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ABSTRACT

Recent claims of observational evidence for self-interacting dark matter (SIDM)
have relied on a semi-analytic method for predicting the density profiles of galax-
ies and galaxy clusters containing SIDM. We present a thorough description of this
method, known as isothermal Jeans modelling, and then test it with a large ensemble
of haloes taken from cosmological simulations. Our simulations were run with cold
and collisionless dark matter (CDM) as well as two different SIDM models, all with
dark matter only variants as well as versions including baryons and relevant galaxy
formation physics. Using a mix of different box sizes and resolutions, we study haloes
with masses ranging from 3 × 1010 to 3 × 1015 M�. Overall, we find that the isother-
mal Jeans model provides as accurate a description of simulated SIDM density profiles
as the Navarro-Frenk-White profile does of CDM halos. We can use the model predic-
tions, compared with the simulated density profiles, to determine the input DM-DM
scattering cross-sections used to run the simulations. This works especially well for
large cross-sections, while with CDM our results tend to favour non-zero (albeit fairly
small) cross-sections, driven by a bias against small cross-sections inherent to our
adopted method of sampling the model parameter space. The model works across the
whole halo mass range we study, although including baryons leads to DM profiles of
intermediate-mass (1012 − 1013 M�) haloes that do not depend strongly on the SIDM
cross-section. The tightest constraints will therefore come from lower and higher mass
haloes: dwarf galaxies and galaxy clusters.
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1 INTRODUCTION

Uncovering the nature of dark matter (DM) is one of the
major goals of science in the 21st century. The standard
cosmological model, Λ-Cold Dark Matter (CDM), assumes
that DM particles are collisionless, which is to say that the
only DM interactions relevant for structure formation are
gravitational. Self-interacting dark matter (SIDM) is an in-
teresting alternative to CDM where DM particles can scatter
with one another at astrophysically important rates. In re-
gions of high density, primarily towards the centre of DM
haloes, these interactions can transport heat through the
DM halo, altering the halo structure.

SIDM was originally invoked in an astrophysical con-
text as a way to address discrepancies between both the

? e-mail: andrew.robertson@durham.ac.uk

number and internal structure of observed dwarf galaxies,
when compared with DM-only ΛCDM simulations (Spergel
& Steinhardt 2000). Since then, it has become apparent that
the inclusion of baryons into simulations can bring ΛCDM
predictions into better agreement with observations (e.g.
Brooks & Zolotov 2014; Sawala et al. 2016; Zhu et al. 2016;
Brooks et al. 2017). Nevertheless, SIDM remains interesting
because it is a viable alternative to CDM that can be tested
with astrophysical observations (for a review see Tulin & Yu
2018), and because it provides a potential solution to the
observed diversity of galaxy rotation curves (Kamada et al.
2017; Creasey et al. 2017; Ren et al. 2019; Kahlhoefer et al.
2019; Sameie et al. 2020, though see Santos-Santos et al.
2020) and the anti-correlation between Milky Way satellites’
pericentric distances and their central densities (Kaplinghat
et al. 2019; Correa 2020).

Attempts to measure or constrain the SIDM cross-
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2 A. Robertson et al.

section typically rely on either comparing the results of
SIDM simulations directly with observations (e.g. Peter
et al. 2013; Kahlhoefer et al. 2014; Elbert et al. 2015; Vogels-
berger et al. 2016; Robertson et al. 2017a; Kim et al. 2017;
Brinckmann et al. 2018; Sameie et al. 2018; Robles et al.
2019; Banerjee et al. 2020; Nadler et al. 2020; Vega-Ferrero
et al. 2020) or use a semi-analytical model that can predict
the effects of different SIDM cross-sections on the density
profiles of DM haloes (Kaplinghat et al. 2014b, 2016; Ka-
mada et al. 2017; Valli & Yu 2018; Ren et al. 2019; Kapling-
hat et al. 2020; Sagunski et al. 2020). While simulations have
been used to place upper-limits on the allowed SIDM cross-
section (e.g. Meneghetti et al. 2001; Randall et al. 2008;
Rocha et al. 2013; Zavala et al. 2013; Harvey et al. 2019;
Robertson et al. 2019), positive evidence for a non-zero
cross-section has typically come from this semi-analytical
model. This model has various advantages over direct com-
parison with simulations, including that its low computa-
tional cost allows a scan over SIDM parameter space, and
that it can model specific systems – with the baryon distri-
bution inferred for an observed system, and the effects this
has on the SIDM density profile, included by construction.

Evidence for a large DM–DM scattering cross-section
would rule out many popular DM candidates, and would
therefore alter the most promising regions of DM parame-
ter space at which to target direct and indirect detection
experiments (Zentner 2009; Kaplinghat et al. 2014a; Boddy
et al. 2014; Kouvaris et al. 2015; Del Nobile et al. 2015).
This makes it crucially important to assess the efficacy of
this semi-analytic model for SIDM density profiles.

The principal idea behind the semi-analytic model for
SIDM density profiles is that in the inner regions of an
SIDM halo, where the scattering rate is highest, DM self-
interactions can keep the DM in thermal equilibrium. This
means that the DM temperature (i.e. velocity dispersion)
will be constant throughout the inner halo (Kaplinghat et al.
2014b), which is why we refer to the method as “isothermal
Jeans modelling”, with Jeans reflecting the fact that the
density profile in the isothermal region satisfies the Jeans
equation. At large radii, the densities are substantially lower,
leading to negligible rates of DM–DM scattering. The DM
in the outskirts of the halo should therefore be unaffected by
self-interactions and should be distributed as it would have
been with CDM. The model assumes that there is a radius
at which the behaviour abruptly transitions from collisional
(i.e. isothermal) to fully collisionless, and that the role of
the SIDM cross-section is to set this transition radius.

While this abrupt change in behaviour is clearly not
exactly how SIDM affects a real halo, the density profiles
predicted when making this assumption seem to agree well
with those from N -body simulations with SIDM (see the
supplemental material of Ren et al. 2019). However, this
sort of comparison has only been done for a limited number
of haloes, and – in all but a couple of cases (Robertson et al.
2018; Sagunski et al. 2020) – has been done with DM-only
simulations. The model has also been criticised on the basis
that a number of the assumptions it makes (i.e. isotropic
orbits in the isothermal region, and conservation of mass
within the isothermal region) are not precisely borne out by
SIDM simulations (Sokolenko et al. 2018).

In this paper we address the question of how well the
isothermal Jeans model describes the spherically-averaged

density profiles of haloes taken from cosmological SIDM
simulations, both DM-only and from simulations including
baryons. Given that this model has been applied to observed
systems across a wide range of mass scales, we take sim-
ulated haloes over five orders of magnitude in halo mass,
ranging from dwarf galaxies to galaxy clusters. This is done
by extracting haloes from simulations run with different box
sizes and resolutions. We focus our attention on how well the
isothermal Jeans model works in theory, rather than how
well it works when applied to observational data. To this
end, we compare its predicted density profiles directly with
those of the simulated haloes, rather than generating the
relevant observables from the simulations (stellar kinemat-
ics, gas rotation curves, strong and/or weak gravitational
lensing, etc.) and fitting to those.

This paper is structured as follows. In Section 2 we pro-
vide an overview of the isothermal Jeans model, including
how to include the effects of baryons within the model. In
Section 3 we describe the various SIDM (and CDM) simula-
tions used throughout the paper, as well as how we extract
relevant quantities from the simulations. In Section 4 we
describe how we fit the isothermal Jeans model to the den-
sity profiles of individual simulated haloes, before presenting
the results of these fits to large ensembles of DM-only and
hydrodynamical haloes in Sections 5 and 6 respectively. In
Section 7 we discuss our results and provide an outlook on
the use of the isothermal Jeans model, giving our conclusions
in Section 8.

All simulated density profiles used in this paper are
taken from z = 0 snapshots. The different simulation suites
used in this paper assumed slightly different cosmologies
from one another, but when applying the isothermal Jeans
model we assumed a Planck 2013 cosmology throughout
(Planck Collaboration et al. 2014, and see Table 1). This
mainly enters our analysis in terms of the relationship be-
tween NFW halo masses and concentrations, and the cor-
responding scale densities and radii. Where not explicitly
stated, log is log10, while we use ln for loge.

2 OVERVIEW OF ISOTHERMAL JEANS
MODELLING

The starting point for the model is a spherically symmet-
ric Navarro, Frenk & White (1997, hereafter NFW) density
profile,

ρ(r)

ρcrit
=

δNFW

(r/rs)(1 + r/rs)2
, (1)

where rs is the scale radius, δNFW a dimensionless charac-
teristic density, and ρcrit = 3H2/8πG is the critical density.
We define r200 as the radius at which the mean enclosed
density is 200 times ρcrit, and M200 as the mass within r200.
The concentration parameter is defined as c ≡ r200/rs and
can be related to the characteristic density by

δNFW =
200

3

c3

ln(1 + c)− c/(1 + c)
. (2)

The model begins with an NFW density profile because
it provides a good description of the density profiles of DM
haloes in CDM-only simulations. The goal of the isother-
mal Jeans model is to take this profile, and predict how its
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Isothermal SIDM modelling 3

inner regions are altered by DM self-interactions, as well
as the presence of a baryonic mass component. The rest of
this section describes how this is done, heavily inspired by
previous work on the isothermal Jeans model, particularly
Kaplinghat et al. (2014b, 2016) and Ren et al. (2019).

2.1 Finding the radius r1

Within the isothermal Jeans model, the SIDM halo is split
into two regions. In one of these regions self-interactions are
assumed to be frequent enough to keep the DM in thermal
equilibrium, while in the other the effects of self-interactions
are assumed to be negligible. The rate of scattering within
an NFW halo decreases with increasing radius, and so the re-
gion where self-interactions maintain thermal equilibrium is
in the centre of the halo where the scattering rate is highest.
To determine at what radius the behaviour should switch,
we find the radius, r1, at which the local rate of scattering,
multiplied by the age of the halo, is equal to one. Clearly
this is simplistic, as in actuality there will not be a sharp
transition in behaviour at this radius, but the validity of this
assumption when translated into the predicted density pro-
files is one of the things we can test by comparing the model
predictions with the density profiles of simulated systems.
It is also not clear exactly what is meant by the ‘age’ of
a halo in a cosmology where structures grow hierarchically.
For now we assume tage = 7.5 Gyr for all haloes, but discuss
this further in Section 5.4.

The rate of scattering (per particle) as a function of
radius is

Γ(r) =
σ

m
〈vpair(r)〉ρ(r) =

σ

m

4√
π
σ1D(r)ρ(r), (3)

where σ/m is the SIDM cross-section divided by the DM
particle mass, and is assumed here to be independent of
velocity, 〈vpair(r)〉 is the mean pairwise velocity of particles
at radius r, and the second equality comes from the fact
that 〈vpair〉 = (4/

√
π)σ1D for a Maxwell-Boltzmann velocity

distribution with a one-dimensional velocity dispersion of
σ1D.

For an NFW halo with an isotropic velocity distribu-
tion, the one-dimensional velocity dispersion of particles is
( Lokas & Mamon 2001):

σ2
1D(x, c) =

1

2
g(c)c x(1 + x)2GM200

r200

[
π2 − ln(x)− 1

x

− 1

(1 + x)2
− 6

1 + x
+

(
1 +

1

x2
− 4

x
− 2

1 + x

)
× ln(1 + x) + 3 ln2(1 + x) + 6 Li2(−x)

]
,

(4)

where x ≡ r/rs, g(c) ≡ [ln(1 + c)− c/(1 + c)]−1, and Li2(y)
is the dilogarithm (commonly referred to as Spence’s func-
tion), defined by

Li2(y) =

∫ 0

y

ln(1− u)

u
du. (5)

Putting equations (1) and (4) into equation (3) gives
Γ(r) for an NFW profile. Combining this with the halo age,
tage, determines r1. Outside of r1, self-interactions are as-
sumed to be unimportant, so the density profile will remain

NFW, while inside of r1 the DM will be in thermal equilib-
rium with a density profile that we now describe.

2.2 Isothermal density profiles

Inside r1 frequent self-interactions keep the DM in thermal
equilibrium, and it therefore behaves like an isothermal ideal
gas. The equation of state of an ideal gas, which links its
density and pressure, is p = σ2

0 ρ, where σ0 is the 1D velocity
dispersion. The temperature of the gas in this case is kBT =
mσ2

0 , so the gas being isothermal implies that σ0 is constant,
independent of radius.

Then, assuming the SIDM to be in hydrostatic equilib-
rium,1 and using the well-known result for the gravitational
force from a spherically symmetric mass distribution, we find

σ2
0

ρ

dρ

dr
= −GMtot(< r)

r2
. (6)

The total enclosed mass is the sum of the enclosed baryonic
mass and the enclosed DM mass (i.e. Mtot(< r) = Mbar(<
r) + M(< r)), with the enclosed DM mass related to the
DM density by

dM(< r)

dr
= 4πr2ρ(r). (7)

Equations (6) and (7) can be solved numerically2 with ap-
propriate boundary conditions.

For the DM-only case, we can make some headway to-
wards understanding the solutions to these equations by
taking the derivative of equation (6), and substituting in
equation (7)

d

dr

(
r2 d ln ρ

dr

)
= −4πGr2ρ

σ2
0

. (8)

Then defining y = ln(ρ/ρ0), r2
0 = σ2

0/4πGρ0 and x = r/r0

one finds

d2y

dx2
+

2

x

dy

dx
+ exp(y) = 0. (9)

This equation has different solutions for y(x) depending on
the boundary conditions imposed.3 Given that simulated
SIDM haloes have constant central density ‘cores’, we im-
pose that at r = 0: ρ = ρ0 and dρ/dr = 0. Expressed in
terms of y these boundary conditions are that y(0) = 0 and
dy/dx|x=0 = 0. These boundary conditions lead to a unique
solution for y(x), which means that the isothermal density
can be written as

ρ(r) = ρ0 f(r/r0), (10)

where f(x) = exp(y). There are therefore two free param-
eters that describe the isothermal region of the halo: the
central density, ρ0, and a characteristic radius r0. As r0 is
related to ρ0 and σ0, the two free parameters can also be
thought of as ρ0 and the isothermal velocity dispersion, σ0.

