [36].
An amoeba of f denoted by Af is an image of the variety Vf under the map
Log : Vf 7→ Rd given by the formula Log(z1, . . . , zd) = (log |z1|, . . . , log |zd|).
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The amoeba Af is a closed subset of Rd with a non-empty convex comple-
ment (see Figure 2.5). The Ronkin functionRf is strictly convex overAf and
affine on each component of Rd\Af [83].

Figure 2.5: Amoeba Af for f = 1 + x+ y.

It is easy to see that Af coincides with Afn for every positive n. Accord-
ing to Theorem 2.3.1, 1

nd
trop(fn)(t) is a sequence of piecewise-affine convex

functions converging to the Ronkin functionRf which is affine on the com-
plement of Af and strictly convex inside Af . Therefore, the outer boundary
of the tropical varieties 1

nd
trop(fn) converge to the boundary of Af as n ap-

proaches infinity.

2.3.1 Surface tension

The Legendre transform (or a dual) of a function F : Rd → R is defined as

F ∗(t) = sup
u∈Rd

(〈t,u〉 − F (u)) .

The Legendre transform F ∗ is always a convex function; moreover, for a
convex closed function F , the Legendre transform is an involution

F ∗∗(u) = F (u).

Suppose f is a Laurent polynomial. Then, the tropicalization of f is, in fact,
a Legendre transform of the function F defined as follows:

F (u) =

{
− log |fm|, if u = m ∈ supp(f),

+∞, otherwise,
.

Indeed, one has

F ∗(t) = sup
u∈Rd

(〈t,u〉 − F (u)) = sup
m∈supp(f)

(〈t,m〉 − (− log |fm|)) = trop(f)(t).
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Applying the Legendre transform once again, we obtain F ∗∗ = trop(f)∗.
Since F , in general, is not convex, F ∗∗ 6= F . However, F ∗∗ is easy to de-
scribe; namely, F ∗∗ = conv(F ), where conv(F ) is the so-called greatest con-
vex minorant or a convex hull of F : the largest convex function satisfying
conv(F )(u) 6 F (u) for all u. Clearly, conv(F )(u) = +∞ for al u 6∈ N (f) and
is finite onN (f).

Using the above arguments for the polynomials fn and the result of the
Theorem 2.3.1, one immediately obtains the following result:

Corollary 2.3.3. Let conv(Fn) be the greatest convex minorant of

F (n) =

{
− log |fmn |, if u = m ∈ supp(fn),

+∞, otherwise.

Then, for all u ∈ Rd,

σf (u) := lim
n→∞

1

nd
conv(Fn)(ndu) = −R∗f (u).

By analogy with [55], we refer to the function σf as to the surface tension
of f .

Corollary 2.3.3 should be seen as a weaker, but at the same time, a more
general version of the result established in [55] for polynomials appearing
in dimer problems. It turns out that these polynomials are rather special
in the following sense: for such polynomials, one is able to define the sur-
face tension using the coefficients of fn without the need to resort to convex
hulls of the coefficients. In other words, some form of convexity is already
present in the coefficients of fn. It is, of course, very interesting to identify
such polynomials. Okounkov and Kenyon [87] showed that for every Har-
nack curve, one can construct a polynomial of 2 variables, whose algebraic
variety is the given Harnack curve, and for which the surface tension is well
defined. At the present moment, it is not clear which conditions could play
a similar role in higher dimensions.

Finally, we would like to remark that the use of tropical geometric meth-
ods to study limits of partition functions or similar quantities is very natural,
and has been proposed in [34].
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Chapter 3

Decimation limits of principal
algebraic Zd-actions1

Abstract

Let f be a Laurent polynomial in d commuting variables with integer coeffi-
cients. Associated to f is the principal algebraic Zd-action αf on a compact
subgroup Xf of TZd determined by f . Let N > 1 and restrict points in Xf

to coordinates in NZd. The resulting algebraic NZd-action is again princi-
pal, and is associated to a polynomial gN whose support grows with N and
whose coefficients grow exponentially with N . We prove that by suitably
renormalizing these decimations we can identify a limiting behavior given
by a continuous concave function on the Newton polytope of f , and show
that this decimation limit is the negative of the Legendre dual of the Ronkin
function of f . In certain cases with two variables, the decimation limit coin-
cides with the surface tension of random surfaces related to dimer models,
but the statistical physics methods used to prove this are quite different and
depend on special properties of the polynomial.

3.1 Introduction

Let d > 1 and f ∈ Z[x±1
1 , . . . , x±1

d ] be a Laurent polynomial with integer
coefficients in d commuting variables. We write f(x1, . . . , xd) = f(x) =

1This chapter is based on: E. Arzhakova, D. Lind, K. Schmidt, E. Verbitskiy, Decimation
limits of principal algebraic Zd-actions, arXiv:2104.04408

27
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n∈Zd f̂(n)xn, where xn = xn1

1 . . . xndd and f̂(n) ∈ Z for all n ∈ Zd and is
nonzero for only finitely many n ∈ Zd.

Denote the additive torus R/Z by T. Use f to define a compact subgroup
Xf of TZd by

Xf :=
{
t ∈ TZd :

∑
n∈Zd

f̂(n)tm+n = 0 for all m ∈ Zd
}
. (3.1)

By its definition this subgroup is invariant under the natural shift-action σ

of Zd on TZd defined by σn(t)m = tm−n. Hence the restriction αf of σ to Xf

gives an action of Zd by automorphisms of the compact abelian group Xf .
We call (Xf , αf ) the principal algebraic Zd-action defined by f .

Such Zd-actions serve as a rich class of examples and have been studied
intensively. An observation of Halmos [46] shows that αf automatically pre-
serves Haar measure µf on Xf . It is known that the topological entropy
of αf coincides with its measure-theoretic entropy with respect to µf . For
nonzero f this common value was computed in [64] to be the logarithmic
Mahler measure of f , defined as

m(f) :=

∫ 1

0
· · ·
∫ 1

0
log |f(e2πis1 , . . . , e2πisd)| ds1 . . . dsd (3.2)

(when f = 0 the entropy is infinite).

It will be convenient to identify the Laurent polynomial ringZ[x±1
1 , . . . , x±1

d ]
with the integral group ring Z[Zd], where the monomial xn corresponds to
n ∈ Zd. Thus f ∈ Z[x±1

1 , . . . , x±1
d ] is identified with its coefficient function

f̂ : Zd → Z. When emphasizing the behavior of coefficients we will always
use the notation f̂ .

Fix a principal algebraic Zd-action (Xf , αf ). Let N > 1 and rN : TZd →
TNZd be the map restricting the coordinates of a point to only those in the
sublattice NZd. We call the image rN (Xf ) the N th decimation of Xf , al-
though this is considerably more brutal that the term’s original meaning
since only every N th coordinate survives. Clearly rN (Xf ) is again a com-
pact abelian group, and it is invariant under the natural shift action of NZd

on TNZd .

Using commutative algebra applied to contracted ideals in integral exten-
sions, we show in §3.6 that rN (Xf ) is a principal algebraic NZd-action with
some defining polynomial gN ∈ Z[NZd]. Typically the support of gN grows
withN and its coefficient function ĝN grows exponentially inN . Our goal in
this paper is to prove that with suitable renormalizations the concave hulls
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of the resulting functions converge uniformly on the Newton polytope of f
to a continuous decimation limit Df . Furthermore, Df can be computed via
Legendre duality using a well-studied object called the Ronkin function of
f .

The analytical parts of our analysis apply to Laurent polynomials with
complex coefficients. For such an f ∈ C[Zd] we define its N th decimation
fN by

fN (x1, . . . , xd) :=

N−1∏
k1=0

· · ·
N−1∏
kd=0

f(e2πik1/Nx1, . . . , e
2πikd/Nxd). (3.3)

Since fN is unchanged after multiplying each of its variables by an arbitrary
N th root of unity, it follows that it is a polynomial in the N th powers of the
xi, i.e., that fN ∈ C[NZd]. Decimations of polynomials have appeared in
many contexts, including Purbhoo’s approximations to shapes of complex
amoebas [92], Boyd’s proof that the Mahler measure of a polynomial is con-
tinuous in its coefficients [11], and dimer models in statistical physics [55].

For most f ∈ Z[Zd] the generator gN of the N th decimation of Xf coin-
cides with fN . But under special circumstances characterized in §3.6, in-
volving the support of f and the Galois properties of the coefficients of the
polynomials occurring in the factorization of f over the algebraic closure of
the rationals, it can happen that gN is a proper divisor of fN . To give a sim-
ple example when d = 1, let f(x) = x2 − 2. Then since f is already in Z[2Z]
we have that g2(x) = f(x), while f2(x) = f(x)f(−x) = f(x)2. Nevertheless
even in these circumstances the renormalization behavior of the gN can be
determined from that of the fN .

For f ∈ C[Zd] let supp f = {n ∈ Zd : f̂(n) 6= 0} denote its support. The
Newton polytope Nf of f is the convex hull in Rd of supp f . Since fN is the
product ofNd polynomials all of whose Newton polytopes areNf , it follows
thatNfN = NdNf .

The Ronkin function Rf : Rd → R of 0 6= f ∈ C[Zd] is defined by

Rf (u1, . . . , ud) :=

∫ 1

0
· · ·
∫ 1

0
log |f(eu1e2πis1 , . . . , eude2πisd)| ds1 . . . dsd. (3.4)

This is a convex function on Rd, and therefore has a Legendre dual R∗f de-
fined by

R∗f (r) := sup{r · u− Rf (u) : u ∈ Rd},

which turns out to be a convex function onNf (and is∞ offNf ).
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To describe rescaling of polynomials g ∈ C[Zd] it is convenient to extend
the domain of ĝ from Zd to Rd by declaring its value to be 0 off supp g.

Let ϕ : Rd → C. For any a > 0 define the rescaling operator Ea on ϕ by
(Eaϕ)(r) = ϕ(ar) for all r ∈ Rd. When dealing with concave functions it is
often convenient to use the extended range R = R ∪ {−∞}, with the usual
algebraic rules for handling −∞ and with the convention that log 0 = −∞.
Then log |ϕ| : Rd → R, and we define its concave hull CH(log |ϕ|) to be the
infimum of all affine functions on Rd that dominate log |ϕ|.

Let f ∈ C[Zd] and fN be its N th decimation. Define the N th logarithmic
rescaling LNf of f by

LNf := ENd

( 1

Nd
log |f̂N |

)
.

Clearly LNf(r) = −∞ if r /∈ Nf , and is finite at every extreme point ofNf and
at only finitely many other points inNf . The N th renormalized decimation
DNf of f is the concave hull CH(LNf) of LNf . By our previous remark, DNf
equals−∞ offNf and is finite at every point ofNf .

With these preparations we can now state one of our main results.

Theorem 3.1.1. Let 0 6= f ∈ C[Zd]. Then the Nth renormalized decimations
DNf of f are concave polyhedral functions on the Newton polytope Nf of
f that converge uniformly on Nf as N → ∞ to a continuous concave dec-
imation limit function Df (and off Nf they are equal to −∞). Furthermore
Df = −R∗f , where R∗f is the Legendre dual of the Ronkin function Rf of f .

The proof of this theorem uses two main ideas: Mahler’s fundamental es-
timate [77] relating the largest coefficient of a polynomial to its Mahler mea-
sure and support, and a method used by Boyd [11], applied to decimations
along powers of 2, to prove that for polynomials whose support is contained
in a fixed finite subset of Zd the Mahler measure is a continuous function of
their coefficients.

If f ∈ Z[Zd] the decimation limit of f contains dynamical information
about αf .

Corollary 3.1.2. Let 0 6= f ∈ C[Zd]. Then the maximum value of the deci-
mation limit Df on the Newton polytopeNf equals the logarithmic Mahler
measure m(f) of f defined in (3.2). In particular, if f ∈ Z[Zd] then this max-
imum value equals the entropy of the principal algebraic Zd-action αf .

Duality allows us to compute the decimation limit of a product of two
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polynomials. Suppose that ϕ,ψ : Rd → R both have finite supremum. De-
fine their tropical convolution ϕ~ ψ by

(ϕ~ ψ)(r) := sup{ϕ(s) + ψ(r− s) : s ∈ Rd}.

This is the tropical analogue of standard convolution, but using tropical (or
max-plus) arithmetic in R.

Corollary 3.1.3. Let f and g be nonzero polynomials in C[Zd]. Then Dfg =
Df ~ Dg.

Thus decimation limits live in the tropics.

3.2 Examples

Here we give some examples to illustrate the phenomenon we are investi-
gating. They use either one or two variables, and for these we denote the
variables by x and y rather than x1 and x2. Let ΩN = {e2πik/N : 0 6 k < N}
denote the group of N th roots of unity.

Example 3.2.1. Let d = 1 and f(x) = x2 − x − 1 = (x − λ)(x − µ), where
λ = (1 +

√
5)/2 and µ = (1−

√
5)/2. Then

fN (x) =
∏
ω∈ΩN

f(ωx) =
∏
ω∈ΩN

(ωx− λ)(ωx− µ)

= (xN − λN )(xN − µN ) = x2N − (λn + µN )xN + (−1)N .

Hence

(LNf)(r) =


0 if r = 0 or 2,
1
N log |λN + µN | if r = 1,

−∞ otherwise.

Since LNf(1)→ log λ asN →∞, the concave hulls DNf converge uniformly
onNf = [0, 2] to the decimation limit

Df (r) =


r log λ if 0 6 r 6 1,

(2− r) log λ if 1 6 r 6 2,

−∞ otherwise,

which is shown in Figure 3.1(a).
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To compute the Ronkin function Rf , recall Jensen’s formula that for every
ξ ∈ C we have that∫ 1

0
log |e2πis − ξ| ds = max{0, log |ξ|} := log+ |ξ|. (3.5)

Thus

Rf (u) =

∫ 1

0
log |f(eue2πis)| ds =

∫ 1

0
log |eue2πis − λ| ds+

∫ 1

0
log |eue2πis − µ| ds

= 2u+ log+ |e−uλ|+ log+ |e−uµ|,

whose polygonal graph is depicted in Figure 3.1(b). It is then easy to verify
using the definition of Legendre transform that Df = −R∗f .

Finally, the decimation limits Dx−λ and Dx−µ are computed similarly, and
shown in Figures 3.1(c) and 3.1(d). It is easy to check using the definition
of tropical convolution that Dx−λ ~ Dx−µ = D(x−λ)(x−µ) = Df , in agreement
with Corollary 3.1.3.

r

−∞ −∞

1

log λ

2

Df (r)

(a)

u
log |µ| log λ

2 log λ

Rf (u)

(b)

r

log λ

1

Dx−λ(r)

(c)

r

− log λ

1

Dx−µ(r)

(d)

Figure 3.1: Graphs in Example 3.2.1

More generally, if f(x) =
∏m
j=1(x− λj) and |λ1| > |λ2| > · · · > |λm|, then a

computation similar to that in Example 3.2.1 shows that (LNf)(m) = 0 and
that (LNf)(k) converges to log |λ1λ2 . . . λm−k| for k = 0, 1, . . . ,m−1, and this
gives uniform convergence of DNf to Df on Nf = [0,m]. However, if some
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roots of f have equal absolute value, then convergence is more delicate, or
may even fail, as the next two examples show.

Example 3.2.2. Let d = 1 and f(x) = x4 − 4x3 − 2x2 − 4x + 1, which is
irreducible in Z[Z]. The roots of f are λ = 1 +

√
2 +

√
2
√

2 + 2 ≈ 4.611,
µ = 1 +

√
2−

√
2
√

2 + 2 ≈ 0.217, and 1−
√

2± i
√

2
√

2− 2 = e±2πiθ, where θ
is irrational. Simple estimates show that (LNf)(k) converges for k = 0, 1, 3, 4
with limits 0, log λ, log λ, 0, respectively. However, the dominant term con-
trolling the behavior of (LNf)(2) is

1

N
log |2λN cos(2πNθ)|.

Since θ is irrational, the factor cos(2πNθ) occasionally becomes very small,
and so convergence is in question.

In fact, (LNf)(2) does converge, but the proof requires a deep result of Gel-
fond [37, Thm. III, p. 28] on the diophantine properties of algebraic num-
bers on the unit circle. According to this result, if ξ is an algebraic num-
ber (such as e2πiθ above) such that |ξ| = 1 and ξ is not a root of unity, and
if ε > 0, then |ξn − 1| > e−nε for all but finitely many n. From this it is
easy to deduce that |e2πiNθ − i| > e−Nε for almost every N , and hence that
(1/N) log | cos(2πNθ)| → 0 as N → ∞. This convergence is illustrated in
Figure 3.2(a).

Both (LNf)(1) and (LNf)(3) converge to log λ, and clearly it holds that
lim supN→∞(LNf)(2) 6 log λ. Hence any lack of convergence of (LNf)(2)
would not affect the limiting behavior of the concave hull DNf , nor uni-
form convergence of DNf to Df on [0, 4]. Thus such diophantine issues are
covered up by taking concave hulls.

log λ

0 1 2 3 4

(a)

2 log 2

20 1

(b)

Figure 3.2: (a) Convergence in Example 3.2.2, and (b) lack of convergence in
Example 3.2.3

The next example shows that if we allow the coefficients of f to be arbi-
trary complex numbers instead of integers, then (LNf)(k) can fail badly to
converge at some k.



34 Chapter 3. Decimation limits of principal algebraic Zd-actions

(a) (b)

Figure 3.3: (a) Polyhedral approximation D5f , and (b) limiting smooth sur-
face Df for f(x, y) = 1 + x+ y in Example 3.2.4

Example 3.2.3. Let d = 1 and f(x) = (x− 2e2πiθ)(x− 2e−2πiθ), where we will
determine θ. Then (LNf)(0) = 2 log 2 and (LNf)(2) = 0 for all N > 1, while

(LNf)(1) =
1

N
log |2N · 2 cos(2πNθ)|.

It is possible to construct an irrational θ and a sequence Nj → ∞ such that
1
Nj

log | cos(2πNjθ)| → −∞ as j → ∞ Hence using this value of θ to define
f we see that (LNf)(1) does not converge, as depicted in Figure 3.2(b), al-
though the concave hulls DNf do converge uniformly to Df .

Using arguments similar to those above, it is possible to give an elemen-
tary direct proof of Theorem 3.1.1 in the case d = 1.

Example 3.2.4. Let d = 2 and f(x, y) = 1 + x + y. Then fN is a polynomial
in xN and yN of degree N2. For example,

f〈5〉(x, y) = x25 + 5x20y5 + 5x20 + 10x15y10 − 605x15y5 + 10x15 + 10x10y15

+ 1905x10y10 + 1905x10y5 + 10x10 + 5x5y20 − 605x5y15 + 1905x5y10

− 605x5y5 + 5x5 + y25 + 5y20 + 10y15 + 10y10 + 5y5 + 1.

The N th logarithmic rescaling LNf of f is finite at points in the unit sim-
plex ∆ = Nf whose coordinates are integer multiples of 1/N . Thus its con-
cave hull DNf is a polyhedral surface over ∆, and as N → ∞ these surfaces
converge uniformly on ∆ to the graph of the concave decimation limit Df .
Figure 3.3(a) shows the polyhedral surface D5f corresponding to the calcu-
lation of f〈5〉 above, and Figure 3(b) depicts the limiting smooth surface for
Df .

For this example it is possible to derive an explicit formula for Df . Clearly
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Df (r, s) is symmetric in r and s, so we may assume that s 6 r. Let

∆1 = {(r, s) ∈ ∆ : s 6 r and s 6 (1− r)/2}, (3.6)

∆2 = {(r, s) ∈ ∆ : s 6 r and s > (1− r)/2}. (3.7)

For (r, s) ∈ ∆1 ∪∆2 with r + s < 1 define

b(r, s) = csc[π(r + s)] sin(πs).

Then it turns out that 0 6 b(r, s) 6 1 for (r, s) ∈ ∆1 while 1 6 b(r, s) <∞ for
(r, s) ∈ ∆2.

Using Legendre duality and calculations of Rf by Lundqvist [70], we will
show in Appendix A that if (r, s) ∈ ∆1 then

Df (r, s) =

∞∑
n=1

(−1)n+1

πn2
b(r, s)n sin[nπ(1− r)]− s log b(r, s), (3.8)

while if (r, s) ∈ ∆2 then

Df (r, s) =
∞∑
n=1

(−1)n+1

πn2
b(r, s)−n sin[nπ(1− r)] + (1− r − s) log b(r, s). (3.9)

We will prove in Corollary 3.1.2 that the maximum value of Df equals the
entropy of αf , which is the logarithmic Mahler measure m(f) of f defined in
(3.2). In this example, the maximum value is attained at (1/3, 1/3), which is
in both ∆1 and ∆2. Either formula therefore applies, and each gives Smyth’s
calculation [105] that

m(1 + x+ y) = Df (1/3, 1/3) =
3
√

3

4π

∞∑
n=1

χ3(n)

n2
=

3
√

3

4π
L(2, χ3) ≈ 0.3230,

(3.10)
where χ3 is the nontrivial character of Z/3Z and L(s, χ3) is the L-function
associated with χ3.

Unlike the previous example, some decimation limits exhibit non-smooth
behavior.

Example 3.2.5. Let d = 2 and f(x, y) = 5 + x + x−1 + y + y−1. The dec-
imation limit Df is depicted in Figure 3.4(a). The non-smooth peak at the
origin is due to a “hole” in the amoeba of f , as defined in §3.4 and shown in
Figure 3.4(b).

As in the previous example, the decimation limit describes the surface
tension for a physical model, in this case dimer tilings of the square-octagon
graph (see [55, Fig. 3].
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(a) (b)

Figure 3.4: (a) The decimation limit for f(x, y) = 5 + x+ x−1 + y + y−1 from
Example 3.2.5 , and (b) the “hole” in its amoeba causing the peak.

Remark 3.2.6. Dimer models have a long history in statistical physics. A
particularly important instance involves f(x, y) = 1 + x + y from Example
3.2.4, and has been studied in enormous detail by many authors, including
Kenyon, Okounkov, and Sheffield [55].

To describe this model, let H denote the regular hexagonal lattice in R2.
We can assign the vertices of H alternating colors red and black, much like
a checkerboard. A perfect matching on H is an assignment of each red ver-
tex to a unique adjacent black vertex, these forming an edge or dimer. A
perfect matching is equivalent to a tiling of R2 by three types of lozenges,
one type for each of the three edges incident to each vertex. Using a nat-
ural height function, such a lozenge tiling gives a surface, and the study of
the statistical properties of such random surfaces has resulted in many re-
markable discoveries (see Kenyon’s survey [56], Okounkov’s survey [86], or
Gorin’s detailed account of lozenge tilings [39]).

Kasteleyn discovered that by cleverly assigning signs to the edges of H ,
he could compute the number of perfect matchings on a finite approxima-
tion using periodic boundary conditions by a determinant formula. Fur-
thermore, this determinant can be explicitly evaluated to have the form of a
decimation of f(x, y) = 1 + x + y. Each of the three terms of f correspond
to one of the three types of lozenges in the random tiling. It then turns out
that in the logarithmic scaling limit Df (r, s) counts the growth rate of per-
fect matchings for which the frequencies of the three lozenge types are r, s,
and 1− r − s. As such, it is called the surface tension for this model.
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The two-variable polynomials with integer coefficients arising from such
dimer models, such as the preceding two examples, define curves of a very
special type called Harnack curves. For these there are probabilistic inter-
pretations of the coefficients of decimations. The additional structure en-
ables one to show that the individual nonzero coefficients of fN grow at a
rate predicted by Df . Example 3.2.3 shows this can fail if complex coeffi-
cients are allowed. But whether or not this is true for every polynomial in
Z[Zd] for all d > 1 appears to be quite an interesting problem (see Question
3.9.3 for a precise formulation).

3.3 Convex functions and Legendre duals

We briefly review some basic facts about convex functions and their Legen-
dre duals. Rockafellar’s classic book [94] contains a comprehensive account
of this theory.

Let R denote R ∪ {∞}, with the standard conventions about arithmetic
operations and inequalities involving∞. Let ϕ : Rd → R be a function, and
define its epigraph by

epiϕ := {(u, t) : u ∈ Rd, t ∈ R, and t > ϕ(u)} ⊂ Rd × R.

Then ϕ is convex provided that epiϕ is a convex subset of Rd × R. Similarly,
a function ψ : Rd → R is concave if−ψ : Rd → R is convex.

The effective domain of a convex function ϕ is defined by

domϕ := {u ∈ Rd : ϕ(u) <∞}.

By allowing ϕ to take the value∞, we may assume that it is defined on all of
Rd, enabling us to combine convex functions without needing to take into
account their effective domains. A convex function is closed if its epigraph
is a closed subset of Rd × R. This property normalizes the behavior of a
convex function at the boundary of its effective domain, and holds for all
convex (and concave) functions that arise here.

Suppose that ϕ : R → R is convex. Its Legendre dual (or, more accurately,
its Legendre-Fenchel dual) ϕ∗ is defined for all r ∈ Rd by

ϕ∗(r) := sup{r · u− ϕ(u) : u ∈ Rd}. (3.11)

The Legendre dual ϕ∗ is also a convex function, and provides an alterna-
tive description of epiϕ in terms of its support hyperplanes. Furthermore,
Legendre duality states that ϕ∗∗ = ϕ for closed convex functions.
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Figure 3.5: (a) The amoeba of 1 + x+ y, and (b) its Ronkin function

The Legendre dual of a concave function ψ : Rd → R is similarly defined
as

ψ∗(r) = inf{r · u− ψ(u) : u ∈ Rd}. (3.12)

Then ϕ = −ψ is convex, and a simple manipulation shows that their Legen-
dre duals are related by ψ∗(r) = −ϕ∗(−r).

3.4 Amoebas and Ronkin functions

Let 0 6= f ∈ C[Zd]. Put C∗ = C r {0} and define V (f) := {z ∈ (C∗)d : f(z) =
0}. Let Log : (C∗)d → Rd be the map Log(z1, . . . , zd) = (log |z1|, . . . , log |zd|).

In 1993 Gelfand, Kapranov, and Zelevinsky [36] introduced the notion of
the amoeba Af of f , defined as

Af := Log
(
V (f)

)
⊂ Rd.

The amoeba of 1 + x + y is depicted in Figure 3.5(a). The complement
Acf = RdrAf ofAf consists of a finite number of connected components, all
convex. The unbounded components are created by “tentacles” ofAf . Un-
fortunately, biological amoebas look nothing like their mathematical name-
sakes.

Closely related toAf is the Ronkin function Rf of f , introduced by Ronkin
[95] in 2001, and defined earlier in (3.4). The Ronkin function of 1 + x+ y is
shown in Figure 3.5(b).
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The Ronkin function of a polynomial f is known to be a convex function
on Rd and affine on each connected component of Acf (for this and much
more see [88]). Moreover, on each connected component of Acf the (con-
stant) gradient of Rf is contained in Nf ∩ Zd, and the convex hull of these
values equals Nf . From this we conclude that the Legendre dual R∗f of Rf
has effective domainNf .

3.5 Decimation limits of polynomials

In this section we prove Theorem 3.1.1, one of our main results, and Corol-
laries 3.1.2 and 3.1.3. If 0 6= f ∈ C[Zd] we will show that the N th renormal-
ized decimation DNf = CH(LNf) converges uniformly onNf to a continu-
ous concave limit function Df , and that Df = −R∗f .

The first ingredient in our proof is the basic estimate of Mahler relating the
largest coefficient of a polynomial to its Mahler measure and its support. Let
us begin with some terminology. For 0 6= g ∈ C[Zd] define its height H(g) by
H(g) = max{ |ĝ(k)| : k ∈ Zd}. The Mahler measure of g is M(g) = exp

(
m(g)

)
,

where m(g) is the logarithmic Mahler measure defined in (3.2).

Proposition 3.5.1 (Mahler [77]). Suppose that 0 6= g ∈ C[Zd] and that supp g ⊂
[0, C − 1]d ∩ Zd. Then

2−dCH(g) 6 M(g) 6 CdH(g). (3.13)

Proof. Let k = (k1, . . . , kd) ∈ supp g. Then by [77, Eqn. (3)],

|ĝ(k)| 6
(
C − 1

k1

)(
C − 1

k2

)
. . .

(
C − 1

kd

)
M(g).

Since each binomial coefficient is bounded above by 2C , the first inequality
in (3.13) follows.

The second inequality is a simple consequence of the triangle inequality,
since

M(g) 6
∑

k∈[0,C−1]d∩Zd
|ĝ(k)| 6 |[0, C − 1]d ∩ Zd| · H(g) = CdH(g).

Consider (C∗)d as a group under coordinate-wise multiplication. Define
the action of z ∈ (C∗)d on f ∈ C[Zd] by (z · f)(x1, . . . , xd) = f(z1x1, . . . , zdxd).
This action is commutative since

z · (z′ · f) = (zz′) · f = z′ · (z · f),
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and also z ·(fg) = (z ·f)(z ·g) for all f, g ∈ C[Zd]. Hence the map f 7→ z ·f is a
ring isomorphism of C[Zd]. Furthermore, (z · f) (̂k) = zkf̂(k) for all k ∈ Zd,
and soNz·f = Nf for all z ∈ (C∗)d.

Recall that ΩN denotes the group of N th roots of unity. For ω ∈ Ωd
N ⊂

(C∗)d we callω ·f the rotate of f byω. Then fN =
∏
ω∈ΩdN

ω ·f is the product

of all rotates of f by elements in Ωd
N .

If g, h ∈ C[Zd] then is it well known that Ngh = Nf + Ng (the Minkowski
sum), and trivially Rgh = Rg + Rh. By our previous remarks,

NfN =
∑
ω∈ΩdN

Nω·f =
∑
ω∈ΩdN

Nf = NdNf .

Also, Rω·f = Rf , and hence RfN = NdRf .

For u ∈ Rd put eu = (eu1 , . . . , eud). Then (eu · f )̂ (k) = eu·kf̂(k). Commu-
tativity of the action of (C∗)d on f then shows that (eu · f)〈N〉 = eu · (fN ).
Also

Rf (u) = log M(eu · f) =
1

Nd
log M

(
(eu · f)〈N〉

)
=

1

Nd
log M(eu · fN ).

Observe that

log H(eu · fN ) = max{u · k + log |f̂N (k)| : k ∈ Zd},

indicating a connection with Legendre duals.

Proof of Theorem 3.1.1. Let 0 6= f ∈ C[Zd]. For m ∈ Zd let g(x) = xmf(x).
It is straightforward to verify that (DNg)(r) = (DNf)(r − m) for all r ∈
Rd. Therefore by adjusting f by suitable monomial, we may assume that
supp f ⊂ [0, B − 1]d ∩ Zd for some B > 1. Then supp(eu · fN ) ⊂ [0, Nd(B −
1)]d ∩ Zd ⊂ [0, NdB − 1]d ∩ Zd for every u ∈ Rd. By Prop.3.5.1,

Rf (u) =
1

Nd
log M(eu · fN ) 6

1

Nd

{
log
[
(NdB)d

]
+ log H(eu · fN )

}
=

log
[
(NdB)d

]
Nd

+
1

Nd
max
k∈Zd
{u · k + log |f̂N (k)|},

where the error term bN := N−d log
[
(NdB)d

]
→ 0 as N → ∞, uniformly for

u ∈ Rd.

An opposite inequality is based of the following fundamental observation,
used both by Boyd [11] and Purbhoo [92] for different purposes. As we no-
ticed before, fN is a polynomial in the N th powers of the variables. There-
fore EN f̂N is again a polynomial to which we can apply Prop. 3.5.1, but with
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improved constants since the support has now shrunk by a factor ofN . This
improvement is crucial.

Specifically,

supp(eu · fN ) ⊂ [0, Nd(B − 1)]d ∩ (NZd),

so that
supp(eu · ENfN ) ⊂ [0, Nd−1(B − 1)] ∩ Zd.

Applying Prop. 3.5.1,

H(eu · fN ) = H(eu · ENfN ) 6 2dN
d−1BM(eu · ENfN ) = 2dN

d−1BM(eu · f)N
d
.

Hence

1

Nd
log H(eu · fN ) 6

dNd−1B log 2

Nd
+ log M(eu · f) = aN + Rf (u),

where again the error term aN := (dB log 2)/N → 0 uniformly for u ∈ Rd.
We can summarize these estimates as∣∣∣Rf (u)− 1

Nd
max
k∈Zd

{
u · k + log |f̂N (k)

}∣∣∣ 6 max{aN , bN} → 0 (3.14)

as N →∞ uniformly in u ∈ Rd.

Next we relate the first max occurring in (3.14) with the N th normalized
decimation DNf . We have that

1

Nd
max
k∈Zd
{u · k + log |f̂N (k)|} = max

k∈Zd

{
u ·
( k

Nd

)
+

1

Nd
log |f̂N (k)|

}
= max

k∈Zd

{
u ·
( k

Nd

)
+

1

Nd
ENd log

∣∣f̂N( 1

Nd
k
)∣∣∣}

= max
k∈Zd

{
u ·
( k

Nd

)
+ (DNf)

( 1

Nd
k
)}

= max
r∈Rd
{u · r + DNf(r)} = −(DNf)∗(−u).

Hence by (3.14), −(DNf)∗(−u) converges to Rf (u) uniformly for u ∈ Rd,
or, equivalently,

(DNf)∗(u)→ −Rf (−u) uniformly for u ∈ Rd. (3.15)

If ϕ and ψ are concave functions on Rd such that |ϕ(u) − ψ(u)| 6 ε for all
u ∈ Rd, it is easy to check from the definitions that ϕ∗ and ψ∗ have the same
effective domain, and that |ϕ∗(r) − ψ∗(r)| 6 ε for all r ∈ domϕ∗ = domψ∗.
Applying this to (3.15) and using duality we finally obtain that (DNf)∗∗ =
DNf → −R∗f uniformly onNf , completing the proof.
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Proof of Cor. 3.1.2: By Theorem 3.1.1, Legendre duality, and (3.12),

−m(f) = −Rf (0, 0) = D∗f (0, 0) = inf
(r,s)∈Nf

−Df (r, s) = − sup
(r,s)∈Nf

Df (r, s).

We remark that differentiability of Df at the maximum value is not assumed
for Legendre duality to apply here, and Example 3.2.5 provides a case when
differentiability fails.

Proof of Cor. 3.1.3: Let f and g be nonzero polynomials in C[Zd]. Clearly
Rfg = Rf + Rg. By [94, Thm. 16.4], the Legendre dual of the sum ϕ + ψ
of two convex functions is their infimal convolution defined for r ∈ Rd by
inf{ϕ(s) + ψ(r − s) : s ∈ Rd}. Applying this with ϕ = −Rf and ψ = −Rg,
using Thm. 3.1.1, and taking negatives we obtain that Dfg = Df ~ Dg.