1 Where the inward force due to gravity is balanced by an out-

ward force due to a pressure gradient.
2 We use the scipy function scipy.integrate.odeint (Virtanen

et al. 2020).
3 For example, a singular isothermal sphere (which has ρ ∝ 1/r2)

corresponds to y = ln
(
2/x2

)
, which leads to ρ = 2ρ0r2

0/r
2.
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4 A. Robertson et al.

2.3 Matching criteria

To determine the two parameters of the isothermal profile,
ρ0 and σ0, requires two matching criteria. We match the
profiles at r1, requiring that the mass enclosed within r1

and the density at r1 be the same for the NFW profile and
corresponding isothermal profile. We define ρ1 ≡ ρNFW(r1)
and M1 ≡ MNFW(< r1). The condition that the isother-
mal profile has M(< r1) = M1 is motivated by the fact
that self-interactions re-distribute energy between particles,
changing their radial distribution, but in a way that the to-
tal mass should remain constant. Requiring that ρ(r1) = ρ1

then ensures that the density profile is continuous.
For a given ρ1 and M1 it is not immediately obvious

which values of ρ0 and σ0 will satisfy our chosen matching
criteria. In Appendix A we demonstrate how the functional
form of the isothermal density profile in the DM-only case
(equation 10) can be used to efficiently find ρ0 and σ0 from
r1, ρ1 and M1. This is useful in understanding whether or
not there has to be an isothermal profile that matches (there
does not, but this only happens when r1 � rs) and whether
there is a maximum of one solution (there can, rarely, be
more), and the interested reader is encouraged to consult the
appendix for more details. However, this method does not
extend to the case including baryons, and so here we describe
a more general iterative scheme for finding the matching
isothermal profile.

Fig. 1 contains an illustration of how ρ(r1) and M(< r1)
depend on ρ0 and σ0. In the lower panels we show ρ(r) and
M(< r) (plotted as 〈ρ(< r)〉 = M(< r)/ 4

3
πr3 to reduce the

dynamic range on the y-axis) for five illustrative points in
the ρ0 − σ0 parameter space, including the point in ρ0 − σ0

where both matching criteria are satisfied. The way in which
ρ(r1) and M(< r1) vary as ρ0 and σ0 are varied is plotted
in the top left and top centre panels of Fig. 1. The top
right panel then shows a combined ‘badness-of-fit’ metric,

b ≡
√

(log10 [ρ(r1)/ρ1])2 + (log10 [M(< r1)/M1])2, which is
0 when the isothermal and NFW profiles correctly match at
r1.

Navigating the ρ0 − σ0 parameter space to find the
solution that meets our matching criteria could be done
in a number of ways. For example, one could find the lo-
cation where b is minimised using a gradient descent al-
gorithm or a similar optimisation method. The method
that we found to work best, and that we used to find
the solution for the case shown in Fig. 1, is to use a
root finding algorithm to find the zeroes of the vector
f(ρ0, σ0) = (log10 [ρ(r1)/ρ1] , log10 [M(< r1)/M1]).4 Requir-
ing each component of f to have an absolute value less than
10−4, a solution could usually be found with fewer than 10
function evaluations, although this was dependent on a rea-
sonable initial guess. Formulating such a guess is relatively
straightforward in DM-only cases, and for individual sys-
tems, but is made more difficult in baryon-rich systems, or
when trying to automate the isothermal Jeans modelling to
run on haloes with a wide range of masses. A solution to
this is to start with an isothermal solution, and ask what

4 Specifically, we use scipy.optimize.root with method=‘hybr’,
which uses a modified version of the algorithm described in Powell

(1964).

NFW profile can match onto it, rather than vice versa. We
discuss this in Section 4.2.2.

2.4 Including baryons

The distribution of baryons within a DM halo can influ-
ence the distribution of the DM. For the case of collisionless
DM, the way in which the DM responds to a baryon poten-
tial depends upon how the baryon distribution evolved to
get to its present state. A baryon distribution that builds
up gradually alters the distribution of DM particle orbits
adiabatically, which means that particles’ orbits will con-
serve quantities known as adiabatic invariants (e.g. Binney
& Tremaine 1987). Gradual growth of the baryon potential
typically contracts the DM halo (e.g. Barnes & White 1984;
Gnedin et al. 2004), making it more centrally concentrated.
Rapid changes to the baryon potential, for example due to
the expulsion of gas by supernovae explosions, lead to non-
adiabatic changes to DM particles’ orbits that can lower the
central DM densities (e.g. Navarro, Eke & Frenk 1996; Read
& Gilmore 2005, and see Pontzen & Governato 2014 for a
review).

This picture is different with SIDM. As long as the
timescale on which SIDM particles interact is shorter than
that on which the gravitational potential due to the baryons
varies, SIDM particles will be kept in equilibrium with the
baryon potential as it is now. This means that we can in-
clude the effects of baryons into the isothermal Jeans model
simply by including their contribution to Mtot(< r).5

In Fig. 2 we show an example of the isothermal Jeans
model including baryons. The simulated halo is the same one
shown in Fig. 1 but now from a simulation including gas and
a model for galaxy formation. While DM dominates the total
density at large radii, the inner 10 kpc is baryon dominated.
This has a dramatic effect on the simulated SIDM density
profile, which no longer has the large constant density core
seen in Fig. 1, instead resembling an NFW profile over the
radii shown.

The isothermal solution is calculated including Mbar(<
r) for the simulated halo, which leads to a good match be-
tween the simulated SIDM profile and the isothermal pre-
diction. We measured Mbar(< r) from the simulated halo
within logarithmically spaced radii, and then interpolated
the results so that our adopted ODE solver could find
Mbar(< r) at arbitrary radii.

Including the effects of baryons into the isothermal
Jeans model complicates the mapping from r1, ρ1 and M1 to
ρ0 and σ0, because this mapping now depends on the density
profile of baryons, and so is different for each halo. Going
from a DM-only case to one including baryons also leads to
a subtlety about how our NFW profile is defined, because a
fraction, fbar, of the mass in the Universe is no longer DM.
For an NFW profile with mass and concentration, M200 and

5 At r1, the average time between interactions is (by definition)

the age of the halo. This is a timescale on which the gravitational
potential can significantly vary, violating the approximation that
interactions maintain equilibrium. In this paper we demonstrate
that this approximation works well for describing the effects of

baryons on an SIDM halo, which is likely because the radii at
which baryons make a significant contribution to the total en-
closed mass are well within r1 for even modest cross-sections.
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Figure 1. A schematic illustration of finding the isothermal solution that matches onto an NFW profile at radius r1, for a halo containing
only DM. The bottom left panel shows the density as a function of radius, while the bottom right panel shows the mean enclosed density.

The NFW profile shown in grey has M200 = 1.9× 1013 M� and c = 5.5, which comes from fitting to the outskirts of the density profile

of a DM-only halo simulated with σ/m = 1 cm2 g−1. The simulated density profile is plotted as the black squares. The radius, r1, was
calculated from the NFW profile, assuming the input cross-section of 1 cm2 g−1 and a halo age of 7.5 Gyr. The five different coloured lines,

show five different isothermal density profiles, whose central densities, ρ0, and velocity dispersions, σ0, are marked in the top panels. The

top left panel shows how the isothermal density profile’s density at r1 compares with that of the NFW profile, and the top centre panel
shows the equivalent for the enclosed mass within r1. Blue colours are where the isothermal density/mass is below the NFW one, while

red colours are where it is above, the colours saturate at a difference of 0.5 dex. The density and mass matching criteria are satisfied along
the black dashed and dotted lines respectively. These lines cross at the location of the red dot, which indicates that the red isothermal

profile is the correct profile for matching onto the NFW at r1. The top right panel shows
√

(log10 [ρ(r1)/ρ1])2 + (log10 [M(< r1)/M1])2,

with the colour scale going from yellow (0) to black (0.5).

c, we find the corresponding scale radius and characteristic
density, rs and δNFW. The DM density for this NFW profile
is then calculated following equation (1), but with the char-
acteristic density scaled down by 1− fbar to reflect the fact
that we are only trying to model the DM component.

3 SIDM SIMULATIONS

In order to thoroughly test the isothermal Jeans model for
SIDM density profiles, we compare its predictions with a
large number of simulated haloes, both from DM-only sim-
ulations, and from simulations including baryons. All of our
simulations are of cosmological boxes, with different box

sizes and resolutions being used to study haloes of differ-
ent mass. We describe these simulations below.

3.1 Simulations suites

For galaxy cluster scale haloes we use the bahamas-SIDM
simulations from Robertson et al. (2019), which use the
bahamas galaxy formation model described in McCarthy
et al. (2017). These have limited mass and spatial resolu-
tion, but a large box size, which allows us to study massive
haloes. At intermediate halo masses, corresponding to Milky
Way-like or massive elliptical galaxies, we use SIDM ver-
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Figure 2. The same as Fig. 1, but for a case including baryons. The simulated halo is the same one shown in Fig. 1 (with σ/m =
1 cm2 g−1), but now with the addition of eagle galaxy formation physics. The baryon density profile is plotted as black stars. The grey

NFW profile has the same mass as in Fig. 1 (M200 = 1.9× 1013 M�), but a slightly larger concentration of c = 6.5 reflecting adiabatic
contraction of the DM halo. The NFW profile is shifted down in density by a factor of 1 − fbar = 0.84 to account for the fact that we

are modelling only the DM as opposed to the total matter density. Note that the dynamic range on the y-axis is increased from Fig. 1

because the density profile is considerably steeper than in the DM-only case.

sions6 of the eagle simulations (Schaye et al. 2015; Crain
et al. 2015). Our resolution and galaxy formation physics
model was the same as for the ‘Reference’ 100 Mpc eagle
box, but to reduce computational requirements we simu-
lated smaller, 50 Mpc, volumes. Finally, in order to study
lower-mass galaxies, we ran small 12.5 Mpc boxes at approxi-
mately 25 times better mass resolution than our 50 Mpc sim-
ulations, using the initial conditions from (Beńıtez-Llambay
et al. 2019). These also used the eagle galaxy formation
model, but with slightly adjusted (‘Recal’) parameters that
better reproduce observed galaxy properties when running
at higher resolution (see Schaye et al. 2015, for more details
of the Reference and Recal subgrid parameters). Further
specific details of the simulations are in Table 1.

6 The implementation of SIDM within eagle was described in
Robertson et al. (2018).

3.2 Implementation of SIDM scattering

The method used to simulate SIDM is shared by all of
our simulation suites, and is described in Robertson et al.
(2017a). It uses a Monte-Carlo approach to implement DM
scattering, where at each time-step, particles search locally
for neighbours, with random numbers drawn to see which
nearby pairs scatter. The probability for a pair of parti-
cles to scatter depends on their relative velocity and the
cross-section for scattering, which itself can be a function of
the relative velocity. The search region around each particle
is a sphere, with a radius equal to the Plummer-equivalent
gravitational softening length. Our implementation can sim-
ulate anisotropic scattering cross-sections (Robertson et al.
2017b), which naturally arise when scattering cross-sections
are velocity-dependent.

MNRAS 000, 000–000 (0000)



Isothermal SIDM modelling 7

Table 1. Box sizes and resolutions for the simulations used in this paper. The box sizes are comoving, and the gravitational softening

lengths, εp, are proper Plummer-equivalent gravitational softening lengths (Springel 2005), while εc is a comoving softening length used

at high redshift (the comoving softening length is used at redshifts where it is smaller than the proper one). The WMAP-9 cosmology
has Ωm = 0.2793, Ωb = 0.0463, ΩΛ = 0.7207, σ8 = 0.812, ns = 0.972 and h = 0.700 (Hinshaw et al. 2013) . The Planck 2013 cosmology

has Ωm = 0.307, Ωb = 0.04825, ΩΛ = 0.693, σ8 = 0.8288, ns = 0.9611 and h = 0.6777 (Planck Collaboration et al. 2014). The WMAP-7
cosmology has Ωm = 0.272, Ωb = 0.0455, ΩΛ = 0.728, σ8 = 0.81, ns = 0.967 and h = 0.704 (Komatsu et al. 2011).

Simulation Box size / Mpc Cosmology mDM−only/M� mDM/M� mgas/M� εp/ kpc εc/ kpc

bahamas 400h−1 WMAP-9 6.6× 109 5.5× 109 1.1× 109 5.7 22.3

eagle-50 50 Planck 2013 1.2× 107 9.7× 106 1.8× 106 0.7 2.7

eagle-12 12.5 WMAP-7 4.8× 105 4.0× 105 8.1× 104 0.23 0.90

10 100 1000
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Figure 3. The momentum-transfer cross-section as a function
of velocity for the three particle models that we have simulated.

The arrows below the CDM line reflect that CDM has zero cross-

section, and therefore lies off the bottom of the plot. The mapping
from a relative velocity between two DM particles (along the bot-

tom) to a halo mass (along the top) is approximate, and is done

assuming vrel =
√
GM200/r200.

3.3 Simulated cross-sections

In this paper we investigate three different DM models: col-
lisionless CDM, a velocity-independent and isotropic cross-
section of 1 cm2 g−1 (SIDM1) and a velocity-dependent
and anisotropic cross-section corresponding to DM parti-
cles scattering though a Yukawa potential (vdSIDM). Each
of the three simulation suites described in Table 1 was run
with these three DM models, both DM-only and including
baryons. We will refer to simulations run with these cross-
sections that include baryons as CDMb, SIDM1b and vd-
SIDMb. The differential cross-section that we simulate for
vdSIDM is

dσ

dΩ
=

σT0

4π
(

1 + v2

w2 sin2 θ
2

)2 , (11)

with σT0 = 3.04 cm2 g−1 and w = 560 km s−1. These pa-
rameters were chosen to roughly reproduce the best-fitting
cross-section in Kaplinghat et al. (2016), which is claimed to
successfully explain the density profiles of systems ranging
from dwarf galaxies to galaxy clusters.

In Fig. 3 we plot the cross-section as a function of rela-
tive velocity for our three simulated DM models. Specifically,

we plot the momentum transfer cross-section

σT̃ ≡ 2

∫
(1− | cos θ|) dσ

dΩ
dΩ, (12)

which has been shown to be a more relevant quantity than
the total cross-section for determining the rate at which
cores form in isolated DM haloes (Robertson et al. 2017b).
The 1 − | cos θ| term comes from weighting scatterings by
the amount of momentum they transfer along the collision
axis, taking into account that indistinguishable particles
that scatter by θ > 90◦ could be re-labelled such that the
scattering was by less than 90◦ (Kahlhoefer et al. 2014). The
factor of 2 means that for isotropic scattering σ = σT̃ . The
momentum transfer cross-section for the differential cross-
section that we implemented for vdSIDM (equation 11) is

σT̃ = σT0
4w4

v4

{
2 ln

(
1 +

v2

2w2

)
− ln

(
1 +

v2

w2

)}
. (13)

3.4 Measuring density profiles

For the tests that we wish to perform, the required infor-
mation from each simulated halo is the DM density profile
and (for cases including baryons) the baryonic enclosed-mass
profile. We use only ‘centrals’, i.e. we do not analyse galax-
ies that are satellites of something more massive. DM haloes
are identified using the friends-of-friends algorithm (Press &
Davis 1982; Davis et al. 1985), and we define the centre of
the halo as the position of the particle with the minimum
gravitational potential energy. We then calculate the DM
density profile by finding the mass in logarithmically-spaced
spherical shells and dividing these masses by the volume of
the relevant shell. For Mbar(< r) we add up the mass of
the baryon particles (gas, stars and black holes7) within the
same logarithmically-spaced radii as are used for the bound-
aries between the density shells. We used 100 radii ranging
from 0.1 kpc to 4 Mpc.

7 For two of the bahamas haloes, one with CDM+baryons and
one with vdSIDM+baryons, there were especially massive black
hole particles (& 1011 M�) at the centre. The steep potential from

these point masses made solving the coupled ODEs required to
find isothermal density profiles challenging. For these two haloes
we therefore softened the potential from the black hole particle

using the gravitational softening length used when running the
simulations. This could have been done for all haloes, but we

only discovered this problem close to completing this work.
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4 FITTING THE ISOTHERMAL JEANS
MODEL TO SIMULATED DENSITY
PROFILES

In Section 2 we described how the isothermal Jeans model
can be used to generate a density profile that takes into ac-
count the effects of DM self-interactions, starting from an
NFW profile (defined by M200 and c) and an SIDM cross-
section. In this section we will discuss fitting to the density
profiles of simulated systems to extract a posterior distribu-
tion for the SIDM cross-section. The basic idea is to sample
from the input parameters (M200, c and σ/m), generate the
isothermal Jeans model density profile at each point in pa-
rameter space, and calculate a likelihood from comparing
the model density profile with the measured density profile
from the simulations. This procedure can then be wrapped
in an MCMC sampler in order to generate samples of the
input parameters drawn from their joint posterior distribu-
tion.

4.1 Definition of a ‘good fit’

In order to carry out the procedure outlined above, we need
to define a likelihood function. When applying isothermal
Jeans modelling to observed systems, the likelihood would
take into account the uncertainties on measured quantities
as well as any covariance between measurements. Here, we
do not focus on any particular observational setup, and so
instead must decide what constitutes a better or worse fit to
a simulated density profile. To this end, we define our like-
lihood (up to a normalising constant) as L ∝ exp

(
−χ2/2

)
with

χ2 =

Nbins∑
i=1

(
log10 ρsim(ri)− log10 ρmod(ri)

δ log10 ρ

)2

. (14)

We assume an uncorrelated error of 0.1 dex on log ρ (i.e.
δ log10 ρ = 0.1), and the ri are taken from the same
logarithmically-spaced radii at which the density profiles
from the simulations were measured. We use all ri between
0.01 r200 and r200, which leads to Nbins = 43 or 44 depend-
ing on the mass of the halo. By assuming a constant error
on log ρ, and using logarithmically spaced radii, our notion
of ‘goodness of fit’ is essentially how similar in appearance
the simulated and model density profiles are on a plot of
log ρ against log r (e.g. in the bottom left panels of Figs. 1
and 2).

The reason that there is not a well defined value for
the error on the density profile is that the differences be-
tween our simulated and isothermal-model density profiles
are not random, but are systematic. Even in the absence
of particle noise in the simulations, the density profiles of
haloes would not be perfectly described by the isothermal
Jeans model because the model makes several assumptions
that are known not to be true. As examples, it assumes
haloes are spherically symmetric and ignores substructure
within the halo. This is no different from NFW profiles fit
to CDM-only haloes. While the particle distributions from
simulated CDM haloes are usually considered to be well-fit
by NFW haloes, they are not well fit in the sense of be-
ing consistent with being precisely NFW except for some
random error (for example Poisson noise on the number of
particles in each radial bin).

4.2 Choice of model parameterisation

A single isothermal Jeans model density profile is described
by a number of parameters: M200, c, σ/m, r1, ρ0 and σ0,
but only three of these are independent. So far we have dis-
cussed the isothermal Jeans model in terms of starting with
an NFW profile, and calculating how this is affected by a
given cross-section, making M200, c and σ/m the natural
parameters that describe a model density profile. However,
we will find that parameterising the model in different ways
can have benefits in terms of how quickly a likelihood can
be evaluated.

4.2.1 ‘Outside-in’ fitting

We refer to starting with the NFW parameters and then
finding the matching isothermal profile for the inner halo as
outside-in fitting. While this is a natural way to think about
the physics of core-formation with SIDM, MCMC sampling
of the (M200, c, σ/m) parameter space is problematic be-
cause finding the isothermal solution that matches onto an
NFW profile is itself a process that requires iterating over
parameters (ρ0 and σ0). Firstly, this means that running an
MCMC chain is slow, because each likelihood evaluation re-
quires multiple steps. Secondly, the iterative procedure for
finding the isothermal profile that correctly matches the
NFW (described in Section 2.3) requires a reasonable ini-
tial guess for ρ0 and σ0 in order to converge on the correct
solution, and sometimes there is no matching solution at all
(see Appendix A).

4.2.2 ‘Inside-out’ fitting

A solution to the problem of iteratively finding the correct ρ0

and σ0 at a particular point in the sampled parameter space
is to make ρ0 and σ0 (rather than M200 and c) two of the
parameters that are sampled by the MCMC sampler. In fact,
it is convenient to make one more change to the sampled
variables, changing from ρ0 to the number of scatterings per
particle in the centre of the halo

N0 =
σ

m

4√
π
σ0 ρ0 tage. (15)

This is convenient because isothermal Jeans modelling re-
quires there to be a radius, r1, at which N(r1) = 1. This
cannot be achieved if N0 < 1, and so a prior that N0 > 1
limits us to isothermal solutions for which r1 exists.

Instead of first considering the NFW profile that will
become the outskirts of the model density profile, and then
finding an isothermal profile that matches this NFW, the
inside-out method starts from the isothermal profile in the
inside and then find the NFW profile that matches onto this
at r1. This avoids any iteration, because the density profile
and enclosed mass profile of an NFW halo are analytical, and
these can be inverted to find the M200 and c that lead to
ρNFW(r1) = ρ1 and MNFW(< r1) = M1. Note that it is not
always possible to find an NFW profile that matches a given
ρ1 and M1. This happens when the isothermal region has a
fairly constant density out to r1, which produces values of ρ1

and M1 that cannot be matched by even the ‘flattest’ region
of an NFW halo (the ρ ∝ 1/r inner region). In particular,
for a ρ ∝ 1/r density profile, M(< r) = 2πρ(r)r3. So an

MNRAS 000, 000–000 (0000)



Isothermal SIDM modelling 9

isothermal profile that leads to M1 < 2πρ1r
3
1 cannot be

matched by an NFW profile. When doing inside-out fitting
we assign a likelihood of zero to points in parameter space
that do not match onto an NFW profile.

One subtlety that arises when switching from outside-in
to inside-out isothermal Jeans modelling, is that previously
r1 was being calculated from the NFW profile (and σ/m).
Starting from an isothermal profile defined by N0 and σ0

we need to know r1 in order to find the matching NFW
profile, this means that r1 must be calculated from the in-
ner (isothermal) profile. We do this following equation (3),
where ρ(r) is from the isothermal profile and σ1D(r) = σ0.
This is not the only way one could go about solving this
problem. Instead, the sampled parameters could be N0, σ0

and r1, from which the matching M200 and c could be found,
and finally σ/m could be determined from M200, c and r1.
This latter procedure would associate the same σ/m with a
model SIDM density profile as for our outside-in modelling.
The disadvantage of this procedure is that the priors for our
MCMC sampling will be defined on the parameters that are
being sampled. Having σ/m being one of these parameters
is therefore good in that it allows us to choose our prior on
the cross-section.

The extent to which the inside-out and outside-in pro-
cedures that we have described associate a different σ/m
with the same NFW + isothermal profile depends on how
σ0 compares with σNFW

1D (r1). If these agree then both pro-
cedures lead to the same σ/m, because the scattering rate
is proportional to the product of σ1D, ρ and σ/m, and the
isothermal and NFW densities are equal at r1 by definition.
For DM-only haloes simulated with SIDM1 or vdSIDM, we
find that the best-fitting isothermal Jeans models to well-
resolved simulated haloes typically have σNFW

1D (r1)/σ0 in the
range 1–1.3, which can increase up to 1.6 for CDM-only
haloes.

The isothermal Jeans model is of course only approxi-
mate, with the radius r1 dependent on the age of the halo
(which does not have an unambiguous definition), and the
somewhat arbitrary choice of one scattering per particle
to separate the region strongly affected by self-interactions
from that not affected at all. It is therefore not clear whether
there are better or worse choices for the velocity dispersion
used to calculate r1, the definition of halo age, or the num-
ber of scatterings per particle at which the behaviour transi-
tions from collisionless to fully collisional. Instead of worry-
ing about these, we aim to state precisely what we have done
and then show later that the results of fits to simulations do
not lead to inferences on the cross-section that are obviously
biased. Had we found that we typically under-predicted the
cross-section in our fits by a factor of two, then this could be
rectified by changing the transition radius from r1 to r2 (i.e.
the radius at which two scatterings per particle have taken
place) or by altering the definition of halo age such that the
halo is only half as old as it was in our original fit. Given
that these changes are perfectly degenerate, there is not a
sense in which one is ‘best’, rather fortuitously however, us-
ing one scattering per particle as the collisionless/collisional
threshold, and a halo age somewhat shorter than the age of
the Universe (we use 7.5 Gyr), produces good results as we
will soon discuss.

4.2.3 Adopted priors

The parameters that we sample are N0, σ0 and σ/m. At each
sampled point in this parameter space we must calculate the
corresponding M200 and c in order to find the density profile
at r > r1. We record the M200 and c values such that we
can also express our posterior distribution in terms of these
more familiar parameters. For the priors on the sampled
parameters, we follow Ren et al. (2019) in using a flat prior
on both the logarithm of N0 and the logarithm of σ0. We
also use a flat prior on the logarithm of σ/m. Specifically,
our priors are:
• N0: Uniform prior on logN0 in the range 0 < log10 N0 < 5.
• σ0: Uniform prior on log σ0 in the range −1 <
log10 σ0/ km s−1 < 3.5.
• σ/m: Uniform prior on log σ/m in the range −2 <
log10 σ/m/ cm2 g−1 < 2.
We do not adopt any prior on the concentration-mass rela-
tion, which is discussed in Section 5.3.

4.2.4 ‘Effective’ priors

Our priors are defined in terms of the parameters being sam-
pled, but our results are more familiar when presented in
terms of M200 and c. We can define an ‘effective prior’ on
the (M200, c, σ/m) parameter space, by sampling from our
(N0, σ0, σ/m) prior, and finding the corresponding points in
(M200, c, σ/m). We do this using MCMC, setting the likeli-
hood to a constant value when there is a valid NFW profile
at that point in (N0, σ0, σ/m), and setting it to zero when
there is no matching NFW profile. For our adopted priors,
the marginalised effective priors are shown in Fig. B1 and
are discussed in Appendix B. In general the priors that we
adopt on N0, σ0 and σ/m lead to effective priors on logM200

and log c that are approximately uniform. There is however
an effective-prior bias towards larger cross-sections (despite
a uniform prior on log σ/m), that increases at lower halo
masses.

4.3 MCMC fitting to example haloes

For a given simulated halo, we are now ready to calculate
the posterior distribution on the (M200, c, σ/m) parameter
space, using MCMC8 with the priors just described and the
likelihood from Section 4.1. We show an example of this
in Fig. 4, where the halo is the same one as in Fig. 1,
which is a DM-only halo from eagle-50, simulated with
σ/m = 1 cm2 g−1. The best-fitting (maximum likelihood)
density profile is shown in the top-right of Fig. 1, and is a
very good fit to the simulated density profile. The inferred
halo mass matches the true spherical-overdensity mass, and
while the best-fit cross-section is slightly larger than the in-
put cross-section (1.27 cm2 g−1 versus 1 cm2 g−1), the poste-
rior on the cross-section is consistent with the true value. It
is worth recalling from Section 4.1 that there is some level
of arbitrariness to the width of the posterior distribution
(and therefore the marginalised posterior distributions), be-
cause they depend on our fairly arbitrary likelihood defined

8 We use the affine invariant Markov chain Monte Carlo ensemble

sampler emcee (Foreman-Mackey et al. 2013).
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Figure 4. An example of an isothermal Jeans model fit to a simu-
lated SIDM1-only halo. The ‘corner plot’ shows the marginalised

posterior distributions on the parameters M200, c and σ/m, with

the contours on the 2D plots enclosing 68% and 95% of the poste-
rior probability. The top-right panel shows the simulated density

profile as black squares, with the best-fitting isothermal profile

shown by the red line and the corresponding NFW profile the
grey line. The isothermal Jeans model prediction is that the den-

sity profile follows the isothermal solution inside of r1 (the blue

marker) and the NFW profile outside of r1, which in this case
provides a visually good fit to the simulated profile. The best-fit

(maximum likelihood) parameter values are listed in the top-right
panel and marked in blue on the corner plot. The adopted halo

age is 7.5 Gyr, and the input σ/m of 1 cm2 g−1 is marked in the

bottom-right panel with the red vertical line.

in equation (14). Had we chosen a larger δ log10 ρ in equa-
tion (14) then our posterior distributions would be broader,
and had we used more radial bins they would be narrower.