Remark 3.5.2. Our estimate (3.14) can be expressed in the language of trop-
icalization of polynomials (see [74, §3.1] for background and motivation).
Let 0 6= g(x) =

∑
k∈Zd ĝ(k)xk ∈ C[Zd]. Define the tropicalization of g to be

the function trop g : Rd → R given by

(trop g)(u) = max
k∈Zd

{
u · k + log |ĝ(k)|

}
,

which is a polyhedral convex function. Then by (3.14) we see that

1

Nd
trop fN → Rf uniformly on Rd, (3.16)

so that the normalized tropicalization of fN converges uniformly to the Ronkin
function of f . Figure 3.6(a) depicts this polyhedral approximation for f(x, y) =
1+x+y andN = 5 (compare with Figure 3.5(b)). The tropical variety of this
polyhedral approximation is the projection to the plane of the vertices and
edges of its graph, and is shown in 3.6(b). These tropical varieties converge
in the Hausdorff metric to the amoeba of f asN →∞ (compare with Figure
3.5(a)).

Remark 3.5.3. In [92] Purbhoo used decimations for a different purpose,
namely to find a computational way to detect whether or not a point is in
the amoeba of a given polynomial. Call a polynomial lopsided if it has one
coefficient whose absolute value strictly exceeds the sum of the absolute
values of all the other coefficients. Let f ∈ Z[Zd] and u ∈ Rd. Clearly if
eu · f is lopsided then u /∈ Af . Purbhoo used decimations to amplify size
differences among the coefficients. More precisely, he proves that given ε >
0 there is an N0, depending only on ε and the support of f , such that if the
distance fromu toAf is greater than ε then eu·fN is lopsided. Since f and fN
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(a) (b)

Figure 3.6: (a) Tropical approximation to the Ronkin function of 1 + x + y,
and (b) its corresponding tropical variety

have the same amoeba, this gives an effective algorithm for approximating
the complement ofAf .

One direct consequence of [92] is that the normalized tropicalizations in
(3.16) converge to the Ronkin function off the amoeba of f , while our result
is that this convergence is uniform on all of Rd. Roughly speaking, Purbhoo
is concerned with the coefficients of eu ·f for points u off the amoeba, while
our focus is on u within the amoeba.

Remark 3.5.4. Let F be a lower-dimensional face of the Newton polytope
Nf of f , and put f |F =

∑
n∈F f̂(n)xn. Clearly the restriction of Df to F is

just the decimation limit of f |F , or in symbols Df |F = Df |F . By Corollary
3.1.2, this generalizes [64, Rem. 5.5], which gave a dynamical proof of the
inequality due to Smyth [106, Thm. 2] that m(f) > m(fF ) for every face F of
Nf .

3.6 Decimations of principal actions and contracted ide-
als

We return to decimations of principal algebraic Zd-actions, and in this sec-
tion show that they are again principal. The proof uses machinery from
commutative algebra, including contractions of ideals.

Suppose thatX is a compact, shift-invariant subgroup of TZd . Using Pon-
tryagin duality we can obtain an alternative description of X as follows (for
a comprehensive account see [98, Chap. II)].
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As a discrete abelian group the Pontryagin dual of TZd is the direct sum of
Zd copies of Z, which we suggestively write as

⊕
k∈Zd Zxk = Z[Zd]. The (ad-

ditive) dual pairing betweenTZd andZ[Zd] is given by 〈t, g〉 =
∑

k∈Zd tk ĝ(k) ∈
T. Multiplication by the inverses of each of the variables xj on Z[Zd] gives a
Zd-action that is dual to the natural shift action σ on TZd defined earlier.

Since X is shift-invariant, {g ∈ Z[Zd] : 〈t, g〉 = 0 for all t ∈ X} is an ideal
a in Z[Zd], and the dual group of X equals Z[Zd]/a. Conversely, if a is an
arbitrary ideal in Z[Zd], then the compact dual groupXa of Z[Zd]/a is a shift-
invariant subgroup of TZd . Thus there is a one-to-one correspondence be-
tween shift-invariant compact subgroups of TZd and ideals in Z[Zd]. When
a is the principal ideal 〈f〉 generated by f , then Xa = Xf as defined above,
explaining the terminology “principal actions.”

Fix N > 1 and recall the restriction map rN : TZd → TNZd from §3.1. Let
f ∈ Z[Zd]. Then theN th decimation rN (Xf ) is a compact subgroup of TNZd

that is invariant under the shift-action of NZd. By our previous discussion,
the dual group of rN (Xf ) has the form Z[NZd]/aN , where aN is an ideal in
Z[NZd]. The following result identifies this ideal.

Lemma 3.6.1. Let f ∈ Z[Zd] and N > 1. Then the dual group of rN (Xf ) is
Z[NZd]/aN , where aN = 〈f〉 ∩ Z[NZd].

Proof. Let bN = {g ∈ Z[NZd] : 〈t, g〉 = 0 for all t ∈ rN (Xf )}. If g ∈ aN ,
then for every t ∈ Xf we have that 0 = 〈t, g〉 = 〈rN (t), g〉, so that g ∈ bN .
Conversely, if g ∈ bN and t ∈ Xf , then g annihilates the restriction of t to
every coset of NZd, and hence annihilates t, so that g ∈ aN .

The ideal 〈f〉 ∩ Z[NZd] defining rN (Xf ) is called the contraction of 〈f〉 to
Z[NZd]. The main result of this section is that this contraction is always
principal.

Proposition 3.6.2. Let f ∈ Z[Zd] and N > 1. Then the contracted ideal
〈f〉 ∩ Z[NZd] is a principal ideal in Z[NZd].

We begin by briefly sketching the necessary terminology and machinery
from commutative algebra, all of which is contained in [5] or can be easily
deduced from material there.

For brevity let R = Z[NZd] and S = Z[Zd]. Both R and S are unique fac-
torization domains, and therefore both are integrally closed [5, Prop. 5.12].
Furthermore, S is integral over R since each variable xj in S satisfies the
monic polynomial yN − xNj ∈ R[y].
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A prime ideal p in an integral domain has height one if there are no prime
ideals strictly between 0 and p. In a unique factorization domain the prime
ideals of height one are exactly the principal ideals generated by irreducible
elements. A proper ideal q in an integral domain is primary if whenever
ab ∈ q then either a ∈ q or bn ∈ q for some n > 1. In this case its radical
{a : an ∈ q for some n > 1} is a prime ideal, say p, and then q is called p-
primary. Examples show that in general a power of a prime ideal need not
be primary, that a primary ideal need not be the power of a prime ideal, and
that even if an ideal has prime radical it need not be primary. The notion of
primary ideal, although the correct one for decomposition theory, is quite
subtle. However, in our situation things are much simpler.

Lemma 3.6.3. Let P be a unique factorization domain, and let r ∈ P be
irreducible. Then the principal ideal p = 〈r〉 is prime, and the p-primary
ideals are exactly the powers pn of p for n > 1.

Proof. It is clear that p is prime. To prove that pn = 〈rn〉 is p-primary, sup-
pose that ab ∈ pn, but a /∈ pn. Then r | b, so bn ∈ pn, showing that pn is
primary. Clearly the radical of pn is p, and so pn is p-primary.

Conversely, suppose that q is a p-primary ideal. Since the radical of q is
p, it follows that rn ∈ q for some n > 1. Choose n to be the minimal such
power. Then pn ⊂ q, but there is an a ∈ qr pn−1. Write a = crm, where r - c.
Choose a so that m is the maximal such power, where obviously m 6 n− 1.
Now rn /∈ q by minimality of n, hence some power ck ∈ q ⊂ p since q is
primary. But this is absurd since r - c unless c is a unit. Thus q = pn−1.

If a is an ideal in S, we denote its contraction a ∩ R to R by ac. If q is a
p-primary ideal in S, then pc is prime and qc is pc-primary in R.

One of the important results in commutative algebra, essential to devel-
oping a dimension theory using chains of prime ideals, is the so-called “Go-
ing Down” theorem [5, Thm. 5.16]. Its hypotheses are satisfied in our situa-
tion, and it says the following. Suppose that p0 ( p1 ( p2 is a chain of prime
ideals in R, and that there is a prime ideal q2 in S with qc2 = p2. Then there
is a chain q0 ( q1 ( q2 of prime ideals in S such that qcj = pj for j = 0, 1, 2.
From this it follows that prime ideals in S of height one contract to prime
ideals inR of height one. In other words, if h ∈ S is irreducible, then 〈h〉S∩R
is a principal ideal 〈g〉R in R generated by an irreducible polynomial g in R.

Proof of Prop. 3.6.2. First suppose that f ∈ S is irreducible. As we just showed,
there is an irreducible g ∈ R such that 〈f〉S∩R = 〈g〉R. Furthermore, if n > 1
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then 〈fn〉S is 〈f〉S-primary, and so 〈fn〉S ∩ R is 〈g〉R-primary, hence equals
〈gk〉R for some k > 1.

The result is obvious if f = 0, so suppose that 0 6= f ∈ S, and let f =
fn1

1 · · · fnrr be its factorization in S into powers of distinct irreducibles fj .
Then there are irreducible polynomials gj ∈ R and kj > 1 such that 〈fnjj 〉S ∩
R = 〈gkjj 〉R. Hence

〈f〉S ∩R = 〈fn1
1 · · · f

nr
r 〉S ∩R =

(
〈fn1

1 〉S ∩ · · · 〈f
nr
r 〉S

)
∩R

=
(
〈fn1

1 〉S ∩R
)
∩ · · · ∩

(
〈fnrr 〉S ∩R

)
= 〈gk1

1 〉R ∩ · · · ∩ 〈g
kr
r 〉R = 〈LCM(gk1

1 , . . . , g
kr
r )〉R,

proving that 〈f〉S ∩R is principal.

Remarks 3.6.4. (1) It is possible for distinct principal prime ideals in S to
contract to the same prime ideal inR. As a simple example, let d = 1,N = 2,
f1(x) = x2 − x − 1, and f2(x) = x2 + x − 1. Then each is irreducible in S,
but both 〈f1〉S and 〈f2〉S contract in R = Z[2Z] to 〈x4 − 3x2 + 1〉R, where
x4 − 3x2 + 1 is irreducible in Z[2Z] (but of course not in Z[Z]). In the proof
this is accounted for by using the least common multiple LCM in the last
line of the displayed equation above.

(2) A polynomial is primitive if the greatest common divisor of its coeffi-
cients is 1. If 0 6= f ∈ S is a nonconstant primitive polynomial with factor-
ization f = fn1

1 · · · fnrr into powers of distinct irreducible polynomials, then
by Gauss’s Lemma each fj is primitive as well. Furthermore, 〈fj〉S ∩ R =
〈gj〉R, where each gj is nonconstant and primitive. It then follows from the
proof that 〈f〉S ∩R is generated by a primitive element of R.

(3) There is a completely different proof of Prop. 3.6.2 using entropy that
is valid for all polynomials in S except for those of a very special and easily
determined form. Recall that the entropy of αf is the logarithmic Mahler
measure m(f) defined in (3.2). A generalized cyclotomic polynomial in S is
one of the form xnc(xk), where c is a cyclotomic polynomial in one variable
and k 6= 0. Smyth [106] proved that m(f) = 0 if and only if f is, up to sign,
a product generalized cyclotomic polynomials. Assume that f ∈ S is not
such a polynomial, so that the entropy of αf is strictly positive. A simple
argument using cosets of NZd shows that rN (Xf ) also has positive entropy.
Now rN (Xf ) = XaN by Lemma 3.6.1, where aN = 〈f〉S ∩ R. But an ideal a
in R for which the shift action of NZd on Xa has positive entropy must be
principal [64, Thm. 4.2].
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3.7 Absolutely irreducible factorizations
and Gauss’s Lemma

Suppose that f ∈ Z[Zd] is nonconstant and irreducible. Its factorization
into absolutely irreducible polynomials in an extension field of Q will play a
decisive role. A generalization of Gauss’s Lemma to number fields enables
us to deal with the algebraic properties of the coefficients of the factors.

Two polynomials in C[Zd] are distinct if one is not a nonzero scalar multi-
ple of the other. An element ϕ ∈ C[Zd] is adjusted if 0 is an extreme point of
its Newton polytopeNϕ, and is monic if it is both adjusted and ϕ̂(0) = 1.

A polynomial in C[Zd] is absolutely irreducible if it is irreducible in the
unique factorization domain C[Zd]. Hence every non-unit f ∈ C[Zd] has
some factorization f = ϕ1 · · ·ϕr into absolutely irreducible factors ϕj . The
method of Galois descent [20] shows that, after multiplying the factors by
suitable constants, there is a finite normal extension K of Q such that each
ϕj ∈ K[Zd], and also that the coefficients of the ϕj generate K, so that K is
the splitting field of f . Furthermore an elementary argument shows that if
f is adjusted, then we can multiply the ϕj by units in K[Zd] so that each ϕj
is monic,Nϕj ⊂ Nf , and f = f̂(0)ϕ1 · · ·ϕr.

Remarks 3.7.1. (1) When d = 1 this factorization is into the linear factors
guaranteed by the fundamental theorem of algebra.

(2) A simple sufficient condition for ϕ to be absolutely irreducible is that
Nϕ is not the nontrivial Minkowski sum of two integer polytopes (see [35]
for applications of this idea).

(3) There are reasonably good factoring algorithms which, on input f ,
produce a monic irreducible polynomial in Z[x] with root θ and an abso-
lutely irreducible ϕ ∈ Q(θ)[Zd] such that f = σ1(ϕ)σ2(ϕ) · · ·σr(ϕ), where
the σj are all the distinct field embeddings of Q(θ) into C (see [29] for an
overview of these methods).

The following shows that, unlike factoring, divisibility is not affected when
passing to an extension field.

Lemma 3.7.2. Suppose that L is an extension of the field K and that f, g ∈
K[Zd]. Then f divides g in K[Zd] if and only if f divides g in L[Zd].

Proof. For the nontrivial direction, suppose there is an h ∈ L[Zd] such that
fh = g. Equating coefficients of like monomials gives a system of K-linear
equations in the coefficients of h. Since this system has a solution over L,
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Gaussian elimination shows that that this (unique) solution is actually over
K, and so h ∈ K[Zd].

Proposition 3.7.3. Let f ∈ Z[Zd] be nonconstant, adjusted, and irreducible
in Z[Zd]. Then there is a finite normal extension field K of Q and monic ab-
solutely irreducible polynomialsϕ1, . . . , ϕr ∈ K[Zd] such that f = f̂(0)ϕ1 · · ·ϕr
andNϕf ⊂ Nf for 1 6 j 6 r. Furthermore, the Galois group Gal(K : Q) acts
transitively on the set of factors ϕj , and these factors are pairwise distinct.

Proof. Our earlier discussion shows there is a factorization f = f̂(0)ϕ1 · · ·ϕr
over the splitting field K of f , where each ϕj is monic and Nϕj ⊂ Nf for
1 6 j 6 r. Suppose that σ ∈ Gal(K : Q). Since σ(f) = f , it follows that
σ must permute the absolutely irreducible factors up to multiplication by
units. But if σ(ϕj) = cxnϕk, then n = 0 since the factors are adjusted and
c = 1 since they are monic. Hence σ permutes the factors themselves. If
there were a proper subset of factors that is invariant under Gal(K : Q),
then their product ψ would be in Q[Zd] since its coefficients are invariant
under Gal(K : Q). But then ψ would be a proper divisor of f in Q[Zd] by
Lemma 3.7.2, contradicting irreducibility of f by Gauss’s Lemma. A similar
argument shows that each factor appears with multiplicity one.

We now give a brief sketch of the extension of Gauss’s Lemma to number
fields and the consequences we use. Let K be a finite extension of Q, andOK
be the ring of algebraic integers in K. A fractional ideal a in K is a nonzero
OK-sumbodule such that there is an integer b for which ba ⊂ OK. Fractional
ideals can be added and multiplied, with OK being the multiplicative iden-
tity. A fractional ideal contained inOK is an ideal in the usual ring-theoretic
sense. The pivotal result is that the set of fractional ideals form a group, the
set of principal fractional ideals (those of the form OKβ for some β ∈ K)
form a subgroup, and the quotient of these groups is a finite abelian group
called the class group which measures how farOK is from being a principal
ideal domain.

Let ϕ ∈ K[Zd]. Define the content cK(ϕ) to be the fractional ideal in K
generated by the coefficients of ϕ. Say that ϕ is primitive if cK(ϕ) = OK.
It is easy to check that although content depends on the ambient field K,
primitivity does not: if ϕ ∈ K[Zd] and ϕ ∈ L[Zd], then cK(ϕ) = OK if and only
if cL(ϕ) = OL (see [75, Thm. 8.2]).

Theorem 3.7.4 (Gauss’s Lemma for number fields). Let K be a number field
and ϕ,ψ ∈ K[Zd]. The cK(ϕψ) = cK(ϕ)cK(ψ). In particular, if ϕ,ψ ∈ OK[Zd]
thenϕψ is primitive if and only if bothϕ andψ are primitive. Ifϕ,ψ ∈ OK[Zd]
are primitive, and if ϕ = βψ for some β ∈ K, then β is a unit inOK.
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Remark 3.7.5. Suppose that f ∈ Z[Zd] is primitive and thatN > 1. Let ζN =
e2πi/N , which is a unit in Q(ζN ). Hence each rotate ω · f , where ω ∈ Ωd

N , is
primitive in Q(ζN )[Zd]. The preceding theorem then shows that the product
fN of these rotates is also primitive in Q(ζN )[Zd], and hence in Z[Zd] (since
primitivity is independent of ambient field), a fact we already observed in
Remark 3.6.4(2).

3.8 Decimated polynomials and decimated actions

Let f ∈ Z[Zd] be irreducible. Here we explain the relationship between
the N th decimation fN of f and the generator gN of the contracted ideal
〈f〉 ∩ Z[NZd] that defines the N th decimation rN (Xf ) of (Xf , αf ). Roughly
speaking, gN is a constant times the product of all distinct rotates by el-
ements of Ωd

N of the absolutely irreducible factors ϕj of f as described in
Proposition 3.7.3. Each rotate appears with the same multiplicity eN that
can be computed from the ϕj . Thus fN = c geNN , and an application of
Gauss’s Lemma shows that we may take c = 1. Furthermore, there is an
integer Q(f), that can also be computed from the ϕj , such that fN = gN for
allN relatively prime toQ(f). Examples will illustrate the two sources of the
multiplicity eN .

In what follows we let ζN = e2πi/N , which is a generator of ΩN .

Lemma 3.8.1. If f ∈ Z[Zd] then fN ∈ Z[NZd].

Proof. Since fN =
∏
ω∈ΩdN

ω · f , it follows that fN = ω · fN for everyω ∈ Ωd
N .

Suppose that f̂N (k) 6= 0. Then since

f̂N (k) = (ω · fN )̂ (k) = ωk f̂N (k),

we see that ωk = 1 for every ω ∈ Ωd
N , and hence k ∈ NZd. Thus fN ∈

Q(ζN )[NZd].

The Galois group G := Gal
(
Q(ζN ) : Q

)
acts on Ωd

N coordinate-wise. If
σ ∈ G, then σ(ω · f) = σ(ω) · f since f has integer coefficients. Thus σ
permutes the rotates of f , and so σ(fN ) = fN for every σ ∈ G. It follows
that the coefficients of fN are both rational and algebraic integers, and so
fN ∈ Z[NZd].

Lemma 3.8.2. Let f ∈ Z[Zd] and gN be a generator of the contracted ideal
〈f〉 ∩ Z[NZd]. Then gN divides fN in Z[NZd].
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Proof. Since f is one of the factors in forming fN , it follows that f divides
fN in Q(ζN )[Zd]. Hence f divides fN in Q[Zd] by Lemma 3.7.2. The coeffi-
cients of fN/f are both rational and algebraic integers, and so fN/f ∈ Z[Zd].
Hence fN ∈ 〈f〉 ∩ Z[NZd], and it is thus divisible by the generator gN .

Remark 3.8.3. Since the generator of a principal ideal is unique only up to
units, it will be convenient to have a convention to pick a generator. In what
follows we will assume that f is adjusted and that f̂(0) > 0. Then clearly fN
has the same properties. By the previous lemma, we can also assume that
gN is adjusted, thatNgN ⊂ NfN , and that ĝN (0) > 0.

Before continuing, we remark that if f is a constant integer n, then fN =

nN
d

while gN = n. Let us call a polynomial f ∈ Z[Zd] nonconstant if | supp f | >
1, and it is these we now turn to.

Let f ∈ Z[Zd] be adjusted. Define its support group Γf to be the subgroup
of Zd generated by supp f . It is easy to check that the support group is inde-
pendent of which extreme point of Nf is used to adjust f . We say that f is
full if Γf = Zd.

The following shows that in some cases, including f(x, y) = 1+x+y from
Example 3.2.4, fN = gN for all N > 1.

Proposition 3.8.4. Let f ∈ Z[Zd] be adjusted, irreducible, and full. Further
assume that f is absolutely irreducible in C[Zd]. Then fN = gN for every
N > 1.

Proof. Since the map f 7→ ω · f is a ring isomorphism of C[Zd], each ω · f is
absolutely irreducible. Suppose thatω ·f = ω′ ·f . Sinceωkf̂(k) = (ω′)kf̂(k),
it follow that ωk = (ω′)k for all k ∈ supp f , hence for all k ∈ Γf = Zd, and so
ω = ω′. Thus the rotates of ω · f for ω ∈ Ωd

N are pairwise distinct absolutely
irreducible polynomials in C[Zd] whose product is fN .

By Lemma 3.8.2, gN divides fN in C[Zd]. Hence some rotate ω · f divides
gN . Since gN ∈ Z[NZd], it is invariant under all rotations in Ωd

N . Hence gN
is divisible by all rotates ω · f , and so gN and fN have the same absolute
factorizations in C[Zd], and hence fN = c gN for some constant c ∈ C. Re-
calling our conventions in Remark 3.8.3, comparing constant terms shows
that c = f̂(0)N

d
/ ĝN (0) ∈ Q. But fN and gN are both primitive in Z[NZd],

and so c = ±1, and our convention on positivity of constant terms then
gives c = 1.

The following example shows that when the polynomial is not full there
can be multiplicity eN > 1.
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Example 3.8.5. Let d = 2 and f(x, y) = 1+x+y2. SinceNf is not a nontrivial
Minkowski sum of integer polytopes, we see that f is absolutely irreducible.
Suppose that N is odd. Since −1 /∈ ΩN , all rotates ω · f for ω ∈ Ω2

N are
distinct, and the same arguments as in the previous proposition show that
fN = gN .

However, if N is even, then−1 ∈ ΩN and the rotate of f by (ω1, ω2) equals
that by (ω1,−ω2). As we will see in Proposition 3.8.7, the product of the dis-
tinct rotates of f equals gN , and so fN = g2

N when N is even.

Next we characterize when rotates can coincide.

Lemma 3.8.6. Let ϕ ∈ C[Zd] be adjusted, and Γϕ be its support group. Then
the dual of the stabilizer group SN (ϕ) := {ω ∈ Ωd

N : ω · ϕ = ϕ} is Zd/(Γϕ +
NZd). Two rotates of ϕ differ by a multiplicative unit in C[Zd] if and only if
they are equal. If Γϕ has finite index K in Zd, then SN (ϕ) is trivial for every
N relatively prime to K.

Proof. Suppose that ω ∈ SN (ϕ). Since ϕ̂(k) = (ω · ϕ)̂ (k) = ωkϕ̂(k), it
follows that ωk = 1 for every k ∈ suppϕ. Hence ω annihilates Γϕ as well as
NZd, thus their sum. Conversely, every ω annihilating Γϕ + NZd must be
in SN (ϕ). Hence the annihilator of SN (ϕ) equals Γϕ + NZd, and so its dual
group is Zd/(Γϕ +NZd).

The multiplicative units in C[Zd] have the form cxn for some c ∈ C, so the
second statement is obvious since ϕ is adjusted.

Suppose that Γϕ has finite indexK in Zd. IfN is relatively prime toK, then
multiplication byN on Zd/Γϕ is injective, hence surjective. Thus modulo Γϕ
every element in Zd is a multiple of N , and hence Γϕ +NZd = Zd.

Proposition 3.8.7. Let f ∈ Z[Zd] be adjusted and irreducible, and further
assume that f is absolutely irreducible in C[Zd]. Then fN = geNN , where
eN = |SN (f)| = |Zd/(Γf +NZd)|.

Proof. Recall our conventions in Remark 3.8.3. Since gN divides fN , it must
be divisible by at least one (absolutely irreducible) rotate of f . Invariance of
gN by every rotate in Ωd

N shows that gN is therefore divisible by the product
h of all the distinct rotates of f . The arguments in Lemmas 3.8.1 and 3.8.2
apply to show that h ∈ 〈f〉 ∩ Z[NZd]. Thus gN divides h in C[Zd] as well, and
so gN = c h for some c ∈ C. Evaluating constant terms shows that c ∈ Q.
Since gN is irreducible in Z[NZd], it is primitive. Each rotate of f is primitive
in Q(ζN )[Zd], and so h is primitive by Theorem 3.7.4. Hence c = ±1, and
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then c = 1 follows from our sign conventions. By Lemma 3.8.6, each rotate
of f is repeated exactly eN times, and so fN = geNN .

When f is absolutely irreducible, the only source of multiplicity eN > 1 is
its support group. However, if f has several absolutely irreducible factors, a
new source of multiplicity can occur, namely that one factor could rotate to
another factor. This possibility is illustrated in the following three examples.

Example 3.8.8. Let d = 1 and

f(x) = 1− 2x2 = (1 +
√

2x)(1−
√

2x) = ϕ1(x)ϕ2(x).

Let σ ∈ Gal(Q(
√

2) : Q) be given by σ(
√

2) = −
√

2. Then σ(ϕ1) = ϕ2 =
(−1) · ϕ1. Now fN is the product of ζjN · ϕk for 0 6 j < N and k = 1, 2. If N is
odd, then−1 /∈ ΩN and so all 2N factors are distinct. Our earlier arguments
then show that fN = gN . However, if N is even, then −1 ∈ ΩN , and the set
of rotates of ϕ1 coincide with set of those of ϕ2, and so fN = g2

N for even
N . Here f is an irreducible polynomial with a pair of roots whose ratio is a
nontrivial root of unity.

The commingling of absolutely irreducible factors under rotations can
happen in more subtle ways.

Example 3.8.9. Let d = 1 and f(x) = 1 − 2x + 4x2 − 3x3 + x4, which is full
and irreducible in Z[Z]. Let λ = (1 +

√
5)/2, µ = (1−

√
5)/2, and ζ = ζ5. The

absolutely irreducible factorization of f is

f(x) = (1− ζλx)((1− ζ4λx)(1− ζ2µx)(1− ζ3µx) = ϕ1(x)ϕ2(x)ϕ3(x)ϕ4(x).

Note that ζ3 · ϕ1 = ϕ2 and that ζ · ϕ3 = ϕ4. If N is relatively prime to 5, then
ζ /∈ ΩN , and so all 4N rotates are distinct and fN = gN as before. However,
if 5 | N then ζ ∈ ΩN and each rotate is repeated twice, and so fN = g2

N in
this case.

What is driving this example is the inclusion Q(
√

5) ⊂ Q(ζ), and so the
Galois automorphism

√
5 7→ −

√
5 of Q(

√
5) is the restriction of the auto-

morphism ζ 7→ ζ2 of Q(ζ).

Remark 3.8.10. Irreducible polynomials in Z[x] having distinct roots whose
ratio is a root of unity, such as those in the previous two examples, are called
degenerate. Such polynomials have an extensive literature (see for instance
[32, §1.1.9]), and appear in the celebrated Skolem-Mahler-Lech Theorem
that the set of indices at which a recurring sequence of integers vanishes is,
modulo a finite set, the union of arithmetic progressions [7].
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There is a simple way to detect whether f(x) ∈ Z[x] is degenerate. Intro-
duce a new variable t, and compute the resultant g(x) ∈ Z[x] of the polyno-
mials f(tx) and f(t) with respect to t, which can be done efficiently using
rational arithmetic. The roots of g(x) are the ratios of all pairs of roots of f .
Thus f(x) is degenerate if and only if g(x) contains a nontrivial cyclotomic
factor. Applying this to f(x) from the previous example gives

g(x) = (x−1)5(x4−4x3+6x2+x+1)(x4+x3+6x2−4x+1)(x4+x3+x2+x+1).

The last factor reveals that f(x) has two roots whose ratio is a nontrivial 5th
root of unity.

Example 3.8.11. Let d = 2 and f(x, y) = 1−x−y−xy+x2 +y2, which is full
and irreducible in Z[Z2]. Let ζ = ζ3. The absolutely irreducible factorization
of f is

f(x, y) = (1 + ζx+ ζ2y)(1 + ζ2x+ ζy) = ϕ1(x, y)ϕ2(x, y).

Here ϕ1 is mapped to ϕ2 by the element σ in Gal(Q(ζ) : Q) mapping ζ to ζ2,
and also σ(ϕ1) = ϕ2 = (ζ, ζ2) · ϕ1. By the now familiar arguments, if N is
relatively prime to 3 then ζ /∈ ΩN , and so all rotates are distinct and hence
fN = gN . However, if 3 divides N , then distrinct rotates are repeated twice,
and so fN = g2

N . For instance

f3 = (1 + 3x3 + 3y3 + 3x6 − 21x3y3 + 3y3 + x9 + 3x3y6 + 3x6y3 + y9)2 = g2
3.

With these examples in mind, we come to the main result of this section.

Theorem 3.8.12. Let f ∈ Z[Zd] be irreducible, which we may assume is ad-
justed with positive constant term. For every N > 1 there is an irreducible
gN ∈ Z[NZd] and eN > 1 such that

〈f〉Z[Zd] ∩ Z[NZd] = 〈g〉Z[NZd] and fN = geNN .

The multiplicity eN can be computed from the absolutely irreducible factor-
ization of f in C[Zd]. If the support of f generates a finite-index subgroup
of Zd, then there is an integer Q(f), which can also be computed from the
absolutely irreducible factors of f , such that eN = 1 for every N that is rela-
tively prime to Q(f). Finally,

〈fk〉Z[Zd] ∩ Z[NZd] = 〈gkN 〉Z[NZd]

for every k > 1.
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Proof. Recall our conventions in Remark 3.8.3. Let K be the splitting field
of f , and f = f̂(0)ϕ1 · · ·ϕr be the factorization of f using monic absolutely
irreducible ϕj ∈ K[Zd] from Proposition 3.7.3. Let Φ = {ϕ1, . . . , ϕr}. Since
the ϕj are monic, Gal(K : Q) permutes the elements of Φ, and this action is
transitive by irreducibility of f .

Now fixN > 1. ThenK(ζN ) is a normal extension ofQ. LetG = Gal(K(ζN ) :
Q). Consider the set Ωd

N ×Φ. The group Ωd
N acts on this set via ω′ · (ω, ϕj) =

(ω′ω, ϕj). The group G also acts on this set via σ · (ω, ϕj) = (σ(ω), σ(ϕj)).
More precisely, σ ∈ G acts of the first coordinate using its restriction to
Q(ζN ) and on the second coordinate using its restriction to K. These ac-
tions combine to give an action of the semidirect product G n Ωd

N defined
using the action of G on Ωd

N , so that σω = σ(ω)σ.

Define an equivalence relation ∼ on Ωd
N × Φ by (ω, ϕj) ∼ (ω′, ϕk) if and

only ifω·ϕj = ω′ ·ϕk. It is routine to verify thatGnΩd
N preserves equivalence

classes. Since Gal(K : Q) acts transitively on Φ, it follow that G n Ωd
N acts

transitively on Ωd
N × Φ. Hence all equivalence classes have the same cardi-

nality, say eN > 1. Pick one representative (ω, ϕj) from each equivalence
class, and let g̃N be the product of the corresponding polynomials ω · ϕj .

Observe that by its construction g̃N is invariant underGnΩd
N . Invariance

under Ωd
N implies that g̃N ∈ K(ζN )[NZd], and invariance under G further

implies that g̃N ∈ Q[NZd]. Then transitivity ofGnΩd
N on Ωd

N ×Φ shows that
g̃N is irreducible in Q[NZd].

We have that fN = f̂(0)N
d
g̃ eNN . Let q be the least positive integer such that

qg̃N ∈ Z[NZd], so that gN := qg̃N is primitive. Then

fN =
(
f̂(0)N

d
/qeN

)
geNN .

But both fN and geNN are primitive with positive constant terms, and hence
fN = geNN .

We now turn to computing eN . Each of the absolutely irreducible factors
ϕj has the same support since they are all Galois conjugates. Let Γϕ de-
note the common support group of each. By Lemma 3.8.6, each contributes
multiplicity |Zd/(Γϕ +NZd)|. Further multiplicity arises if one factor can be
rotated by an element of Ωd

N to another. This property divides Φ into equiv-
alence classes, with all classes having the same cardinality s. It then follows
that eN = |Zd/(Γϕ +NZd)|s.

Next, we determine sufficient conditions on N so that eN = 1. Assume
that Γf has finite index in Zd. Clearly Γf ⊂ Γϕ, and so Γϕ also has finite index.
By Lemma 3.8.6, if N is relatively prime to the index [Zd : Γϕ] of Γϕ, then
|Zd/(Γϕ +NZd)| = 1.
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To analyze when one ϕj can rotate to another, we need to consider the
group ΩK of roots of unity in the splitting field K of f . This is a finite cyclic
group, and so equals Ωn for some n > 1. Now [Q(ζn) : Q] = ϕ(n), where ϕ
denotes the Euler function. Since Q(ζn) ⊂ K, it follows thatϕ(n) 6 [K : Q]. A
simple argument shows that ϕ(n) >

√
n/2 for all n > 1, and so n 6 4[K : Q]2.

Hence ifN is relatively prime to (4[K : Q]2)!, then ΩN∩ΩK = {1}. For such an
N suppose thatω ·ϕi = ϕj for someω ∈ Ωd

N . For each k ∈ suppϕi = suppϕj
we have that ωkϕ̂i(k) = ϕ̂j(k), and so

ωk = ϕ̂j(k)/ϕ̂i(k) ∈ ΩN ∩ ΩK = {1}.

But this implies that ϕi = ϕj .

Putting these together, we let Q(f) = [Zd : Γϕ](4[K : Q]2)!, and conclude
that if N is relatively prime to Q(f) then eN = 1.

3.9 Remarks and questions

Here we make some further remarks and ask several questions related to
decimations.

3.9.1 More general lattices

Let us call a finite-index subgroup ofZd a lattice. We have used the sequence
{NZd} of lattices to define decimation, but these definitions easily extend to
all lattices. Let Λ ∈ Zd be a lattice, and let ΩΛ denote the dual group of Zd/Λ,
which has cardinality [Zd : Λ], the index of Λ inZd. Define f〈Λ〉 =

∏
ω∈ΩΛ

ω·f ,
and

LΛf = E[Zd : Λ]

( 1

[Zd : Λ]
log |f̂〈Λ〉|

)
. (3.17)

For a sequence {ΛN} of lattices, let us say ΛN →∞ if for every r > 0 we have
that {n ∈ ΛN : ‖n‖ < r} = {0} for all large enough N .