4.3.1 ‘Core collapse’ solutions

In the left panel of Fig. 5 we show a different halo, which
is an example with a more complicated posterior distribu-
tion. In this case the marginalised posterior on the cross-
section is bimodal, with one peak around the input cross-
section of 1 cm2 g−1 while the other is around 60 cm2 g−1.
This second solution corresponds to a halo undergoing ‘core
collapse’ (Balberg & Shapiro 2002; Zavala et al. 2019), in
that the isothermal Jeans model predicts this solution to
become more centrally dense as the halo age is increased
(or equivalently, as the cross-section is increased at fixed
age). The ‘banana shaped’ degeneracy between σ/m and c
can then be explained as follows: at low σ/m, increasing
the cross-section decreases the central density, and so the
central density in the absence of self-interactions must be
increased to compensate (hence an increase in c); at larger
σ/m the halo is undergoing core collapse, and larger cross-
sections actually lead to larger central densities, as such, the

concentration must now be decreased to maintain a similar
density profile.

If we look at this same halo simulated with CDM (right
panel of Fig. 5) we see that it is well described by an NFW
profile with c ≈ 8.5. This corresponds to the value of c
in the posterior peak close to the input cross-section for
the SIDM1 halo. Fitting to the SIDM1 simulated halo with
knowledge of what this halo would have looked like in the
absence of self-interactions, we could therefore identify the
c ≈ 8.5, σ/m ≈ 1 cm2 g−1 peak as the truth (as opposed
to the other peak at c ≈ 5.5, σ/m ≈ 60 cm2 g−1) and make
a correct inference on the cross-section. When dealing with
observed systems, this could motivate a prior that halo con-
centrations roughly follow the concentration-mass relation,
which we discuss further in Section 5.3.

Considering the core collapsing solution, work mod-
elling SIDM as a fluid in which heat is transferred by thermal
conduction (e.g. Nishikawa et al. 2020) suggests that during
core collapse the centre of the halo is no longer isothermal,
but has a temperature that increases towards the centre of
the halo. As such, the isothermal Jeans model we employ
here probably does not provide a good description of the
density profiles of core collapsing haloes. As we do not have
simulated systems with cross-sections large enough for core
collapse (ignoring the effects of baryons), we cannot com-
ment further on the extent to which the isothermal Jeans
model’s description of core collapse is accurate, but we note
here that the core collapsing density profiles as predicted by
the isothermal Jeans model are sometimes good fits to sim-
ulated haloes in which the core is actually growing in time
(with the isothermal density profile in the left panel of Fig. 5
a good example).

4.3.2 Isothermal Jeans model fits to other haloes

While we have only shown a few example haloes in Fig-
ures 4 and 5, similar corner plots are available online for
our full sample of haloes.9 Further details about how we ran
the MCMC, including a discussion of chain length, autocor-
relation times, and the convergence of the posteriors, are
contained in Appendix C.

5 RESULTS WITH DM-ONLY HALOES

Having shown examples of fits to individual haloes, we now
look at the results from ensembles of haloes from the differ-
ent simulations described in Section 3. We take the posterior
distributions from isothermal Jeans model fits to the 50 most
massive friends-of-friends haloes in each simulation and plot
the median σ/m from the posterior distributions as a func-
tion of the median M200 in Fig. 6, with error bars on σ/m ex-
tending from the 16th to 84th percentile of the marginalised
posterior. The results are broadly consistent with what one
would expect if the isothermal Jeans model is a good de-
scription of SIDM density profiles, with fits to SIDM1 haloes
having cross-sections that scatter around 1 cm2 g−1, CDM
leading to cross-sections σ/m . 0.2 cm2 g−1 (except for at

9 http://icc.dur.ac.uk/data/
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Figure 5. Left: the same as Fig. 4 but for a slightly less massive halo, in which the SIDM density profile is well fit both by the ‘true’
parameters of σ/m = 1 cm2 g−1, c ≈ 8.5, but also by a core collapsing solution with a large cross-section and low concentration. The

maximum-likelihood solution is a core collapsing one, and the corresponding density profile is plotted alongside the simulated density

profile in the top-right. Right: the same halo as in the left panel, but simulated with CDM. The halo mass agrees with the SIDM fits,
and the concentration corresponds to the SIDM concentration in the σ/m ≈ 1 cm2 g−1 peak in the SIDM1 posterior. While the input

cross-section is zero, the bulk of the posterior probability is around 0.1 cm2 g−1.

low masses, discussed in Section 5.5) and with vdSIDM lead-
ing to best-fit cross-sections ≈ 3 cm2 g−1 at low halo masses,
decreasing with increasing halo mass.

Each DM model has 150 simulated haloes spanning the
mass range 5× 1010 − 3× 1015 M�, and we fit a velocity-
dependent SIDM model to the ensemble of haloes for each
of the three models. At the particle physics level, the cross-
section depends on the relative velocity between particles,
while here we are considering it as a function of halo mass.
Given that the typical velocities within a halo scale as
v200 =

√
GM200/r200 ∝ M

1/3
200 , we make an ansatz that the

effective cross-section as a function of halo mass should look
like equation (13), but with v/w replaced by (M200/Mw)1/3.
The relative pairwise velocity below which the cross-section
is approximately constant, w, is then replaced by a halo
mass scale below which the cross-section is roughly constant,
with the cross-section decreasing at higher halo masses. To
be concrete, we fit the following functional form to the dis-
tribution of points in Fig. 6

σT̃ (M) = σT0
4M

4/3
w

M4/3

{
2 ln

(
1 +

M2/3

2M
2/3
w

)
− ln

(
1 +

M2/3

M
2/3
w

)}
,

(16)

where M is M200. Note that the vdSIDM differential cross-
section can capture all three of our simulated cross-sections,
not just the vdSIDM one. CDM is the case where σT0 = 0,
and SIDM1 corresponds to σT0/m = 1 cm2 g−1 and w (or
Mw) →∞.

When fitting equation (16) to these points we use
the posterior distribution generated from each isothermal-
model fit to define the likelihood. Given that the masses

are well constrained in the fits, we ignore the uncertainty
on the mass of each system (using the median value). The
MCMC isothermal-model fitting to each halo, i, produces a
marginalised posterior probability density on the logarithm
of the cross-section, dPi/d log(σ/m) (with an example be-
ing the histogram plotted in the bottom-right of Fig. 4). The
likelihood for a given vdSIDM model (parameterised by σT0

and Mw) that we use when fitting a vdSIDM model to an
ensemble of haloes is

L(σT0,Mw) =

150∏
i=1

dPi
d log(σ/m)

(σT̃
m

(Mi;σT0,Mw)
)
, (17)

which (in words) is the product over 150 haloes of the
marginalised log σ/m posterior density, with each density
evaluated at the σ/m predicted by σT0 and Mw at the mass
of the halo in question.

In practice we don’t actually have access to
dPi/d log(σ/m), instead having samples drawn from it. We
therefore estimate this probability density (up to a constant)
as the inverse of the distance (in log σ/m) to the nth nearest
posterior sample to σT̃ (Mi)/m. With an infinite number of
samples, this inverse distance tends to the (unnormalised)
probability density, while with a finite number of samples it
is an estimate of the mean probability density within a top-
hat window centred on the model-predicted cross-section in
a halo with massMi. We set n such that the probability mass
within the top-hat window is 1% of the total. Specifically,
our chains each contain 280 000 (non-independent) samples
from the posterior, and we find the distance to the 2800th
nearest.

While we introduced this method as a way to estimate
the probability density from samples drawn from it, it also
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Figure 6. The inferred masses and cross-sections from isother-

mal Jeans model fitting to our ensemble of DM-only haloes. Each
marker area is proportional to the number of particles in the sim-

ulated halo (so at fixed mass, well-resolved haloes from a smaller
volume simulation can be distinguished from haloes from a larger

volume simulation). The markers are placed at the median M200

and median σ/m from the posterior distribution generated from
each MCMC fit, with the error bars running from the 16th to 84th

percentile of the σ/m marginalised posterior. The lines show the

maximum-likelihood velocity-dependent SIDM cross-section (see
equation 16) fit to the distribution of points for each simulated

cross-section, with the shaded regions around each line cover-

ing the 16th-84th percentiles of σ/m(M200) from the velocity-
dependent cross-section fits.

serves to limit the influence of outliers. Taking SIDM1 haloes
as an example and considering the case of fitting a model
with a constant cross-section (w →∞), two of the 150 haloes
have no posterior samples with σ/m < 1 cm2 g−1, while
seven of them have no samples with σ/m > 1 cm2 g−1. As
such, if we obtained dPi/d log(σ/m) by smoothing the dis-
tribution of samples with some small compact kernel, then
P(σT0,Mw) would be zero for all values of σ0/m. Defin-
ing the probability density as proportional to the inverse of
the distance to the nth nearest neighbour leads to a non-
zero probability density at any value of the cross-section,
circumventing this problem.10

In general we find that the best-fitting velocity-
dependent SIDM cross-sections are good reflections of the
input cross-sections used in the simulations, except for with
CDM (see Section 5.5). Considering the fit to the SIDM1
haloes, the inferred SIDM model has Mw & 1015 M�, mean-
ing that the cross-section is correctly inferred to be velocity-
independent over the range of halo masses studied. The nor-
malisation of the cross-section, σT0 = (1.08±0.06

0.04) cm2 g−1,
is slightly larger than the input, but with 150 haloes sys-
tematic errors become more important than random errors,

10 This is not an especially good way to deal with outliers, and

the extent to which it penalises a set of model parameters for
having outliers depends on the choice of n, but we find that our
best-fitting vdSIDM models are relatively unaffected by a factor
of 10 change in n and so we believe this method is adequate for
our current goal of comparing the sorts of cross-section one would

infer from an ensemble of haloes to the true (input) cross-section.

and small systematic changes to the analysis (such as adopt-
ing an increased halo age of 8 Gyr) would bring the inferred
cross-section in line with the truth.

For our simulated vdSIDM model, the input velocity-
scale for the cross-section is w = 560 km s−1. The maximum-
likelihood value of Mw when fitting to the vdSIDM ensemble
of haloes is Mw = 1.3× 1014 M�, which would correspond
to w = 730 km s−1 using the simple relationship between a
halo mass and an effective velocity for DM interactions from
Fig. 3 (vrel ≈

√
GM200/r200). One could imagine that a

better approach to mapping from a halo mass to an effective
pairwise velocity would be to calculate the mean pairwise
velocity for particles within the halo. Using the 1D velocity
dispersion of DM particles, σ1D, as a function of halo mass
from Munari et al. (2013), combined with the fact that for a
Maxwellian velocity distribution the mean pairwise velocity
is 〈vrel〉 = 4/

√
π σ1D, would lead to Mw = 1.3× 1014 M�

mapping to a 〈vrel〉 of 1100 km s−1 – further from the true
value of w. This happens because the velocity dispersion in
an NFW halo drops towards the centre of the halo, and it
is the centre of the halo where interactions are important.
As such, halo-wide estimates of the velocity dispersion over-
predict the velocity at which SIDM interactions are typically
taking place.

5.1 The cross-section as a function of velocity

Given that interactions are taking place in the centre of the
halo, and that – within the isothermal Jeans model – the
velocity dispersion there is σ0, another sensible approach
would be to bypass an explicit mapping from halo masses
to effective relative velocites altogether, and instead plot
the results in terms of σ/m against σ0 (or 〈vrel〉). We show
such a plot in Fig. 7. There is a complication with fitting
a vdSIDM cross-section to these however, in that there is
a strong degeneracy between σ/m and σ0 in the isothermal
Jeans model fits. At fixed halo mass, increasing the cross-
section increases r1, which increases the temperature of the
isothermal region (because σ1D increases with radius in the
inner regions of an NFW profile). Fitting a vdSIDM model
would therefore require a hierarchical model, in which one
samples from the joint posterior of model values (σT0 and
w) and the halo-specific parameters (M200 and c or N0 and
σ0) of each halo, and then marginalises over the halo-specific
parameters to get the posterior on σT0 and w. This is be-
yond the scope of this work, and so here we simply plot the
input cross-sections on Fig. 7, such that they can be visually
compared with the median MCMC parameter values.

It is interesting to compare how the vdSIDM cross-
sections inferred from isothermal Jeans model fits compare
with the true input cross-section. The isothermal Jeans
model assumes a constant (velocity-independent) cross-
section, and in the region where scattering takes place the
velocity distribution is assumed to be a Maxwell–Boltzmann
distribution with a 1D velocity dispersion of σ0. For a par-
ticular vdSIDM halo, one could imagine that the effec-
tive cross-section within the halo is simply the velocity-
dependent cross-section σT̃ (vpair), evaluated at the mean
pairwise velocity in the isothermal region, vpair = 〈vrel〉 =
4/
√
π σ0 – this is what is plotted as the solid line in Fig. 7.
However, different pairs of particles in the isothermal

region will have a wide range of relative velocities, and sim-
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Figure 7. The same as Fig. 6 but now plotted as a function

of 〈vrel〉 = 4/
√
π σ0. To highlight the degeneracy between σ/m

and σ0 (and hence 〈vrel〉), we show – as a cloud of points –

MCMC samples from fits to one halo from each simulation vol-
ume with each cross-section. This degeneracy makes fitting a

velocity-dependent SIDM model challenging, so for comparison

we show the input σT̃ (〈vrel〉)/m as the solid lines (see Fig. 3). Ow-
ing to subtleties that arise with velocity-averaging of a velocity-

dependent cross-section, for the vdSIDM model we plot three

other lines in different line styles. The distinction between these
lines is discussed in Section 5.1 and elaborated upon further in

Appendix D.

ply taking the cross-section at the mean pairwise velocity
may not be an adequate reflection of the effects of scat-
tering. Instead one could imagine that the mean value of
the cross-section averaged over pairs of particles drawn from
the Maxwell–Boltzmann distribution might give a better de-
scription. This is plotted as the dashed line in Fig. 7, and
does indeed seem to provide a better match to the σ0–σ/m
values found from isothermal Jeans modelling of the vd-
SIDM haloes. More details about velocity averaging can be
found in Appendix D, which also describes the velocity av-
eraging procedure used for the dotted and dot-dashed lines
in Fig. 7.

5.2 Quality of fits

Aside from the question of whether one recovers the true
input cross-section for a simulation when fitting the isother-
mal Jeans model to the simulated density profiles, another
interesting question is how good these fits are. As we have al-
ready mentioned, the normalisation of our χ2 (equation 14)
is fairly arbitrary, because the mismatch between our sim-
ulated and model density profiles is primarily systematic
(i.e. the model not properly capturing the shape of the den-
sity profiles) rather than random (the deviations between
the model and simulated density profiles are not driven by
particle noise in the simulations for example). With the χ2

as we have previously defined it, the χ2 per degree of free-
dom for our best-fit density profiles are typically well below
unity, reflecting the fact that the best-fitting density profiles
fit to better than 0.1 dex, as can be seen in the examples in
Figures 4 and 5.

To give a sense of how well the best-fitting density pro-
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Figure 8. The goodness-of-fit for the best-fitting isothermal
Jeans model density profiles to the DM-only haloes in Fig. 6. The

y-axis values are δrms as defined in equation (18). The points

are coloured according to the DM model, with faded points cor-
responding to haloes that are ‘unrelaxed’ according to the Neto

et al. (2007) criteria (see Section 5.2).

files match the simulated ones, we define the rms error on
the logarithm of the density, δrms, by

δ2
rms =

1

Nbins

Nbins∑
i=1

(log10 [ρsim(ri)/ρmod(ri)])
2 . (18)

We calculate this quantity for each of the haloes shown in
Fig. 6 and plot them in Fig. 8. For haloes from eagle-12 and
eagle-50 (primarily covering masses from 1011 to 1013 M�),
the mean δrms values are 0.041, 0.038 and 0.050 for SIDM1,
vdSIDM and CDM respectively. These rise to 0.064, 0.059
and 0.053 for haloes from bahamas. We note that this means
that at low halo masses, our simulated haloes with larger
cross-sections are better fit by the NFW + isothermal model,
while at cluster scales this trend reverses and it is haloes
simulated with smaller cross-sections whose density profiles
can be better fit.

When fitting NFW profiles to CDM haloes, the con-
cept of ‘relaxed’ versus ‘unrelaxed’ haloes is often invoked,
as NFW profiles provide significantly better fits to relaxed
haloes than unrelaxed ones. To investigate the effects of re-
laxedness on the quality of our fits, we use the relaxation
criteria of Neto et al. (2007), to determine if haloes are re-
laxed or not. The criteria for a halo to be relaxed are that
the total mass within resolved substructures, as identified by
the subfind algorithm (Springel et al. 2001), with centres
within r200 is less than 10% of M200; that the offset between
the centre of mass of all particles within r200 of the halo
centre and the halo centre itself is less than 7% of r200;11

and that the virial ratio, 2T/|U |, is less than 1.35, where T
is the total kinetic energy of particles within r200 and U is
their mutual gravitational potential energy.

Using these criteria, we find that around 80% of the 50
most massive eagle-12 DM-only haloes are relaxed, drop-
ping to around 60% for eagle-50 and bahamas. These frac-

11 As in Section 3.4 we define the centre of the halo as the position
of the particle with the minimum gravitational potential energy.
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tions are roughly independent of DM model, although larger
cross-sections do seem to produce a slightly larger fraction
of relaxed galaxy clusters, with 33 of the 50 SIDM1 ba-
hamas haloes relaxed, while only 27 of the CDM ones are.
As can be seen in Fig. 8, the unrelaxed haloes are typically
those with the largest δrms, and removing them leads to the
bulk of eagle-12 and eagle-50 haloes fit to better than
0.05 dex, consistent with other work on the density pro-
files of CDM haloes and the goodness-of-fit of NFW profiles
(e.g. Navarro et al. 2004). From Fig. 8 we conclude that the
isothermal Jeans model fits the density profile of SIDM-only
haloes at a similar level as the NFW profile fits CDM-only
haloes,12 except for in galaxy clusters where the four relaxed
systems with the largest δrms are all from SIDM1. In two of
these four cases the corresponding CDM halo is deemed un-
relaxed, so at some level these reflect the increased relaxed
fraction with SIDM1. Another likely contributor is that in
SIDM-only systems, the central density decreases with in-
creasing halo mass. This leads to the inner regions of ba-
hamas-SIDM1 haloes having the fewest particles per radial
bin of all simulated systems. Inspecting the simulated den-
sity profiles, there are indications of particle noise out to
around 0.05 r200 which will increase the δrms values.

5.3 The concentration-mass relation

We have seen that the isothermal Jeans model provides a
good description of SIDM density profiles, at a level similar
to that with which NFW profiles describe CDM density pro-
files. It is then interesting to ask whether these good fits are
achieved in the way the model envisaged (i.e. the M200 and
c reflecting what the halo would look like in the absence of
self-interactions, and then the isothermal region describing
how self-interactions change the inner profile) or if, for ex-
ample, a good fit can be achieved but only by using a very
different value for c than what would have been the case
without self-interactions.

We have already seen in Fig. 5 an example halo where
the isothermal Jeans model provides a good fit when adopt-
ing the true cross-section and the concentration of the cor-
responding CDM halo. In Fig. 9 we plot the median poste-
rior concentrations against the median posterior halo masses
and show that it is generally true that the relationship be-
tween halo concentration and halo mass that one finds for
isothermal Jeans model fits to SIDM simulated systems is in
good agreement with the CDM concentration–mass relation,
c(M). This suggests that the isothermal Jeans model really
is a reasonable approximation to the physics responsible for
shaping the density profiles of SIDM haloes.

The fact that SIDM haloes modelled in the context
of the isothermal Jeans model have concentrations that
are broadly consistent with the CDM c(M) relation, leads
to two interesting questions. First, could our inference on
the cross-section be improved by adopting a prior on the
concentration-mass relation? Second, should such a prior be
adopted when dealing with observations of real systems?

12 As the isothermal Jeans model contains the NFW profile (in

the limit of small r1) our best-fit isothermal models to CDM
density profiles could not be improved by fitting just an NFW

profile.
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Figure 9. The concentration-mass relation implied by our

isothermal Jeans model fits. The M200 and c values are median
values from the marginalised posterior distributions for each halo.

The orange line shows the median concentration-mass relation

from Ludlow et al. (2016), with the shaded region showing the
expected 1σ scatter of 0.13 dex (Dutton & Macciò 2014).

To assess how a prior on c(M) affects our results, we re-
did our analysis using a log-normal prior on c(M) with a me-
dian relation from Ludlow et al. (2016), and with a standard
deviation of 0.13 dex (Dutton & Macciò 2014).13 For systems
that are not well-fit by core-collapsing solutions, the concen-
trations are already well constrained by the likelihood, and
adopting this prior makes little difference. For those systems
well fit by core collapsing solutions (those in the top of Fig. 6,
with a specific example being the SIDM1 halo from Fig. 5)
this prior can have a noticeable impact on the marginalised
σ/m posterior. However, these changes were not exclusively
in the direction of improving the match between the σ/m
posterior and the input cross-section, with about half of the
SIDM1 systems having a median σ/m that actually moves
away from the input value when adopting this prior. Core
collapse solutions typically have lower concentrations than
the ‘true’ solutions (ones adopting the correct cross-section),
and so the core collapse solutions of intrinsically high con-
centration systems can be a good match to the c(M) rela-
tion. It is these haloes most likely to be well fit by core col-
lapsing solutions, because core collapse sets in sooner in high
concentration haloes (Essig et al. 2019). The halo in Fig. 5
is a good example of this, where the concentration-mass re-
lation predicts c ≈ 6.5 (so the CDM version of this halo with
c = 8.4 is a high-c outlier), and a prior on c(M) increases
the probability associated with the high-σ/m core-collapsing
solutions at the expense of σ/m ≈ 1 cm2 g−1 solutions.

The reason that our fits generally constrain the halo
concentration quite tightly (without adopting a prior on

13 We did not re-run our MCMC analyses. Instead we re-weighted

each point in the chain with a weight of wi ∝ p(ci|Mi) ∝
exp

[
−(log ci − log cL16(Mi))

2/ 2× 0.132
]
, where ci and Mi are

the concentration and mass of a point in the MCMC chain,

cL16(M) is the Ludlow et al. (2016) concentration–mass relation
at z = 0, and 0.13 is the adopted scatter in log10 c at fixed halo

mass.
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c(M)) is that we fit to the density profile over a large range
of radii. For observed systems this often may not be possi-
ble. For example, if using stellar kinematics or HI rotation
curves to infer the DM density profile, one may only have
measurements in the inner region of the halo. In such cases
the halo concentration may be poorly constrained by the
data, and it would therefore be sensible to adopt a prior on
c(M), as recently done in Ren et al. (2019) and Sagunski
et al. (2020).

5.4 Effects of halo age

One aspect of the isothermal Jeans model that we have not
yet given much attention to is the halo age. For inside-out
matching, the scattering rate from equation (3) leads to r1

being defined by

σ

m

4√
π
σ0ρiso(r1)tage = 1. (19)

Setting the radius r1 is the only place where the cross-section
enters the isothermal Jeans model, and from equation (19) it
is therefore clear that the cross-section and age are perfectly
degenerate, with their product being all that matters for the
predicted density profile.

Our results thus far have assumed a common age for
all haloes of 7.5 Gyr. Here we investigate the impact of a
physically motivated definition of halo age, to see if it can
explain some of the scatter in the isothermal Jeans model
cross-sections about the true (input) cross-sections. We fo-
cus on the eagle-50 simulation with SIDM1 because we
have merger trees available for eagle-50 simulations (al-
lowing us to track the growth of a halo through time) and
because the SIDM1 simulations have a well-defined ‘correct’
answer for the cross-section (CDM has zero cross-section
and vdSIDM has an effective cross-section that we expect
to vary with halo mass).

We follow Lacey & Cole (1994) and define the halo age,
t50, as the time since the main progenitor contained at least
50% of the present-day halo mass. In Fig. 10 we plot this halo
age against the median posterior cross-section for each of our
haloes. If variations in halo age were the sole driver of dif-
ferences between the recovered σ/m from isothermal Jeans
modelling and the input σ/m then the points in Fig. 10
would lie along the black dashed line. This is not what we
find, although there is a slight trend for increasing inferred
σ/m with increasing t50.

We experimented with other definitions of halo age, that
required a lower fraction of the present day mass to be in
the main progenitor (for example t10 or t3) but found that
in none of these cases was there a clear linear relationship
between the halo age and the cross-section inferred assum-
ing a constant age. In fact, for definitions of halo age such
as t3 there is little spread in halo age, with the haloes in the
mass range probed by eagle-50 all being slightly younger
than the age of the universe.14 Note that it should proba-
bly not come as a surprise that there is not a simple def-
inition of halo age for which the isothermal Jeans model

14 It is not that all haloes accumulated 3% of their mass at the
same time, but (as an example) the lookback times to z = 4 and

z = 10 differ by less than 10%.
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Figure 10. The median posterior cross-section as a function of
halo age (defined as the time since over 50% of the halo’s z = 0

mass was first in a single halo), for the 50 SIDM1-only haloes from

eagle-50. The input cross-section of 1 cm2 g−1 and the assumed
halo age of 7.5 Gyr are marked with grey dotted lines. If differ-

ences between the true σ/m and that inferred when fitting to the

haloes density profiles were due solely to assuming a constant age
– when in fact the haloes have a range of ages – the points would

be expected to lie along the black dashed line.

then exactly works. In fact, the correlation between differ-
ent age definitions is only weak (see Giocoli et al. 2012, for
a comparison of t50 and t4). Early-forming haloes in one
definition can be late-forming by another, so formation his-
tories are more complex than a single ‘age’. Combined with
this, SIDM interactions in the smaller haloes that merge
to form a large one have already affected the inner density
and velocity structure of the DM halo, and so it is not only
self-interactions after ‘formation’ that are important.

Given that determining the age of a halo would be hard
observationally, the fact that using the true age (for some
definition of age) for the simulated systems does not lead
to a large improvement on the inference of the cross-section
suggests that observationally it is probably best just to as-
sume some fixed age for haloes. The core collapsing solu-
tions at large halo masses make it hard to be definitive,
but there is an indication in Fig. 6 that for SIDM1 haloes
in which the cross-section is well constrained, the inferred
cross-section decreases slightly with increasing halo mass.
This trend would be consistent with the fact that in a ΛCDM
(or ΛSIDM) cosmology, more massive haloes have formed
more recently (e.g. Lacey & Cole 1993), and so adopting a
halo age that decreases slightly with increasing halo mass
may improve the inference on the cross-section.

5.5 Effects of resolution

We end this section on isothermal fits to simulated DM-
only systems with a discussion of the spatial resolution of
our input simulations, and how this resolution could be af-
fecting our results. In particular, in Fig. 6 the CDM systems
have median posterior cross-sections of order 0.1 cm2 g−1 at
cluster scales, which rises to around 0.4 cm2 g−1 in 1011 M�
haloes. Given that the primary effect of numerical resolution
on DM density profiles is to artificially decrease the central
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density of haloes (Power et al. 2003), one might imagine that
the cross-sections returned by the isothermal Jeans model
fit to CDM haloes are a result of the spatial resolution of
the simulations.