Question 3.9.1. Let 0 6= f ∈ C[Zd], and let {ΛN} be a sequence of lattices
with ΛN → ∞. Do the concave hulls CH(LΛN ) converge uniformly onNf to
Df ?

Our methods for NZd do not extend directly to this more general situa-
tion. We made essential use of the property of fN that it is a polynomial in
the N th powers of the variables, enabling us to apply the Mahler estimates
to the polynomial EN f̂N of lower degree, gaining a crucial improvement.
There is no corresponding argument for general lattices.



56 Chapter 3. Decimation limits of principal algebraic Zd-actions

3.9.2 Partial decimation

By taking different sequences of lattices, we can in effect decimate along
lower rank subgroups. The following example illustrates this idea.

Let d = 2 and f(x, y) = 1 + x + y. We will use the sequence of lattices
ΛN = NZ ⊕ Z, which corresponds to decimating with respect to x. Using
the notation from the previous section, ΩΛN = ΩN × {1}, and so

f〈ΛN 〉(x, y) =
∏
ω∈ΩN

(1 + ωx+ y) = (1 + y)N ± xN .

It is well-known that the growth rate of the binomial coefficients can be
computed using Stirling’s approximation to be

1

N
log

(
N

pN

)
≈ η(p) := −p log p− (1− p) log(1− p)

for 0 6 p 6 1. Hence the decimation limit D(1)
f (r, s) of f with respect to x

using this sequence of lattices is the concave hull of the curve
(
0, p, η(p)

)
for

0 6 p 6 1 together with the point (1, 0, 0), as shown in Figure 3.7(a).

(a) (b)

Figure 3.7: (a) The partial decimation limit of 1 + x + y, and (b) its partial
Ronkin function

Define the partial Ronkin function of f with respect to x to be

R(1)
f (u, v) =

∫ 1

0
log |f(eue2πiθ, ev)| dθ.

Figure 3.7(b) shows this in our case. One can show that here D(1)
f = −

(
R(1)
f

)∗
onNf .
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This example suggests a more general phenomenon. Let C(Zd) denote
the set of subgroups of Zd. We can give a topology to C(Zd) by declaring two
subgroups to be close if they agree on a large ball around 0. For example,
in this topology ΛN → {0} means ΛN → ∞ from §3.9.1, and in the above
example NZ ⊕ Z → 0 ⊕ Z. This is a special case of the Chabauty topol-
ogy on the set C(G) of closed subgroups of a locally compact group G. This
topology is named after Claude Chabauty, who in 1950 introduced it [19] to
generalize Mahler’s compactness criterion [76] for lattices in Rd to lattices
in locally compact groups. The Chabauty space C(G) has been investigated
by many authors, for instance by Cornulier [21] when G is abelian. Even for
familiar groups their Chabauty space can be intricate to analyze. For exam-
ple, Hubbard and Pourezza [50] used a tricky argument to prove that C(R2)
is homeomorphic to the four-dimensional sphere.

Let K be a compact subgroup of Td, and let µK denote normalized Haar
measure onK. For s ∈ K we let e2πisu mean (e2πis1u1, . . . , e

2πisdud). We then
define the Ronkin function of f with respect to K to be

R(K)
f (u) =

∫
K

log |f(e2πisu)| dµK(s).

Question 3.9.2. Is there a limiting shape for decimations corresponding to
a sequence of lattices {ΛN} in Zd converging to a non-trivial subgroup Γ ∈
C(Zd)?

3.9.3 Exponential size of decimation coefficients

In Example 3.2.3 we saw that if f ∈ C[Z] is allowed to have complex coeffi-
cients, then some of the coefficients of fN may have exponential size dras-
tically different from that predicted by Df . However, if f ∈ Z[Z] is restricted
to have integer coefficients, then this behavior cannot happen, as indicated
by Example 3.2.2. More precisely, using the diophantine results of Gelfond
mentioned there, one can show that if f ∈ Z[Z] has supp f = {0, 1, . . . , r}
and ε > 0, then for all sufficiently large N we have that |f̂N (kN)| is between
eN(Df (k)±ε) for each 0 6 k 6 r for which f̂N (kN) 6= 0.

This raises the intriguing question of whether this extends to f ∈ Z[Zd]
for d > 2, i.e., do all nonzero coefficients of fN have the approximate ex-
ponential size predicted by Df . The following gives a precise quantitative
formulation.

Question 3.9.3. Let f ∈ Z[Zd]. Fix r0 ∈ Nf , and let ε > 0. Are there δ > 0
and N0 > 1 such that if N > N0 and r ∈ N−dZd ∩ Nf with ‖r − r0‖ < δ,
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and if LNf(r) 6= −∞, then |LNf(r) − Df (r)| < ε? Can δ and N0 be chosen
uniformly for r0 ∈ Nf ?

Some evidence for a positive answer comes from polynomials in two vari-
ables related to dimer models, as discussed in Remark 3.2.6. Using the addi-
tional machinery afforded by the physical interpretation of the related par-
tition function and the resulting subadditivity, the exponential size of the
coefficients can be shown to obey the estimates in the question. In particu-
lar, this applies to f(x, y) = 1 +x+ y, although we do not know of any direct
argument for this.

3.9.4 Continuity of exp[Df ] in the coefficients of f

Start by fixing a cubeBn = {−n, . . . , n}d ⊂ Zd. We can identify a polynomial
f ∈ C[Zd] whose support is inBn with its coefficient function f̂ ∈ CBn . Boyd
[11] showed that the function CBn → [0,∞) given by f̂ 7→ M(f) = exp[m(f)]
is continuous in the coefficients of f .

Recalling that m(f) is the maximum value of Df , this suggests looking at
exp[Df ], which is a nonnegative upper semicontinuous function on Bn (the
discontinuities occur at the boundary of Nf ⊂ Bn). A function ϕ : Bn → R
is upper semicontinuous if and only if its subgraph {(u, t) ∈ Bn × R : t 6
ϕ(u)} is closed in Bn × R. The space USC(Bn) of all upper semicontinuous
functions on Bn carries a natural topology by declaring two elements to be
close if their subgraphs are close in the Hausdorff metric on closed subsets
of Bn × R (see [6] for details).

Question 3.9.4. Is the map f̂ → exp[Df ] from CBn to USC(Bn) continuous?

3.9.5 Nonprincipal actions

Decimation makes sense for every algebraic Zd-action (indeed for every al-
gebraic action of a countable residually finite group). Suppose that a is an
ideal in Z[Zd], and let Xa be the dual group of Z[Zd]/a as described in §3.6.
The commutative algebra there shows that the N th decimation rN (Xa) is
defined by the contracted ideal a ∩ Z[NZd]. However, there is no obvious
replacement for gN to measure growth when a is not principal,

Question 3.9.5. If a is a nonprincipal ideal in Z[Zd], are there objects related
to the contractions a ∩ Z[NZd] which can be normalized to converge to a
limiting object?
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If a is not principal, then the Zd-shift action onXa has zero entropy. How-
ever, by restricting the shift to iterates close to lower dimensional subspaces
of Rd the action can have positive entropy [13, §6]. This suggests that the
partial decimations from §3.9.2 may play a role here.

Examining concrete examples may shed some light on this question. These
include the case of commuting toral automorphisms (see [52, §6] for many
such examples), the Z2-action defined by multiplication by 2 and by 3 on T
(corresponding to a = 〈x−2, y−3〉), and the so-called space helmet example
[31, Example 5.8] (corresponding to a = 〈1 + x+ y, z − 2〉).

An important example of a different character is due to Ledrappier [61],
which corresponds to the nonprincipal ideal 〈1 + x + y, 2〉 ⊂ Z[Z2]. This
example has zero entropy as a Z2-action, but strictly positive entropy along
every 1-dimensional subspace of R2 (see [13, Example 6.4] for the explicit
description). Another curious feature of this example is decimation self-
similarity. Because (1 +x+ y)2n = 1 +x2n + y2n when taken mod 2, the 2nth
decimation of the example, when rescaled by 2n, is just the original action.

3.10 Example of computing the decimation limit

There are few explicit calculations of the logarithmic Mahler measure, or
more generally of the Ronkin function, of polynomials in Z[Zd] when d > 2.
Depending on the relative sizes of the coefficients, evaluation of the inte-
grals involved typically requires the torus to be subdivided into a large num-
ber of subregions with complicated boundaries, and so simple formulas in
terms of familiar functions are rare.

Here we treat the case f(x, y) = 1 +x+ y from Example 3.2.4, where these
calculations can be carried out, resulting in the formulas (3.8) and (3.9) for
Df .

Smyth [105] first computed the logarithmic Mahler measure m(f) = Rf (0, 0)
to have the value in (3.10). Twenty years later Maillot [78, §7.3], aided by
Cassigne, computed the entire Ronkin function Rf (u, v), providing in his
long memoir a concrete example of the canonical height of a hypersurface.
Their result involves the Bloch-Wigner dilogarithm function, which is an al-
ternative formulation of the series representation in our formulas. Lundqvist
[70] gave the formulas for the partial derivatives of Rf we use here. He also
investigated the polynomial 1 + x + y + z, and showed that the second or-
der partial derivatives of its Ronkin function can be expressed in terms of
standard elliptic functions.
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eveu

1

(a)

πrπs

(b)

eu

ev
2πr

1

Figure 3.8: Determining partial derivatives from angles and sides

Let ∆ = Nf be the unit simplex, and denote its interior by ∆◦. Let Af be
the amoeba of f , as shown in Figure 3.5, and A◦f be its interior. To evaluate
R∗f (r, s) for (r, s) ∈ ∆◦, we need to know the value of (u, v) ∈ A◦f at which
the partial derivatives of Rf (u, v) with respect to u and v equal r and s, re-
spectively. Fortunately, there is a simple relationship that was established
by Lundqvist [70], whose treatment we follow.

Lemma 3.10.1. Let (u, v) ∈ A◦f , so that 1, eu, and ev form the sides of a
nondegenerate triangle. Let πr and πs be the angles in this triangle shown
in Figure 3.8(a). Then

∂Rf
∂u

(u, v) = r and
∂Rf
∂v

(u, v) = s. (3.18)

Proof. We will compute the partial derivatives by differentiating the inte-
grand in

Rf (u, v) =

∫ 1

0

∫ 1

0
log |1 + eue2πiθ + eve2πiϕ| dθ dϕ

= Re
[∫ 1

0

∫ 1

0
log(1 + eue2πiθ + eve2πiϕ) dθ dϕ

]
.
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In the last line log represents a local inverse to exp, which is well-defined up
to the addition of an integral multiple of 2πi. After taking partial derivatives,
we will get a result that is independent of this multiple.

By symmetry, it suffices to compute ∂Rf/∂u. Differentiating the integrand
gives

∂Rf
∂u

(u, v) = Re
[∫ 1

0

∫ 1

0

eue2πiθ

1 + eue2πiθ + eve2πiϕ
dθ dϕ

]
.

Rewriting the integrals as contour integrals, we see that∫ 1

0

∫ 1

0

eue2πiθ

1 + eue2πiθ + eve2πiϕ
dθ dϕ =

1

(2πi)2

∫
|z|=eu

∫
|w|=ev

1

1 + z + w
dz
dw

w

=
1

2πi

∫
|w|=ev

[ 1

2πi

∫
|z|=eu

dz

z − (−1− w)

] dw
w
.

The inner integral is the winding number of the circle of radius eu around
−1 − w = −1 − eve2πiϕ, and so has value 1 if |1 + eve2πiϕ| < eu and 0 if |1 +
eve2πiϕ| > eu (these are mistakenly reversed in [70]). A glance at Figure 3.8(b)
shows that the value is 1 for an interval of ϕ of length 2πr, and 0 otherwise.
Since (1/2πi)(dw/w) is normalized Lebesgue measure dϕ, we obtain that
(∂Rf/∂u)(u, v) = r.

To compute the decimation limit Df , we need to express u and v in terms
of r and s. Let a = eu and b = ev be the sides of the triangle in Figure 3.8(a).
By the law of sines,

a

sinπr
=

b

sinπs
=

1

sinπ(1− r − s)
=

1

sinπ(r + s)
,

and hence

a = a(r, s) = eu(r,s) =
sinπr

sinπ(r + s)
, (3.19)

b = b(r, s) = ev(r,s) =
sinπs

sinπ(r + s)
. (3.20)

For (u, v) ∈ A◦f it follows from the definition (3.11) that

−R∗f (u, v) = inf
(r,s)∈∆◦

Rf (u, v)− ru− sv,

and by calculus the infimum is attained at the (u, v) given by (3.18). Thus
for (r, s) ∈ ∆◦ we have that

Df (r, s) = −R∗f
(
u(r, s), v(r, s)

)
= Rf

(
u(r, s), v(r.s)

)
− r u(r, s)− s v(r, s),

(3.21)
where u(r, s) and v(r, s) are determined by (3.19) and (3.20).
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Remark 3.10.2. Observe that the functions u(r, s) and v(r, s) in (3.19) and
(3.20) are real analytic on ∆◦. Also, Rf (u, v) is real analytic on A◦f . Together
these show that Df (r, s) is real analytic on ∆◦.

It remains to compute Rf (u, v). By symmetry it suffices to assume that
u > v. Using Jensen’s formula (3.5), we see that

Rf (u, v) =

∫ 1

0

∫ 1

0
log |1 + eue2πiθ + eve2πiϕ| dθ dϕ

= u+

∫ 1

0

∫ 1

0
log |e−u + ev−ue2πiϕ + e2πiθ| dθ dϕ

= u+

∫ 1

0
log+ |e−u + ev−ue2πiϕ| dϕ.

Note that |e−u + ev−ue2πiϕ| > 1 if and only if |1 + eve2πiϕ| > eu, and another
glance at Figure 3.8(b) shows this occurs exactly when −π(1 − r) 6 2πϕ 6
π(1− r). Hence

Rf (u, v) = u+

∫ 1
2

(1−r)

− 1
2

(1−r)
log |e−u + ev−ue2πiϕ| dϕ

= u− (1− r)u+

∫ 1
2

(1−r)

− 1
2

(1−r)
log |1 + eve2πiϕ| dϕ

= r u+

∫ 1
2

(1−r)

− 1
2

(1−r)
log |1 + eve2πiϕ| dϕ.

First suppose that ev < 1, which corresponds to (r, s) ∈ ∆◦1, where ∆1 is
defined in (3.6). The series expansion of log(1 + z) for 1 + z in the domain of
integration converges uniformly, and the imaginary part vanishes by sym-
metry. Hence

Rf (u, v) = r u+

∫ 1
2

(1−r)

− 1
2

(1−r)

∞∑
n=1

(−1)n+1

n
enve2πinϕ dϕ

= r u+

∞∑
n=1

(−1)n+1

n
env

1

πn
sin[πn(1− r)].

Recalling that ev(r,s) = b(r, s) = (sinπs)/ sin[π(r + s)], we conclude that

Df (r, s) = Rf
(
u(r, s), v(r, s)

)
− r u(r, s)− s v(r, s)

=

∞∑
n=1

(−1)n+1

πn2
b(r, s)n sin[πn(1− r)]− s log[b(r, s)].

(3.22)
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Now suppose that ev > 1, which corresponds to (r, s) ∈ ∆◦2, where ∆2 is
defined by (3.7). Then log |1 + eve2πiϕ| = v + log |1 + e−ve−2πiϕ|. Calculating
as before,

Rf (u, v) = r u+ (1− r)v +

∫ 1
2

(1−r)

− 1
2

(1−r)

∞∑
n=1

(−1)n+1

n
e−nve−2πinϕ dϕ

= r u+ (1− r)v +
∞∑
n=1

(−1)n+1

πn2
b(r, s)−n sin[πn(1− r)].

Thus for (r, s) ∈ ∆◦2 we find that

Df (r, s) =

∞∑
n=1

(−1)n+1

πn2
b(r, s)−n sin[πn(1− r)] + (1− r− s) log[b(r, s)]. (3.23)

Finally, note that on the overlap ∆1 ∩∆2 inside ∆◦, we have that b(r, s) = 1
and so the series in (3.6) and (3.7) converge and agree, hence give the value
of Df (r, s) by continuity of the Legendre transform.
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Chapter 4

On the determinantal process
associated to spanning trees1

4.1 Discrete determinantal processes

Let E be a finite or countable set and X ⊂ E be a random subset of E.
Then, one can associate X to a random variable X̃ with values in {0, 1}E
where X̃(e) = 1 if e ∈ X. The random variable X̃ is called a point process. A
point process X̃ is called determinantal (abbreviated to the Determinantal
Point Process, or DPP) if there exists a function K : E × E → C such that
for any finite collection of distinct points {e1, . . . , en} ∈ E, the probability
P(e1, . . . , en ∈ X) is given by the following determinant:

P(e1, . . . , en ∈ X) = P(X̃(ei) = 1, i = 1, . . . , n) = det
[
K(ei, ej)

]n
i,j=1

. (4.1)

The function K is called the correlation kernel of the determinantal point
process X̃.

Analogously, a probability measure P on {0, 1}E is called determinantal
if there exists a function K : E × E → C such that (4.1) is valid for all
{e1, . . . , en} ∈ E where the points ei are all distinct. A natural question is
to determine which functions K are correlation kernels, i.e., for which K the
expressions in (4.1) define a probability measure on {0, 1}E . To address to
this question we recall the three most common ways to define determinan-
tal measures and their correlation kernels:

1. Fourier transform: Suppose E = Zd and f : Td → [0, 1] is an L2-

1This chapter is based on: E. Arzhakova, T. Shirai, E. Verbitskiy, On the determinantal
process associated to spanning trees, in progress
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integrable function. Define the correlation kernel K on Zd × Zd by

K(n,m) = f̂(n−m), n,m ∈ Zd,

where f̂(k) is the k-th Fourier coefficient of f given by

f̂(k) =

∫
Td
f(θ)e−2πi〈k,θ〉dθ, k ∈ Zd.

The kernel K defines a stationary translation invariant determinantal
measure on Zd [72].

2. Projection: Consider the Hilbert space H = `2(E) with the scalar
product 〈·, ·〉. Note thatH is generated by the indicator functions {1n, n ∈
E} given by

1n(m) =

{
1, m = n,

0, m 6= n.

Suppose H is a closed subspace of H. Denote by PH the orthogonal
projection operator onto H . Then the kernel K(n,m) = 〈PH1n,1m〉
defines a determinantal measure.

3. Positive contraction: Again, consider the Hilbert space `2(E), and
suppose Q : `2(E)→ `2(E) is a positive contraction, i.e.,

0 6 〈Qu, u〉 6 〈u, u〉 ∀u ∈ `2(E).

Then the kernel K(n,m) = 〈Q1n,1m〉, n,m ∈ E, defines a determinan-
tal measure on {0, 1}E .

Note that here is a natural bijection between the DPPs generated by pro-
jections (2) and those generated by positive contractions (3). Clearly, any
projection operator is a positive contraction, so, (2) ⊂ (3). In the other di-
rection, consider a positive contractionA that acts on `2(E); then, the oper-
ator

Â :=

(
A

√
A(I −A)√

A(I −A) I −A

)
is a projection operator on `2(E1) ⊕ `2(E2) where E1 = E2 = E since Â is
idempotent (Â2 = Â) and self-adjoint (Â∗ = Â). Moreover, Â is a dilation of
A; in other words, P`2(E1)Âu = Au [73] and P`2(E2)Âu = (I − A)u. We have
shown that each positive contraction A generates a projection operator.
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The third class of examples (3) also contains the first class of examples
(1). Indeed, since `2(Zd) ∼= L2(Td) via the Fourier transform, the operator
Q̂ : L2(Td) → L2(Td) which acts by the formula Q̂h = f · h, is also a posi-
tive contraction on L2(Td) since f : Td → [0, 1]. It follows that the adjoint
operator Q on `2(Zd) is also a positive contraction on `2(Zd).

In the current work we focus on two primary examples of discrete deter-
minantal point processes which are Uniform Spanning Trees process and
Uniform Spanning Forest process.

Let G = (V,E) be a finite connected graph. A spanning tree T ⊂ E is a
subset of edges of G such that the graph (V, T ) is connected and does not
have cycles. Denote by T (G) the set of all spanning trees of G. Since G is
finite, |T (G)| < ∞, and by a well-known Kirkhoff’s Matrix Tree theorem,
|T (G)| is equal to the determinant of the (reduced) Laplacian matrix of G.
Let us consider the random variable T assuming values in T (G) with uni-
form probabilities. Burton and Pemantle [16] have proved the Transfer Cur-
rent Theorem, showing that the edges of uniformly chosen spanning trees
form a determinantal process.

Theorem 4.1.1 ([16]). Let G = (V,E) be a finite graph. Denote by P be the
uniform spanning tree measure on G which we view as a probability mea-
sure on {0, 1}E . This measure describes the probability that edges e1, . . . , en
are present in a random spanning tree which is chosen uniformly. Choose
an arbitrary orientation of the edges of the graphG and let K(ei, ej) be equal
to the expected signed number of crossings of ei = −→xy by a simple random
walk on G started at s and stopped when it hits t with ej =

−→
st . Then, the

uniform spanning tree measure on G is given by the determinant

P(e1, . . . , en ∈ T ) = det
[
K(ei, ej)

]n
i,j=1

, (4.2)

i.e., P is a determinantal probability measure.

In [89] Pemantle considered uniform spanning trees on certain infinite
graphs, namely, on integer lattices Zd with d > 2. He showed that the uni-
form measures Pn on spanning trees of finite boxes Bn = [−n, n]d ∩ Zd con-
verge weakly as n → ∞ to the limiting measure P. If d 6 4 the limiting
measure P is concentrated on spanning trees; otherwise, it concentrates on
spanning forests, i.e., on collections of disjoint spanning trees that span the
whole lattice. This limiting measure is referred to as uniform spanning tree
measure or uniform spanning forest measure, respectively.



68 Chapter 4. On the determinantal process associated to spanning trees

As discussed above, Burton and Pemantle [16] established the determi-
nantal structure of uniform measures on spanning trees of finite graphs,
c.f, Theorem 4.1.1. They also showed that the determinantal structure is
present on some infinite graphs, namely, onZd lattices and someZd-periodic
graphs:

Theorem 4.1.2 ([16]). LetG = (V,E) be aZd-periodic,D-regular, connected
graph. Denote by P be the uniform spanning forest (USF) measure on G
which is viewed as a probability measure on {0, 1}E . Then P is determinan-
tal with the correlation kernel K given in Theorem 4.1.1.

Let us illustrate the computation of the correlation kernel that features in
the two theorems discussed above:

Example 4.1.3. In order to compute the correlation kernel K for the USF
measure on Zd explicitly one can use the Green’s function g : Zd → R of the
simple random walk. The expression of the Green’s function depends on the
dimension d: for d = 2, it is given by

g(n) =
∑
k>0

(
P(Xk = n|X0 = 0)− P(Xk = 0|X0 = 0)

)
=

∫
T2

e−2πi〈n,θ〉 − 1

1− 1
2 cos 2πθ1 − 1

2 cos 2πθ2
dθ,

and for d > 3 it is given by

g(n) =
∑
k>0

P(Xk = n|X0 = 0) =

∫
Td

e−2πi〈n,θ〉

1− 1
d

∑d
j=1 cos 2πθj

dθ.

Then [16, Theorem 4.2], [71, Proposition 10.15], the kernel K calculated on
the edges e = −→xy and ẽ = −→zw is given by the expression

K(e, ẽ) =
1

2d

[
g(z − x)− g(z − y)− g(w − x) + g(w − y)

]
. (4.3)

Note that explicit computation of the Green’s function for an arbitrary
graph G is not trivial, e.g., even for Z2 one has to modify the standard def-
inition to accommodate for non-integrability of the denominator. Fortu-
nately, in Z2 the required modification is straightforward, but even for sim-
ple graphs the calculation of the Green’s function becomes cumbersome.
Therefore, it is natural to consider other methods to calculate the correla-
tion kernel K. In the following Section we recall a method presented in [12]
that calculates K as a projection in a certain Hilbert space.
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4.1.1 Hilbert space approach

In [12], Benjamini et al. further developed the electrical network approach
that we discussed above and obtained a description of the determinantal
structures of the USF measures on general finite and infinite graphs in terms
of certain projection operators.

Let us first consider a finite connected undirected graph G = (V,E). For
each undirected edge [e] ∈ E select an arbitrary orientation denoted by e;
then, we denote the reversed orientation by −e. We obtain a collection or
oriented edges E containing each edge from E with two possible orienta-
tions. In other words, E = ∪[e]∈E{e,−e}. Throughout the paper, we will use
the following notation. If the collection of edges is denoted by a capital let-
ter E,F, . . ., then the edges are assumed to be undirected; and for the set of
all possible directed graphs we will use E,F , . . .. For e ∈ E denote by o(e)
the origin of e and by t(e) the terminus of e. For the reversed edge −e we
naturally have o(−e) = t(e) and t(−e) = o(e).

Denote by `2(V ) the real Hilbert space of functions f : V → R with the
standard inner product given by

〈f1, f2〉 =
∑
v∈V

f1(v)f2(v). (4.4)

Denote by `2−(E) the space of antisymmetric (i.e., ϕ(−e) = −ϕ(e)) real func-
tions on E with the standard inner product given by

〈ϕ1, ϕ2〉 =
1

2

∑
e∈E

ϕ1(e)ϕ2(e). (4.5)

Define the coboundary operator d : `2(V ) → `2−(E) and the divergence
operator d∗ : `2−(E)→ `2(V ) as

df(e) = f(o(e))− f(t(e)), d∗θ(v) =
∑
o(e)=v

θ(e). (4.6)

It is easy to check that d and d∗ are adjoint: 〈df, θ〉 = 〈f, d∗θ〉 for all f ∈ `2(V )
and θ ∈ `2−(E). Consider a subspace Im d defined as

Im d = d `2(V ) = span{ d1v}v∈V ⊂ `2−(E).

Finally, denote byPIm d the orthogonal projection from `2−(E) onto the closed
subspace Im d.
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Theorem 4.1.4 ([12]). Let P be the uniform spanning tree measure for G =
(V,E). Then P is determinantal with

P(e1, . . . , ek ∈ T ) = det[(PIm d1ei ,1ej )]i,j=1,...,k,

where for e ∈ E, 1e ∈ `2−(E) is an antisymmetric indicator function of the
directed edge e (i.e., 1e(e) = 1,1e(−e) = 1 and 1e(j) = 0 for all j ∈ E such
that j 6= e,−e).

As was mentioned above, Pemantle [89] constructed a USF measure P on
Zd by considering weak limits of uniform spanning tree measures on finite
graphs. This approach can be extended to a larger class of infinite con-
nected locally finite graphs G = (V,E). Consider a sequence of finite sub-
sets of vertices {Vn} of V such that V1 ⊂ V2 ⊂ . . . and ∪∞1 Vn = V . Using
the sequence {Vn}we can define two sequences of finite graphs converging
to G = (V,E). Firstly, let GFn = (Vn, En) be the graph obtained by delet-
ing all vertices in V which lie outside of Vn (free boundary conditions), and
secondly, let GWn = (Vn ∪ {∅}, Ẽn) be the graph obtained by contracting all
vertices in V which lie outside of Vn into one vertex ∅ (wired boundary con-
ditions). Denote by PFn and PWn the corresponding uniform spanning tree
measures on GFn = (Vn, En) and GWn = (Vn t {∅}, Ẽn), respectively. The
measures PFn and PWn have the following monotonicity property: for a fixed
collection of edges B and for all sufficiently large n, one has

PFn (B ⊆ T ) > PFn+1(B ⊆ T ), and PWn (B ⊆ T ) 6 PWn+1(B ⊆ T ),

which allows one to define limiting measures

PF = lim
n→∞

PFn , PW = lim
n→∞

PWn ,

called the free and the wired uniform spanning forest measures, respec-
tively. In general, the measures PF and PW do no necessarily coincide.

It turns out that both measures PF and PW are determinantal with kernels
similar to that in Theorem 4.1.4. To describe the corresponding kernels we
introduce additional notations. Let us call stars the functions of the form
d1e where 1e is an indicator function of an oriented edge e ∈ E; denote
byF = d`2(V ) the closed infinite-dimensional subspace of `2−(E) spanned
by stars [12]. If a collection of oriented edges (e1, . . . , en) forms an oriented
cycle, then a function

∑n
i=1 1ei is called a cycle. Cycles span a subspace of

`2−(E) denoted by ♦. The subspaces F and ♦ of `2−(E) are orthogonal. In
[12] it is shown that PW = PF if and only ifF⊕ ♦ = `2−(E).

Remark 4.1.5. LetGbe a graph equipped with an action of an abelian finitely-
generated group Γ (see Sections 3 and 4 below). Then PF = PW [33].
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Theorem 4.1.6 ( [12] ). For an infinite connected graphG, the uniform span-
ning forest measures PF and PW corresponding to the free and the wired
boundary conditions, are determinantal:

PW (e1, . . . , ek ∈ T ) = det[〈PF1ei ,1ej 〉]16i,j6k,

PF (e1, . . . , ek ∈ T ) = det[〈P⊥♦ 1ei ,1ej 〉]16i,j6k,

where PF is an orthogonal projection on the closure ofF and P⊥♦ is an or-
thogonal projection on the closure of the orthogonal complement of ♦.

Remark 4.1.7. Note that both PW (e1, . . . , ek ∈ T ) and PF (e1, . . . , ek ∈ T ) do
not depend on the choice of orientation.

Theorem 4.1.6 shows that the correlation kernel can be expressed in terms
of projection operators. However, finding explicit expressions of projections
in infinite-dimensional Hilbert spaces is a challenging task. In [71, Chap-
ter 4] one can find computations of correlation kernels for lattices Zd using
graph Laplacians; this proof requires a number of technical steps. The same
construction can, in principle, be used for other graphs, however, the proofs
become more complex, in particular, for graphs where the simple random
walk is recurrent.

In the following section we show how to compute a projection operator
PF of Theorem 4.1.6 explicitly for graphs with abelian symmetry groups.

4.2 Projection operator

We start the discussion with a well-known fact on computation of projec-
tions in finite-dimensional spaces. Let us consider a k-dimensional sub-
space W ⊂ Rn with k < n, and let PW be the orthogonal projection from Rn
onto W . Suppose W is spanned by linearly independent vectors w1, . . . , wk.

Denote by A the n× k matrix, made of column vectors w1, . . . , wk:

A = [w1; . . . ;wk] ∈ Rn×k.

Since the vectors wi are linearly independent, the k × k matrix ATA is in-
vertible. A standard exercise in Linear Algebra shows that the projection
operator PW is given by the matrix product

PW = A(ATA)−1AT (4.7)
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In view of Theorem 4.1.6, one would be interested whether a similar ex-
pression is true in greater generality. The following result is a natural gener-
alization of (4.7) to the infinite-dimensional separable Hilbert spaces.

Theorem 4.2.1. Suppose X,Y are separable Hilbert spaces, and A : X → Y
is a bounded linear operator. Let A∗ : Y → X be the adjoint operator of A
and let PA : Y → Y be the orthogonal projection onto the closed subspace
ImA ⊂ Y . Then

lim
ε→0

A(A∗A+ εI)−1A∗ = PA,

where I : X → X is the identity operator, and the convergence is under-
stood in the strong operator topology.

We start the proof of Theorem 4.2.1 with the following proposition:

Proposition 4.2.2. Under conditions of Theorem 4.2.1, for any ε > 0 the
operators P (ε) : Y → Y given by

P(ε) = A(A∗A+ εI)−1A∗,

are well-defined and have uniformly bounded norms.

Proof. The operator (A∗A+εI)−1 is non-negative and self-adjoint, and there-
fore, has a unique non-negative self-adjoint square root B(ε) = (A∗A +
εI)−1/2. Let C(ε) = AB(ε) = A(A∗A + εI)−1/2, then C∗(ε) = B(ε)A∗, and
since P (ε) = C(ε)C∗(ε), one has

||P(ε)|| = ||C(ε)C∗(ε)|| = ||C∗(ε)C(ε)||
= ||(A∗A+ εI)−1/2A∗A(A∗A+ εI)−1/2||,

(4.8)

therefore, ||P(ε)|| = ||g(A∗A)|| where g(x) = x
x+ε , ε > 0. Note that the op-

erator A∗A is bounded and positive-definite: therefore, its spectral radius
λ∞(A∗A) coincides with the norm of A∗A. The spectral mapping theorem
implies that ||P(ε)|| = ||g(A∗A)|| = g(λ∞(A∗A)) < 1; one concludes that
||P(ε)|| < 1 for every ε > 0.

Remark 4.2.3. The operator P (ε), ε > 0 is a positive contraction; for dis-
crete (finite or countable) Y it defines a determinantal point process with
the correlation kernel Kε(ei, ej) = 〈Pε1ei ,1ej 〉, ei, ej ∈ Y .

We present the reader with two proofs of Theorem 4.2.1:
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Analytic proof of Theorem 4.2.1. Let us start by showing that lim
ε→0

P(ε)Ax =

Ax for every x ∈ X. Applying P(ε) to Ax, we see that

P(ε)Ax = A(A∗A+ εI)−1A∗Ax = A(A∗A+ εI)−1[(A∗A+ εI)− εI]x

= Ax− εA(A∗A+ εI)−1x.
(4.9)

However, the norm of an operator εA(A∗A + εI)−1 can be bounded as fol-
lows:

||εA(A∗A+ εI)−1|| = ||ε1/2A(A∗A+ εI)−1/2ε1/2(A∗A+ εI)−1/2||
6 ε1/2||A(A∗A+ εI)−1/2|| · ||ε1/2(A∗A+ εI)−1/2||.

(4.10)

The norm of the operator C(ε) = A(A∗A + εI)−1/2 is bounded. Indeed,
since C∗(ε)C(ε) = P (ε), one has ||C(ε)||2 = ||C∗(ε)C(ε)|| = ||P(ε)|| 6 2 by
Proposition 4.2.2. The norm of the operator ε1/2(A∗A + εI)−1/2 is bounded
by 1. Therefore, ||εA(A∗A + εI)−1|| 6 ε1/2 · ||C(ε)|| · 1 6

√
2ε → 0 as ε → 0.

Thus, by (4.9)

P(ε)Ax−Ax = εA(A∗A+ εI)−1x, with ||εA(A∗A+ εI)−1|| 6
√

2ε

Hence, P(ε)Ax → Ax, and thus P(ε) → I on ImA. Moreover, P(ε) = 0 on
(ImA)⊥. Therefore, one concludes that

lim
ε→0

A(A∗A+ εI)−1A∗ = ProjImA = PA.

Spectral proof of Theorem 4.2.1. Note that Y = ImA ⊕ (ImA)⊥. Let us con-
sider a sequence of operators A(A∗A + εI)−1A∗Ax and prove that it con-
verges to Ax.

Each self-adjoint operator K : H → H on a separable Hilbert space H
admits a sum representation K =

∑
m∈N qm〈x,wm〉wm where {wm}m∈N is a

countable orthonormal basis of H and {qm}m∈N is the spectrum of K. Note
that if K = A∗A for some operator A then its spectrum is non-negative and
real. Then, one can define a family of spectral projections {Eλn}n∈[0,∞) by

Eλn(K)(x) =
∑

qm∈(−∞,λn]

qm〈x,wm〉wm.