However, when we consider the numerical parameters of
our simulations and the radial range over which we fit to the
density profiles, we do not expect resolution to be playing
an important role. This is borne out in Fig. 6 by the fact
that the most massive eagle-12 and eagle-50 haloes are
not obvious outliers with respect to the similarly-massive –
but much more poorly resolved – haloes from eagle-50 and
bahamas respectively. Rather than an effect of numerically-
formed cores, we believe the driver for the non-zero cross-
sections when fitting to CDM haloes is a combination of
the minimum radius to which we fit the density profiles and
a rather subtle effect of inside-out fitting and a resulting
bias against small cross-sections. This is further discussed
in Appendix E.

6 RESULTS WITH HYDRODYNAMICAL
HALOES

As described in Section 2.4, the isothermal Jeans model can
be readily extended to include the effects of the gravitational
potential due to baryons. When dealing with observed sys-
tems, this usually involves taking observed optical images
(for stars) or HI and/or CO data (for gas) and using these
to infer the baryon profile. In this work we do not concern
ourselves with the particulars of dealing with observations,
instead focussing solely on how well the isothermal Jeans
model describes SIDM density profiles when the distribu-
tion of baryons is known perfectly. To this end, we use the
spherically averaged Mbar(< r) measured from the simula-
tions in the isothermal Jeans model.

In Fig. 11 we show an example halo, using the SIDM1b
equivalent of the SIDM1-only halo shown in Fig. 4. In the
DM-only case, the isothermal Jeans model correctly iden-
tifies the true cross-section from this halo’s density pro-
file. When fitting to the simulated density profile that in-
cludes baryons, the marginalised σ/m posterior is multi-
modal, with reasonable fits to the SIDM density profile being
achieved with NFW profiles (r1 < 0.01r200) and also with al-
most entirely isothermal profiles (r1 ∼ r200), corresponding
to cross-sections spanning the full range of our prior. The
profiles in these cases are virtually indistinguishable from
one another, reflecting the fact that an isothermal species in
hydrostatic equilibrium with this particular baryon poten-
tial can have a density profile very close to NFW. For this
reason, it is hard to distinguish between large and small
cross-sections, but this is at least reflected in a broad poste-
rior (in other words, the isothermal Jeans model knows that
it does not know the cross-section).

Looking at the σ/m posteriors for all simulated systems
including baryons in Fig. 12 we see that broad posteriors
(and significant scatter about the input cross-section) are
typical for systems with 1012 .M200/M� . 3× 1013. How-
ever, at both higher and lower halo masses the isothermal
Jeans model can correctly discriminate between our different
simulated DM models. The well-constrained cross-sections
at high and low masses mean that – when fitting to the
ensemble of haloes – the velocity-dependent SIDM model
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Figure 11. The same as Fig. 4 but for the equivalent halo simu-
lated with the addition of baryons (SIDM1b; also shown in Fig. 2).

Unlike the SIDM-only version of this halo, here the cross-section

is poorly constrained by the isothermal Jeans model. Isothermal
profiles in hydrostatic equilibrium with this halo’s baryon poten-

tial are very close to NFW profiles, and a good fit to the simulated

density profile can be achieved with either an NFW halo (i.e.
with a low σ/m) or an entirely isothermal profile (a large σ/m).

As well as the maximum likelihood point (blue dot), we mark
two other points in the parameter space which correspond to the

highest likelihood points in the chain with cross-sections of ap-

proximately 1 cm2 g−1 (green; the true value) and 0.02 cm2 g−1

(orange). The corresponding density profiles and r1 values are

shown in the top-right panel, although the density profiles are

almost indistinguishable from the maximum likelihood one.

returned is a reasonable match to the input cross-section of
the corresponding simulations.

The fact that intermediate-mass haloes have similar
density profiles with CDMb and SIDMb is well known, and
we show this explicitly in Fig. 13, where we plot stacked
density profiles from our hydrodynamical simulations. The
first use of the isothermal Jeans model was to show that the
core size expected for SIDM in the Milky Way is substan-
tially smaller (when accounting for baryons) than the predic-
tion from SIDM-only simulations (Kaplinghat et al. 2014b).
More recently, Despali et al. (2019) used hydrodynamical
simulations to show that intermediate-mass haloes simu-
lated with SIDM could develop profiles that are similar to or
cuspier than their CDM counterparts, and Bondarenko et al.
(2020) showed that the maximal surface density (a quan-
tity related to the density profile) of simulated haloes with
M200 ∼ 1012 M� are very similar between CDM+baryons
and SIDM+baryons. The reason why baryons affect the
SIDM density profiles of these intermediate-mass haloes the
most, is because this is where the stellar mass fraction (i.e.
M∗/M200) peaks (e.g. Moster et al. 2013; Behroozi et al.
2013; Schaye et al. 2015), which is apparent in Fig. 13 as
it is intermediate-mass haloes that have the highest stellar
densities at a fixed fraction of r200.
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Figure 12. The same as Fig. 6 but for simulations that include

baryons. Low-mass galaxies and galaxy clusters typically have
well-constrained inferred cross-sections, consistent with those

used in the respective simulations. In intermediate halo masses
(∼ 1013 M�) the isothermal Jeans model struggles to determine

the true cross-section, although this is typically reflected by larger

error bars. Fitting a vdSIDM model to each ensemble of haloes,
the inferred cross-sections are slightly larger than when fitting to

DM-only haloes with the same input cross-section, although still

in reasonable agreement with the true values.

6.1 Quality of fits

Despite the added physical complexity of systems containing
baryons, the goodness-of-fit of the isothermal Jeans model
density profiles are similar between the DM-only and hydro-
dynamical simulations. This demonstrates that the assump-
tion made in isothermal Jeans modelling – that the baryons
impact the SIDM density profile only through their current
mass distribution (and resulting gravitational potential) – is
adequate for explaining the simulated SIDM density profiles
in the presence of baryons. In Fig. 14 we plot δrms for our
ensemble of haloes including baryons. While Fig. 12 demon-
strated that the isothermal Jeans model struggles to infer
the input cross-section for intermediate-mass haloes, Fig. 14
shows that this is not because it struggles to find a good
fit to the density profiles. As in the Fig. 11 example, the
isothermal Jeans model density profiles are a good match to
the simulated density profiles, they are just not very sensi-
tive to the value of the cross-section.

6.2 Adiabatic contraction of haloes

Although the isothermal Jeans modelling we perform here
accounts for the effect of baryons within the isothermal re-
gion of the halo, it does not take the baryons into account
in the outer (NFW) part of the halo. For haloes with low
(or zero) cross-section, this is the bulk of the halo, and so it
is worth considering how this might affect our results with
low cross-sections. Simulated CDM density profiles are af-
fected by baryons (e.g. Schaller et al. 2015), typically be-
coming denser in their centres due to a process known as
adiabatic contraction (Blumenthal et al. 1986; Gnedin et al.
2004; Duffy et al. 2010; Callingham et al. 2020). In low-mass
haloes, feedback-driven winds can actually reduce the cen-

tral CDM density (Read & Gilmore 2005; Pontzen & Gov-
ernato 2014; Chan et al. 2015; Tollet et al. 2016), but this
does not happen in the hydrodynamical simulations we use
in this paper due to the fairly low gas density at which star
formation occurs (Beńıtez-Llambay et al. 2019).

If one considers the process of adiabatic contraction as
increasing the NFW concentration of haloes (e.g. Rudd et al.
2008), then our model can actually account for this, because
the halo concentrations are free to vary above those pre-
dicted by CDM-only simulations. In Fig. 15 we plot the
isothermal Jeans model concentration-mass relation from
our simulations including baryons, and find that the re-
sults are in fairly good agreement with the CDM-only c(M)
relation. This is surprising, given that for all DM models
the haloes are significantly denser in their central regions
than in the DM-only equivalents, especially for M200 around
1012 − 1013 M�. The reason we do not see an increase in
halo concentration in these intermediate-mass haloes with
CDM+baryons is that the more centrally dense haloes are
typically better-fit by a low c, high σ/m solution, than an
NFW profile with high c. We show an example CDM halo
in Fig. 16, with a best-fit isothermal Jeans model concen-
tration of 6.5. If just fitting an NFW profile to this same
halo, the best-fit concentration is 9.0, but as can be seen in
the top-right panel, this NFW profile cannot create an inner
density profile with a slope as steep as the true one.

Adiabatic contraction leads to CDM density profiles
that are not usually well fit by NFW profiles in their centres
(Velliscig et al. 2014), typically having steeper inner den-
sity slopes (Duffy et al. 2010). The isothermal parts of our
model profiles can have steep inner slopes in the presence
of significant baryon potentials, while NFW profiles always
have ρ ∝ 1/r at small radii. If we just fit NFW profiles
to the DM density in our CDM+baryons simulations then
we find concentrations that typically lie above the CDM-
only c(M) relation, with a pronounced bump above the re-
lation at 1012 − 1013 M�, consistent with the expectation
that baryons increase halo concentrations. But when we are
free to vary the cross-section, and hence include a central
isothermal component, this can better match the steeper
than 1/r density profiles at low radii.

In the future it would be good to include a model of adi-
abatic contraction that would affect the outer halo (which
includes small radii for small cross-sections). Given that we
do our matching inside-out, we currently benefit from hav-
ing an analytical outer profile for which the density and
enclosed mass at a given radius can be easily converted into
the parameters describing the outer halo (i.e. M200 and c).
For this reason it is not simple for us to test the effects
of including adiabatic contraction for the outer halo. For
outside-in matching there is no such requirement, and so in-
cluding adiabatic contraction would be better suited to an
outside-in method, which would also circumvent the prob-
lems discussed in Appendix B related to sampling from the
inner-profile parameters disfavouring small σ/m. Including
adiabatic contraction of the outer halo was recently done in
Sagunski et al. (2020), who implemented the adiabatic con-
traction models from Blumenthal et al. (1986) and Gnedin
et al. (2004) into the isothermal Jeans model, and used it to
analyse a sample of galaxy groups and clusters. They do the
matching outside-in, using a relaxation method to find the
inner profile, that removes the need to iteratively find the
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Figure 13. Stacked density profiles of haloes from our hydrodynamical simulations. Each panel shows the median DM density (lines) and

stellar density (stars) as a function of radius, with the shaded regions corresponding to the 16th-84th percentiles of the density at a given
radius. From left to right the haloes increase in mass, with the first panel corresponding to haloes with 10.8 < log10M200/M� < 11.2,

and the second and third panels increasing the halo masses by successive factors of 100 (keeping a 0.4 dex bin width). The vdSIDMb

shaded regions have been omitted for clarity.
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Figure 14. The same as Fig. 8, but for simulations including
baryons. The quality of the isothermal Jeans model fits to density

profiles from hydrodynamical simulations is generally similar as

for the DM-only equivalents, although the worst fitting systems
have larger δrms with baryons than without. Note that the y-axis

range here is different from in Fig. 8.

ρ0 and σ0 that match onto the outer profile. Implementing
such a method is beyond the scope of this current work, but
we hope to implement and test this method in the future,
at which point we can also assess the impact of including
adiabatic contraction of the outer halo on the quality of the
fits as well as on the accuracy of the cross-section inference.

Irrespective of whether a more sophisticated treatment
of baryons would improve the cross-section inferred from
isothermal Jeans modelling, it is unlikely that the density
profiles of intermediate-mass haloes will be particularly use-
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Figure 15. The same as Fig. 9, but for simulations including

baryons. Note that the concentration is only for the DM, and is
the concentration of the NFW profile that describes the outer part

of the DM density profile. Despite the increased central density
of DM haloes when including baryons (especially at intermediate

halo masses), the halo concentrations end up being consistent
with the CDM-only concentration-mass relation.

ful as probes of SIDM, for the simple reason that the density
profiles themselves are very similar between different DM
models in this mass range. As such, whatever technique is
used to analyse them will struggle to tell SIDM and CDM
apart. Returning to Fig. 13, we can see that both the low
and high-mass bins show a clear trend of decreasing central
density with increasing cross-section. It is therefore at dwarf
galaxy and galaxy group/cluster scales where we expect to
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Figure 16. An example isothermal Jeans model fit to a
CDM+baryons halo. In addition to the features plotted in previ-

ous corner plots, there is an orange dashed line in the top-right

panel, which shows the best-fit NFW profile (which has c = 9) to
the DM density profile. Despite the DM in the simulation being

collisionless, the isothermal Jeans model prefers a cross-section

of order 10 cm2 g−1. This is because the isothermal Jeans model
prediction with zero cross-section is an NFW profile, but the inner

halo has been adiabatically contracted to be steeper than NFW,

reflected in the orange line being below the simulated profile at
low-radii.

obtain the best measurements of (or limits on) the SIDM
cross-section.

7 DISCUSSION AND OUTLOOK

Sokolenko et al. (2018) demonstrated that some of the as-
sumptions made in the isothermal Jeans model are not sat-
isfied by simulated SIDM halos. In particular, they showed
that SIDM particle orbits in the inner regions of halos are
not exactly isotropic, and that the radius r1 does not cor-
respond to the radius at which matched CDM and SIDM
haloes enclose the same amount of mass. Our simulated
haloes exhibit these same departures from the assumptions
of the isothermal Jeans model, which should not come as a
surprise given that the isothermal Jeans model is necessar-
ily simplistic in assuming that fewer than one scattering per
particle will have no effect on the DM distribution, while
greater than one scattering per particle will fully thermalise
the DM. Nevertheless, we find the model to provide a good
description of simulated SIDM density profiles, and (impor-
tantly) find that the isothermal Jeans model can be used to
infer the cross-section from a simulated halo’s density pro-
file, which works especially well for large cross-sections.