This family is called the resolution of unity of the operatorK; it implies that
K =

∫∞
−∞ λdEλ(K). If K is non-negative, clearly, K =

∫∞
0 λdEλ(K).
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Denote by SpecA∗A ⊂ R the spectrum of the operator A∗A (note that the
spectrum of a self-adjoint operator is real). Then, the spectrum of the in-
verse operator Spec(A∗A)−1 on its range ImA∗A is equal to (SpecA∗A\{0})−1.
Moreover, if w is an eigenvector of A∗A with a positive eigenvalue λe then w
is an eigenvector of (A∗A+ εI)−1 with an eigenvalue 1

λ+ε . We conclude that

Spec(A∗A+ εI)−1A∗A =
{ λ

λ+ ε

}
λ∈SpecA∗A

.

By the property of the resolution of unity it follows that on (kerA∗A)⊥

(A∗A+ ε)−1A∗A =

∫
(0,∞)

λ

λ+ ε
dEλ(A∗A).

If x ∈ kerA∗A then (A∗A+ ε)−1A∗A(x) = 0. Therefore, on the whole H1,

A(A∗A+ ε)−1A∗A = A

∫
(0,∞)

λ

λ+ ε
dEλ(A∗A).

Note that kerA∗A = ker(A∗A)−1 = kerA. We leave the proof of this fact as
an exercise for the reader. Then, A(E{0}(A

∗A)) = 0; so,

A(A∗A+ ε)−1A∗A = A

∫
[0,∞)

λ

λ+ ε
dEλ(A∗A).

When ε→ 0, the expression λ
λ+ε → 1, so

lim
ε→0

A(A∗A+ ε)−1A∗A = A

∫ ∞
0

dEλ(A∗A).

By the definition of the resolution of unity,
∫∞

0 dEλ(A∗A) = I. Then, for
y = Ax+ z, x ∈ H1, z ∈ (ImA)⊥, it holds that

lim
ε→0

A(A∗A+ ε)−1A∗y = Ax.

It follows that for any y ∈ H2,

lim
ε→0

A(A∗A+ ε)−1A∗y = PAy,

where PA(y) is a projection of y onto Im(A).

In the following sections, we will apply Theorem 4.2.1 to computation of
projections in relation to Theorem 4.1.6. Namely, we will show that for infi-
nite graphs with symmetry one can obtain explicit expressions of correlation
kernels.
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4.3 Graphs with abelian symmetries

In this section we discuss infinite graphs that possess sufficiently rich sym-
metry groups, for instance, periodic graphs. Consider a connected unori-
ented graphG = (V,E) where V = V (G) is the set of vertices andE = E(G)
is the set of unoriented edges. We remind the reader of the notation used
in Section 1: E is the set of oriented edges: each unoriented edge [e] ∈ E
is included with two possible orientations e,−e into E; o(e) and t(e) are the
origin and the terminus of e ∈ E, respectively.

Definition 4.3.1. A mapping g : G → G consists of a pair of mappings
gV : V → V and gE : E → E. The mapping g : G → G is called a graph
automorphism if

1. o(gE(e)) = gV (o(e)), i.e., the origin of the edge is mapped onto the ori-
gin of the edge,

2. t(gE(e)) = gV (t(e)), i.e., the terminus of the edge is mapped onto the
terminus of the edge,

3. −gE(e) = gE(−e) (e ∈ E), i.e., the image of the reverse of an edge is
the reverse of the image of the edge.

It is easy to check that due to the conditions above, any graph automor-
phism g : G → G naturally induces a mapping on undirected edges gE :
E → E on E by gE([e]) := [gE(e)]

Let Γ be a discrete countable group which acts on a graph G = (V,E) by
graph automorphisms:

Γ 3 γ 7→ gγ = (gγV , g
γ
E) ∈ Aut(G).

Definition 4.3.2. A pair (G0 = (V0, E0), π : G→ G0) is called a quotient of G
with respect to Γ denoted by G/Γ if for every v0 ∈ V0, π−1(v0) = {gγV (v)|γ ∈
Γ, v ∈ π−1(v0)}γ := Γv and for every e0 ∈ E0, π−1(e0) = {gγE(e)|γ ∈ Γ, e ∈
π−1(e0)} := Γe. In other words, π is a covering map ofG0, i.e., for every γ ∈ Γ
one has π ◦ gγ = π.

From now on, we will simplify the notation and use the same letter γ to
denote the graph automorphism gγ corresponding to γ ∈ Γ.

LetG = (V,E) be an infinite graph and let Γ be a finitely generated abelian
group of automorphisms of G that satisfies the following conditions:
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1. The group Γ acts freely on G: namely, γv 6= v and γe 6= ±e unless
γ = id.

2. The quotient graph G/Γ is a finite graph G0 = (V0, E0).

We would need one more algebraic object associated with a countable ad-
ditive group Γ : namely, the group ring ZΓ, which we view as the ring of
Laurent polynomials in variable x. This ring is formed by all expressions of
the form

f =
∑
γ∈Γ

fγ · xγ ,

where fγ ∈ Z for all γ ∈ Γ are such that the set {γ ∈ Γ : fγ 6= 0} is finite.
For the Laurent polynomial f =

∑
γ∈Γ fγ · xγ , the adjoint of f is defined

as f∗ =
∑

γ∈Γ fγ · x−γ . The sum of two polynomials f =
∑

γ∈Γ fγ · xγ and
h =

∑
γ∈Γ hγ · xγ is defined as f + h =

∑
γ∈Γ(fγ + hγ) · xγ , and the product

is defined as f · h =
∑

g∈Γ(f · h)γ · xγ with

(f · h)γ =
∑
γ′∈Γ

fγ−γ′hγ′ .

We will write 1 for x0.

Let F = (FV ,FE) be an arbitrary fundamental set of G with respect to
the Γ-action. It means that

V =
∐
γ∈Γ

γ(FV ), E =
∐
γ∈Γ

γ(FE).

Let us fix an orientation FEo on FE : note that it defines an orientation
E0 on E. Take π : G → F as a covering map. For any e ∈ FEo fix v, v′ ∈
FV , e

′ ∈ E and γ ∈ Γ (γ can be 1) such that π(e′) = e, o(e′) = v ∈ FV and
t(e′) = γv′ ∈ V (naturally, FE = FEo t −FEo). Let us define an |E0| × |V0|
"edge-vertex" incidence matrix ∂F = (∂FEo

(e, v)) where e ∈ FEo , v ∈ FV

and its adjoint ∂∗F = (∂∗F (v, e)) where v ∈ FV , e ∈ FEo , by the formulas

∂F (e, v) = 1v(o(e
′))−

∑
γ∈Γ: γv=t(e′)

xγ ,

∂∗F (v, e) = 1v(o(e
′))−

∑
γ∈Γ: γv=t(e′)

x−γ .
(4.11)

Remark 4.3.3. The size of the sets FV ,FEo does not depend on F ; there-
fore, the size of the matrices ∂F , ∂

∗
F also does not depend on the choice of

F . The set FV contains exactly one element of each orbit of Γ acting on
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V ; the same holds for FEo with respect to E0. One can check that the ex-
pression 1v(o(e

′))−
∑

γ∈Γ: γv=t(e′) x
γ depends only on the orbits containing

v and e, but not explicitly on the choice of elements; therefore, the matri-
ces ∂F , ∂

∗
F depend on F only up to reordering of elements in FV and FEo .

Therefore, hereafter we sometimes omit the index F and simply write ∂, ∂∗.

Definition 4.3.4. The graph Laplacian of F is a |V0| × |V0|matrix with ele-
ments in ZΓ given by

∆F = ∂∗F∂F .

The entries of ∆F are given by

∆F (i, j) = deg vi1vi(vj)

−
∑

e∈FEo ,γ∈Γ

xγ
(
1vi(o(e))1γvj (t(e)) + 1vj (o(e))1−γvi(t(e))

)
= deg vi1vi(vj)−

∑
γ∈Γ: vi∼γvj

xγ .

The choice of another fundamental domain F will correspond to the change
of basis of matrix ∆F and, therefore, the determinant det ∆F does not de-
pend on the choice of F .

4.3.1 Examples

In order to demonstrate the computation of the introduced notions, we will
now consider a number of simple examples.

Example 4.3.5 (Z2-lattice, Figure 4.1). For the lattice Z2 the quotient graph
consists of one vertex and two loops corresponding to two basis vectors in
Z2. Thus, FV = (0, 0) and FEo = {e1 = {(0, 0), (1, 0)}, e2 = {(0, 0), (0, 1)}}.

Therefore,

∂F =

(
1− x(1,0)

1− x(0,1)

)
, ∂∗F =

(
1− x−(1,0), 1− x−(0,1)

)
If we take x1 = x(1,0) and x2 = x(0,1), then for any n = (n1, n2) ∈ Z2, we can
write xn as xn1

1 xn2
2 (multi-index notation), and then the incidence matrices
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e1
e2

0

1 e1

e2

Figure 4.1: Z2-lattice and the corresponding quotient graph

can be rewritten as

∂F =

(
1− x1

1− x2

)
, ∂∗F =

(
1− x−1

1 1− x−1
2

)
.

Therefore, the Laplacian is

∆F = ∂∗F∂F =
2∑
i=1

(1− x−1
i )(1− xi) = 4− (x1 + x−1

1 + x2 + x−1
2 ).

Example 4.3.6 (Ladder graph, Figure 4.2). We consider the ladder graph
G = (V,E) where V = Z × B with B = {1, 2}, hence V = {(k, 1), (k, 2) :
k ∈ Z} and Eo = {ek,p, p = 1, 2, 3, k ∈ Z}. Here for k ∈ Z, the edges are

ek,1 = {(k, 1), (k + 1, 1)}, ek,2 = {(k, 2), (k + 1, 2)}, ek,3 = {(k, 1), (k, 2)}.

Modulo the Z-symmetry, one has FV = {1, 2} and FEo = {e1, e2, e3}.

ek,1

ek,3

ek,2

(k, 1)

(k, 2)

(k + 1, 1)

(k + 1, 2)

(k − 1, 1)

(k − 1, 2)

1

2

e1

e2

e3

Figure 4.2: Ladder graph and its quotient.

Therefore,

∂F =

1− x 0
0 1− x
1 −1

 , ∂∗F =

(
1− x−1 0 1

0 1− x−1 −1

)
,
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ek,1

ek,2

ek,3

ek,4

ek,5

ek,6

(k, 1)

(k, 3)

(k + 1, 1)

(k + 1, 3)

(k − 1, 1)

(k − 1, 3)

(k − 1, 2) (k, 2) (k + 1, 2)

Figure 4.3: A three-ladder graph

and ∆F =

(
3− x− x−1 −1
−1 3− x− x−1

)
.

Example 4.3.7 (Three-ladder graph, Figure 4.3). We consider the three-ladder
graph G = (V,E) (see Figure 4.3) where V = Z × B with B = {1, 2, 3} and
Eo = {(ek,p, p = {1, 2, 3}, k ∈ Z}where

ek,1 = {(k, 1), (k + 1, 1)}, ek,2 = {(k, 2), (k + 1, 2)}, ek,3 = {(k, 3), (k + 1, 3)},

ek,4 = {(k, 1), (k, 2)}, ek,5 = {(k, 2), (k, 3)}, ek,6 = {(k, 3), (k, 1)}.

Let F 1
V = {(0, 1), (0, 2), (0, 3)} and F 1

Eo = {e0,1, e0,2, e0,3, e0,4, e0,5, e0,6}.
Then (see Figure 4.4)

∂F1 =



1− x 0 0
0 1− x 0
0 0 1− x
1 −1 0
0 1 −1
−1 0 1

 ,

∂∗F1 =

1− x−1 0 0 1 0 −1
0 1− x−1 0 −1 1 0
0 0 1− x−1 0 −1 1

 ,
and

∆F1 =

4− x− x−1 −1 −1
−1 4− x− x−1 −1
−1 −1 4− x− x−1

 .
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1

2 3

e1

e2 e3

e4

e5

e6

1 e1

e2

Figure 4.4: Z and Z× Z/3Z quotients of the three-ladder graph

The three-ladder graph also admits an action of a group Z × Z/3Z: let
F 2
V = {(0, 1)} and F 2

Eo = {e0,1, e0,4} (see Figure 4.4). Elements of Z × Z/3Z
can be written as (n, k), n ∈ Z and k ∈ Z/3Z.

Let x1 = x(1,0), x2 = x(0,1). Then x(n,k) = xn1x
k
2 , and

∂F2 =

[
1− x1

1− x2

]
, ∂∗F2 =

[
1− x−1

1 1− x−1
2

]
, and ∆F = 4−x1−x−1

1 −x2−x−1
2 .

Example 4.3.8 (Triangular graph, Figure 4.5). We consider the triangular
graph G = (V,E) where V = Z × B with B = {1, 2} and Eo = {ek,p, p =
1, 2, 3, k ∈ Z}where for k ∈ Z,

ek,1 = {(k, 2), (k + 1, 2)}, ek,2 = {(k, 2), (k, 1)}, ek,3 = {(k, 1), (k + 1, 2)}.

Let FV = {(0, 1), (0, 2)} and FEo = {e0,1, e0,2, e0,3} (see Figure 4.5). Denote
by x the horizontal translation by (1, 0). Then,

∂F =

(
1− x−1 1 x−1

0 −1 −1

)
, ∆F =

(
4− x− x−1 −1− x−1

−1− x 2

)
.

Example 4.3.9 (Kagome lattice, Figure 4.6).

∂F =

 1 −1 0 1 −y−1 0
−1 0 −x −x 0 −y−1

0 1 1 0 1 0

 ,

∆F =

 4 −1− x−1 −1− y−1

−1− x 4 −x− y−1

−1− y −x−1 − y 4


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ek,1

ek,3ek,2

(k − 1, 1) (k, 1) (k + 1, 1)

(k − 1, 2) (k, 2) (k + 1, 2) (k + 2, 2)

1

2

e1

e2 e3

Figure 4.5: A triangular graph with Z action and the corresponding quotient
graph

x

y

e1
e2

e3

e4

e5 e6

1 2

3

1 2

3

e1

e2 e3

e4

e5 e6

Figure 4.6: A Kagome lattice with Z2 action and the corresponding quotient
graph
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x

y

e1e2

e3

1

2

1

2

e1 e2 e3

Figure 4.7: A hexagonal lattice with Z2 action and the corresponding quo-
tient graph

y

x

e2

e1

e3

1 e3e1

e2

Figure 4.8: A triangular lattice with Z2 action and the corresponding quo-
tient graph

Example 4.3.10 (Hexagonal lattice, Figure 4.7).

∂F =

(
1 1 1

−x−1y −1 −y

)
, ∆F =

(
3 −1− y−1 − xy−1

−1− y − x−1y 3

)
Example 4.3.11 (Triangular lattice, Figure 4.8).

∂F =

(
1 1 1

−x−1y −1 −y

)
, ∆F =

(
3 −1− y−1 − xy−1

−1− y − x−1y 3

)

4.4 Explicit expressions of correlation kernels

In this section we show how to explicitly compute the correlation kernel
using Theorem 4.2.1. Our method applies to infinite connected graphs with
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a finitely generated abelian symmetry group Γ. The graphs are assumed to
be locally finite, i.e., for any v ∈ V , deg v <∞.

4.4.1 Duality and Fourier transform

Suppose Γ is a countable finitely generated abelian group. Then Γ is a finite
product of infinite and finite cyclic groups: for some d > 1, and k1, . . . , km ∈
N, we have

Γ = Zd × Zk1 × . . .Zkm .
Let us denote by Γ0 = Zk1 × . . .Zkm the finite torsion part of Γ (note that the
representation of the torsion part is not unique). The elements of Γ will be
written as n = (n, `), where n = (n1, . . . , nd) ∈ Zd, ` = (`1, . . . , `m) ∈ Γ0, with
0 6 lj < kj for all j = 1, . . . ,m. The dual group Γ̂ is also easy to describe:

Γ̂ = Td × Zk1 × . . .Zkm ,

where Td = [0, 1)d. We denote elements of Γ̂ by θ = (θ, ϕ), θ = (θ1, . . . , θd) ∈
Td, and ϕ = (ϕ1, . . . , ϕm) with ϕj ∈ T are such that kjϕj = 0. The corre-
sponding character χ is then

χθ(n) = χ(θ,ϕ)(n, `) = exp
(

2πi
(
〈n, θ〉+ 〈`, ϕ〉

))
,

〈n, θ〉 =
d∑
t=1

ntθt, 〈`, ϕ〉 =
m∑
s=1

`sϕs.

We equip Γ̂ with the normalized Haar measure λ = λ× ρwhich is a product
of the Lebesgue measure λ = dθ on Td and the uniform probability measure
ρ on Γ̂0

∼= Γ0.

Consider an unoriented graph G = (V,E), and suppose Γ acts on G by
graph automorphisms freely and such that the quotientG/Γ = G0 = (V0, E0)
is finite. Then, any v ∈ V can be presented as v = n · v0 where v0 ∈ V0 and
n ∈ Γ. Fix an arbitrary orientationE0

0 for edges inE0, and letE0 = E0
0t−E0

0 .

As earlier, consider the Hilbert space `2(V ) of square-summable functions
on the vertices V equipped with the scalar product

〈f1, f2〉 =
∑
v∈V

f1(v)f2(v) =
∑
v0∈V0

∑
n∈Γ

f1(nv0)f2(nv0),

and the Hilbert space `2−(E) of square-summable antisymmetric functions
on the oriented edges E equipped with a scalar product

〈g1, g2〉 =
1

2

∑
e∈E

g1(e)g2(e).
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Definition 4.4.1. A Fourier transform of f ∈ `2(V ) is a function Ff : Γ̂ →
C|V0| given by

Ff(θ, v0) =
∑
n∈Γ

f(nv0)χn(θ) =
∑

(n,l)∈Γ

f
(
(n, l)v0

)
e2πi(〈n,θ〉+〈l,ϕ〉).

Note that for f ∈ `2(V ) one has Ff ∈ L2(Γ̂,C|V0|). The space L2(Γ̂,C|V0|) is
equipped with the inner product

〈F1, F2〉 =
∑
v0∈V0

∫
Γ̂
F1(θ, v0)F2(θ, v0)λ(dθ)

=
∑

v0∈V0,ϕ∈Γ0

1

|Γ0|

∫
Td
F1((θ, ϕ), v0)F2((θ, ϕ), v0)λ(dθ),

where λ(dθ) is the normalized Haar measure on Γ̂ and λ(dθ) is the nor-
malised Lebesgue measure on Td.

Definition 4.4.2. The inverse Fourier transform F−1 of f̂ ∈ L2(Γ̂,C|V0|) is
given by

F−1f̂(n, v0) =

∫
Γ̂
f̂(θ, v0)χ−1

n (θ)λ(dθ)

=
1

|Γ0|
∑
ϕ∈Γ0

∫
Td
f̂
(
(θ, ϕ), v0

)
e−2πi(〈n,θ〉+〈l,ϕ〉)λ(dθ).

Note that since for each v ∈ V , there are unique v0 ∈ V0,n ∈ Γ such that
v = nv0, we can view F−1f̂ as a function on V :

F−1f̂(nv0) = F−1f̂(n, v0).

Suppose f ∈ ZΓ, f =
∑

n∈Γ fn · xn, we define the Fourier transform of the
Laurent polynomial f as

f̂(θ) =
∑
n∈Γ

fnχθ(n),

and similarly for matrices: if Q = (Qjk) with Qjk ∈ ZΓ, then

Q̂(θ) = (Q̂jk(θ)).

Theorem 4.4.3. Let G = (V,E) be a locally finite graph, and Γ is a finitely
generated abelian group acting freely on G by graph automorphisms, and
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such that G0 = (V0, E0) = G/Γ is a finite graph. Consider the following
|E0| × |E0|matrix valued function on Γ̂

K(θ) = lim
ε→0

D(θ)
(
D∗(θ)D(θ) + εI

)−1
D∗(θ),

where D(θ), D∗(θ) are the Fourier transforms of the matrices ∂, ∂∗, respec-
tively (as it was explained before, the dependence on the choice of F only
influences the ordering of the basis vectors of these matrices).

The kernel K(e1, e2), e1, e2 ∈ E, of the determinantal USF measure PW
can be computed as follows. There exist unique ni ∈ Γ, e0

i ∈ E0, such that
ei = nie

0
i , i = 1, 2. Then

K(e1, e2) =

∫
Γ̂
χθ(n1 − n2)K(θ)(e0

1, e
0
2)λ(dθ),

where K(θ)(e0
1, e

0
2) is the (e0

1, e
0
2)-element of K(θ).

Remark 4.4.4. Consider a family of operators

Kε(θ) = D(θ)
(
D∗(θ)D(θ) + εI

)−1
D∗(θ).

By construction, limε→0Kε(θ) = K(θ). Then, [4]∫
Γ̂
〈Kε(θ)F1ei ,F1ej 〉dλ(dθ) = H(ei, ej),

where H(ei, ej) is a Green’s function of a random walk on G conditioned to
be killed at any v ∈ V with probability ε. Moreover, the correlation kernel
Kε = (e1, e2) =

∫
Γ̂
χθ(n1 − n2)Kε(θ)(e0

1, e
0
2)λ(dθ) corresponds to a spanning

forest determinantal point process on G with an added cemetery state [4].

Remark 4.4.5. By analogy with d : `2(V )→ `2−(E) and d∗ : `2−(E)→ `2(V ), it
is natural to view D(θ), D∗(θ) as linear operators: D(θ) : C|V0| → C|E0| and
D∗(θ) : C|E0| → C|V0|.

Before we turn to the proof of Theorem 4.4.3, let us give the two examples
demonstrating the application of the theorem.

Example 4.4.6 (Square lattice). Consider the lattice Zd with the natural shift
action of Γ = Zd. As in Example 4.3.5, one readily checks that the quotient
graph G/Γ is a d-bouquet graph consisting of a single vertex and d loops.

Since Td = Ẑd, we thus have

∂ =

1− x1
...

1− xd

 , D(θ) =

1− e2πiθ1

...
1− e2πiθd

 ,
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and

∂∗ =
(

1− x−1
1 , 1− x−1

2 , . . . , 1− x−1
d

)
, D∗(θ) = (1− e−2πiθ1 , . . . , 1− e−2πiθd),

where θ = (θ1, . . . , θd) ∈ Td. ThereforeD(θ)∗D(θ) = 2d−2
∑d

m=1 cos(2πθm),
and hence

Kε(θ) = D(θ)(D(θ)∗D(θ) + εI)−1D(θ)

=

(
(1− e2πiθj )(1− e−2πiθk)

2d+ ε− 2
∑d

m=1 cos(2πθm)

)d
j,k=1

,

and

K(θ) = lim
ε→0

Kε(θ) =

(
(1− e2πiθj )(1− e−2πiθk)

2d− 2
∑d

m=1 cos(2πθm)

)d
j,k=1

.

Consider now two edges e1 = (n1,n1 + qj) and e2 = (n2,n2 + qk), where
n1,n2 ∈ Zd and qj , qk are the j-the and k-the basis vectors of Zd, respectively.
Then

K(e1, e2) =

∫
Td
e2πi〈n1−n2,θ〉 (1− e

2πiθj )(1− e−2πiθk)

2d− 2
∑d

m=1 cos(2πθm)
dθ =

∫
Td

e2πi〈n1−n2,θ〉 − e2πi〈n1+qj−n2,θ〉 − e2πi〈n1−(n2+qk),θ〉 + e2πi〈n1+qj−(n2+qk),θ〉

2d− 2
∑d

m=1 cos(2πθm)
dθ

If we let x = n1, y = n1 + qj , z = n2, w = n2 + qk, then we immediately see
that we have obtained exactly the same expression as in the Example 4.1.3:

K(e1, e2) =
1

2d

[
g(z − x)− g(z − y)− g(w − x) + g(w − y)

]
.

Note however, that the method does not have to take into account that for
d = 2 the simple random walk is recurrent, and hence the Green’s function
has to be redefined appropriately.

Example 4.4.7 (Three-ladder graph, Z-symmetry, Figure 4.4). Consider an
unoriented graphGwith a vertex set V = {(k, i), k ∈ Z, i ∈ {1, 2, 3}} and the
set of edges

E = {((k, i), (k ± 1, i))} ∪ {((k, 1), (k, 2)), ((k, 2), (k, 3)), ((k, 3), (k, 1))}.

The graph G is called a three-ladder graph (see Figure 4.3).

Define an automorphism x : V → V acting by x(k, i) = (k + 1, i). Clearly,
the automorphism x implies the action of Z onG: consider a quotient graph
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G/Z (see Figure 4.4). We write down the correspondingD(θ) andD∗(θ) ma-
trices:

D(θ) =



1− e2πiθ 0 0
0 1− e2πiθ 0
0 0 1− e2πiθ

1 −1 0
0 1 −1
−1 0 1

 ,

D∗(θ) =

1− e−2πiθ 0 0 1 0 −1
0 1− e−2πiθ 0 −1 1 0
0 0 1− e−−2πiθ 0 −1 1


We conclude that

D∗(θ)D(θ) =

4− e2πiθ − e−2πiθ −1 −1
−1 4− e2πiθ − e−2πiθ −1
−1 −1 4− e2πiθ − e−2πiθ


and since (D∗(θ)D(θ)) is formally invertible,

(e2πiθ − 1)2(e4πiθ − 5e2πiθ + 1)

e2πiθ
(D∗(θ)D(θ))−1 =−e4πiθ + 3e2πiθ − 1 e2πiθ e2πiθ

e2πiθ −e4πiθ + 3e2πiθ − 1 e2πiθ

e2πiθ e2πiθ −e4πiθ + 3e2πiθ − 1


we do not need to take the limit with respect to ε. We finish the calculation
by multiplying K(θ) = D(θ)(D∗(θ)D(θ))−1D∗(θ):

K(θ) =
1

5− 2 cos(θ)
·

3− 2 cos(2πθ) 1 1 e2πiθ − 1 0 1− e2πiθ

1 3− 2 cos(2πθ) 1 1− e2πiθ e2πiθ − 1 0
1 1 3− 2 cos(2πθ) 0 1− e2πiθ e2πiθ − 1

1− e−2πiθ e−2πiθ − 1 0 2 −1 −1
0 1− e−2πiθ e−2πiθ − 1 −1 2 −1

e−2πiθ − 1 0 1− e−2πiθ −1 −1 2


Take k1, k2 ∈ Γ = Z. The correlation kernel of two edges ek1,i, ek2,j is given

by the i, j-th entry of the matrix K(k1, k1) given by the formula

K(k1, k2) =

∫ 1

0
K(θ)e2πi(k1−k2)θdθ.
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Example 4.4.8 (Three-ladder graph, Z×Z/3Z-symmetry, Figure 4.4). Define
an automorphism y : V → V acting by the formula

y(k, i) =

{
(k, i+ 1), i = 1, 2

(k, 1), i = 3

Clearly, y is a cyclic permutation on a set of three elements and it is inde-
pendent of x. Therefore, x and y generate a Z × Z/3Z-action on G. The
quotient graph is shown on Figure 4.4. The corresponding D(θ) and D∗(θ)
are:

D(θ) =

[
1− e2πiθ1

1− e2πiθ2

]
, D∗(θ) =

[
1− e−2πiθ1 1− e−2πiθ2

]
Then, (D∗(θ)D(θ))−1 = 1

4−2 cos(2πθ1)−2 cos(2πθ2) and K(θ) is given by

1

4− 2 cos(2πθ1)− 2 cos(2πθ2)

[
2− 2 cos(2πθ1) (1− e2πiθ1)(1− e−2πiθ2)

(1− e−2πiθ1)(1− e2πiθ2) 2− 2 cos(2πθ2)

]
Take two edges e1, e2 ∈ E such that e1 = ne0

i and e2 = me0
j ,n,m ∈ Z×Z/3Z

and e0
i , e

0
j ∈ E0, then their correlation is given by the (i, j)-th element of the

matrix

K(n,m) =
1

3

∫ 1

0
K(θ, 0)e2πi(n1−m1)θdθ +

1

3

∫ 1

0
K(θ, 1/3)e2πi(n1−m1)θe2/3πi(n2−m2)dθ

+
1

3

∫ 1

0
K(θ,−1/3)e2πi(n1−m1)θe−2/3πi(n2−m2)dθ

Proof of Theorem 4.4.3. Applying Theorem 4.2.1 to the coboundary opera-
tor d : `2(V ) → `2−(E) and its adjoint – the divergence operator – d∗ :
`2−(E)→ `2(V ) (c.f., (4.6)):

df(e) = f(o(e))− f(t(e)), d∗θ(v) =
∑
o(e)=v

θ(e),

we conclude that the operators Pε = d(d∗d + εI)−1d∗ converge, as ε → 0, to
the orthogonal projection operatorP onto the closure of Im d. For two edges
e1, e2 ∈ E

K(e1, e2) = lim
ε→0

〈
d(d∗d+ εI)−1d∗1e1 ,1e2

〉
`2−(E)

= lim
ε→0

〈
(d∗d+ εI)−1d∗1e1 , d

∗1e2

〉
`2(V )

= lim
ε→0

〈
F[(d∗d+ εI)−1d∗1e1 ],F[d∗1e2 ]

〉
L2(Γ̂,C|V0|)

.

(4.12)
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Now we show how to compute these expressions in the Fourier domain.
In order to do it, we use several Lemma’s whose proofs we provide in the
end of this Subsection.

Lemma 4.4.9. For an edge e ∈ E0, F(d∗1e)(θ, ·) is a vector of length |V0|with
entries given by

F(d∗1e)(θ, v0) =
∑

n∈Γ:nv0=o(e)

χn(θ)−
∑

n∈Γ:nv0=t(e)

χn(θ).

Lemma 4.4.10. For every f ∈ `2(V ) one has

F[(d∗d+ εI)−1f ] = (M(θ) + εI)−1Ff,

where for each θ ∈ Γ̂, M(θ) is a |V0| × |V0|matrix with entries

M(θ)vj ,vk =

deg vj , vj = vk,

−
∑

∈Γ:vk∼vj
χθ(−), vj 6= vk.

We introduced the |E0|×|V0|-incidence matrix ∂F = (∂FEo
(e, v))e∈FEo ,v∈FV

and its adjoint ∂∗F = (∂∗F (e, v))e∈FEo ,v∈FV
as

∂F (e, v) = 1v(o(e))−
∑

n∈Γ: nv=t(e)

xn, (4.13)

∂∗F (v, e) = 1v(o(e))−
∑

n∈Γ: nv=t(e)

x−n. (4.14)

From now on we will drop the index F . Let D(θ) = ∂̂ and D∗(θ) = ∂̂∗ be
the corresponding Fourier transforms of matrices ∂, ∂∗, i.e., for v ∈ FV , e ∈
FEo ,

D(θ)(e, v) = 1v(o(e))−
∑

n∈Γ: nv=t(e)

χθ(n),

D∗(θ)(v, e) = 1v(o(e))−
∑

n∈Γ: nv=t(e)

χθ(−n).

Then D∗(θ) = (D(θ))∗. Indeed,

∂̂(e, v) = 1v(o(e))−
∑

n∈Γ: nv=t(e)

χθ(n) = 1v(o(e))−
∑

n∈Γ: nv=t(e)

χθ(−n)

= 1v(o(e))−
∑

n∈Γ: nv=t(e)

χθ(−n) = ∂̂∗(v, e).
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Furthermore, suppose v0 ∈ FV and e ∈ Eo. Then there exist unique e0 ∈
FEo and n0 ∈ Γ such that e = n0(e0). Therefore,

F(d∗1e)(θ, v0) =
∑

n∈Γ:nv0=o(e)

χθ(n)−
∑

n∈Γ:nv0=t(e)

χθ(n)

=
∑

n∈Γ:nv0=o(n0(e0))

χθ(n)−
∑

n∈Γ:nv0=t(n0(e0))

χθ(n)

= χθ(n0)
(
1v0(o(e0))−

∑
∈Γ:v0=t(e0)

1θ()
)

= χθ(n0)D(θ)(e0, v0).

(4.15)
For the |V0| × |V0|matrix M(θ) of Lemma 4.4.10 we have

Lemma 4.4.11.
M(θ) = D∗(θ)D(θ). (4.16)

Now we are ready to derive the expression for the kernel K. Suppose
e1, e2 ∈ E0, and hence there are unique nj ∈ Γ, e0

j ∈ FEo , j = 1, 2, such
that ej = nje

0
j . Then using the auxiliary Lemmas, and the corresponding

expressions (4.15), (4.16), we can continue (4.12) as follows: K(e1, e2) =

lim
ε→0

〈
F[(d∗d+ εI)−1d∗1e1 ],F[d∗1e2 ]

〉
L2(Γ̂,C|V0|)

= lim
ε→0

〈
(M + εI)−1F[d∗1e1 ],F[d∗1e2 ]

〉
L2(Γ̂,C|V0|)

= lim
ε→0

∑
v0∈FV

∫
Γ̂

[ ∑
v1∈FV

(M(θ) + εI)−1
v0,v1

Fd∗1e1(θ, v1)
][
Fd∗1e2(θ, v0)

]
λ(dθ)

= lim
ε→0

∫
Γ̂

∑
v0∈FV

 ∑
v1∈FV

(M(θ) + εI)−1
v0,v1

χθ(n1)D(θ)(e0
1, v1)

 ·
·
[
χθ(n2)D(θ)(e0

2, v0)
]
λ(dθ)

= lim
ε→0

∫
Γ̂
χθ(n1 − n2)·

·

 ∑
v1∈FV

∑
v0∈FV

D(θ)(e0
1, v1)(D∗(θ)D(θ) + εI)−1

v0,v1
D∗(θ)(v0, e

0
2)

λ(dθ).

It is now easy to see that the expression in the square brackets is nothing
else but the (e0

1, e
0
2)-entry of the matrix Kε = D(θ)(D∗(θ)D(θ) + εI)−1D∗(θ).

Applying Theorem 4.2.1 again, but now in the finite dimensional situation
(c.f., (4.7)), we conclude that the limit

K(θ) = lim
ε→0

D∗(θ)
(
D∗(θ)D(θ) + εI

)−1
D(θ)
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exists, and in fact, coincides withD(θ)(D(θ)∗D(θ))−1D∗(θ) since the matrix
D∗(θ)D(θ) is invertible on W = Im D ⊂ C|E0|. Moreover, by Proposition
4.2.2, for each θ, the norm of (D∗(θ)D(θ)+εI)−1 is bounded by 2, uniformly
in ε. Hence, by the Lebesgue dominated convergence theorem

K(e1, e2) = lim
ε→0

∫
Γ̂
χθ(n1 − n2)Kε(θ)(e0

1, e
0
2)λ(dθ)

=

∫
Γ̂
χθ(n1 − n2)

[
lim
ε→0

Kε(θ)(e0
1, e

0
2)
]
λ(dθ)

=

∫
Γ̂
χθ(n1 − n2)K(θ)(e0

1, e
0
2)λ(dθ)

This finishes the proof of the Theorem.