In light of the isothermal Jeans model’s assumptions not
holding exactly, Sokolenko et al. (2018) advocate compar-
ing simulated systems directly with observations (as done
in Robertson et al. 2019; Bondarenko et al. 2020; Vega-

Ferrero et al. 2020, for example). While this is certainly
a worthwhile approach, it is worth mentioning the advan-
tages of using something like the isothermal Jeans model
in order to interpret observations. A large advantage is that
the isothermal Jeans model is much less computationally ex-
pensive than simulations. This allows a scan over the SIDM
parameter space (as was done when fitting to density profiles
using MCMC in this paper), whereas when directly compar-
ing with simulations one is typically comparing observations
with (at most) a few different simulated cross-sections. A
second advantage is that it can be used to model specific
systems. This is especially important in the case of SIDM,
where the distribution of baryons strongly influences the DM
distribution. When comparing simulations directly with ob-
servations, this necessitates simulating many objects to find
analogues of particular observed systems. With the isother-
mal Jeans model, the system can have the correct baryon
distribution by construction.

The major downside of the isothermal Jeans model is
that it is only approximate, requiring various assumptions
that we know are not precisely true. We have already dis-
cussed in Section 6.2 that it would be good to include a
model for adiabatic contraction (see Sagunski et al. 2020),
removing the (incorrect) assumption that collisionless DM
is unaffected by baryons. It would also be beneficial to in-
vestigate removing the assumption of spherical symmetry
– which has already been done in the context of modelling
observed disk galaxies (Kaplinghat et al. 2014b; Kamada
et al. 2017; Ren et al. 2019) – and in future work we hope
to test a non-spherical isothermal Jeans model using these
simulations.

Another important aspect of the isothermal Jeans
model that would benefit from testing with a large number
of simulated systems across the full range of mass scales, is
how well it works when density profiles are not known, but
rather there are some observables (rotation curves, gravi-
tational lensing, etc.) from which they are being inferred –
in other words, how well does the isothermal Jeans model
work in practice? In general, it is non-trivial to infer the DM
distribution from observations (e.g. Kowalczyk et al. 2013;
Harvey et al. 2018; Oman et al. 2019; Genina et al. 2020;
He et al. 2020) and it is important to test how these difficul-
ties impact the inferred SIDM cross-section when isothermal
Jeans modelling is applied to observations. This was recently
done in the context of galaxy cluster observations by Sagun-
ski et al. (2020), who found that the inferred cross-section
from isothermal Jeans modelling using mock observations of
simulated clusters was in agreement with the cross-section
used in the simulations. However, the small scales that need
to be resolved for generating the relevant mock observables
require high-resolution simulations, which meant that Sa-
gunski et al. (2020) only had two simulated systems on which
to test their method.

While this paper has generally shown the isothermal
Jeans model to be an effective way to describe SIDM density
profiles, and to draw inference on the SIDM cross-section,
this is less true for low cross-sections, particularly in lower
mass haloes. Given that we have a log-uniform prior on the
cross-section in the range −2 < log10 σ/m/ cm2 g−1 < 2,
we could not have expected our CDM results to return
σ/m = 0. However, our marginalised σ/m posteriors for
CDM haloes do not bunch up towards the lower edge of our

MNRAS 000, 000–000 (0000)



20 A. Robertson et al.

prior. While this may be partly due to resolution-effects,
σ/m against M200 does not show clear discontinuities when
jumping between simulations with very different resolutions
(Figures 6 and 12) so these are likely small. Instead, we at-
tribute this primarily to a bias against small cross-sections
that is inherent to the inside-out method we use for sampling
the halo parameters (see Appendices B and E).

Sampling of the inner halo parameters has been used in
a number of previous works that have presented positive ev-
idence for SIDM (Kaplinghat et al. 2014b; Valli & Yu 2018;
Ren et al. 2019), and so the fact that this method can lead
to erroneously inferred non-zero cross-sections should be a
cause for concern. That said, Kaplinghat et al. (2014b) and
Valli & Yu (2018) used r1 rather than σ/m as a free param-
eter, and so will likely have different biases against certain
regions of parameter space, while Ren et al. (2019) used a
fixed cross-section throughout their work. Going forward, it
would be good to demonstrate a method that can reliably
infer cross-sections from simulated data, when the simulated
cross-section is small (or zero). It may be that sampling from
the outside-in is preferable for this, as Sagunski et al. (2020)
found that this method gives increased weight to low cross-
section regions of parameter space.

8 CONCLUSIONS

Overall, we find that the isothermal Jeans model provides
a good description of simulated SIDM density profiles, both
DM-only and including baryons. Turning this around, we
can use the isothermal Jeans model and a known DM density
profile to determine the DM–DM scattering cross-section.
This works especially well for large cross-sections, while with
CDM our results tend to incorrectly favour non-zero cross-
sections, driven by a bias against small cross-sections inher-
ent in our adopted method of sampling the isothermal Jeans
model parameter space (‘inside-out’).

We find that the quality of the fits are typically bet-
ter than 20% (0.08 dex) averaged across the radial range
from 0.01 r200 to r200, similar to the level at which NFW
profiles fit CDM-only simulated haloes. We also find that
the NFW concentrations from isothermal Jeans modelling of
SIDM haloes agree with the CDM concentration-mass rela-
tion, suggesting that the isothermal Jeans model works in a
manner close to the way in which it was envisaged – namely,
it starts from the expected density profile for collisionless
DM and predicts how self-interactions should change this.

We find that (when assuming a constant age for all
haloes) haloes that formed earlier have higher inferred cross-
sections, in keeping with the isothermal Jeans model pre-
diction that it is the product of cross-section and halo age
that is important for the effects of SIDM on a density pro-
file. That said, the correlation between halo age and inferred
cross-section is not particularly tight, reflecting the fact that
formation histories are complicated and are not captured by
a single definition of age.

When modelling haloes simulated with a velocity de-
pendent cross-section, we find that this leads to an inferred
cross-section that varies as a function of halo mass, because
the typical relative velocities between particles are higher
in more massive haloes. Fits to individual systems have a
strong covariance between the inner-halo’s velocity disper-

sion and the cross-section, which makes properly extracting
the best-fit velocity-dependent cross-section from an ensem-
ble of haloes a statistically challenging problem. We did not
attempt this here, but demonstrated that (with an appropri-
ate method for assigning a typical relative velocity to a halo)
the inferred cross-section from the isothermal Jeans model,
as a function of velocity, scatters around the cross-section
used to run the simulations.

In general the isothermal Jeans model works well for
cases involving baryons, with the quality of the model fits
comparable with the DM-only fits. However, at intermedi-
ate halo masses (M200 = 1012 − 1013 M�) the inner halo is
baryon dominated, and SIDM and CDM density profiles end
up looking very similar. This makes it difficult to use these
haloes to infer the cross-section, but this is at least reflected
in broad σ/m posteriors in such cases. As such, the best
constraints on (or measurements of) the SIDM cross-section
are likely to come from a mix of dwarf galaxies and galaxy
groups and clusters.
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APPENDIX A: OUTSIDE-IN MATCHING
WITHOUT ITERATION

A helpful way to think about matching from an NFW profile
to the inner (DM-only) isothermal profile is to consider both
the isothermal and NFW density profiles as defined by a
scale-density and scale-radius,

ρiso(r) = ρ0 f(r/r0) (A1)

ρNFW(r) = ρs g(r/rs), (A2)

where f(x) can be found numerically (see Section 2.2) and
g(y) = 1/

(
y(1 + y)2

)
(see equation 1).

The isothermal profile can be scaled arbitrarily in den-
sity normalisation, which means that for a given set of ρs,
rs, r0 and r1 there is a ρ0 for which ρiso(r1) = ρNFW(r1),
and there is also a ρ0 for which Miso(< r1) = MNFW(<

0.01 0.1 1 10 100 1000 10 000
r/r0, r/rs

0.0

0.2
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0.6
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ρ
(r

)/
〈ρ
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r)
〉

ρ ∝ 1/r

ρ ∝ 1/r2

isothermal

NFW

Figure A1. The density at radius r divided by the mean density
within r, as a function of r, for an NFW profile and for a DM-only

isothermal profile. The x-axis is a dimensionless radius, which is

r/rs for the NFW profile and r/r0 for the isothermal profile.
Power-law density profiles have constant values of ρ/〈ρ〉, with the

values for ρ ∝ 1/r and ρ ∝ 1/r2 indicated by the horizontal

dashed lines.

r1). However, what we require is that these two match-
ing criteria are simultaneously met, which means that
ρiso(r1)/Miso(< r1) = ρNFW(r1)/MNFW(< r1) or equiv-
alently ρiso(r1)/〈ρiso(< r1)〉 = ρNFW(r1)/〈ρNFW(< r1)〉.
Given this, it is instructive to look at the form of ρ/〈ρ〉 as a
function of radius for both the NFW and DM-only isother-
mal profiles. These can be calculated from f(x) and g(y) as

F (x = r/r0) =
4π
3
r3ρ(r)∫ r

0
4πr′2ρ(r′)dr′

=
x3f(x)

3
∫ x

0
x′2f(x′) dx′

, (A3)

and analogously for G(y).
Defining x1 = r1/r0 and y1 = r1/rs we can find ρ0

and r0 from ρs, rs and r1 as follows: • y1 = r1/rs • use
F (x1) = G(y1) to find x1 • r0 = r1/x1 • ρ0 = ρ1/f(x1).

The process of using F (x1) = G(y1) to find x1 is illus-
trated graphically in Fig. A1, where the isothermal line is
F (x) and the NFW line is G(y). One can immediately see
that there are values for x and y for which a match can-
not be found. In particular, the minimum value of F(x) is
≈ 0.26, which is the value of G(y) when y ≈ 4. As such,
when y > 4, i.e. when r1 > 4rs, there is no isothermal so-
lution that can match the NFW, as the NFW density has
fallen off too quickly with radius to be reproduced by an
isothermal profile.

One interesting feature in Fig. A1 is that F (x) is not
monotonically decreasing with increasing x, instead oscil-
lating around the value of 1/3 which corresponds to ρ/〈ρ〉
for a 1/r2 density profile. This happens because at large x,
f(x) ∝ 1/x2, but with a logarithmic slope that oscillates
about the limiting value of -2. Turning to our procedure for
matching, this would lead to multiple possible r0, each with
a corresponding ρ0, that produce isothermal profiles that
can match onto the NFW at r1. These multiple solutions
only arise when G(y) < 0.36 (the height of the positive peak
in F (x) at x ≈ 240), which is when r1 > 1.78rs. As such, for
r1 . rs there is always one and only one isothermal solution
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that matches, while for large cross-sections (leading to large
r1) there can be multiple or no matching solutions.

We stress that the results in this section apply only to
DM-only haloes, as in cases involving baryons the isother-
mal profile is no longer a separable function of ρ0 and r0.
In these cases it is not clear which NFW profiles and asso-
ciated r1 can be matched by an isothermal profile that is in
hydrostatic equilibrium with the total potential (and there-
fore depends on the baryon distribution). This is one of the
main reasons that we primarily used inside-out matching in
this paper, as the NFW profile is not affected by baryons
and so it is a simple procedure to find the NFW profile that
matches onto a given isothermal profile, or to show that
there is no such NFW profile.

APPENDIX B: EFFECTIVE PRIORS

Using inside-out matching, we sample from the parameters
of the inner halo. However, the outer-halo parameters are
more natural for describing the halo as a whole. Given our
priors on σ/m, N0 and σ0 it is interesting to see how these
map on to effective priors on the parameters M200, c and
σ/m. Note that the effective σ/m prior can differ from the
actual σ/m prior, because only certain regions of the prior
parameter space map onto valid NFW profiles. Also, while
our actual prior is a separable function of σ/m, N0 and σ0,
the effective priors can have a more complex structure.

In order to assess the effective priors, we draw samples
from our priors and find the corresponding NFW profiles,
discarding points in parameter space that do not map onto a
valid NFW. In practice, we do this by generating an MCMC
chain in the same manner as when fitting to a density pro-
file, but setting the likelihood to a constant value (unless
there is no matching NFW in which case the likelihood is
zero). The resulting corner plot is shown in Fig. B1. Looking
at the σ/m, N0, σ0 region of the plot, the effect of requir-
ing a matching NFW profile can be seen, as the effective
priors on these parameters do not match the priors actu-
ally imposed on these parameters. In particular, small σ0

and/or small σ/m are disfavoured. Mapping these same sets
of points into the M200 and c parameter space, we can see
that the marginalised logM200 and log c priors are both rel-
atively flat, with the marginalised prior density for logM200

varying by less than 30% over the range of halo masses for
which we have simulations.

Given that the NFW parts of our isothermal Jeans
model fits end up roughly following the CDM-only c(M)
relation (Fig. 9), it is instructive to look at the subset of our
effective prior volume that lies close to this c(M) relation.
To this end, we take the effective prior MCMC chain and
re-weight each point by its closeness to the c(M) relation.
Specifically, we give each point a weight

wi = exp

{
−
(

log10 [ci/cL16(Mi)]

σlog c

)2
}
, (B1)

where ci and Mi are the concentration and halo mass of
the ith point in the MCMC chain, cL16(M) is the median
concentration-mass relation from Ludlow et al. (2016) and
σlog c = 0.13 dex (Dutton & Macciò 2014).

Having applied these weights, the resulting corner plot
is shown in the top-right of Fig. B1. Of particular note is

that the marginalised effective prior on σ/m now strongly
favours larger cross-sections, which we consider to be the
driver of the moderately large cross-sections found when fit-
ting the isothermal Jeans model to CDM simulated density
profiles. From the σ/m–M200 panel, one can see that this
bias towards larger cross-sections increases with decreasing
halo mass, which is reflected in the increasing σ/m towards
low halo-masses seen for CDM in Fig. 6. This happens be-
cause the mapping from inner to outer halo, which causes
the bias, depends on the ratio of r1 to the scale parameters
of the inner and outer haloes, r0 and rs. At fixed cross-
section, r0/rs decreases with decreasing halo mass, because
the scattering rate is proportional to the velocity disper-
sion, which decreases with decreasing halo mass. This means
that a larger cross-section is required in lower-mass haloes
to achieve a particular r0/rs, and so the bias against low
σ/m is more pronounced in lower mass haloes.