Proof of Lemma 4.4.9. One has

d∗1e(v) =


1, v = o(e),

−1, v = t(e),

0, v 6= o(e), t(e).

Therefore,

F(d∗1e)(θ, v0) =
∑
n∈Γ

(d∗1e)(nv0)χθ(n) =
∑

n∈Γ:nv0=o(e)

χθ(n)−
∑

n∈Γ:nv0=t(e)

χθ(n).

Proof of Lemma 4.4.10. The Laplacian L = d∗d : `2(V )→ `2(V ) is given by

(Lf)(v) =
∑
y∼v

(
f(v)− f(y)

)
= deg v · f(v)−

∑
y∼v

f(y),

where the sum is taken over all vertices y ∈ V that are connected to v by an
edge. Let us now identify the operator L̂ : L2(Γ̂,C|V0|) → L2(Γ̂,C|V0|) such
that for all f ∈ `2(V ), one has

F(Lf) = L̂(Ff).



92 Chapter 4. On the determinantal process associated to spanning trees

A simple calculation shows that F(Lf)(θ, v0) =

=
∑
n∈Γ

(Lf)(nv0)χθ(n) =
∑
n∈Γ

[
deg(nv0) · f(nv0)−

∑
y∼nv0

f(y)
]
χθ(n)

= deg(v0)Ff(θ, v0)−
∑
n∈Γ

χθ(n)
∑

n′∈Γ,v′∈FV
n′v′∼nv0

f(n′v′)

= deg v0Ff(θ, v0)−
∑
n∈Γ

χθ(n′)χθ(n− n′)
∑

n′∈Γ,v′∈FV
(n′−n)v′∼v0

f(n′v′)

= deg(v0)Ff(θ, v0)−
∑
v′∈FV

∑
n′∈Γ

χθ(n′)f(n′v′)
( ∑
n∈Γ:n′v′∼nv0

χθ(n− n′)
)

= deg(v0)Ff(θ, v0)−
∑
v′∈FV

∑
n′∈Γ

χθ(n′)f(n′v′)
( ∑
n∈Γ:(n′−n)v′∼v0

χθ(n− n′)
)

= deg(v0)Ff(θ, v0)−
∑
v′∈FV

∑
n′∈Γ

χθ(n′)f(n′v′)
( ∑
∈Γ:v′∼v0

χθ(−)
)

= deg(v0)Ff(θ, v0)−
∑
v′∈FV

Ff(θ, v′)
( ∑
∈Γ:v′∼v0

χθ(−)
)
.

Hence, for every θ ∈ Γ̂, one has

F(L+ εI)f = (M(θ) + εI)Ff,

where for V = {v1, . . . , vm},

M(θ)vj ,vk =

{
deg vj , vj = vk,

−
∑

∈Γ:vk∼vj χθ(−), vj 6= vk.

Note that for all ε > 0, the matrixM(θ)+εI is diagonally dominant: |(M(θ)+
εI)v,v| = deg v + ε >

∑
v′ 6=v |M(θ)v,v′ |, and hence is invertible.

If g = (L + εI)−1f , then Ff = F(L + εI)g = (M(θ) + εI)Fg, and hence,
F(L+ εI)−1f = Fg = (M(θ) + εI)−1Ff .
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Proof of Lemma 4.4.11. For the matrix D(θ)D∗(θ), we have

D(θ)D∗(θ)(v1, v2) =
∑

e∈FEo

D(θ)(v1, e)D
∗(θ)(e, v2)

=
∑

e∈FEo

(
1[v1 = o(e)]−

∑
n∈Γ

χθ(n)1[nv1 = t(e)]

)
·

·

(
1[v2 = o(e)]−

∑
n∈Γ

χθ(−n)1[nv2 = t(e)]

)
=
∑

e∈FEo

(
1[v1 = o(e)]1[v2 = o(e)]

+
∑
n,∈Γ

χθ(n)1[nv1 = t(e)]χθ(−m)1[v2 = t(e)]

−
∑
n∈Γ

χθ(n)1[nv1 = t(e)]1[v2 = o(e)]

−
∑
n∈Γ

χθ(−n)1[nv2 = t(e)]1[v1 = o(e)]
)

= |{e ∈ FEo : o(e) = v1}|1[v1 = v2]

+
∑

e∈FEo

∑
n,∈Γ

χθ(n−)1[nv1 = v2 = t(e)]

−
∑

e∈FEo

∑
n∈Γ

χθ(n)1[nv1 = t(e), v2 = o(e)]

−
∑

e∈FEo

∑
n∈Γ

χθ(−n)1[nv2 = t(e), v1 = o(e)]

= |{e ∈ FEo : o(e) = v1}| · 1[v1 = v2]

+ |{e ∈ E0
0 : t(e) = v1}| · 1[v1 = v2]

−
∑

e∈FEo

∑
n∈Γ

χθ(n)1[nv1 = t(e), v2 = o(e)]

+
∑

e∈FEo

∑
n∈Γ

χθ(−n)1[nv2 = t(e), v1 = o(e)].

It is clear that the term in brackets is zero if v1 = v2. For v1, v2 ∈ V0, v1 6= v2,
if n ∈ Γ is such that nv2 ∼ v1, i.e., v1 and nv2 are connected by an edge,
then either there is an edge e ∈ FEo such that v1 = o(e) and nv2 = t(e), or
v1 = t(e) and nv2 = o(e), which is equivalent to −nv1 = t(e′), v2 = o(e′)
for some e′. Hence the term in the brackets is given by

∑
n∈Γ:nv2∼v1

χθ(−n).
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Thus we can conclude that

D(θ)D∗(θ)(v1, v2) = deg(v1)1[v1 = v2]−
∑

n∈Γ:nv2∼v1

χθ(−n) = M(θ)(v1, v2).

4.4.2 Example: calculation of correlations for the three-ladder graph

Consider an unoriented graphGwith a vertex set V = {v1,i, v2,i, v3,i}i∈Z and
the set of edges

E = {(vk,i, vk,i±1)}k={1,2,3},i∈Z ∪ {(v1,i, v2,i), (v2,i, v3,i), (v3,i, v1,i)}i∈Z.

We call G a 3-ladder graph (see Figure 4.3). This graph has two symmetries
groups: Z and Z×Z3. Above we showed how to calculate the corresponding
determinantal kernels: for Z reduction we obtain

KZ(θ) =
1

5− 2 cos(θ)
·

3− 2 cos(2πθ) 1 1 e2πiθ − 1 0 1− e2πiθ

1 3− 2 cos(2πθ) 1 1− e2πiθ e2πiθ − 1 0
1 1 3− 2 cos(2πθ) 0 1− e2πiθ e2πiθ − 1

1− e−2πiθ e−2πiθ − 1 0 2 −1 −1
0 1− e−2πiθ e−2πiθ − 1 −1 2 −1

e−2πiθ − 1 0 1− e−2πiθ −1 −1 2


Take k1, k2 ∈ Γ = Z. The correlation kernel of two edges ek1,i, ek2,j is given

by the i, j-th entry of the matrix K(k1, k1) given by the formula

KZ(k1, k2) =

∫ 1

0
K(θ)e2πi(k1−k2)θdθ.

For Z× Z3 reduction we obtain that KZ×Z3(θ) is given by

1

4− 2 cos(2πθ1)− 2 cos(2πθ2)

[
2− 2 cos(2πθ1) (1− e2πiθ1)(1− e−2πiθ2)

(1− e−2πiθ1)(1− e2πiθ2) 2− 2 cos(2πθ2)

]
Take two edges e1, e2 ∈ E such that e1 = ne0

i and e2 = me0
j ,n,m ∈ Z×Z/3Z

and e0
i , e

0
j ∈ E0, then their correlation is given by the (i, j)-th element of the

matrix
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KZ×Z3(n,m) =
1

3

∫ 1

0
K(θ, 0)e2πi(n1−m1)θdθ

+
1

3

∫ 1

0
K(θ, 1/3)e2πi(n1−m1)θe2/3πi(n2−m2)dθ

+
1

3

∫ 1

0
K(θ,−1/3)e2πi(n1−m1)θe−2/3πi(n2−m2)dθ

In this subsection we calculate the correlations of pairs of edges using two
different correlation kernels and show that the results coincide.

1-1 correlation:

KZ(0, n) =

∫ 1

0

3− 2 cos(2πθ)

5− 2 cos(2πθ)
e2πinθdθ

KZ×Z/3Z((0, 0), (n, 0)) =

∫ 1

0

(
e2πinθ

3
+

2(2− 2 cos(2πθ))

3(5− 2 cos(2πθ))
e2πinθ

)
dθ

=

∫ 1

0

5− 2 cos(2πθ) + 4− 4 cos(2πθ)

3(5− 2 cos(2πθ))
e2πinθdθ

=

∫ 1

0

3− 2 cos(2πθ)

5− 2 cos(2πθ)
e2πinθdθ

1-2 correlation:

KZ(0, n) =

∫ 1

0

1

5− 2 cos(2πθ)
e2πinθdθ

KZ×Z/3Z((0, 0), (n, 1)) =∫ 1

0

(1

3
e2πinθ +

2− 2 cos(2πθ)

3(5− 2 cos(2πθ))
e2πinθe2πi/3

+
2− 2 cos(2πθ)

3(5− 2 cos(2πθ))
e2πinθe−2πi/3

)
=

∫ 1

0

1

5− 2 cos(2πθ)
e2πinθdθ

1-4 correlation:

KZ(0, n) =

∫ 1

0

e−2πiθ − 1

5− 2 cos(2πθ)
e2πinθdθ
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KZ×Z/3Z((0, 0), (n, 1)) =∫ 1

0

1

3(5− 2 cos(2πθ))
(1− e−2πiθ)(1− e−2πi/3)e2πinθe2πi/3+

+

∫ 1

0

1

3(5− 2 cos(2πθ))
(1− e−2πiθ)(1− e2πi/3)e2πinθe−2πi/3

=

∫ 1

0

e−2πiθ − 1

5− 2 cos(2πθ)
e2πinθdθ

4-5 correlation:

KZ(0, n) =

∫ 1

0

−1

5− 2 cos(2πθ)
e2πinθdθ

KZ×Z/3Z((0, 0), (n, 1)) =

∫ 1

0

(
3e2πinθe2πi/3

3(5− 2 cos(2πθ))
+

3e2πinθe−2πi/3

3(5− 2 cos(2πθ))

)
dθ

=

∫ 1

0

−1

5− 2 cos(2πθ)
e2πinθdθ

4-4 correlation:

KZ(0, n) =

∫ 1

0

2

5− 2 cos(2πθ)
e2πinθdθ

KZ((0, 0), (n, 0)) =

∫ 1

0

(
3e2πinθ

3(5− 2 cos(2πθ))
+

3e2πinθ

3(5− 2 cos(2πθ))

)
=

∫ 1

0

2

5− 2 cos(2πθ)
e2πinθdθ

Remark 4.4.12. The computation of correlation kernels for ladder-like graphs
has been presented in [57] (in particular, for the ladder and the 3-ladder
graphs, that we also discussed in the present work). In the work mentioned
above, it is demonstrated how to compute the correlation kernels using two
approaches: the counting approach and the electrical network approach.
However, the approach presented in the current work is more universal and,
moreover, appeals to simpler mathematical techniques.



Chapter 5

Rates of convergence in Central
Limit Theorem for ergodic toral
automorphisms1

5.1 Introduction and main result

Let Td be a d-dimensional torus. Consider the standard projection π : Rd →
Td given by π(x1, . . . , xd) = (x1 mod 1, . . . , xd mod 1) and a matrix S ∈
GL(d,Z) such that detS = ±1. The toral automorphism TS : Td → Td asso-
ciated to the matrix S is given by π◦S = TS ◦π. Alternatively, one can simply
write TS(x) = Sx mod 1. The toral automorphism TS is ergodic if and only
if the associated matrix S has no eigenvalues which are roots of unity. The
transformation TS preserves the normalised Lebesgue measure m on Td.

The eigendirections of a matrix S described above induce a decomposi-
tion of Rd = EsS ⊕ EnS ⊕ EuS where EsS is the eigenspace of S corresponding
to the eigenvalues with modulus smaller than 1 (stable directions),EnS is the
eigenspace of S corresponding to the eigenvalues with modulus 1 (neutral
directions), and EuS is the eigenspace of S corresponding to the eigenvalues
with modulus larger than 1 (unstable directions). An important subclass
of ergodic toral automorphisms is formed by the hyperbolic toral automor-
phisms for which EnS = {0} (see Figure 5.1). In other words, the matrix S
associated to a hyperbolic toral automorphism has no eigenvalues of unit
absolute value. In summary, we consider the following classes of toral auto-

1This chapter is based on: E. Arzhakova, D. Terhesiu, Rates of convergence in Central
Limit Theorem for ergodic toral automorphisms, in progress

97
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Figure 5.1: Ergodic toral automorphism (left) and a hyperbolic toral auto-
morphism (right). The difference is in the fact that the hyperbolic toral au-
tomorphism does not have neutral eigendirections.

morphisms (TA): Toral automorphisms ⊃ ergodic TA ⊃ hyperbolic TA.

Example 5.1.1 (Ergodic non-hyperbolic toral automorphism.). The follow-
ing matrix induces an example of an ergodic non-hyperbolic toral automor-
phism:

S =


0 0 0 −1
1 0 0 2
0 1 0 0
0 0 1 2


The characteristic polynomial χS(λ) = λ4− 2λ3− 2λ+ 1 has two real eigen-
values:

λ+ =
1

2
(1 + 31/2 + 121/4) > 1, λ− =

1

2
(1 + 31/2 − 121/4) < 1;

and two complex eigenvalues:

λ
(1)
0 =

1

2
(1− 31/2 + 121/4i), λ

(2)
0 =

1

2
(1− 31/2 − 121/4i),

whose absolute values are equal to 1. Neither of the eigenvalues is a root
of unity, therefore, the induced toral automorphism is ergodic. However, it
is not hyperbolic due to the presence of two eigenvalues of unit absolute
value.

Up to now, several probabilistic aspects of ergodic toral automorphisms
have been studied (with respect to the invariant measure m) and we start
by recalling some of the landmark results. We remark that hyperbolic toral
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automorphisms are much easier to study because the dynamical system
(Td, TS) has a Markov partition (roughly, every element of the partition gets
mapped to a union of partition elements) and as a consequence, the study
of (Td, TS ,m) can be reduced to that of two-sided finite Markov shifts for
which a well developed theory exists (we refer to Section 5.2 for further de-
tails).

Due to the presence of neutral directions the study of non-hyperbolic
toral automorphisms is much harder; in particular, up to trivial examples,
ergodic non-hyperbolic toral automorphisms do not have Markov parti-
tions (see, for instance, [10, 62, 63] and references therein). Resorting to the
construction of some clever measurable partition and building on a pre-
vious result of Katznelson [54], Lind [63] proved exponential decay of cor-
relation for the general class of θ-Hölder functions v, w ∈ Cθ on Td, that
is, |

∫
Td v w ◦ T

n
S dm −

∫
Td v dm

∫
Td w dm| 6 Cρn‖v‖θ|w‖θ for some uniform

constant C and some ρ ∈ (0, 1). Hereafter, we denote the class of θ-Hölder
functions by Cθ.

Exploiting the partitions introduced in [63], Le Borgne [10] constructed
appropriate filtrations to show that under mild assumptions on the Fourier
coefficients on functions v on Td, the Gordin method [40] of martingale dif-
ferences can be applied to obtain the Central Limit Theorem (CLT) along
with its refinements: Weak Invariance Principle (WIP), that is, convergence
to Brownian motion, and Strong Invariance Principle (SIP), which is a strong
version of the law of the iterated logarithm. For a rough overview of the mar-
tingale difference for dynamical systems we refer to Section 5.2. Below we
recall the above mentioned terminology along with the result in [10].

Denote the n-th ergodic sum of v : Td → R, v ∈ L2(m) by Snv =
∑n−1

k=0 v ◦
T kS . Given a centered function on Td (that is,

∫
Td v dm = 0), (v, TS) satis-

fies the CLT with non-zero variance if there exists σ > 0 such that 1√
n
Snv

converges in distribution to a Gaussian random variable Z ∼ N (0, σ2) de-
fined on a probability space (Ω,F ,P) with mean zero and variance σ2. This
means that as n→∞,

sup
α∈R

∣∣∣m(Snf√
n
< α

)
− P (Z < α)

∣∣∣→ 0. (5.1)

Recall that given v : Td → R, (v, TS) satisfies WIP if Wn(t) = { 1√
n

∑[nt]
k=0 v ◦

T kS , t ∈ [0, 1]} converges in the space (D[0, 1],R) (the space of functions
which have left-hand limits and are continuous from the right on (0, 1)) to
a Brownian motion with variance σ2. Further, (v, TS) satisfies the SIP if (en-



100 Chapter 5. Rates of convergence in CLT for ergodic toral automorphisms

larging Td if necessary) there exists a sequence of independent identically
distributed (iid) Gaussian random variables Yk on (Td, TS ,m) with mean
zero and variance σ2 such that

sup
16M6n

∣∣∣M−1∑
k=0

v ◦ T kS −
M−1∑
k=0

Yk

∣∣∣ = o(n1/2(log log n)1/2) almost surely as n→∞.

(5.2)

With these specified, we recall

Theorem 5.1.2. [10] Let v be a centered function on Td and v ∈ L2(m).
Assume that for every b > 0 the Fourier coefficients v̂(n) of v satisfy∑

|n|>b

|v̂(n)|2 6 R log−θ(b)

for some R > 0, θ > 2. Assume that v is not a coboundary, i.e., there exists
no h ∈ L2(m) such that v = h− h ◦ TS .

Then (v, TS) satisfies: i) the CLT with non-zero variance

σ2 =
∑
k∈Z

Em[v · v ◦ T |k|S ];

ii) WIP and iii) SIP with rate as in (5.2).

The role of the assumption that v is not coboundary is to ensure that σ > 0.

Since the works of [10, 63] the results have been improved in two direc-
tions. Exponential mixing of all orders of Hölder functions was proved via
different methods by Dolgopyat [26] and Pène [90]:

Theorem 5.1.3. [26, 90] Let vi ∈ Cθ(Td) for some θ ∈ (0, 1). Then, there
exists ρ ∈ (0, 1) such that for any n0, . . . ns ∈ N,∣∣∣ ∫

Td

s∏
i=1

vi ◦ TniS dm−
s∏
i=1

(∫
Td
vi dm

) ∣∣∣ 6 Cρmini 6=j |ni−nj |
s∏
i=1

‖vi‖Cθ ,

for some uniform constant C.

Combining Theorem 5.1.3 with Theorem 5.1.2, Gorodnik and Spatzier [44]
show that Theorem 5.1.2 holds for the whole class of Hölder functions, with
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no restriction on the Fourier coefficients. In fact, [44, Theorem 6.2] is phrased
for the much larger class of ergodic automorphisms on compact nilmani-
folds (not just on Td), of which particularities do not constitute the subject
of this work.

In a different direction, a few works obtain rates of convergence in the CLT
and the SIP of Theorem 5.1.2. First, we mention that the work of Le Borgne
and Pène [15] gives optimal Berry-Essen error rates in CLT for ergodic toral
automorphisms on T3. With the notation used in (5.1), we recall

Theorem 5.1.4. [15, A consequence of Theorem 2.] Consider an ergodic
toral automorphism (T3, TS ,m). Suppose that v : T3 → R satisfies the as-
sumptions of Theorem 5.1.2, in particular the same conditions on the decay
of Fourier coefficients of v. Then

sup
α∈R

∣∣∣m(Snv√
n
< α

)
− P (Z < α)

∣∣∣ = O

(
1√
n

)
.

We also mention the work of Dedecker, Merlevède and Pène [23] who
build on the technical part of the proof of Theorem 5.1.2 to enlarge the class
of functions (increasing the range of θ from θ > 2 to θ > 1) and also improve
the rate in (5.2) from o(n1/2(log log n)1/2) to O(n1/4(log n)). This estimate is
not implied by and does not imply error rates in the CLT.

It is not clear to us how to generalise Theorem 5.1.4 to general (Td, TS ,m),
d > 3 and also to the entire class of Hölder functions. To our knowledge,
error rates in CLT for the general class of ergodic toral automorphisms seem
to be absent from the up to date literature. Our main focus is to provide
promising results in this direction.

To state our main result, we introduce further terminology. Let

Φσ2(h) =
1

σ
√

2π

∫
R
e−

σ2

2
uh(u) du

be the expectation of the function h : R → R with respect to the one-
dimensional centered distributionN (0, σ2). LetW be the class of Lipschitz
functions on R. Consider a system (Td, TS ,m), a function v : Td → R, and
let Snv be its ergodic sum. Given Z ∼ N (0, σ2) on (Ω,F ,P), the Wasserstein
distance dW between Snv√

n
and Z is given by

dW

(
Snv√
n
,Z

)
= sup

h∈W

∣∣∣∣m(h(Snv√n
))
− Φσ2(h)

∣∣∣∣ . (5.3)
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Replacing the classW with the the class of the step functionsK = {1[−∞,x] :
x ∈ R} gives the Kolmogorov distance, which is the one used in the Berry-
Esseen result of Theorem 5.1.4. We recall that results in the Wasserstein dis-
tance are weaker since

dW

(
Snv√
n
,Z

)
6 C

(
dK

(
Snv√
n

), Z

))1/2

, (5.4)

for some uniform C.

With these specified, we state the main result of this work

Theorem 5.1.5. Consider (Td, TS ,m) and suppose the stable and unstable
eigenspaces of S are such that dim(EsS) = dim(EuS) = 1. Let v : Td → R be a
centered Hölder function such that v is not anL2-coboundary. Then, (v, TS)

satisfies CLT with non-zero variance σ2 =
∑

k∈Z Em[v · v ◦ T |k|S ]. Moreover,

dW

(
Snv√
n
,Z

)
= O

(
log n√
n

)
.

We remark that a similar method of proof works in the situation where the
stable and unstable eigendirections of the associated matrix S have differ-
ent dimensions and also for the multivariate Hölder observable v : Td → Rq,
q > 1. For simplicity, in this chapter we omit these generalisations. Given
the relation between the Wasserstein and Kolmogorov distances in (5.4), it
seems that the current result is far from an optimal Berry-Esseen bound.
However, this is not the case for multidimensional observables: in this case
the best one can do is to use [91, Theorem 1.1] to improve the result in the
Wasserstein distance in Theorem 5.1.5 to O(n−1/2), therefore getting rid of
log n. In this sense, the present results are very promising.

We emphasise that in the present chapter we provide a new proof of the
CLT and that the result of Theorem 5.1.5 is new for (Td, TS ,m), d > 3 and the
entire class of Hölder functions on Td. Much more importantly, we believe
that our proof extends to the cases of random ergodic toral automorphisms,
and, eventually, non-linear ergodic toral automorphisms, where previous
methods simply break down. This is the subject of work in progress. At this
stage we mention that our method of proof relies on the use of the CLT re-
sults for dynamical systems via the Stein method obtained by Hella et al. [49]
and a careful check of their assumptions using that the eigenfunctions of TS
have components that are Diophantine irrationals.
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We conclude this introduction remarking that due to the exponential mix-
ing result for Hölder functions [63], the WIP in Theorem 5.1.2 is a direct con-
sequence of the CLT. This is because the other required condition for WIP,
namely, the tightness, can be checked as in the proof of [82, Theorem 1.4].
The SIP in Theorem 5.1.2 is more delicate and we do not address this here.

5.2 A brief survey of the methods of proof of CLT for
dynamical systems

In this Section we discuss several methods to prove CLT in the framework of
dynamical systems and, in particular, in the framework of hyperbolic toral
automorphisms. Where appropriate, we explain why these methods break
down for non-hyperbolic ergodic toral automorphisms. The application of
some methods (the analogue of the characteristic function for independent
random variables and the martingale difference) are illustrated using the
simple example of the doubling map.

5.2.1 Gordin’s homoclinic points method [41].

Suppose (X, d) is a metric space and T : X → X is a homeomorphism. Two
points x, y ∈ X are called homoclinic if d(Tnx, Tny) → 0 as n → ±∞. The
notion goes back to the works of Poincare, and the homoclinic equivalence
relation plays an important role in various areas of the theory of dynamical
systems.

One of the most convenient settings to study homoclinic structures is that
of group automorphisms T ∈ Aut(X) of a compact abelian group X. It is
sufficient to identify points x that are homoclinic to 0, i.e., d(Tnx, 0) → 0 as
n→ ±∞. Such points form a group of homoclinic points ∆(T,X).

Gordin also introduced a notion of the homoclinic transformation: an in-
vertible mapR : X → X is called homoclinic to T , if the operatorsUT f(x) =
f(Tx), URf(x) = f(Rx) (called the Koopman operators of T and R, respec-
tively), satisfy U−nT URU

n
T → Id, where Id is the identity operator. Clearly, if

x0 ∈ ∆(X,T ), then Rx = x + x0 is homoclinic to T . The so-called Gordin
group Gor(X,T ) is formed by all invertible non-singular transformations R
which are homoclinic to T . For hyperbolic toral automorphisms, the groups
∆(Td, TS) and Gor(Td, TS) are isomorphic, i.e., any homoclinic transforma-
tion arises from a homoclinic point.
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Using Stein’s method, Gordin established CLT for functions which are cobound-
aries with respect to the homoclinic transformations. Here we recall a sim-
plified version of Gordin’s CLT for homoclinic points [41]:

Theorem 5.2.1. Suppose T is a group automorphism of a compact abelian
group X preserving the Haar measure λ, and x̄ ∈ ∆(X,T ) is a homoclinic
point. Suppose a function f ∈ L∞(X,λ) satisfies

f(x) = F (x+ x̄)− F (x)

for some F ∈ L2(X,λ), and moreover,∑
n∈Z
||f(·+ Tnx̄)− f(·)||L∞ <∞.

Then the sequence

Zn(x) =
1√
n

n−1∑
k=0

f(T kx)

converges to the Gaussian distribution N (0, σ2), and σ2 > 0 is given by the
following absolutely converging series

σ2 =

∞∑
k=−∞

〈F (x), f(T kx+ x̄)− f(T kx)〉L2 .

In case of hyperbolic toral automorphisms, the above result immediately
applies to a large class of sufficiently regular functions f on Td.

Unfortunately, non-hyperbolic ergodic toral automorphisms have trivial
groups of homoclinic points: ∆(Td, TS) = {0} (see [66] and Theorem 4.1 of
[67]), and hence, the above result cannot be applied.

In [42] Gordin extended the homoclinic point approach to non-hyperbolic
ergodic toral automorphims using the martingale difference method.

An interesting observation is that the homoclinic point method is also ap-
plicable to Zd-actions [43], and in fact, in striking contrast with Z-actions
discussed in this chapter, the method works for some non-expansive alge-
braic dynamical systems as well, e.g., those which arise naturally in connec-
tion to spanning trees.
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5.2.2 Characteristic functions method for dynamical systems

We first recall the method in the i.i.d. set up. Consider a sequence of i.i.d.
random variables {Yj}j>0 on (Ω,F ,P) with mean 0 and positive variance.
One easy proof of the CLT goes via the Levy’s continuity theorem. Let χ(t) =
EP[eitYj ] be the characteristic function of Yj , set Sn =

∑n−1
j=0 Yj and note

that EP[e
it Sn√

n ] = χ(t/
√
n)n. Recall that the characteristic function of Z ∼

N (0, σ2) is exp(−σ2t2/2). Also, since Yj , j > 1, has finite second moment
and zero mean, one has that 1 − χ(t) = σ2t2/2(1 + o(1)) as t → 0. Thus, as
n→∞,

χ(t/
√
n)n =

(
1− σ2t2

2n
+ o(σ2t2/2)

)n
→ exp(−σ2t2/2), t ∈ R.

By the Levy’s continuity theorem we conclude that the sequence 1√
n
Sn con-

verges in distribution toN (0, σ2).

In the framework of measure preserving dynamical systems (X,T, µ), given
f : X → R, we are interested in the convergence in distribution of the nor-
malised ergodic sums 1√

n
Snf = 1√

n

∑n−1
k=0 f ◦ T k to Z ∼ N (0, σ2), for some

σ > 0. For simplicity, we assume that
∫
f dµ = 0. Using the Levy’s conti-

nuity theorem, one can rephrase this problem in terms of convergence of
the corresponding characteristic functions χ 1√

n
Snf

(t) to the characteristic

function of a limiting random variable. Originating from the work of Na-
gaev [84], a standard method to prove this convergence is by using spectral
properties of transfer operators. Starting with the work of Aaronson and
Denker [2], this method became classic for establishing various probabilis-
tic results, including stable laws and local limit theorems. We briefly recall
the main elements of the method.

The transfer operator L : L1(µ) → L1(µ) for (X,T, µ), is defined by the
equality

∫
X Lu ·v dµ =

∫
X u ·v ◦T dµ,where u, v ∈ L1(µ) and v ∈ L∞(µ). The

basic idea of the Nagaev method is that since∫
X
eitSnfudµ =

∫
X
L(t)nudµ, where L(t)u = L(eitfu), u ∈ L1.

the study of characteristic functions for dynamical systems (possibly with
heavy dependencies) can be reduced to the study of properties of the per-
turbed transfer operator L(t). Note that L(0) = L. The necessary require-
ment for this method is to find a good function space on which the family of
operators {L(t)}t>0 satisfies good spectral properties: see, for instance, the
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survey of Gouëzel [45]. In short, this comes down to finding a Banach space
B with norm ‖ · ‖ on which

i) L has a decomposition of the form

L(0)nu =

∫
u dµ+Q(0)nu,

where Q(0) is an operator on B such that ‖Q(0)n‖ 6 θn, for some θ ∈
(0, 1).

ii) the family {L(t)}t>0 satisfies ’good’ continuity properties. For the CLT
a sufficient (but not necessary, see [45] and references therein) condi-
tion is that for t ∈ Bδ(0),

‖L(t)− L(0)‖ 6 Ct2

for some uniform constant C.

Items (i) and (ii) can be easily established for the simple example of the
doubling map T : [0, 1] → [0, 1] given by the formula Tx = 2x mod 1 (see
Figure 5.2). However, apart from simple examples of unit interval maps,
establishing (i) and (ii) is highly non-trivial. We refer to the list of references
in [45] for some non-trivial examples.

For Tx = 2x mod 1, and letting T−1 denote the left inverse branch, the
existence of the Markov partition P = {(T−(j+1)1, T−j1]}j>0 together with
the expansion of the map is the key. Using the pointwise formula for the
transfer operator as in [45], one establishes (i) and (ii) in the Banach space
of piecewise C2 functions; piecewise C2 means C2 on the elements of P .
Item (i) holds with θ = 1/T ′ = 1/2 and item (ii) holds for any observable

1

11
2

Figure 5.2: The doubling map Tx = 2x mod 1.
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with finite second moment.

Nagaev method for hyperbolic toral automorphisms. Nowadays, the hy-
perbolic toral automorphisms are known to have the spectral gap property
(item i) above) in several anisotropic Banach spaces of distributions (i.e.,
generalised functions): see the survey of Liverani [68]. As invertible trans-
formations, they cannot have spectral gaps in usual Banach spaces embed-
ded in L∞ [68]. The role of the Banach spaces in [68] is to allow a differ-
ent treatment of the expanding and contracting directions. In such Banach
spaces the existence of the Markov partition for hyperbolic toral automor-
phisms is not required, though the absence of the neutral direction is cru-
cial.

A more traditional treatment of hyperbolic toral automorphisms exploits
the existence of Markov partitions and the isomorphism with the two-sided
Markov shift, where classical methods apply. We recall that as in [14] a stan-
dard way of treating two-sided Markov shifts is to collapse the stable (con-
tracting) or unstable (expanding) directions. For the one-sided Markov shift
there are several Banach spaces known to provide spectral gap: see for in-
stance the work [2] for a brief overview. The lift of limit theorems from one-
sided shifts to two-sided shifts is also classic since the work of Bowen [14].

Good Banach spaces for to ergodic toral automorphisms do not exist due
to the presence of neutral direction (which in turn, does not not allow one
to establish the existence of Markov partitions).

5.2.3 Martingale difference approach

Unlike the homoclinic method and the characteristic functions method,
the martingale difference method can be applied in the context of non-
hyperbolic ergodic toral automorphisms. The main current stochastic re-
sults on the ergodic toral automorphisms, including CLT, are obtained using
the martingale difference method. In the following subsection we recall the
main ingredients of the method, illustrate them with the simple example of
the doubling map, and state the known limit results on the ergodic toral au-
tomorphisms.

Consider a probability space (X,B, µ). A sequence Yn : X → R of random
variables is a martingale difference sequence if
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1. there exists a non-decreasing sequence of σ-algebras (filtration)

F1 ⊂ F2 ⊂ . . . ⊂ B

such that Yn is measurable with respect to Fn;

2. the conditional expectations satisfy E[Yn+1|Fn] = 0 for n > 0.

A sequence Yn : X → R of random variables is a reverse martingale differ-
ence sequence if

1. there exists a non-increasing sequence of σ-algebras

B ⊃ F1 ⊃ F2 ⊃ . . .

such that Yn is measurable with respect to Fn;

2. the conditional expectations satisfy E[Yn|Fn+1] = 0 for n > 0.

Theorem 5.2.2 ( [47,69] The (reverse) martingale difference theorem.). Sup-
pose that {Yn} is a martingale difference with respect to {Fi}. If the follow-
ing two conditions hold:

• 1
n

∑n
i=1 E[Y 2

i |Fi−1]
P−→ σ2 <∞;

• 1
n

∑n
i=1 E[Y 2

i 1|Yi|>ε
√
n|Fi−1]

P−→ 0 for every ε > 0,

then the sequence 1√
n

∑n
i=1 Yi converges in distribution toN (0, σ2) [40, 47].

Suppose that {Yn} is a reverse martingale difference with respect to {Fi}. If
the following two conditions hold:

• 1
n

∑n
i=1 E[Y 2

i |Fi+1]
P−→ σ2 <∞;

• 1
n

∑n
i=1 E[Y 2

i 1|Yi|>ε
√
n|Fi+1]

P−→ 0 for every ε > 0,

then the sequence 1√
n

∑n
i=1 Yi converges in distribution toN (0, σ2).

The (reverse) martingale difference method can be applied to prove CLT
in the framework of a dynamical system (X,F , µ, T ) and functions f ∈ L2.
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The idea is to find a non-decreasing (or non-increasing) filtration {Fi} and
functions h, g ∈ L2 such that

f = h+ g − g ◦ T,

where {h◦T i} is a (reverse) martingale difference with respect to {Fi}which
satisfies the conditions of Theorem 5.2.2 with σ2 > 0. Since 1√

n

∑n
1 f ◦ T i =

1√
n

∑n
1 h ◦ T i + 1√

n
(g − g ◦ Tn+1) the CLT for f follows from CLT for h.

Let us illustrate the reverse martingale difference method with a simple
example of the doubling map. Consider a system ([0, 1],B, µ, T ) where B is
the Borel σ-algebra, µ is the Lebesgue measure, and T is the doubling map
given by Tx = 2x mod 1 (see Figure 5.2). Denote by U the Koopman oper-
ator of T (i.e., Uf = f ◦ T ) and by L the transfer operator of T .

Consider f to be Lipschitz, not a coboundary, and with zero mean. De-
note the space of Lipschitz functions byW with norm ‖·‖W ; since ||Lf ||W 6
1
2 ||f ||W , the function g =

∑∞
i=1 Lif is well-defined and Lipschitz. Introduce

a function h = f + g − g ◦ T ; we claim that h ◦ Tn is a reverse martingale
difference with respect to a non-increasing filtration B ⊃ T−1B ⊃ T−2B . . ..
In order to show this, it suffices to check that E[h|T−1B] =

∫
T−1B h dµ = 0

for every B ∈ B. It is easy to verify that∫
T−1B

h dµ =

∫
B
h · (1 ◦ T ) dµ =

∫
B
Lh dµ.

Note that Lh = Lf + L
∑∞

i=1 Lif − LU
∑∞

i=1 Lif = 0 because LU = I. This
ensures that h ◦Tn is a reverse martingale difference. It is stationary and er-
godic, therefore, the CLT with positive variance holds, see, for instance, [47].

In [10], the properties of distributions of stable leaves [63] were used to
construct a filtration that leads to a proof of the CLT and more refined limit
properties using the martingale difference method for ergodic toral auto-
morphisms. We recall Theorem 5.1.2 stated in the introduction.

5.3 Stein’s method for establishing CLT with rates of
convergence

We remind the reader that the aim of the present work is to study the rates
of convergence in CLT for the class of ergodic toral automorphisms, namely,
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to prove Theorem 5.1.5. So far, we have discussed several methods to prove
CLT in the context of dynamical systems. However, neither of the methods
mentioned above is suitable to obtain optimal rates of convergence in CLT
for ergodic toral automorphisms and a wide class of functions. The char-
acteristic functions method requires the presence of the spectral gap of the
transfer operator; the spectral gap is present in some Banach spaces for the
hyperbolic toral automorphisms but not for non-hyperbolic ergodic toral
automorphisms. The homoclinic method relies on the existence of homo-
clinic points of the automorphism and, therefore, it only works for the fam-
ily of hyperbolic toral automorphisms but it is not applicable to the whole
family of ergodic toral automorphisms. The martingale difference method
allows one to prove CLT for the class of ergodic toral automorphisms. As
recalled in Section 5.1, variations of the martingale difference method give
error rates in CLT for ergodic toral automorphisms (T3, TS ,m) and a large
class of observables, see Theorem 5.1.4.

In this Section we discuss the Stein method as in [49] and motivate the
application of this particular variation of the Stein method to study the rate
of convergence in CLT for ergodic toral automorphisms.

5.3.1 Description of the Stein method with rates of convergence

The Stein method as in [49] studies the Wasserstein distance betweenWN =
1√
N

∑N−1
k=0 f ◦ T k and Z ∼ N (0, σ2) under certain conditions on f and T .

Therefore, the method allows one not only to prove CLT but also to establish
the associated rates of convergence in the Wasserstein distance which pro-
vides a smooth metric on the space of distributions. The main difference
between the Stein method and the characteristic functions or martingale
difference methods is that the Stein method relies on the decay of correla-
tions and it does not use spectral properties of the transfer operator such as
the spectral gap. The fact that ergodic toral automorphisms enjoy exponen-
tial mixing of all orders [26, 90] ensures that some assumptions of the Stein
method are trivial whereas other assumptions require serious effort.

We briefly explain the main idea of the Stein method as in [49]. Suppose
thatZ ∼ N (0, σ2); for each h ∈ W (the space of Lipschitz functions with Lip-
schitz constant 1) there exists a measurable solution Ah of the Stein equa-
tion:

σ2A′h(x)− xAh(x) = h(x)− E[h(Z)].
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The form of the equation can intuitively be explained by the fact that a ran-
dom variable W ∼ N (0, σ2) if and only if σ2E[A′(W )] − E[WA(W )] = 0 for
all absolutely continuous2 functions A for which these expectations exist.
The right hand side of the Stein equation allows us to estimate the distance
between the distributions of W and Z. We select the Wasserstein distance
(see (5.3) for definition) and obtain

dW(W,Z) = sup
h∈W

∣∣∣E[h(W )]−E[h(Z)]
∣∣∣ = sup

Ah : h∈W

∣∣∣σ2E[A′h(W )]−E[WAh(W )]
∣∣∣.

For each h ∈ W such that ||h′||∞ < ∞ the solution Ah is a bounded func-
tion with bounded first and second derivatives. The upper bound on the
Wasserstein distance follows from [49, Lemma 3.2]:

dW(W,Z) 6 sup
A∈AW

∣∣∣σ2E[A′(W )]− E[WA(W )]
∣∣∣, (5.5)

whereAW = {A : ||A||∞ 6 2, ||A′||∞ 6
√

2/πσ−1, ||A′′||∞ 6 2σ−2}.

FixN > 0 and suppose thatWN = 1√
N

∑N−1
i=0 Xi where {Xi}N−1

i=0 is a set of

random variables. Our goal is to estimate dW(WN , Z) and by equation (5.5)

it suffices to bound the quantity
∣∣∣σ2E[A′(WN )]−E[WNA(WN )]

∣∣∣ forA ∈ AW .

To do this, fix n,K 6 N and consider Wn = WN − 1√
N

∑min{n−K,N}
i=max{0,n−K}Xi.

Then,

E[WNA(WN )] =
1√
N

E
[N−1∑
i=0

Xi

(
A(WN )−A(W i)

) ]
+

1√
N

E
[N−1∑
i=0

XiA(W i)
]
.

Denote the first summand of the right-hand side by S1 and the second sum-
mand by S2. Note that if the random variables Xi are independent then
S2 = 0; it seems plausible that if the correlations of Xi decay fast enough
and K is big enough then S2 is close to zero. However, an upper bound on
S2 is an assumption of the method (see Assumption 2 of Theorem 2.4 in
[49]) and has to be checked separately for every system.

Since A,A′ are absolutely continuous and ||A′′||∞ < 2σ−2 we have that

S1 ≈
1

N

N−1∑
i=0

min{n+k,N−1}∑
j=max{0,n−K}

E[XiA
′(WN )Xj ].

2A function A : R → R is called absolutely continuous if it has a derivative A′ almost
everywhere, the derivative is locally integrable, and A(y) = A(x) +

∫ y
x
A′(t)dt.
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For large K one can approximate 1
N

∑N−1
i=0

∑min{n+K,N−1}
j=max{0,n−K} E[XiXj ] ≈ σ2

and we conclude that if the correlations of random variables Xi decay fast
enough (see Assumption 1 of Theorem 2.4 in [49]) then E[WNA(WN )] ≈
σ2E[A′(WN )] and, hence, dW(WN , Z) ≈ 0.

Let us now formulate the precise statement of Theorem 2.4 of [49]. Con-
sider a probability space (X,µ), a measure-preserving transformationT : X →
X, and a bounded measurable centered function f : X → R. For brevity
we write

∫
f =

∫
X f dµ. Fix two integers 0 6 K < N and write WN =∑N−1

j=0
1√
N
f ◦ T j , Wn = WN − 1√

N

∑n+K
j=n−K f ◦ T j .

Theorem 5.3.1. [49] Suppose that the following conditions are satisfied for
a bounded measurable centered function f : X → R:

1. There exist constantsC2, C4 > 0 and a non-increasing function ρ : N0 →
R+ with ρ(0) = 1 and

∑∞
i=1 iρ(i) < ∞ such that for any k > 0 and

0 6 l 6 m 6 n < N ,

(a)
∣∣∣ ∫ f · (f ◦ T k)∣∣∣ 6 C2ρ(k);

(b)
∣∣∣ ∫ f · (f ◦ T l) · (f ◦ Tm) · (f ◦ Tn)

∣∣∣ 6 C4 min{ρ(l), ρ(n−m)};

(c)
∣∣∣ ∫ (f · (f ◦ T l) · (f ◦ Tm) · (f ◦ Tn)

)
−
∫ (

f · (f ◦ T l)
) ∫ (

(f ◦ Tm) ·

(f ◦ Tn)
)∣∣∣ 6 C4ρ(m− l).

2. There exists a function ρ̃N : N0 → R+ such that for any differentiable
A : R → R with A′ absolutely continuous and max06k62 ||A(k)||∞ < 1,
and for any 0 6 n < N ,∣∣∣ ∫ (A(Wn) · f ◦ Tn)

∣∣∣ 6 ρ̃N (K);

3. f is not L2 - coboundary.

Then, 0 < σ2 =
∫

(f2) + 2
∑∞

n=1

∫
(f · f ◦ Tn) <∞ and if Z ∼ N (0, σ2) then

dW(WN , Z) 6 C#

(
K + 1√
N

+

∞∑
i=K+1

ρ(i)

)
+ C ′#

√
Nρ̃N (K)

where 0 < C#, C
′
# <∞ do not depend on N,K.
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Assumption 1 follows immediately from good enough decay on multiple
mixing. We recall this is the case for the doubling map Tx = 2x mod 1.
Assumption 2 states conditions on the decay of correlations of f ◦ Tn and
A(Wn) whereA is a bounded function with bounded and absolutely contin-
uous first derivative and bounded second derivative. As we discussed above,
Assumption 2 is a natural consequence of the idea of the Stein method to

estimate the quantity dW(WN , Z) by
∣∣∣σ2E[A′(WN )] − E[WNA(WN )]

∣∣∣. This

Assumption can be difficult to verify as its proof normally requires several
technical steps (for the steps we refer the reader to Section 7.1 of [49]). In
the following example we show how to verify Assumption 2 for the doubling
map.

Example 5.3.2 (Assumption 2 for the doubling map). Following Section 7.2
of [49] we reason that the Assumption 2 holds in a simple case of the dou-
bling map and a Lipschitz function f with zero mean such that |f(x) −
f(y)| 6 L|x− y|. Fix 0 6 n < N and recall that Wn = WN −

∑n+K
j=n−K f ◦ T j .

It is natural to present Wn as the sum of two parts:

Wn = Wn
− +Wn

+ =
n−K−1∑
j=0

f ◦ T j +
N−1∑

j=n+K+1

f ◦ T j .

To simplify the summand Wn
− we introduce a partition of the unit interval

{ξq = ((q − 1)2−n, q2−n)}q∈{1,...2n} such thatWn
− is almost equal to a constant

cq on each atom ξq of the partition. This allows us to bound the desired

quantity
∣∣∣ ∫ (f ◦ Tn) · A(Wn

− + Wn
+)
∣∣∣ by a simpler quantity

∣∣∣∑q

∫
ξq

(f ◦ Tn) ·

A(cq +Wn
+)
∣∣∣:∣∣∣ ∫ (f ◦ Tn) ·A(Wn)

∣∣∣ 6 ∣∣∣∑
q

∫
ξq

(f ◦ Tn) ·A(cq +Wn
+)
∣∣∣+

L||A′||∞||f ||∞√
N2K

.

To estimate the quantity
∣∣∣∑q

∫
ξq

(f ◦ Tn) ·A(cq +Wn
+)
∣∣∣ one notices that∣∣∣∑

q

∫
ξq

(f ◦ Tn)·A(cq +Wn
+)
∣∣∣ =

∣∣∣∑
q

∫
ξq

(
fA(cq + W̃n

+ ◦ TK+1)
)
◦ Tn

∣∣∣
=
∣∣∣2−n∑

q

∫
Td
fA(cq + W̃n

+) ◦ TK+1
∣∣∣ 6 L||A||∞

2K

where W̃n
+ = Wn

+ ◦ Tn+K+1 and the last equality follows from the fact that
||LKf ||θ 6 2−K ||f ||θ. Since max06k62 ||A(k)||∞ < 1 we have∣∣∣ ∫ (f ◦ Tn) ·A(Wn)

∣∣∣ 6 L||A||∞
2K

+
L||A′||∞||f ||∞√

N2K
6

L

2K
+
L||v||∞√
N2K

= ρ̃N (K).
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We recall that assumption 3 on f not being coboundary is a typical as-
sumption to ensure σ > 0. The significance of 5.3.1 for proving rates of
convergence as in 5.1.5 is emphasised in the following corollary:

Corollary 5.3.3. [49] Suppose that for any N > 2 the assumptions of Theo-
rem 5.3.1 hold for f with ρ(i) = λi, ρ̃N (i) = C ′λiNa, and K = [logN b/ log λ]
with fixed 0 < λ < 1, 1 < a + 1 6 b. Then, f satisfies CLT and there exists a
constant C that does not depend on N such that

dW(WN , Z) 6 C
logN√
N

.

5.4 Proof of CLT with rates of convergence for ergodic
toral automorphisms

In this Section we prove Theorem 5.1.5. The method of proof is to apply
Theorem 5.3.1 in the setting of Theorem 5.1.5. We start with a discussion
of the three Assumptions of Theorem 5.3.1. Throughout, the integration is
with respect to the normalised Lebesgue measure m. The proof below is
written making one more simplifying assumption (not appearing as such in
5.1.5) namely that v is Lipschitz. We stress that this is just for the ease of
the computation, as to not keep track of Hölder exponents. Else, the proof
below can be easily adapted to work for Hölder functions.

Assumption 1: There exist constants C2, C4 > 0 and a non-increasing
function ρ : N0 → R+ with ρ(0) = 1 and

∑∞
i=1 iρ(i) < ∞ such that for any

k > 0 and 0 6 l 6 m 6 n < N ,

1.
∣∣∣ ∫ v · (v ◦ T kS )

∣∣∣ 6 C2ρ(k);

2.
∣∣∣ ∫ v · (v ◦ T lS) · (v ◦ TmS ) · (v ◦ TnS )

∣∣∣ 6 C4 min{ρ(l), ρ(n−m)};

3.
∣∣∣ ∫ (v ·(v◦T lS)·(v◦TmS )·(v◦TnS )

)
−
∫ (

v ·(v◦T lS)
) ∫ (

(v◦TmS )·(v◦TnS )
)∣∣∣ 6

C4ρ(m− l).

This assumption states conditions on decay of correlations of variables of
the form v ◦T kS of orders 2 and 4. The condition

∑∞
i=1 iρ(i) <∞ implies that
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the speed of decay is at least ρ(k) = k−2−ε. In particular, it is easy to ver-
ify that Assumption 1 holds for systems with exponential mixing of all or-
ders (hence, for Hölder functions and ergodic toral automorphisms [26,90])
since the latter condition implies much stronger mixing properties than As-
sumption 1 requires.

Recall that the map TS is exponentially mixing for Hölder functions: see
Theorem 5.1.3. Thus, assumptions 1a and 1b of Assumption 1 are immedi-
ate. Assumption 1c follows from the exponential mixing of the second order.

Assumption 2: There exists a function ρ̃N : N0 → R+ such that for any dif-
ferentiableA : R→ RwithA′ absolutely continuous and max06k62 ||A(k)||∞ <
1, and for any 0 6 n < N ,∣∣∣ ∫ (A(Wn) · v ◦ TnA)

∣∣∣ 6 ρ̃N (K).

Assumption 3: This is also an assumption in v 5.1.5.

In short, Assumption 1 holds in the setting of Theorem 5.1.5 and Assump-
tion 3 is an assumption of Theorem 5.1.5. Therefore, in order to apply The-
orem 5.3.1 we are left to verify that Assumption 2 holds for (v, TS); in other
words, we are left to prove the following proposition:

Proposition 5.4.1. Let (Td, TS ,m) and v : Td → R satisfy the assumptions of
5.1.5. Fix 0 6 K < N and for 0 6 n < N denote

Wn =
1√
N

(
n−K−1∑
i=0

v ◦ T iS +

N−1∑
i=n+K+1

v ◦ T iS

)
.

Then, for any A : R → R with A′, A′′ defined almost everywhere such that
maxk=0,1,2 ||A(k)||∞ 6 1 there exist constants |θ| < 1 and C which do not
depend on N,K, n such that∣∣∣ ∫ (v ◦ TnS ) ·A(Wn)

∣∣∣ 6 C · θK√N (5.6)

holds for all 0 6 n < N .

Proof. The matrixS associated to the ergodic toral automorphismTS : Td →
Td has a characteristic polynomial pS which is irreducible and of Salem type.
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In other words, it has a single root λ ∈ R outside the unit disc, a single root
λ−1 inside the unit disc, and other d− 2 roots lie on the unit circle. Because
of the ergodicity of TS no root of pS is a root of unity. Since the automor-
phism TS is ergodic with respect to the normalised Lebesgue measure m, it
is also exponentially mixing for pairs of Hölder observables [44, 63].

For every x ∈ Td the tangent space Tx is isomorphic to Rd and admits
eigenspace decomposition: Tx = Eux ⊕Enx ⊕Esx whereEux is a 1-dimensional
unstable eigenspace corresponding to the largest eigenvalue λ, Esx is a 1-
dimensional stable eigenspace corresponding to the eigenvalue ±λ−1, and
Enx is a (d − 2)-dimensional neutral eigenspace corresponding to eigenval-
ues having unit absolute values. Since pS is irreducible, it follows that all
its roots are distinct, and the roots on the unit circle come in pairs of com-
plex conjugates. Hence, the action induced by TS on Enx is an isometry. The
action induced by TS on Eux is expanding and the action induced by TS on
Esx is contracting. Therefore, even though v is Lipschitz, the function Wn

is not Lipschitz continuous uniformly in N; for instance, it grows rapidly in
the unstable direction. Thus, we cannot directly apply the results of [44, 63]
on decay of correlations for Lipschitz functions to prove Proposition 5.4.1.

Let us present Wn as a sum of two terms, Wn = Wn
− +Wn

+, where

Wn
− =

1√
N

n−K−1∑
i=0

v ◦ T iS and Wn
+ =

1√
N

N−1∑
i=n+K+1

v ◦ T iS .

Lemma 5.4.2. There exist a finite partition {ξq}q∈Q of Td and a set of num-
bers {cq}q∈Q such that∫
Td
A(Wn)·(v◦TnS ) dm 6

∣∣∣∑
q

µ(ξq)

∫
ξq

A(cq+W
n
+)·(v◦TnS ) dνq

∣∣∣+C1λ
−K/3(d−2)

√
N,

where νq(·) = m(ξd)
−1m(· ∩ ξq) and C1 does not depend on N,K, n.

Proof. Introduce a partition {ξq}q∈Q of Td into approximately λ
n+ d−1

3(d−2)
K

parallelepipeds of equal size with sides parallel to eigendirections. The length
of the side parallel to the unstable direction is λ−n, the length of the side par-
allel to the stable direction is λ−K/3(d−2), and the lengths of all sides parallel
to neutral directions is λ−K/3(d−2). Note that the action of TS is expanding in
the unstable direction with coefficient λ, contracting in the stable direction
with coefficient λ−1, and is an isometry in neutral eigenspace; the action
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of TS on the atoms of the partition and on the partition described above is
shown in Figure 5.3.

On each atom ξq we introduce an induced measure νq(·) = m(ξd)
−1m(· ∩

ξq) which is the normalised Lebesgue measure conditioned to ξq. Then, Wn
−

is nearly constant on each ξq; in other words, the variation Wn
−|ξq is propor-

tional to N
1
2λ−K/3(d−2). Indeed, take

cq =

∫
Wn
− dνq = m(ξq)

−1

∫
ξq

Wn
− dm.

Then

sup
x∈ξq
|Wn
−(x)− cq| ≤ sup

x,y∈ξq
|Wn
−(x)−Wn

−(y)|

≤ 1√
N

n−K−1∑
j=0

sup
x,y∈ξq

|vj(x)− vj(y)|

≤ L√
N

n−K−1∑
j=0

diam(T jSξq),

where diam(T jSξq) stands for sup
x,y∈T jSξq

|x− y|. We can bound the diameter

of the parallelepiped ξq by the sum of its sides: diam(ξq) 6 λ−n+λ−K/3(d−2)+
λ−K/3(d−2)(d− 2). The automorphism TS acts on the distances in the unsta-
ble direction by multiplying it by λ, in the stable direction – by multiplying
it by λ−1, and TS is an isometry in the neutral directions. We conclude that

sup
x∈ξq
|Wn
−(x)− cq| ≤

L√
N

n−K−1∑
j=0

(
λjλ−n + λ−jλ−K/3(d−2) + (d− 2)λ−K/3(d−2)

)
≤ L√

N

(
λn−K − 1

λ− 1
λ−n +

λ

λ− 1
λ−K/3(d−2)

)
+

L√
N

(
(n−K)(d− 2)λ−K/3(d−2)

)
≤ L√

N
λ−K/3(d−2)

(
1

λ− 1
+N(d− 2)

)
.
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Figure 5.3: (A): an atom of the partition {ξq}q∈Q is a parallelepiped ξq whose
sides are parallel to eigendirections. (B): the image of ξq under the action
of TS . (C): a projection on stable and unstable directions of the partition
{ξq}q∈Q of Td. (D): the image of the projection on stable and unstable direc-
tions of the partition {ξq}q∈Q of Td under the action of TS .
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By the mean value theorem we conclude that

max
q∈Q

sup
x∈ξq
|A(Wn(x)) − A(cq +Wn

+(x))|

≤ ‖A′‖∞ sup
q∈Q,x∈ξq

|Wn(x)− (cq +W+
n (x))|

≤ L‖A′‖∞λ−K/3(d−2)

√
N

(
1

λ− 1
+N(d− 2)

)
and

∫
Td A(Wn) · v ◦ TnS dm ≤

∣∣∣∣∣∑
q

m(ξq)

∫
ξq

A(Wn) · v ◦ TnS dνq

∣∣∣∣∣
≤

∣∣∣∑
q

m(ξq)

∫
ξq

A(c1 +Wn
+) · v ◦ TnS dνq +

+
∑
q

m(ξq)

∫
ξq

L‖A′‖∞λ−K/3(d−2)

√
N

(
1

λ− 1
+N(d− 2)

)
· v ◦ TnS dνq

∣∣∣
≤

∣∣∣∑
q

m(ξq)

∫
ξq

A(cq +Wn
+) · v ◦ TnS dνq

∣∣∣
+

L‖A′‖∞‖f‖∞λ−K/3(d−2)

√
N

(
1

λ− 1
+N(d− 2)

)
.

The proof is complete.

Let us rewrite Wn
+ = W̃n

+ ◦ Tn+K+1
S where W̃n

+ = 1√
N

∑N−n−K−2
i=0 v ◦ T iS .

Since TnS : ξq → TnS (ξq) is a diffeomorphism on {ξq} and, therefore, TnS (ξq)
has no self-intersections, mq := (TnS )∗νq = m(ξq)m(· ∩ TnS (ξq)) is Lebesgue
measure conditioned to TnS (ξq). The sets TnS (ξq) form a partition of Td con-
sisting of skinny parallelepipeds of approximate unstable side length 1, sta-
ble side length λ−n−K/3(d−2), and neutral sides length λ−K/3(d−2). Then,∑

q∈Q
m(ξq)

∫
ξq

A(cq +Wn
+) · v ◦ TnS dνq

=
∑
q∈Q

m(ξq)

∫
ξq

(
v ·A(cq + W̃n

+) ◦ TK+1
S

)
◦ TnS dνq

=
∑
q∈Q

m(ξq)

∫
TnS (ξq)

v ·A(cq + W̃n
+) ◦ TK+1

S dmq

=

∫
Td
v ·A(c(x) + W̃n

+) ◦ TK+1
S dm.
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where c(x) = cq if x ∈ TnS (ξq). The function A(cq + W̃n
+) is discontinuous

at ∂TnS (ξq) and not uniformly Lipschitz inside each TnS (ξq), so we cannot di-
rectly apply the exponential decay of correlations result to finish the proof.
Instead, our next step is to prove the correlation bounds using measure dis-
integration and the Koksma inequality.

Lemma 5.4.3. There exists a constantC2 which does not depend onN,K, n
such that ∫

Td
v ·A(c(x) + W̃n

+) ◦ TK+1
S dm 6 C2λ

−K/3(d−2).

Proof. Divide each atomTnS (ξq) into approximatelyλK/3(d−2) parallelepipeds
{ζq′}q′∈Q′ of unstable side length λ−K/3(d−2). Then, each ζq′ has unstable
side length λ−K/3(d−2), stable side length λ−n−K/3(d−2), and neutral sides
length λ−K/3(d−2); the set {ζq′}q′∈Q′ is a partition of Td. On each ζq′ , v varies

no more than Ldλ−K/3(d−2), so for mq′ =
m(·∩ζq′ )
m(ζq′ )

and vq′ :=
∫
v dmq′ ,

∣∣∣ ∫
Td
v ·A(c(x) + W̃n

+(x)) ◦ TK+1
S dm−

−
∑
q′∈Q′

m(ζq′)vq′

∫
A(c(x) + W̃n

+(x)) ◦ TK+1
S dmq′

∣∣∣
≤ Ld‖A‖∞λ−K/3(d−2).

Let P be a (d − 1)-dimensional section in the direction Ec ⊕ Eu passing
through 0 in Td. Let {`y}y∈P be a partition of Td into arcs in the stable direc-
tion such that each `y intersects P in its endpoints (one of which is y) and
doesn’t intersect P in its interior. Each `y is an interval on Td whose length
depends on y; however, locally the lengths are the same and they change
discretely in a finite number of discontinuity points. The number of dis-
continuity points is bounded from above and the bound depends only on
d. It follows that the leaves `y of the same length form a finite number of
parallelepipeds that partition the torus (see Figure 5.4) and the lengths of `y
are bounded from above and from below.

The stable foliation induces a disintegration of the Lebesgue measure m:
for each measurable v : Td → R,∫

Td
v dm =

∫
P

∫
`y

v dν`y dmP .
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Figure 5.4: (A): Two-dimensional projection of Td is a factor of R2 by Z2.
The projection of P is shown by blue lines. The fibers of the stable foliation
{`y}y∈P are shown in yellow, green, and red; the boxes of different colours
depict the regions of Td with different fiber length. (B): The boxes where the
fibers {`y}y∈P have different length induce a partition of Td. The number of
boxes is bounded from above and the bound depends only on d.

Note that since `y are intervals, the measure ν`y is a scaled copy of the 1-
dimensional Lebesgue measure for each y.

For q′ ∈ Q′ consider Zq′ := TK+1
S (ζq′): it is a long skinny parallelepiped

that wraps about λK+1−K/3(d−2) around the torus in the unstable direction,
and has width λ−K/3(d−2) in the neutral directions, and has width equal to
λ−n−K−1−K/3(d−2) in the stable direction (see Figure 5.5). The parallelepiped
Zq′ intersects `y in intervals {Iyj }j=1,...,jy of length λ−n−1−K(1+1/3(d−2)). Since

the intervals Iyj have length λ−n−K−1−K/3(d−2), the function v restricted to Iyj
varies very little. Hence, if we replace νy|Iyj by a single Dirac mass νy(I

y
j )δxyj

for some xyj ∈ I
y
j , we make only an error of order λ−n−1−K(1+1/3(d−2)). Such

errors are naturally absorbed in the other exponential errors we identified
above.

SinceZq′ consists of roughlyλK+1−K/3(d−2) pieces of unit (unstable) length,
(stable) width λ−n−K−1−K/3(d−2), and projecting along the stable direction
to (d− 1)-dimensional parallelepipeds of (d− 1)-dimensional area equal to(
λ−K/3(d−2)

)d−2
in P (which are roughly distributed uniformly over P ), Zq′

intersect `y roughly

jy ∼ len(`y)λ
K+1−K/3(d−2)

(
λ−K/3(d−2)

)d−2
= len(`y)λ

K
3

(2− 1
d−2

)
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Figure 5.5: (A): an atom ζq′ . S,N,U stand for stable, neutral, and unstable
eigendirections, respectively. (B): the parallelepiped Zq′ := TK+1

S (ζq′) is a
skinny parallelepiped which wraps aroundTd multiple times in the unstable
direction.

times. This is the number of intervals Iyj .

Since all eigenspaces are in irrational algebraic directions, consecutive in-
tersections of parallel translations of such eigenspaces are obtained by a ro-
tation over an irrational algebraic number. The components {vui }i=1,...,d of
the unit vector ~vu ∈ Eu are rationally independent because TS is ergodic.
Also {vui } are algebraic numbers, and hence, by the Siegel-Roth theorem
[96, 101], they are Diophantine of order ε for any ε > 0. 3 It follows that
the points xyj are roughly uniformly distributed on `y in the sense that the
discrepancy (see [28, 60])

D∗R({xn}n) = sup
k

sup
[a,b)⊂`

∣∣∣∣ 1

R
#{k + 1 ≤ n ≤ k +R : xn ∈ [a, b)} − (b− a)

∣∣∣∣
behaves as that of the consecutive points in the orbit of a rotation over a
Diophantine number:

D∗jy({αn}) ≤ Cεj
− 1

1+ν
+ε

y ≤ Cλ−
K
3

(2− 1
d−2

),

see [60, Theorem 3.2-3.4]. Recall that f and therefore W̃n
+ and alsoA(c+W̃n

−)
is Lipschitz (uniformly in N,n and K) in the stable direction. Now we can

3A number α is called Diophantine if for every ε > 0 there is a constant C such that
|α− p

q
| ≥ Cq−2−ε for all p, q ∈ Z, q 6= 0.
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estimate
∫
`y
g dν`y using the Koksma inequality:∣∣∣∣∣∣

N∑
j=1

g(xyj )−
∫
`y

g(x) dx

∣∣∣∣∣∣ ≤ Var(g)D∗jy((x
y
j )).

Taking g(x) = A(c(x) + W̃n
+(x)), we obtain

∣∣∣ 1

jy

jy∑
j=1

A(c(xyj ) + W̃n
+(xyj )) −

∫
`y

A(c(x) + W̃n
+) dν`

∣∣∣
≤ Var(A(c(·) + W̃n

+(·))|`y)D∗jy
� LVar(A)λ−

K
3

(2−1/(d−2)).

Using the estimate above and the measure disintegration, we can estimate
the integral over Zq′ :∫

A(c(x) + W̃n
+(x)) ◦ TK+1

S dmq′

≈
∫
P

∫
`y

A(c+ W̃n
−(x))dν` dmS +O(L‖A′‖∞λ−

K
3

(2− 1
d−2

))

=

∫
Td
A(c+ W̃n

−)dm+O(L‖A′‖∞λ−
K
3

(2− 1
d−2

)).

Finally, summing over all ζq′ with weights vq′ , we find∫
T2

v ·A(c(x) + W̃n
+) ◦ TK+1

S dm

=
∑
q′∈Q′

m(ζq′)
(
vq′

∫
A(c(x) + W̃n

+) ◦ TK+1
S dmq′ +O(Ld‖A‖∞λ−K/3(d−2))

)
≤
∑
q′∈Q′

m(ζq′)

(
vq′

∫
Td
A(c+ W̃n

−) dm+O(L‖A′‖∞λ−
K
3

(2− 1
d−2

))

)
+O(Ld‖A‖∞λ−K/3(d−2))

≤

∑
q′∈Q′

m(ζq′)vq′

∫
Td
A(c+ W̃n

−) dm


+O

(
L‖A′‖∞λ−

K
3

(2− 1
d−2

) + Ld‖A‖∞λ−K/3(d−2)
)

=

∫
v dm

∫
A(c+ W̃n

−) dm+O
(
L‖A′‖∞λ−

K
3

(2− 1
d−2

) + Ld‖A‖∞λ−K/3(d−2)
)

= O
(
L‖A′‖∞λ−

K
3

(2− 1
d−2

) + Ld‖A‖∞λ−K/3(d−2)
)

where the last equality follows from the assumption that
∫
v dm = 0.
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Lemma 5.4.2 and Lemma 5.4.3 prove the Assumption 2 of Theorem 5.3.1
with ρ̃N (k) = C̃θk

√
N . Theorem 5.3.1 implies that

dW(WN , Z) 6 C#

(
K + 1√
N

+
∞∑

i=K+1

ρ(i)

)
+ C ′#

√
Nρ̃N (K) (5.7)

where ρ(k) = θk and ρ̃N (k) = C̃θk
√
N for some θ < 1. Plugging ρ and ρ̃N

into 5.7 and choosing K(N) = 3 logN
2 log θ (see Corollary 5.3.3) yields

dW(WN , Z) 6 C#

(
3 logN + 1

2 log θ
√
N

+
θ

N3/2(1− θ)

)
+
C ′#√
N
6 C

logN√
N

which concludes the proof of Theorem 5.1.5.



Chapter 6

Connectivity of real isoperiodic
sets on a torus with 3 poles1

6.1 Introduction

A Riemann surface is a connected manifold of complex dimension one that
is equipped with a complex structure, i.e., with an atlas of open charts {Ui}
and a collection of homeomorphisms to the open disk fi : Ui → D ⊂ C; the
transition functions gij between the chartsUi andUj are given by the equal-
ity fi = gij ◦fj . The transition maps are required to be holomorphic, i.e., dif-
ferentiable at any point of their domain. Any open set in C is naturally a Rie-
mann surface; some of the examples include the unit disk D = {z : |z| < 1}
and the upper half-plane H = {z ∈ C : Imz > 0}. The simplest example of
a compact Riemann surface is the sphere Ĉ = C ∪ {∞} with charts U1 = C
and U2 = Ĉ − {0} and homeomorpisms f1 = z and f2 = 1/z. Then, both
transition maps g1,2 and g2,1 are given by a holomorphic function z 7→ 1/z.
By the classification theorem, any orientable compact surface X is homeo-
morphic to either a sphere Ĉ or a g-holed torus with g > 1 [27]. The number
g is called the genus of the surface. For some applications it is important
to consider pointed Riemann surfaces, i.e., the data of the Riemann surface
with a finite number of points on it.

It is convenient to consider Riemann surfaces with fixed genus g and fixed
number of marked points as elements of some space. There are many choices
of such spaces, the most notable ones include the Teichmuller space and

1This chapter is based on: E. Arzhakova, G. Calsamiglia, B. Deroin, Isoperiodic moduli
spaces of meromorphic forms, in progress
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the moduli space.

• The Teichmuller space. Fix a reference surface – an oriented closed
surface S of genus g with n > 0 ordered distinct marked points. The
Teichmuller spaceT (S) associated toS is a space of equivalence classes
of pairs (X, f) where X is a Riemann surface with n ordered distinct
marked points and f : S → X is a diffeomorphism between the sur-
faces that maps the ordered marked points of S to the ordered marked
points ofX. The equivalence in T (S) is described as follows: two pairs
(X1, f1) and (X2, f2) are equivalent if f1 ◦ f−1

2 : X2 → X1 is isotopic to
a holomorphic diffeomorphism. The Teichmuller space is connected
and has a canonical complex manifold structure [3, 8].

Example 6.1.1 (Teichmuller space of a torus). Consider the reference
surface to be a torus T = R2/Z2. Any complex structure on a torus can
be realised by a Riemann surface of a form C/(Z + τZ) where τ ∈ C is
such that Imτ > 0. Note that such complex numbers form an upper
half-plane H = {z ∈ C : Imz > 0}. The map H → T (T) given by
τ 7→ C/〈1, τ〉 is a bijection and, therefore, T (T) = H.

• The moduli space. The mapping class group Mod(S) of a surface S
is the group of isotopy classes of homeomorphisms of S that fix each
marked point. In other words, Mod(S) = Homeo(S)/Homeo0(S) where
Homeo0(S) are the homeomorphisms isotopic to identity. The moduli
spaceMS is given by the quotient T (S)/Mod(S). In fact, the moduli
space depends only on the genus g and number of marked points n
of the surface S, therefore, it is usually denoted asMg,n. The moduli
space has an orbifold structure, it is typically not a manifold.

Example 6.1.2 (Moduli space of a torus). The mapping class group
of a torus Mod(T) is isomorphic to SL(2,Z). It follows that M1,0 =
H/SL(2,Z).

Differential forms can be defined on the Riemann surfaces, in particular,
the space of the 1-forms is the dual vector space to the tangent space of a
surface. In a local coordinate z given by the complex structure a differential
1-form can be written as ω = f(z) dz.

• A 1-form ω on a surfaceX is called a holomorphic differential if f(z) is
holomorphic, i.e., a complex differentiable function. Denote by N the
set of zeroes of ω; N = {x ∈ X : ω(x) = 0}. Then, X\N inherits a flat
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metric and in the neighbourhood of a zero this metric admits a coni-
cal singularity of angle 2π(k+ 1). In other words, in the neighborhood
of a zero the 1-form ω is locally given by zk dz, k > 1. In this case, we
say that k is the order of the zero. The flat metric defined locally by a
zero of order k is a ramified covering over a flat disk of order k+ 1 that
is ramified at zero.

• A 1-form ω on a surfaceX is called a meromorphic differential if f(z) is
a meromorphic function. i.e., it is holomorphic everywhere except in
a discrete set of points that are called the poles of the function. Locally
at the pole ω = z−k dz and k is the order of the pole. The singularities
of a pair (X,ω) consist of poles and zeroes; let us define the degree of a
singularity to be k if it is a zero of order k, and−k if it is a pole of order
k. Denote by ni the degree of the i-th singularity of X; then, as a con-
sequence of the Riemann-Roch theorem, we obtain that

∑
ni = 2g−2

[102].
Select a pole on X and denote it by p. Choose a short closed curve γp
going around p, i.e., a curve that has no other singularity in its inte-
rior and does not wind around genus. The complex number resp(ω) =

1
2πi

∫
γp
ω is called the residue of the form ω at p and it does not de-

pend on the choice of γp. Let (X,ω) be a Riemann surface with poles
p1, . . . , pn. Then, by the residue theorem,

∑n
1 resp(ω) = 0 [102].

Consider a closed curve c on a Riemann surfaceX and introduce a 1-form
νc such that for every closed 1-form α,

∫
c α = −

∫
α ∧ νc = (α, ?νc) where ?

is the Hodge star. Then, we define an intersection of two closed curves a
and b on X as a · b =

∫
νa ∧ νb. The intersection form is an anti-symmetric

form with its image contained in Z and the intersection of a and b depends
only on the homology classes of a and b. Denote a surface of genus g with
n poles as Σg,n. The intersection form enables us to select a basis of the
fundamental group π1(Σg,n) given by {a1, b1, . . . , ag, bg;π1, . . . , πn} such that
ai · bj = δi,j , ai · πj = bi · πj = π · πj = 0.

In the follow-up we are interested in comparing integrals of 1-forms over
a basis of H1(X,Z). Therefore, it is natural to seek some space of Riemann
surfaces that identifies the curves inH1(X,Z) for differentX. The most con-
venient space for this goal is the Torelli space and it is defined as follows.
Denote by Σg,n∗ a surface obtained by making punctures at each marked
point of Σg,n, i.e., Σg,n∗ = Σg,n\N where N is the set of n marked points.
The subgroup Ig,n of Mod(Σg,n) that acts trivially on H1(Σg,n∗) is called the
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Torelli group of Σg,n∗ . The Torelli space Sg,n is given by Tg,n/Ig,n and the
pullback of the 1-form bundle ΩMg,n over the moduli space by the cover
Sg,n∗ →Mg,n is denoted by ΩSg,n∗ . A point in ΩSg,n∗ is therefore described
by a fourtuple (X,N, [f ], ω) where [f ] is the equivalence class of the homo-
topical collapse map f under the action of the Torelli group.

Definition 6.1.3. The map Perg.n : ΩSg,n → Hom(H1(Σg,n∗ ,C) is defined by
the formula

Perg,n(X,N, [f ], ω) =
{
p : γ → p(γ) =

∫
f∗γ

ω
}
.

The map p is called the period map of ω and it provides coordinates on
the space ΩSg,n. Notably, the period coordinates do not allow to recover
the differential even on infinitesimal level [17]. Indeed, the isoperiodic de-
formations define a foliation of ΩSg,n which is called the isoperiodic folia-
tion. Some of the first results on the isoperiodic foliation of holomorphic
differentials over the moduli space include that the isoperiodic leaves are
Euclidean spaces with complete metric [81]. This work also includes the
study of the isoperiodic sets in the holomorphic case with g = 2. Then,
in a fundamental work of Calsamiglia, Deroin, and Francaviglia [17] it was
shown that the leaves of the isoperiodic foliation of holomorphic differen-
tials are connected for g > 2 and primitive degree at least three. The method
used in [17] involves the degeneration of the Riemann surface into a nodal
curve which allows to simplify the problem to surfaces of lower genera.

The method proposed in [17] cannot be applied to the meromorphic case
because meromorphic differentials can have real periods (i.e., the image
Imp is contained in R). It is not possible to degenerate a meromorphic
form with real periods into a union of forms that includes holomorphic
parts because holomorphic forms do not admit real periods (a consequence
of Riemann’s bilinear relations, [9]). Therefore, the case of real periods of
meromorphic forms requires new tools in order to prove connectivity of the
isoperiodic sets. In [18] the non-emptiness and connectivity of the isoperi-
odic leaves in ΩSg,n is shown for meromorphic forms with 2 poles and g > 1
of degree at least 3. However, the method of proof relies on the combinato-
rial properties of having exactly two poles. Our result is the extension of the
study of connectivity of the isoperiodic leaves to a higher number of poles
in the case of real period. Denote by Σ1,3 a surface of genus 1 with 3 marked
points:

Theorem 6.1.4. Denote by Π the peripheral module of Σ1,3, i.e., a module
Π such that H1(Σ1,3,Z) = H1(Σ1,Z) + Π; let p ∈ Hom(H1(Σ1,3∗ ,Z),C) be a
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period map. If the image of p inC is real, then the level Per−1(p) is connected
in ΩS1,3 if the image of p is not contained in the Q-vector space generated
by p(Π).

This result is a new step towards proving the connectivity of the isoperi-
odic sets in general case. The strategy of treating the cases of higher genera
and larger number of poles often relies on the degeneration into simpler
bits and applying induction. Therefore, the result of Theorem 6.1.4 is meant
to serve as a base of induction for our work in progress that studies the con-
nectivity of the leaves of the isoperiodic foliations with real periods. We em-
phasise that the benefit of the geometrical method used in the present work
is that it can be applied to the surfaces of any (small) genus and number of
poles unlike the methods used in [18,59]. However, we believe that the com-
plexity of the proof is growing very fast with larger genus and larger number
of poles. To demonstrate the universality of the method for low g, n, we sup-
plement the proof of Theorem 6.1.4 with Appendix which contains the proof
of a similar statement for Σ1,2.

The strategy of the present work relies on applying a local surgery called
the Schiffer variation [103]. The Schiffer variation is an isoperiodic surgery
of the surface which provides a tool to connect two different forms in ΩS1,3

by an isoperiodic path. It is performed by selecting two twins leaving or en-
tering the zero in the same direction with an angle 2π between them and
making two cuts of the same length along them. Then the sides of the two
cuts are re-glued: the left side of the first cut is glued to the right side of the
second cut, and vice verca. In this manner the zero can be isoperiodically
moved to a different position on the surface.

The main directions of our further study is proving the connectivity of the
isoperiodic sets both in real and complex cases for larger genus and num-
ber of poles using induction. Another interesting direction of research is
to check the ergodicity of the isoperiodic foliation following [17, 18, 48]. An
interesting approach of proving ergodicity of a real isoperiodic foliation of
forms with a single double pole is proposed in [59] and involves using the
cut diagrams.
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6.2 Rigid forms

In this Section we introduce am important subclass in ΩS1,3 of rigid forms,
i.e., forms with one zero. We show that any form in ΩS1,3 can be connected
to a rigid form; therefore, in order to prove Theorem 6.1.4 it suffices to prove
the isoperiodic connectedness of the rigid forms. Therefore, it is natural to
study possible topological types of the rigid forms.

Definition 6.2.1 (A rigid form). A rigid form (X,N, [f ], ω) ∈ ΩSg,n is a form
with a single zero. By the Riemann-Roch theorem, the multiplicity of the
single zero is equal to 2g − 2 + n and the angle at the zero is 2π(2g − 1 + n).

Example 6.2.2. A rigid form in ΩS1,3 has a single zero of order 3 with an
angle 8π around it.

The importance of the subclass of the rigid forms in the context of Theo-
rem 6.1.4 is explained in the following lemma:

Lemma 6.2.3. Any form in ΩS1,3 with real period map is isoperiodically con-
nected to a rigid form.

Proof. A generic form in ΩS1,3 has three simple zeroes and the distances
between zeroes do not coincide. Let us select two zeroes with the shortest
saddle connection between them. This saddle connection has a twin of the
same length emerging at an angle 2π from one of the two zeroes. If this twin
ends at a regular point, performing Schiffer variation along the saddle con-
nection and its twin yields a double zero which is not a node. In the same
manner we can connect the double zero to the remaining simple zero, thus,
obtaining a rigid form. If the twin described above ends in the same zero,
i.e., forms a loop, an infinitesimal perturbation of the form will ensure that
it ends at a regular point. Then, the previous argument applies.

If the twin ends at the second zero then the double zero formed by the
corresponding Schiffer variation is a node. Note that since the cycle formed
by two twins integrates to zero, the node has zero residue. We can show by
contradiction that it is a non-separating node. First, it cannot separate the
surface into a component with three poles and holomorphic component
since holomorphic component does not allow real periods. It also cannot
separate one pole from the other two by the residue theorem. We conclude
that it is a non-separating node. In this case, we apply the degeneration
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Figure 6.1: A decomposition of the surface Σ1,3 with a double zero into a
sphere with 2 poles and a torus with 2 poles and a double zero.

technique in order to connect such form to a rigid form.

Let us perform a Schiffer variation along two twins that leave the remain-
ing simple zero in the positive imaginary direction: it results in a decompo-
sition of the initial surface into a sphere with 2 poles and no zeroes and a
torus with 2 poles and a double zero which is a node (see Figure 6.1). The
toral component can be isoperiodically perturbed into a torus with 2 sim-
ple poles and 2 zeroes. In [18] it is shown that a torus with 2 simple poles
and 2 zeroes can be isoperiodically deformed into a rigid form with 2 simple
poles. In the end, we glue the two parts by selecting a geodesic in the pos-
itive imaginary direction emerging from an arbitrary point on the sphere,
and a geodesic on the torus leaving the double zero in the positive imagi-
nary direction. We glue the surfaces along these geodesics obtaining a torus
with three poles and a single zero of the third order.

Lemma 6.2.3 implies that to prove Theorem 6.1.4 it suffices to consider
only the rigid forms. Therefore, it is natural to study further the structure
and types of the rigid forms in ΩS1,3. We start the discussion with study-
ing the separatrices in real directions that pass through the zero of the rigid
form in ΩS1,3.

Select a regular point z0 on Σ1,3 and consider an integral f(z) =
∫ z
z0

Imω.
Since the periods of ω are real the imaginary part of ω does not have mon-
odromy, i.e., f is a real-valued univalent function f : X → R. The levels of
f are the leaves of the real foliation on X. Since residues around each pole
are real, one can view poles as semi-infinite annuli where all real leaves are
closed and compact manifolds of dimension 1 and no leaf is minimal even
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Figure 6.2: Integral
∫ z
z0

Im(ω) of the imaginary part of a 1-form ω defines a
function f(z) on the torus X. The levels of the function are the leaves of
the real foliation of ω. These leaves form closed compact 1-dimensional
manifolds in the neighbourhood of the poles.

locally (see Figure 6.2). We conclude that any saddle connection leaving a
zero in real direction cannot escape to a pole because it cannot transver-
sally cross the leaves of the real foliation. Instead, each saddle connection
leaving a zero in real direction has to end in some zero.

It follows for a rigid form in ΩS1,3 that all 4 separatrices that leave the zero
along real directions come back to the zero along the real directions. More-
over, the outgoing and ingoing real separatrices alternate in order.

6.2.1 Octopodes and butterflies

The outgoing separatrices in real directions have to return to the zero; in
this subsection we investigate in which order the separatrices return. The
order defines the topological type of the rigid form. There are two ways to
graphically depict a topological type of a rigid form (see Figure 6.4):
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Figure 6.3: The structure of a zero of a rigid form in ΩS1,3: the angle around
the zero is 8π and in real directions there are 4 outgoing and 4 ingoing sep-
aratrices that alternate in order.

• Radial diagram. The radial diagram features a zero in its center and
the saddle connections leaving the zero and entering the zero. The
order in which the in-going and out-going separatrices are connected
defines the topological type of the rigid form.

• Circle diagram. Both sets of in-going and out-going separatrices in
the neighborhood of the zero are presented as two sets of points on
a circle. Each out-going point is bijectively connected to an in-going
point. The order in which they are connected defines the topological
type of the rigid form.

The correspondence between the radial diagrams and the circle diagrams
is easy to establish: for the convenience of the reader, we demonstrate it on
Figure 6.4. In the Figures hereafter we will be using circle diagrams. It turns
out that the order in which the outgoing separatrices enter the zero is not
arbitrary, but restricted by the topology of Σ1,3 to few options as we see in
the following Lemma.

Lemma 6.2.4. Up to the change of orientation, there are only 2 possible
combinatorial types of rigid forms in Σ1,3.

Proof. Each separatrix that leaves the zero of the third order must eventually
come back: there are 4 separatrices leaving the zero and 4 entering it. Let us
number both sets counter-clockwise from 1 to 4. We need to understand in
which order the separatrices that leave the zero come back: it is natural to
think about this correspondence as of possible permutations on 4 elements.
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Figure 6.4: Correspondence between the radial (top) and the circle (bottom)
diagrams. Left: radial and circle diagrams of the butterflies form, right: ra-
dial and circle diagrams of the octopus form.

The geometrical type of the zero does not depend on the rotation of the
chosen numbering: therefore, one does not need to consider all possible 24
permutations separately. Instead, it suffices to consider only 10 conjugacy
classes by two cyclic permutations (1234) and (1432):

1. constant permutation (1)(2)(3)(4) forms a conjugacy class of 1 ele-
ment;

2. transpositions of 2 neighboring elements (12)(3)(4) → (23)(4)(1) →
(34)(1)(2)→ (41)(2)(3) form a class of 4 elements;

3. transpositions of 2 non-neighboring elements (13)(2)(4) → (24)(3)(1)
form a class of 2 elements;

4. 2 non-intersecting transpositions of two pairs of neighboring elements
(12)(34)→ (23)(14) form a class of 2 elements;

5. 2 non-intersecting transpositions of two pairs of non-neighboring el-
ements (13)(24) forms a class of 1 element;

6. three-cycles oriented counterclockwise (123)(4)→ (234)(1)→ (341)(2)→
(412)(3) form a class of 4 elements;



6.2. Rigid forms 135

7. three-cycles oriented clockwise (132)(4) → (243)(1) → (314)(2) →
(421)(3) form a class of 4 elements;

8. four-cycle oriented counterclockwise (1234) forms a class of 1 element;

9. four-cycle oriented clockwise (1432) forms a class of 1 element;

10. four-cycles with transposition (1243) → (2314) → (3421) → (4132)
form a class of 4 elements.
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Figure 6.5: Possible combinatorics at a zero of order 3. Figures 1-4, 7,9 cor-
respond to g = 0, n = 4, Figures 5,6,8,10 correspond to g = 1, n = 3.
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If we cut the surface along the paths following the directions of separa-
trices on the left hand side and on the right hand side we will obtain the
decomposition of the surface into several semi-infinite cylinders. The con-
sidered surface Σ1,3 can only be decomposed into 3 semi-infinite cylinders
because it has three poles. The Figure 6.5 shows that there are only 2 possi-
ble combinatorial types where the surface decomposes into 3 semi-infinite
cylinders: the first corresponding to cases (5), (8) and the second corre-
sponding to the cases (6), (10). The rest of diagrams represent spheres with
5 punctures.

Let us discuss the two topological types of rigid forms more closely. In
order to do it we agree on the following conventions and notations:

The surface Σ1,3 has three poles whose real residues sum up to zero, so
it either has 1 or 2 poles with positive residues. The number of poles with
positive residue defines the orientation of the associated form; without loss
of generality we assume that all rigid forms have 1 positive pole and 2 neg-
ative poles. Then, changing the signs of all residues corresponds merely to
switching the orientation of the surface.

Denote the positive pole by s+ and the two negative poles by s<− and s>−
where s>− stands for the negative pole with a residue equal or larger in ab-
solute value than the residue of s<−. Denote the short closed curves going
around the poles as π+, π<− and π>− , respectively, and note that p(π+) +
p(π<−) + p(π>−) = 0 by the residue theorem.

Let us define the two types of the rigid forms:

• Butterflies We say that a rigid form associated with marking (a, b, c, d)
is in ΩS1,3 and is of type "butterflies" if

– a · b = b · c = c · d = d · a = 1, a · c = b · d = 0;

– a+ c = −π>−, b+ d = −π<−, a+ b+ c+ d = π+;

– p(a), p(b), p(c), p(d) > 0.

An example of radial and circle diagrams of butterflies is provided on
Figure 6.4. For convenience, we denote by B(a, c | b, d) a butterflies
form that satisfies the three conditions listed above.

• Octopus We say that a rigid form associated with marking of curves
(a, b, c, d) is in ΩS1,3 and is of type "octopus" if
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– a · b = b · c = c · a = 1, a · d = b · d = c · d = 0;

– a+ b+ c = −π>−, d = −π<− or
a+ b+ c = −π<−, d = −π>− ;

– a+ b+ c+ d = π+;

– p(a), p(b), p(c), p(d) > 0.

An example of radial and circle diagrams of octopus is provided on
Figure 6.4. Note that the connection d is distinguished from the other
three connections: it is the connection that starts and finishes at ad-
jacent points. We call the connection d the head of the octopus. The
head of the octopus generates a closed curve that goes around a pole.
By the length considerations, this pole cannot be positive, so it is one
of the negative poles (see Figure 6.6). Therefore, there are two distinct
cases: a+ b+ c = −π>−, d = −π<− and a+ b+ c = −π<−, d = −π>− . We call
a form associated to the first case the small head octopus (SHO) and a
form associated to the second case the large head octopus (LHO). For
convenience, we denote by O(a, b, c | d) an octopus form that satisfies
the three conditions listed above. When the distinction between the
large head octopodes and the small head octopodes is important, we
use LHO(a, b, c | d) and SHO(a, b, c | d), respectively.

Note that any octopus admits two different orientations and it has
to do with the signs of the residues at the three poles (one positive
and two negative, or two positive and one negative). However, there
is an equivalence between the "left-handed" and "right-handed" oc-
topodes achieved by switching the signs of the residues; hence, there
is no necessity to distinguish between these two cases.

6.2.2 Schiffer variation on circle diagram.

To perform the Schiffer variation at a zero on the circle diagram we select
two neighbouring (i.e., with angle 2π in between) separatrices of the same
direction and of different lengths. Denote the point corresponding to the
shorter separatrix as "Short" and the point corresponding to the shorter
separatrix as "Long". Denote the shorter separatrix by S and the longer sep-
aratrix by L. There is a unique separatrix between them that goes in an op-
posite direction - denote it by C and the corresponding point by "Central".
Perform the Schiffer variation along L and S along the whole length of S: it
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Figure 6.6: The blue curve inside the head of the octopus goes around one of
the poles. The blue curve is shorter than the orange curve whose fragment is
shown on the Figure. Since π+ = π<− + π>− , the blue curve cannot go around
n+ by the length consideration.

Figure 6.7: The Schiffer variation on a circle diagram: the group (L,C) of the
endpoints of the long and the central connections are "sliding" all the way
to the opposite endpoint of the short connection.

yields a new rigid form where the zero is in the same position but the length
and order of the saddle connections is changed.

The lengths of the saddle connections will be p(L′) = p(L)− p(S), p(S′) =
p(S), p(C ′) = p(C + S). The positions of the points "Long" and "Central"
shift to the opposite end of the short connection S (see Figure 6.7).

Remark 6.2.5. Note that if the two points "Long" and "Central" are the only
two points inside the arch of S then the order of the points does not change.

6.2.3 Connecting different types of rigid forms in ΩS1,3.

According to Lemma 6.2.4, each rigid form in ΩS1,3 is either butterflies or
octopus. In this subsection we show how to isoperiodically connect any
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rigid form to a large head octopus under mild conditions. The first step
is to connect a small head octopus to butterflies and the second step is to
connect the butterflies to the large head octopus.

Lemma 6.2.6. If the period map of a small head octopus form p is not con-
tained in the Q-vector space generated by p(Π), it can be connected to a
butterflies form.

Proof. Consider an octopus SHO(a, b, c | d). If p(d) > p(c) (i.e., if the oppo-
site arm is shorter than the head), then if we perform the Schiffer variation
along d and c we will reach butterflies in one step. If p(d) 6 p(c) we treat
several cases:

• p(a) and p(b) are not rationally dependent. Without loss of general-
ity, assume p(a) > p(b). There are two possible types of Schiffer vari-
ations along a and b: one changes the order of the marking (namely,
O(a−b, b, c+b | d)), and the other does not (namely,O(b, c+b, a−b | d)).
By performing Schiffer variation along a and b that does not change
the order of the marking we can make p(a) and p(b) arbitrarily small
while p(c) grows (similar to Euclidean algorithm). Then, we perform
the Schiffer variation along a and b that changes the order of arms; de-
pending on their periods, one of them becomes the arm of the octopus
which is opposite to the head. The period of the opposite arm is now
smaller than the period of the head, therefore, it can be connected to
butterflies.

• If p(a) and p(b) are rationally dependent. All four periods p(a), p(b), p(c)
and p(d) cannot be rationally dependent because it contradicts the as-
sumption on the image of the period map not being contained in the
Q-vector space generated by p(Π). If p(c) is not rationally dependent
with p(a) we perform a Schiffer variation along a and c which does
not change the order of the marking. Now the two arms that are not
opposite of the head are not rationally dependent: we proceed as in
the previous cases. If p(c) is rationally dependent with p(a), then p(d)
is not rationally dependent with any of them. We perform a Schiffer
variation along c and d which results in an octopus with not all arms
rationally dependent. We proceed as in previous cases.

Lemma 6.2.7. If the image of p of the butterflies form is not contained in the
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Q-vector space generated by p(Π), the butterflies form can be connected to
a large head octopus form.

Proof. Label the butterflies as B(a, c | b, d) and assume wlog that p(a + c) >
p(b + d). With an appropriate choice of direction, performing a Schiffer
variation along neighbouring saddle connections yields an octopus. In this
manner one can reach at most 4 different octopodes in one Schiffer varia-
tion (see Figure 6.8):

• using saddle connections a and d: if p(a) < p(d), we can reach an oc-
topus O(d − a, b, a | a + c) with head (a + c),and if p(d) < p(a), we can
reach an octopus O(c, a− d, d | b+ d) with head (b+ d);

• using saddle connections a and b: if p(a) < p(b), we can reach an oc-
topus O(d, b − a, a | a + c) with head (a + c), and if p(b) < p(a), we can
reach an octopus O(a− b, c, b | b+ d) with head (b+ d);

• using saddle connections b and c: if p(b) < p(c), we can reach an oc-
topus O(a, c − b, b | b + d) with head (b + d), and if p(c) < p(b), we can
reach an octopus O(b− c, d, c | a+ c) with head (a+ c);

• using saddle connections c and d: if p(c) < p(d), we can reach an oc-
topus O(b, d − c, c | a + c) with head (a + c), and if p(d) < p(c), we can
reach an octopus O(c− d, a, d | b+ d) with head (b+ d).

There are two types of the head that we can obtain in this manner: a + c
and b + d, which corresponds to the large head octopodes and the small
head octopodes. If we are able to reach an octopus with the head a+ c, i.e.,
a large head octopus, we have confirmed the statement of the lemma. If
we are not able to reach a large head octopus, then by the list above it fol-
lows that p(b), p(d) 6 p(a), p(c). Note that it is not possible that all four pairs
(p(a), p(b)) , (p(a), p(d)) , (p(c), p(b)) , (p(c), p(d)) are rationally dependent be-
cause it contradicts the assumption of the lemma. Without loss of general-
ity, assume that the pair (p(a), p(b)) is rationally independent.

By assumption, p(b) < p(a); using Schiffer variations along a and b several
times we can go to another couple of butterflies B(a − q × b, c + q × b | b, d)
where q ∈ Z+ is chosen such that 0 < p(a − q × b) < p(b). Using the fact
that p(a− q× b) < p(b), we use a corresponding Schiffer variation to go to an
octopusO(d, (q+1)×b−a, a−q×b | a+c) which is a large head octopus.
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Figure 6.8: Possible octopodes that can be reached from a butterflies form.
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Corollary 6.2.8. To prove Theorem 6.1.4 it suffices to show that any two
LHO with same real periods are isoperiodically connected if the image of
their period map p is not contained in Qp(Π).
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Figure 6.9: Arm module Ms1−
and the corresponding decomposition of Σ1,3.

6.2.4 Arm modules

In order to study the octopodes and the isoperiodic connections between
them it is useful to introduce the arm modules. The idea is to degenerate
the surface Σ1,3 into a nodal stable curve. This degeneration induces a de-
composition of the group H1(Σ1,3,Z). Select one of the negative poles s1

− of
Σ1,3 and consider a curve that goes around it and the positive pole, does not
wind around genus and does not have zeroes and the third pole in its inte-
rior. Using Schiffer variation we can degenerate this curve to a node, thus,
decomposing Σ1,3 into the union of Σ1,s1−

and Σ0,s+,s2−
(see Figure 6.9).

Definition 6.2.9. An arm module Ms1−
associated to a negative pole s1

− is a
rank 3 submodule of H1(Σ1,3,Z) such that

H1(Σ1,3,Z) = Ms1−
+ Πs1−

, (6.1)

where Ms1−
has rank 3 and Πs1−

= {π(s1
−), π(s+)} has rank 2. The two mod-

ules intersect: Ms1−
∩ Πs1−

= Zπ(s2
−). The arm module Ms1−

has a basis a, b, c
where p(a), p(b), p(c) > 0 and a·b = b·c = c·a = 1. Moreover, a+b+c = −πs2− .

The map µs1− : H1(Σ1,3,Z) → H1(Σ1,2,Z) restricted to the arm module

Ms1−
is an isomorphism. The form pM

s1−
:= p ◦ µ−1

s1−
∈ Hom(H1(Σ1,2,Z),R)

is called the period of an arm module. Define the quotient arm modules
of Ms<−

and Ms>−
as Ms<−

/Zπ>− and Ms>−
/Zπ<− , respectively. Without loss of

generality, let us consider a quotient arm module Ms<−
/Zπ>− : the map q :

H1(Σ1,2,Z) → H1(Σ1,Z) has π>− in its kernel, and induces an isomorphism
between Ms<−

/Zπ>− and H1(Σ1,Z). The reduction pN := pM mod Zp(π>−) ∈
H1(Σ1,R/Zp(π>−)) is well-defined and called the period of the quotient arm
module.

The set of arm modules and the set of quotient arm modules associated
to a given pole both have a natural structure of affine space directed by
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H1(Σ1,Z); in other words, given two arm modules M,M ′ (resp. quotient
arm modules N,N ′) associated to the pole s>−, there exists a unique ψ ∈
N∗ ' H1(Σ1,Z) such that M ′ (resp. N ′) is the image of M (resp. N ) by the
map id|M + (ψ ◦ q) · π>− (resp. id|N +ψ · π>−). We will denoteM ′ = M +ψ and
N ′ = N + ψ in the sequel.

Proposition 6.2.10. To each octopus one can associate an arm module: it is
Ms where s is the pole associated to the head. Two marked octopodes with
the same head and the same arm module can be connected with a finite
number of Schiffer variations.

Proof. By Figure 6.9 it suffices to appeal to the connectedness of the isope-
riodic space of meromorphic forms on a torus with two poles [18], and a
convenient attaching map (similar to Lemma 6.2.3 and Figure 6.1).

6.3 Proof of the connectivity of real isoperiodic sets in
ΩS1,3

This Section contains the proof of Theorem 6.1.4. Proving Theorem 6.1.4
is equivalent to proving Corollary 6.2.8, i.e., proving that the large head oc-
topodes are isoperiodically connected under the conditions of Theorem 6.1.4.
We do it in several steps:

1. we show that we can connect LHO(a, b, c | d) with head d and arm
module M = {a, b, c} to another LHO with arm module M + a∗ where
a∗ ∈ H1(Σ1,Z) is the dual of a with respect to he intersection form. In
other words, a∗(a) = 0, a∗(b) = 1, a∗(c) = −1 (Lemma 6.3.1);

2. using the previous step, we prove that a LHO with an arm module M
can be connected to a LHO with arm module M + ϕ if p(ϕ∗) /∈ Q/Z
(Lemma 6.3.2);

3. we conclude the proof of Corollary 6.2.8 by showing that any two LHO
can be connected if the image of the period map is not contained in
Qp(Π) (Lemma 6.3.3).

Let us start with establishing the first step:

Lemma 6.3.1. Consider LHO(a, b, c | d) with an arm module M generated
by a, b, c. Then there exists a concatenation of a finite number of Schiffer
variations that connects this octopus to a LHO with an arm submodule M ′

such that M ′ = M + ψ with ψ = a∗ where a∗ is defined as Ker(a∗) = a.
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Figure 6.10: Graphical proof of Lemma 6.3.1.

Proof. Since the octopus has a large head, let us perform a Schiffer variation
along the head d and the opposite arm c which will result in butterflies with
marking B(a, c|d − c, b + c). Consider the cases below - for graphical proof,
see Figure 6.10:

1. First, let us consider the case when p(d)− p(c) < p(b) + p(c). It follows
that we can perform a Schiffer variation along d − c and b + c which
will result in an octopus with a marking O(b+ 2c− d, a, d− c | d).

2. Consider the case p(d) − p(c) = p(b) + p(c); since p(d) − p(c) > p(a),
perform a Schiffer variation along a and d− cwhich results inB(a, b+
c | d− c− a, c+ a). Now p(d)− p(c)− p(a) < p(b) + p(c) and so we can
go to an octopus O(b+ 2c+ a− d, a, d− c− a | d).
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3. Now consider that p(d) − p(c) > p(b) + p(c). Let us perform k Schif-
fer variations that will result in B(a, b + c | d − c − k × (b + c), c +
k × (b + c)) where k ∈ Z+ is such that 0 < p(d) − p(c) − k(p(b) +
p(c)) < p(b) + p(c). After this we can perform a Schiffer variation along
d − c − k × (b + c) and b + c, which will result in an octopus with a
marking O ((k + 1)× (b+ c) + c− d, a, d− c− k × (b+ c) | d).

The octopodes obtained in all three cases have large heads. Observe that
in all cases ψ = a∗. Let us check it in the first case; M ′ is generated by
{a, d−c, b+2c−d}. We see thatψ(a) = 0, ψ(b) = 1, ψ(c) = −1 and, therefore,
ψ = a∗. The other two cases are similar.

Two arm modulesM andM ′ are connected (denoted byM ′ ∼M ) if some
LHO with an arm module M and head d is connected to some LHO with
an arm module M ′ and head d. The connectedness of the set of arm mod-
ules implies that each octopus with arm module M is connected to each
octopus with an arm module M ′ as we showed in Proposition 6.2.10. In the
following lemma’s we will be connecting two arm modules which should be
understood as finding and connecting two representatives of each module.

Lemma 6.3.2. Let M,M ′ be arm modules of two large head octopodes and
M ′ = M + ψ. If pM (ψ∗) /∈ Q/Z then M ′ ∼M .

Proof. We need to construct an arm basis {a, b, c} of M which satisfies the
following three properties:

1. a mod π>− = ψ∗;

2. a · b = b · c = c · a = 1;

3. p(a), p(b), p(c) > 0;

By definition, M mod π<− = N . Taking for simplicity p(−π<−) = 1 we see
that pN : N → R/Z. Assume that pN (ψ∗) /∈ Q and consider the case when ψ∗

is primitive.

Select a0 = ψ∗ and a = a0 + kaπ
>
− such that p(a) > 0. By assumption, the

number p(a0) is irrational. Select an element b0 ∈ N such that a · b0 = 1
and select kb such that p(b0 + kbπ

>
−) > 0. Note that a · (b0 + kbπ

>
−) = 1 since

π>− · a = 0.
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If p(a) + p(b0 + kbπ
>
−) < 1 then we can uniquely choose the last element c

such that p(c) = 1−p(a)−p(b0 +kbπ
>
−). If p(a)+p(b0 +kbπ

>
−) > 1 introduce a

constant k̄b such that 0 < p(b0+kbπ
>
−+k̄ba0) < 1−p(a) (denote b0+kbπ

>
−+k̄ba0

by b). This is possible since p(a0) is irrational by assumption. Note that a·b =
1. Now the reasoning follows the case p(a) + p(b0 + kbπ

>
−) < 1.

By Lemma 6.3.1 we can connect the LHO with the arm module a, b, c that
we constructed above to a LHO with an arm module M ′ such that M ′ =
M + ψ = M + a∗ which concludes the proof for primitive ψ∗. If ψ∗ is not
primitive, we can connect M and M ′ = M + ψ in several similar steps, but
for this we require that p(ψ∗) is irrational.

Lemma 6.3.3. Any two arm modulesM andM ′ associated to the same pole
are connected if the image of the period map is not contained in the rational
space QΠ generated by the peripheral periods.

Proof. Assume that M ′ = M + ψ. If pM (ψ∗) /∈ Q/Z, then, by Lemma 6.3.2,
M is connected to M ′, and the proof is complete. If pM (ψ∗) ∈ Q/Z, we con-
struct an auxiliary arm module M ′′ such that M ∼M ′′ and M ′′ ∼M ′.
Note that the auxiliary arm module M ′′ is completely defined by ϕ where
M ′′ = M ′ + ϕ; in this case, M ′′ = M + ϕ+ ψ. It follows that we need to find
ϕ such that pN ′(ϕ∗) is irrational and pN (ϕ∗ + ψ∗) is irrational; then, by the
previous Lemma, M ∼M ′′ ∼M ′.

Fix a basis {x, y}ofH1(Σ1,Z): then, in this basis the elementϕ∗ ∈ H1(Σ1,Z)
is given by a pair (nxx, nyy), nx, ny ∈ Z. Then, pN (ϕ∗) = nxα + nyβ where
α = pN (x) ∈ R/Z, β = pN (y) ∈ R/Z, and by the assumptions of the lemma
α /∈ QΠ or β /∈ QΠ. By the linearity, pN ′(ϕ∗) = pN (ϕ) + ψ(ϕ∗)p(d). Note that
ψ(ϕ∗)p(d) ∈ Zp(d); so, pN ′(ϕ∗) /∈ (Q + Qp(d))/Z is equivalent to pN (ϕ∗) /∈
(Q + Qp(d))/Z. Additionally, take pN (ψ∗) = γ ∈ R/Z. Then, we need to find
nx, ny ∈ Z such that

pN (ϕ∗ + ψ∗) = nxα+ nyβ + γ /∈ (Q + Qp(d))/Z and

pN (ϕ∗) = nxα+ nyβ /∈ (Q + Qp(d))/Z.
Denote the space (Q+Qp(d))/Z byQ. Select arbitrary (n′x, n

′
y) ∈ Z2; if αnx+

βny /∈ Q we fix this selection (nx, ny) = (n′x, n
′
y). If αn′x + βn′y ∈ Q then

α(n′x + 1) + βn′y /∈ Q since either α /∈ Q or β /∈ Q, so, wlog, we assume it for
α. Then, we fix the selection (nx, ny) = (n′x + 1, n′y). If αnx + βny + γ /∈ Q
then we found (nx, ny) that satisfy the conditions above and we are done. If
αnx+βny+γ ∈ Qwe conclude thatα2nx+β2ny+γ /∈ Q becauseαnx+βny /∈
Q by construction. Then, (2nx, 2ny) satisfy the conditions above and we are
done.
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Lemma 6.3.3 sums up the proof of Theorem 6.1.4.

6.4 Appendix: connectivity of real isoperiodic sets in
ΩS1,2

In this Section we show that the level Per−1(p) is connected in ΩS1,2 if the
image of p is contained in R. A simple argument can be found in Section 3
of [18]; here, we present a lengthier geometrical argument which inspired
the geometrical proof of Theorem 6.1.4. Using the notation proposed in the
introduction we formulate the following proposition:

Proposition 6.4.1. The level Per−1(p) is connected in ΩS1,2 if the image of p
is real.

Consider a torus Σ1,2 equipped with a meromorphic differential ω having
two simple poles s+ and s−. Let us denote by X∗ the torus with punctures
at s+ and s− and consider a marking of X∗, i. e., a basis m ∈ H1(X∗,Z).
As X is compact, the sum of the residues around the poles is equal to zero
by the residue theorem. The basis m has three components a, b, c such that
a+b+c = π+, where π+ is a curve going around a marked "positive" pole s+

(the choice of a “positive” and a “negative” pole is included in the marking).

Let us equip the group H1(X∗,Z) with a standard intersection form (·)
such that a · b = b · c = c · a = 1. Then, it is easy to check that π+ belongs to
the kernel of the intersection form. Moreover, Ker(·) = Zπ+. Fix three real
numbers (α, β, γ) ∈ R3 as the real period coordinates and consider M(α,β,γ)

- the Torelli space of marked meromorphic differentials (X∗, ω, a, b, c) with

p(a) = α, p(b) = β, p(c) = γ.

Note that
ress+ = α+ β + γ 6= 0,

because s+ is a simple pole of ω (see Figure 6.11). Without loss of generality
we can assume that ress+ = 1 and ress− = −1. The form ω that has 2 poles
also has two zeroes by the Riemann-Roch theorem. Assume that Im(

∫ z1
z2
ω)

is not zero: let us perform the Schiffer variations until Im(
∫ z1
z2
ω) = 0. It can

happen that after this operation the two zeroes coincide forming a zero of
order two. In this case is easy to see that
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Figure 6.11: A marking on Σ1,2.

Lemma 6.4.2. A zero of order two of a meromorphic differential with two
poles on a torus has a unique topological type.

Proof. The proof is similar to the proof of Lemma 6.2.4, therefore, we pro-
vide a short version here. Each separatrix that leaves the double zero in a
real direction has to come back along a real direction. Therefore, we have to
consider the three different orders (up to rotation) in which the three outgo-
ing separatrices come back (see Figure 6.12). Note that cutting the surface
along the left and the right directions along separatrices decomposes the
surface Σ1,2 into a union of semi-infinite cylinders. Since the number of
poles is 2, the number of semi-infinite cylinders is aso 2. We see that the
types 1 and 2 on Figure 6.12 are therefre no possible; the only possible com-
binatorics is type 3 on Figure 6.12.

Let us fix a marking m = (a, b, c) of H1(Σ1,2,Z). Any other marking m′ =
(a′, b′, c′) differs from m = (a, b, c) by an automorphism of (H1(X∗,Z), ·, π+),
i. e., by a positively oriented automorphism of the first homology group pre-
serving the intersection form and both cycles π+ and π−. Therefore, the set
of markings is Aut(H1(X∗,Z), ·, π+).

Lemma 6.4.3. The family of automorphisms gives rise to a short exact se-
quence:

0→ Z2 → Aut(H1(X∗,Z), ·, π+)→ Aut(H1(X∗,Z)/Ker(·), ·)→ 0
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Figure 6.12: Possible combinatorics of a double zero on Σ1,2. Since the num-
ber of poles is 2, tyes 1 and 2 are not possible, and type 3 is the only possible
combinatorics.
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The group Ker(·) is a free Z-module of rank 2 over the set of markings and,
hence, its action is isomorphic to Z2. Therefore, Aut(H1(X∗,Z)/Ker(·), ·) is
isomorphic to the group SL(2,Z).

Proof. The sum of any triple of periods α′ + β′ + γ′ is fixed to be equal to
1 because of the normalization. As the intersection form is preserved and
its kernel is generated by π+, for any other marking (a′, b′, c′) it holds that
a′ = a+ qπ+, and b′ = b+ rπ+. Then, c′ is determined to be c− (q + r)π+ to
satisfy the sum condition. Therefore, any element in the kernel of the action
of Ker(·) on the markings is determined by a pair of integers q, r. Vice verca,
any q, r ∈ Z define an element f(q,r) ∈ Ker2(·) that sends a triple (a, b, c) to a
triple (a+ qπ+, b+ rπ+, c− (q+ r)π+). The defined map is an isomorphism.
Therefore, the action of Ker(·) on the set of markings is isomorphic to Z2. It
follows that a group of automorphisms Aut(H1(X∗,Z)/Ker(·), ·) is isomor-
phic to SL(2,Z). It acts as a matrix on the first two entries a and b of the
marking; the third entry is defined via the sum condition.

Lemma 6.4.4. Let us call a marking (a′, b′, c′) positive if p(a), p(b), p(c) > 0
and their sum is equal to 1. There is a bijection between the set of positive
markings and a group PSL(2,Z)/Z3. Since the Cayley graph of PSL(2,Z)/Z3

with generators z → ±1 and z → z
z+1 is connected we conclude that the

isoperiodic foliation is also connected.

We start the proof by claiming that there is a bijection between the set of
the surfaces with a double zero and the positive markings up to a cyclic per-
mutation. Indeed, every meromorphic differential ω with two simple poles
and a double zero on a torus injectively corresponds to a positive marking
(without loss of generality, we can assume that the periods are positive for
every meromorphic differential).

To prove the second inclusion, let us construct a 1-form ω given a positive
marking (α′, β′, γ′). The marking determines the three loops at the double
zero and their ordering. Therefore, it determines π+ and π− in the neigh-
borhood of the loops. Take two semi-infinite cylinders C1 and C2 both with
the circular circumference of length 1. Glue the circular boundary of C1 to
π+ and the circular boundary of C2 to π−. The resulting surface is a torus
with two poles and marking (α′, β′, γ′). We conclude the bijection between
the set of positive markings and a factor of PSL(2,Z) with respect to Z3.

Fix a marking (a, b, c) in H1(X∗/Ker(·), ·) and act on it with PSL(2,Z). We
claim that in each fiber of this action there is a unique positive marking. Let
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(a′, b′, c′) be an image of (a, b, c) under an action of an element of PSL(2,Z).
Pass to a triple of lengths (α′, β′, γ′) and take their positive fractional parts,
arriving to a triple ([α′], [β′], [γ′]) (since π+ = 1 is in Ker(·)). It is clear that the
sum of the fractional parts is an integer; therefore, it is either 1 or 2. If it is 1,
then this marking is positive and it satisfies the sum condition; therefore, it
belongs to the image of PSL(2,Z). If the sum is 2, take ([α′]−1, [β′]−1, [γ′]−
1). For PSL(2,Z) it is equivalent to (1 − [α′], 1 − [β′], 1 − [γ′]), which is then
a positive marking satisfying the sum condition; therefore, it belongs to the
image of PSL(2,Z). Vice versa, every positive marking lies in the image of
PSL(2,Z) due to the short exact sequence.

Let us construct a graphG representing the surfaces for which Im(
∫ z1
z2
ω) =

0. This graph is a retraction of the Torelli space to the subspace given by the
condition Im(

∫ z1
z2
ω) = 0. The vertices of the graph are the surfaces hav-

ing a double zero. Two vertices are connected with an edge if one can be
transformed into another using the Schiffer variation in one step keeping
the condition Im(

∫ z1
z2
ω) = 0. Next step is to show that each vertex of the

graph belongs to three edges.

Indeed, without loss of generality, assume that α < β < γ. Then, to con-
serve the positivity of the triple, one can only obtain three other triples with
a single Schiffer variation, namely, (α, β − α, γ + α), (α, β + α, γ − α), and
(α+β, β, γ−β). The corresponding markings are (a, b−a, c+a), (a, b+a, c−a),
and (a + b, b, c − b). As the transformations are reversible, the graph is not
oriented. It follows that the graph G is a three-valent graph; moreover, we
continue to show that there is a bijection between its set of vertices and
PSL(2,Z)/Z3. We show that the graph G is connected; therefore, the corre-
sponding isoperiodic set is also connected.

To see it, take a standard fundamental domain of PSL(2,Z) on the upper
half plane. Acting on it with PSL(2,Z) we cover the whole upper half plane
with the images of the standard fundamental domain. Consider the bound-
ary of this covering as a graph G′ ignoring the edges that go to infinity on
the upper half-plane (i.e., vertical edges going upwards to infinity and the
edges reaching the bottom line).

Take a point eiπ/3 which is a vertex of G′. It is easy to see that the three
vertices connected to eiπ/3 are the images of eiπ/3 under the transformations
z → ±1 and z → z

z+1 . As the graph G′ is transitive with respect to the group
PSL(2,Z), this holds for every vertex and its three neighbours. However, the
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Figure 6.13: Fundamental domains of PSL(2,Z) covering the upper half
plane

same thing holds for the graph G: as the order in the triple is not relevant,
reorder it so that α < β < γ. Then, the allowed moves from the triple (a, b, c)
are: (a, b − a, c + a), (a, b + a, c − a), (a + b, b, c − b). If we restrict ourselves
to the first two entries, we have (a, b)→ (a, b+ a), (a, b− a), (a+ b, b), which,
in PSL(2,Z) correspond to z → ±1 and z → z

z+1 . Therefore, G′ and G are
the same graph. As G′ is connected, so is G. This concludes the proof of the
connectivity of the isoperiodic foliation of Σ1,2.



Bibliography

[1] Elizaveta Arzhakova, Douglas Lind, Klaus Schmidt, and Evegeny Ver-
bitskiy, Decimation limits of principal algebraic Zd - actions, Preprint
(2021).

[2] Jon Aaronson and Manfred Denker, Local limit theorems for par-
tial sums of stationary sequences generated by Gibbs–Markov maps,
Stochastics and Dynamics 1 (2001), no. 02, 193–237.

[3] Lars Ahlfors, The complex analytic structure of the space of closed Rie-
mann surfaces, Princeton University Press, 2015.

[4] Luca Avena and Alexandre Gaudilliere, A proof of the transfer-current
theorem in absence of reversibility, Statistics & Probability Letters 142
(2018), 17–22.

[5] Michael Francis Atiyah and Ian Grant Macdonald, Introduction to
commutative algebra, CRC Press, 2018.

[6] Gerald Beer, A natural topology for upper semicontinuous functions
and a Baire category dual for convergence in measure, Pacific J. Math.
96 (1981), no. 2, 251–263. MR637972

[7] Jean Berstel and Maurice Mignotte, Deux propriétés décidables des
suites récurrentes linéaires, Bull. Soc. Math. France 104 (1976), no. 2,
175–184 (French). MR414475

[8] Lipman Bers, Spaces of Riemann surfaces as bounded domains, Bul-
letin of the American Mathematical Society 66 (1960), no. 2, 98–103.

[9] Alexander Bobenko, Introduction to compact Riemann surfaces,
Springer, 2011.

[10] Stéphane Le Borgne, Limit theorems for non-hyperbolic automor-
phisms of the torus, Israel Journal of Mathematics 109 (1999), no. 1,
61–73.

[11] David W. Boyd, Uniform approximation to Mahler’s measure in sev-
eral variables, Canad. Math. Bull. 41 (1998), no. 1, 125–128, DOI
10.4153/CMB-1998-019-6. MR1618904

155



156 Chapter 6. Connectivity of real isoperiodic sets on a torus with 3 poles

[12] Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Spe-
cial invited paper: uniform spanning forests, Annals of probability
(2001), 1–65.

[13] Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer.
Math. Soc. 349 (1997), no. 1, 55–102, DOI 10.1090/S0002-9947-97-
01634-6. MR1355295

[14] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov dif-
feomorphisms, Springer Lecture Notes in Math 470 (1975), 78–104.

[15] Stéphane Le Borgne and Françoise Pène, Vitesse dans le théorème
limite central pour certains systèmes dynamiques quasi-hyperboliques,
Bulletin de la Société Mathématique de France 133 (2005), no. 3, 395–
417.

[16] Robert Burton and Robin Pemantle, Local characteristics, entropy and
limit theorems for spanning trees and domino tilings via transfer-
impedances, The Annals of Probability (1993), 1329–1371.

[17] Gabriel Calsamiglia, Bertrand Deroin, and Stefano Francaviglia, A
transfer principle: from periods to isoperiodic foliations, arXiv preprint
arXiv:1511.07635 (2015).

[18] Gabriel Calsamiglia and Bertrand Deroin, Isoperiodic meromorphic
forms: two simple poles, arXiv:2109.01796 (2021).

[19] Claude Chabauty, Limite d’ensembles et géométrie des nombres, Bull.
Soc. Math. France 78 (1950), 143–151 (French). MR38983

[20] Keith Conrad, Galois descent, https://kconrad.math.uconn.edu/
blurbs/galoistheory/galoisdescent.pdf.

[21] Yves Cornulier, On the Chabauty space of locally compact abelian
groups, Algebr. Geom. Topol. 11 (2011), no. 4, 2007–2035, DOI
10.2140/agt.2011.11.2007. MR2826931

[22] Henry Cohn, Richard Kenyon, and James Propp, A variational princi-
ple for domino tilings, J. Amer. Math. Soc. 14 (2001), no. 2, 297–346.

[23] Jérôme Dedecker, Florence Merlevède, and Françoise Pene, Rates in
the strong invariance principle for ergodic automorphisms of the torus,
Stochastics and Dynamics 14 (2014), no. 02, 1350021.

[24] Deepak Dhar, Theoretical studies of self-organized criticality, Physica
A: Statistical Mechanics and its Applications 369 (2006), no. 1, 29–70.

[25] Vesselin Dimitrov, Convergence to the Mahler measure and the dis-
tribution of periodic points for algebraic Noetherian Zd-actions, arXiv
1611.04664 (2016).



6.4. Appendix: connectivity of real isoperiodic sets in ΩS1,2 157

[26] Dmitry Dolgopyat, Limit theorems for partially hyperbolic systems,
Transactions of the American Mathematical Society 356 (2004), no. 4,
1637–1689.

[27] Simon Donaldson, Riemann surfaces, Oxford University Press, 2011.

[28] Michael Drmota and Robert F. Tichy, Sequences, discrepancies and ap-
plications, Springer, 2006.

[29] Dominique Duval, Absolute factorization of polynomials: a geo-
metric approach, SIAM J. Comput. 20 (1991), no. 1, 1–21, DOI
10.1137/0220001. MR1082133

[30] Freeman J. Dyson, Statistical theory of the energy levels of complex sys-
tems. I, Journal of Mathematical Physics 3 (1962), no. 1, 140–156.

[31] Manfred Einsiedler, Douglas Lind, Richard Miles, and Thomas
Ward, Expansive subdynamics for algebraic Zd-actions, Er-
godic Theory Dynam. Systems 21 (2001), no. 6, 1695–1729, DOI
10.1017/S014338570100181X. MR1869066

[32] Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas
Ward, Recurrence sequences, Mathematical Surveys and Monographs,
vol. 104, American Mathematical Society, Providence, RI, 2003.
MR1990179

[33] Gabor Elek and Gabor Tardos, On roughly transitive amenable graphs
and harmonic Dirichlet functions, Proceedings of the American Math-
ematical Society (2000), 2479–2485.

[34] Ilya Itenberg and Grigory Mikhalkin, Geometry in the tropical limit,
Math. Semesterber. 59 (2012), no. 1, 57–73.

[35] Shuhong Gao, Absolute irreducibility of polynomials via New-
ton polytopes, J. Algebra 237 (2001), no. 2, 501–520, DOI
10.1006/jabr.2000.8586. MR1816701

[36] Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky, Dis-
criminants, resultants, and multidimensional determinants, Mathe-
matics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA,
1994. MR1264417

[37] Aleksandr O. Gelfond, Transcendental and algebraic numbers, Dover,
New York, 1960.

[38] Jean Ginibre, Statistical ensembles of complex, quaternion, and real
matrices, Journal of Mathematical Physics 6 (1965), no. 3, 440–449.

[39] Vadim Gorin, Lectures on random lozenge tilings, Cambridge Univ.
Press, to appear.

[40] Mikhail Gordin, The central limit theorem for stationary processes,
Doklady Akademii Nauk, 1969, pp. 739–741.



158 Chapter 6. Connectivity of real isoperiodic sets on a torus with 3 poles

[41] , A homoclinic version of the central limit theorem, Journal of
Mathematical Sciences 68 (1994), no. 4, 451–458.

[42] , Double Extensions of Dynamical Systems and Construction of
Mixing Filtrations. II. Quasihyperbolic Toral Automorphisms, Journal
of Mathematical Sciences 109 (2002), no. 6, 2103–2114.

[43] Mikhail Gordin and Michel Weber, On the Almost Sure Central Limit
Theorem for a Class of Z d-Actions, Journal of Theoretical Probability
15 (2002), no. 2, 477–501.

[44] Alexander Gorodnik and Ralf Spatzier, Exponential mixing of nilman-
ifold automorphisms, Journal d’Analyse Mathématique 123 (2014),
no. 1, 355–396.

[45] Sébastien Gouëzel, Stable laws for the doubling map, preprint (2008).

[46] Paul R. Halmos, On automorphisms of compact groups, Bull. Amer.
Math. Soc. 49 (1943), 619–624, DOI 10.1090/S0002-9904-1943-07995-
5. MR0008647

[47] Brian C. Hall, Quantum theory for mathematicians, Vol. 267, Springer,
2013.

[48] Ursula Hamenstädt, Ergodicity of the absolute period foliation, Israel
Journal of Mathematics 225 (2018), no. 2, 661–680.

[49] Olli Hella, Juho Leppänen, and Mikko Stenlund, Stein’s method of nor-
mal approximation for dynamical systems, Stochastics and Dynamics
20 (2020), no. 04, 2050021.

[50] John Hubbard and Ibrahim Pourezza, The space of closed sub-
groups of R2, Topology 18 (1979), no. 2, 143–146, DOI 10.1016/0040-
9383(79)90032-6. MR544155

[51] Ildar A. Ibragimov, Some limit theorems for stationary processes, The-
ory of Probability & Its Applications 7 (1962), no. 4, 349–382.

[52] Anatole Katok, Svetlana Katok, and Klaus Schmidt, Rigidity of mea-
surable structure for Zd-actions by automorphisms of a torus, Com-
ment. Math. Helv. 77 (2002), no. 4, 718–745, DOI 10.1007/PL00012439.
MR1949111

[53] Piet W. Kasteleyn, Dimer statistics and phase transitions, J. Mathemat-
ical Phys. 4 (1963), 287–293.

[54] Yitzhak Katzenlson, Ergodic automorphisms of T n are Bernoulli shifts,
Israel Journal of Mathematics 10 (1971), no. 2, 186–195.

[55] Richard Kenyon, Andrei Okounkov, and Scott Sheffield, Dimers and
amoebae, Ann. of Math. (2) 163 (2006), no. 3, 1019–1056, DOI
10.4007/annals.2006.163.1019. MR2215138



6.4. Appendix: connectivity of real isoperiodic sets in ΩS1,2 159

[56] Richard Kenyon, An introduction to the dimer model, arXiv preprint
math/0310326 (2003).

[57] Achim Klenke, The random spanning tree on ladder-like graphs, arXiv
preprint arXiv:1704.00182 (2017).

[58] Andrei N. Kolmogorov, A new metric invariant of transient dynami-
cal systems and automorphisms in Lebesgue spaces, Doklady Akademii
Nauk, 1958, pp. 861–864.

[59] Igor Krichever, Sergei Lando, and Alexandra Skripchenko, Real-
normalized differentials with a single order 2 pole, Letters in Mathe-
matical Physics 111 (2021), no. 2, 1–19.

[60] Lauwerens Kuipers and Harald Niederreiter, Uniform distribution of
sequences, Courier Corporation, 2012.

[61] François Ledrappier, Un champ markovien peut être d’entropie nulle
et mélangeant, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A561–
A563 (French, with English summary). MR512106

[62] V. P. Leonov, On the central limit theorem for ergodic endomor-
phisms of compact commutative groups, Doklady Akademii Nauk,
1960, pp. 258–261.

[63] Douglas Lind, Dynamical properties of quasihyperbolic toral automor-
phisms, Ergodic Theory and Dynamical Systems 2 (1982), no. 1, 49–68.

[64] Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and en-
tropy for commuting automorphisms of compact groups, Invent. Math.
101 (1990), no. 3, 593–629. MR1062797

[65] Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy, Homoclinic
points, atoral polynomials, and periodic points of algebraic Zd-actions,
Ergodic Theory Dynam. Systems 33 (2013), no. 4, 1060–1081.

[66] Douglas Lind and Klaus Schmidt, Homoclinic points of algebraic Zd-
actions, Journal of the American Mathematical Society 12 (1999),
no. 4, 953–980.

[67] Elon Lindenstrauss and K Schmidt, Symbolic representations of non-
expansive group automorphisms, Israel Journal of Mathematics 149
(2005), no. 1, 227–266.

[68] Carlangelo Liverani, Statistical properties of uniformly hyper-
bolic maps and transfer operators’ spectrum, arXiv preprint
arXiv:1810.05924 (2018).

[69] R. M. Loynes, The central limit theorem for backwards martingales,
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 13
(1969), no. 1, 1–8.



160 Chapter 6. Connectivity of real isoperiodic sets on a torus with 3 poles

[70] Johannes Lundqvist, An explicit calculation of the Ronkin function,
Ann. Fac. Sci. Toulouse Math. (6) 24 (2015), no. 2, 227–250, DOI
10.5802/afst.1447 (English, with English and French summaries).
MR3358612

[71] Russell Lyons and Yuval Peres, Probability on trees and networks,
Vol. 42, Cambridge University Press, 2017.

[72] Russell and Steif Lyons Jeffrey E, Stationary determinantal processes:
phase multiplicity, Bernoullicity, entropy, and domination, Duke
Mathematical Journal 120 (2003), no. 3, 515–575.

[73] Russell Lyons, Determinantal probability measures, Publications
Mathématiques de l’IHÉS 98 (2003), 167–212.

[74] Diane Maclagan and Bernd Sturmfels, Introduction to tropical geome-
try, Graduate Studies in Mathematics, vol. 161, American Mathemati-
cal Society, Providence, RI, 2015. MR3287221

[75] Arturo Magidin and David McKinnon, Gauss’s lemma for num-
ber fields, Amer. Math. Monthly 112 (2005), no. 5, 385–416, DOI
10.2307/30037491. MR2139573

[76] K. Mahler, On lattice points in n-dimensional star bodies. I. Existence
theorems, Proc. Roy. Soc. London Ser. A 187 (1946), 151–187, DOI
10.1098/rspa.1946.0072. MR17753

[77] , On some inequalities for polynomials in several variables, J.
London Math. Soc. 37 (1962), 341–344, DOI 10.1112/jlms/s1-37.1.341.
MR0138593

[78] Vincent Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en
droites intégrables, Mém. Soc. Math. Fr. (N.S.) 80 (2000), vi+129, DOI
10.24033/msmf.393 (French, with English and French summaries).
MR1775582

[79] Odile Macchi, The coincidence approach to stochastic point processes,
Advances in Applied Probability 7 (1975), no. 1, 83–122.

[80] Howard Masur and John Smillie, Hausdorff dimension of sets of non-
ergodic measured foliations, Annals of Mathematics 134 (1991), no. 3,
455–543.

[81] Curtis T. McMullen, Moduli spaces of isoperiodic forms on Riemann
surfaces, Duke Mathematical Journal 163 (2014), no. 12, 2271–2323.

[82] Florence Merlevàde and Magda Peligrad, The functional central limit
theorem under the strong mixing condition, The Annals of Probability
28 (2000), no. 3, 1336–1352.

[83] Grigory Mikhalkin, Amoebas of algebraic varieties and tropical geom-
etry, Different faces of geometry, 2004, pp. 257–300.



6.4. Appendix: connectivity of real isoperiodic sets in ΩS1,2 161

[84] Sergey V. Nagaev, Some limit theorems for stationary Markov chains,
Theory of Probability & Its Applications 2 (1957), no. 4, 378–406.

[85] Sergei P. Novikov, The Hamiltonian formalism and a many-valued
analogue of Morse theory, Uspekhi Matematicheskikh Nauk 37 (1982),
no. 5, 3–49.

[86] Andrei Okounkov, Limit shapes, real and imagined, Bull. Amer.
Math. Soc. (N.S.) 53 (2016), no. 2, 187–216, DOI 10.1090/bull/1512.
MR3474306

[87] Richard Kenyon and Andrei Okounkov, Planar dimers and Harnack
curves, Duke Math. J. 131 (2006), no. 3, 499–524.

[88] Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère mea-
sures, and triangulations of the Newton polytope, Duke Math. J.
121 (2004), no. 3, 481–507, DOI 10.1215/S0012-7094-04-12134-7.
MR2040284

[89] Robin Pemantle, Choosing a spanning tree for the integer lattice uni-
formly, The Annals of Probability (1991), 1559–1574.

[90] Françoise Pène, Averaging method for differential equations perturbed
by dynamical systems, ESAIM: Probability and Statistics 6 (2002), 33–
88.

[91] , Rate of convergence in the multidimensional central limit the-
orem for stationary processes. Application to the Knudsen gas and to
the Sinai billiard, The Annals of Applied Probability 15 (2005), no. 4,
2331–2392.

[92] Kevin Purbhoo, A Nullstellensatz for amoebas, Duke Math. J. 141
(2008), no. 3, 407–445, DOI 10.1215/00127094-2007-001. MR2387427

[93] Richard Kenyon, James G Propp, and David B Wilson, Trees and
matchings, arXiv preprint math/9903025 (1999).

[94] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series,
No. 28, Princeton University Press, Princeton, N.J., 1970. MR0274683

[95] L. I. Ronkin, On zeros of almost periodic functions generated by func-
tions holomorphic in a multicircular domain, Complex analysis in
modern mathematics (Russian), FAZIS, Moscow, 2001, pp. 239–251
(Russian). MR1833516

[96] Klaus Friedrich Roth, Rational approximations to algebraic numbers,
Mathematika 2 (1955), no. 1, 1–20.

[97] Murray Rosenblatt, A central limit theorem and a strong mixing condi-
tion, Proceedings of the National Academy of Sciences of the United
States of America 42 (1956), no. 1, 43.



162 Chapter 6. Connectivity of real isoperiodic sets on a torus with 3 poles

[98] Klaus Schmidt, Dynamical systems of algebraic origin, Progress in
Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR1345152

[99] Klaus Schmidt and Evgeny Verbitskiy, Abelian sandpiles and the har-
monic model, Communications in Mathematical Physics 292 (2009),
no. 3, 721–759.

[100] , New directions in algebraic dynamical systems, Regular and
Chaotic Dynamics 16 (2011), no. 1, 79–89.

[101] Theodor Schneider, Einführung in die transzendenten Zahlen, Vol. 81,
Springer, 1957.

[102] Martin Schlichenmaier, An introduction to Riemann surfaces, alge-
braic curves and moduli spaces, Springer Science & Business Media,
2010.

[103] Menahem Schiffer and Donald Clayton Spencer, Functionals of finite
Riemann surfaces, Princeton University Press, 2015.

[104] Yakov G. Sinai, On the notion of entropy of a dynamical system, Dok-
lady of Russian Academy of Sciences, 1959, pp. 768–771.

[105] C. J. Smyth, On measures of polynomials in several vari-
ables, Bull. Austral. Math. Soc. 23 (1981), no. 1, 49–63, DOI
10.1017/S0004972700006894. MR615132

[106] , A Kronecker-type theorem for complex polynomials in sev-
eral variables, Canad. Math. Bull. 24 (1981), no. 4, 447–452, DOI
10.4153/CMB-1981-068-8. MR644534

[107] H. N. V. Temperley, Combinatorics: Proceedings of the British Combi-
natorial Conference 1973. 202-204 (1974).

[108] Anton Zorich, Flat surfaces, arXiv preprint math/0609392 (2006).



Samenvatting

Deze scriptie omschrijft het limietgedrag van dynamische systemen zoals
deze voorkomen in verscheidene wiskundige deelgebieden, zoals algebra,
meetkunde en kansrekening.

Objecten in de wereld om ons heen bestaan uit een gegeven aantal deeltjes
die onderling interageren. Dit wordt op een natuurlijke manier omschreven
als een dynamisch systeem. Soms is het aantal deeltjes zodanig dat het
redelijk is om aan te nemen dat het er oneindig veel zijn. Zulke oneindige
systemen kunnen worden omschreven door ze te benaderen met een reeks
dynamische systemen met een eindig veel en toenemend aantal deeltjes.
Het is niet noodzakelijk makkelijk om de eindige systemen te omschrijven.
Een bekend voorbeeld is het n-lichamen probleem, dat voor n > 2 geen
gesloten vorm oplossingen heeft. Maar in sommige situaties is het mogelijk
om het zogenaamde limietgedrag, dat wil zeggen, eigenschappen van het
oneindige systeem te bepalen met behulp van deze reeks van eindige dy-
namische systemen.

In hoofdstukken twee en drie onderzoeken we het limietgedrag van de
coefficienten van gedecimeerde Laurent polynomen. Het is bekend dat de
schaallimiet bestaat voor de karakteristieke polynomen van Dimer modelen.
Het bewijs van het bestaan van deze limiet hangt af van de eigenschappen
van het Dimer model. Daarom kunnen ze niet zondermeer gegeneraliseerd
worden naar andere systemen. In hoofdstuk twee bespreken we het bewijs
van het bestaan van een convexe romp van de geschaalde coefficienten van
de gedecimeerde Laurent polynoom. Analoog aan de schaallimiet van het
Dimer model wordt deze convexe romp gegeven door de Legendre trans-
formatie van de Ronkin functie van deze polynoom. Hoofdstuk drie her-
haalt dit resultaat met een alternatief bewijs en leidt de implicaties af voor
gedecimeerde voornaamste algebraische acties.

In hoofdstuk vier bestuderen we het determinante puntproces horend bij
uniform opspannende bossen op Zd-periodieke grafen. Het voornaamste
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resultaat in het hoofdstuk is een expliciete uitdrukking van de kansmaat
geassocieerd met het uniforme opspannende bos DPP op Zd-periodieke
grafen. Het bestaan van een dergelijke maat is aangetoond in [12] als de
limiet van een reeks van maten op eindige grafen. Het is opmerkelijk dat
de limietmaat hangt af van de randvoorwaarden en deze maat is daardoor
niet noodzakelijk uniek. De grafen die worden bestudeerd in dit hoofdstuk
daarentegen hebben wel een unieke limietmaat waarvoor een expliciete uit-
drukking is afgeleid, waarbij slechts de fundamentele domeinen van de Zd-
periodieke graaf zijn gebruikt. Het is een open vraag of dezelfde aanpak ge-
bruikt kan worden voor de Cayleygrafen van groepen anders dan Zd, zoals
bijvoorbeeld de Heisenberggroep.

In hoofdstuk vijf bestuderen we de snelheid van convergentie in de Cen-
trale Limiet Stelling voor ergodische torische automorfismen. De resultaten
zijn beschikbaar voor een subklasse van ergodische torische automorfis-
men, namelijk de hyperbolische torische automorfismen. Spectrumeigen-
schappen van niet-hyperbolische torische automorfismen zijn zwakker dan
voor de hyperbolische torische automorfismen. Daardoor kunnen de bekende
methodes niet worden toegpast voor de studie van de snelheid van conver-
gentie van algemene ergodische torische automorfismen. In hoofdstuk vijf
bewijzen we een centrale limietstelling voor Ergdoische torische automor-
fismen met behulp van de Steinmethode, zoals in [49]. De twee voordelen
van deze methode zijn als volgt: In de eerste plaats geeft het op natuurlijke
wijze een grens voor de snelheid van convergentie. Als tweede gebruikt het
de mixeigenschappen van automorfismen (ergodische torische automorfis-
men zijn exponentieel mixend voor Hölder observabelen) in plaats van de
spectrumeigenschappen.

Hoofdstuk zes focust op het meetkundige probleem van de studie van
isoperiodieke foliaties in de Torelliruimte van Riemannoppervlakken. Voor
holomorfe differentialen zijn veel eigenschappen van de isoperiodieke fo-
liaties bekend, zoals bijvoorbeeld ergodiciteit en of de vezels verbonden
zijn. De studie van meromorfe differentialen daarentegen is veel gefrag-
menteerder. De verbondenheid is alleen bekend in het geval van twee polen
met een willekeurige genus. In hoofdstuk zes bewijzen we dat elke vezel van
de reële isoperiodieke foliaties is verbonden (onder milde voorwaarden) in
de Torelliruimte van Riemannoppervlakken van genus één met drie sim-
pele polen. Dit geval is informatief om twee redenen: In de eerste plaats is
het moeilijker dan een geval met meer polen, omdat de degeneratie tech-
niek niet kan worden toegepast. De tweede reden is dat het geval van genus
één met drie polen kan dienen als een basis voor de inductie van een al-
gemenere uitspraak.
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