APPENDIX C: MCMC SAMPLING

Our MCMC sampling was done using emcee (Foreman-
Mackey et al. 2013), which uses an ensemble of walkers,
with the next proposed jump in parameter space for a given
walker being based upon the location of another of the
walkers. As such, the proposal distribution is automatically
tuned to the shape of the posterior distribution.

For each halo (both DM-only and those with baryons)
the MCMC sampling of the posterior distribution for the
isothermal Jeans model parameters was done with K = 56
walkers. Walkers were started in a tight ball around N0 = 7,
σ/m = 1 cm2 g−1 and σ0 = (M sim

200 /1015 M�)1/3 700 km s−1,
with an initial burn-in period of 1000 steps which was run
and then discarded. The location of the walkers at the end of
the burn-in was then their starting location for the MCMC
chains that we use in our analysis, with a chain length of
Nchain = 5000 (for each walker).

We found that a small number of walkers would some-
times get stuck in local peaks of the posterior density. These
peaks could have substantially worse posterior densities than
those associated with points sampled about the true poste-
rior density peaks (differences of 100s or 1000s in the natural
logarithm of the posterior density), without covering a corre-
spondingly larger volume of the parameter space that they
should actually contribute a non-negligible amount to the
probability mass. Following Hou et al. (2012) we adopted
a procedure of pruning the MCMC chains, removing these
stuck walkers. Specifically, for each walker we calculated the
mean value of the negative log likelihood

Lk =
1

Nchain

Nchain∑
t=1

− lnL( ~θk(t)|D), (C1)

where ~θk(t) is the set of parameter values for the tth step in
walker k’s chain, D is the data (the DM density profile of the
simulated halo in question), and L is the likelihood function
defined by equation (14). We then rank all walkers based on

Lk, such that {~θ1, ~θ2, ..., ~θK} is in the order of increasing Lk.
Starting from k = 1 we find the difference in successive Lk
values, and stop when this difference is substantially larger
than the average difference before. Specifically, we find the
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Figure B1. A corner plot of the effective priors described in Appendix B. The lower-left (black) half of the plot shows points uniformly

sampled from flat priors on log(σ/m), logN0 and log σ0, with those that don’t map to a valid NFW profile removed. Cosmological haloes
follow the concentration-mass relation, which we plot in orange on the M200 − c panel, with the shaded region showing the 1σ scatter.

The upper-right (green) half of the plot is a corner plot of the same points sampled from our priors shown in black, but downweighting

points that lie far from the concentration-mass relation, following equation (B1).

first successive pair of Lk where

Lj+1 − Lj > C
Lj − L1

j − 1
(C2)

and throw away all ~θk with k > j. We use C = 100, but
found that C = 10 leads to almost identical results. Note
that equation (C2) can lead to removing perfectly valid
chains if, for example, L1 and L2 happen to be extremely
close to another (such that the jump to L3 looks large in

comparison but is small in absolute terms). This was the
case for one of our haloes, and so we additionally required
that we keep at least the first K/4 walkers, checking the
criteria in equation (C2) only for j ≥ K/4.

As recommended by Hogg & Foreman-Mackey (2018)
we use the integrated autocorrelation time to test for con-
vergence of our MCMC chains. We calculate the autocorre-
lation times using emcee’s built in functionality (Foreman-
Mackey et al. 2019). The chains mix quickly in terms of
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M200, but the main quantity of interest, σ/m, typically has
a longer autocorrelation time because of the more complex
shape of the posterior as a function of σ/m (in particu-
lar, the σ/m–c degeneracy). For our fits to DM-only density
profiles, the autocorrelation time for log σ/m was typically
30–80 steps, so that our chain length of 5000 corresponds
to an effective number of independent samples per walker of
order 100. For runs including baryons, the posteriors are of-
ten complicated, leading to increased autocorrelation times.
Our longest set of autocorrelation times was for eagle-12
with CDMb. These had estimated autocorrelation times of
150–400 steps, which is likely an underestimate given this
was calculated from fewer than 50 autocorrelation times’
worth of samples.15 While this leads to fairly low effective
sample sizes, running longer chains is computationally in-
feasible due to the fact that systems including baryons are
the ones in which likelihood evaluations take longest (finding
the numerical solution to equations (6) and (7) takes longer
when Mbar is significant). Nevertheless, we had originally
run chains of length 1000 (also with a shorter burn-in) and
while a few systems had noticeable shifts in their posterior
distributions between these early runs and the ones we use
in this paper, the overall picture expressed in Fig. 12 was
very similar between these two sets of MCMC chains.

APPENDIX D: VELOCITY AVERAGING

For a velocity dependent cross-section, the particle physics
specifies the momentum transfer cross-section as a function
of the relative velocity between two DM particles, σT̃ (vrel).
Meanwhile, an isothermal Jeans model fit provides a mea-
surement of the 1D velocity dispersion in the isothermal re-
gion, σ0, and a value for the cross-section, σ/m, which is the
velocity-independent cross-section that leads to 1 scattering
per particle over the age of the halo at the radius r1.

In Fig. 7 we plot the median posterior values of σ/m
against σ0 from isothermal fits to simulated haloes. While
σ0 is a single velocity, it represents a velocity distribution in
which pairs of particles will have different relative velocities.
There are then different ways in which a velocity-dependent
cross-section can be plotted onto this, depending on how
one takes a velocity-average of the velocity-dependent cross-
section (see Chu et al. 2020, for further discussion). If we
call the effective velocity-independent momentum-transfer
cross-section in an isothermal region σeff , then possibilities
for how to calculate σeff as a function of σ0 include:

σaeff(σ0) = σT̃ (〈vrel)〉) = σT̃ (4/
√
π σ0) (D1)

and

σbeff(σ0) = 〈σT̃ (vrel)〉 =

∫ ∞
0

σT̃ (v)f(v) dv, (D2)

where

f(v) =
1√
4π

v2

σ3
0

exp

(
− v2

4σ2
0

)
(D3)

15 See https://dfm.io/posts/autocorr/ for a discussion of how

to calculate autocorrelation times with multi-walker chains, and
what happens when estimating autocorrelation times from short

chains.

is the pairwise velocity distribution for a Maxwellian velocity
distribution with 1D dispersion, σ0,16 and 〈...〉 represents
averaging over this pairwise velocity distribution. σaeff is just
the cross-section evaluated at the mean pairwise velocity of
particles, while σbeff is the mean cross-section over all particle
pairs.

Another alternative is

σceff(σ0) =
〈σT̃ (vrel)vrel〉
〈vrel〉

=

∫∞
0
σT̃ (v)vf(v) dv∫∞
0
vf(v) dv

, (D4)

which is the pairwise-velocity-weighted mean cross-section
over all particle pairs, where the vrel weighting is moti-
vated by the fact that the scattering probability for a pair of
particles is proportional to σ(vrel)vrel. With this weighting
scheme we would expect the total scattering rate of parti-
cles (with a Maxwellian velocity distribution) to be equal for
the true velocity-dependent cross-section, and for a velocity-
independent cross-section of σceff .

A final velocity averaging scheme that we consider is

σdeff(σ0) =
〈σT̃ (vrel)v

2
rel〉

〈v2
rel〉

=

∫∞
0
σT̃ (v)v2f(v) dv∫∞
0
v2f(v) dv

, (D5)

which has an additional factor of the pairwise velocity in
the weight function, to reflect the fact that for some fixed
scattering angle, the amount of momentum transferred in
a scattering event is proportional to the relative velocity of
the scattering particles. Therefore, σdeff would be the rele-
vant quantity if we want to find the velocity-independent
cross-section that would lead to the same rate of momen-
tum exchange through particle scattering as the underlying
velocity-dependent cross-section.

For the vdSIDM model that we simulate, the cross-
section at high-velocities decreases with increasing velocity.
This means that averaging schemes that weight more to-
wards high-velocity pairs of particles (i.e. σceff and σdeff) pre-
dict lower effective cross-sections than if weighting each par-
ticle pair equally (i.e. σbeff). In Fig. 7 the dashed line is σbeff ,
the dot-dashed line σceff and the dotted line σdeff . It appears
that σbeff and σceff are better ways to calculate an effective
cross-section than σaeff or σdeff . Given that it is the transfer
of energy and momentum between particles that allows self-
interactions to establish thermal equilibrium, it is perhaps
surprising that σdeff does not provide the best description.
It is possible that this is because haloes grow through time,
so the velocity dispersions increase over time. This means
that a system with a particular effective cross-section now
will have had a larger effective cross-section in the past,
and so (averaging over the age of the halo) schemes that
over-predict the effective cross-section now may do better at
describing the effective cross-section over the whole halo his-
tory. Alternatively, it may be that the inferred cross-sections
from modelling vdSIDM galaxy clusters are artificially high
for the same reasons that we typically find modest non-zero
cross-sections with CDM (see Appendix E). It could then be
the case that – without a bias towards larger cross-sections
– the inferred cross-sections with vdSIDM in clusters would
be lower, and so better described by σdeff .

16 The pairwise velocity distribution looks like a Maxwell-
Boltzmann distribution (i.e. the distribution function of individ-
ual particles’ speeds) but with a 1D velocity dispersion of

√
2σ0.
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Figure E1. The median cross-section as a function of median

halo mass for isothermal Jeans model fits to the 1000 most mas-
sive FOF groups from each of our simulations. This includes

haloes that are poorly resolved and so have density profiles that
(in the region that we are fitting to) are strongly affected by res-

olution. The solid lines show running median cross-sections as

a function of halo mass for the different simulations. The dot-
ted lines are where r1 = rconv (assuming that haloes follow the

median concentration-mass relation) for our three different simu-

lation resolutions. The dashed line is where r1 = 0.01 r200.

APPENDIX E: SIMULATION RESOLUTION
AND THE CROSS-SECTION POSTERIORS FOR
CDM

It is well documented that N -body simulations are af-
fected by resolution, and that the densities at the centre
of CDM-only simulated haloes are systematically lower in
low-resolution simulations compared with higher-resolution
ones (Power et al. 2003; Diemand et al. 2004; Springel et al.
2008; Navarro et al. 2010; Gao et al. 2012). As a lowered cen-
tral density is also the primary effect of DM self-interactions
it is important that we understand what influence the reso-
lution of our simulations might have on our inference of the
cross-section from the simulated density profiles. In general,
SIDM haloes are converged down to smaller radii than their
CDM counterparts (see Vogelsberger et al. 2012; Stafford
et al. 2020), owing to the fact that physical two body in-
teractions between particles (i.e. the self-interactions) dom-
inate over the gravitational two-body interactions that are
the primary driver of numerical core formation with colli-
sionless DM (Ludlow et al. 2019). Given this, we focus on
the CDM simulations in this Appendix.

Recent work by Ludlow et al. (2019) has shown that
a fairly simple expression can be derived for the minimum
radius at which simulated CDM-only density profiles are
converged, rconv. This depends primarily on the simulation
particle mass, depending only weakly on the gravitational
softening length as well as the halo mass and concentration.
They find that for typical haloes – and with a definition
of ‘converged’ that is convergence in the circular velocity
to better than 10% – rconv ≈ 0.05 l, where l is the mean
inter-particle spacing.

Given that simulated halo density profiles are signifi-
cantly affected by resolution for r . rconv, and that within

the isothermal Jeans model departures from an NFW profile
happen for r < r1, it is instructive to consider the cross-
section required such that r1 = rconv. This depends on the
simulation resolution as well as the mass of the halo in ques-
tion, and we plot three curves (one for each simulation res-
olution) in Fig. E1 that correspond to r1 = rconv for haloes
following the Ludlow et al. (2016) concentration-mass rela-
tion. The low-mass CDM haloes within each of the three
CDM-only simulations have inferred cross-sections that are
close to this line, suggesting that cross-sections derived from
fitting to the density profiles of these low-mass haloes are re-
flecting the numerical cores formed due to limited resolution.
Note however, that the 50 most massive FOF groups from
each simulation (which are the ones used throughout this pa-
per) have rconv . 0.01 r200. We only fit the density profiles
down to 1% of r200 and therefore do not expect resolution
to have a significant impact on the haloes used throughout
this paper.

The highest-mass (and therefore best-resolved) haloes
in each CDM-only simulation do not appear to follow the
r1 = rconv lines, instead having larger inferred cross-sections.
Given that we only fit density profiles at radii above 1% of
r200, isothermal Jeans model fits with a cross-section for
which r1 < 0.01 r200 are actually just fits of NFW profiles
to the simulated density profiles. To illustrate the haloes for
which this could be important, we include a line correspond-
ing to r1 = 0.01 r200 in Fig. E1. It is not so obvious in Fig. E1
due to the absence of error bars,17 but if including error bars
like those in Fig. 6, a significant fraction of the CDM-only
haloes contain posterior probability at cross-sections below
the r1 = 0.01 r200 line. Given that for all cross-sections be-
low this line the same likelihood is achievable (by matching
onto a common NFW profile), the isothermal Jeans model
should not have a preference between cross-sections just be-
low this line or at much lower cross-sections (down to the
lower-limit of our prior at 0.01 cm2 g−1). The reason this
does not end up being the case is related to the ‘effective
priors’ discussed in Appendix B, which (despite adopting a
flat prior on log σ/m) favour larger cross-sections, especially
in lower-mass haloes. This happens because the prior area
in logN0–log σ0 that maps into a given area in M200–c de-
creases with decreasing σ/m. Thus, larger cross-sections are
favoured not because of an improvement to the likelihood,
but because (for a given M200 and c) a larger volume of
prior space maps to this M200 and c when adopting a larger
cross-section.

This behaviour is not particularly easy to understand,
but inspection of Fig. A1 can go some way to explaining it.
If we consider some fixed NFW profile and then ask what
isothermal profiles match onto it, we see that as the cross-
section decreases (and so r1 decreases) ρ(r1)/〈ρ(< r1)〉 →
2/3. This means that small cross-sections require a fine-
tuned value of r1/r0 ≈ 3, which can be seen from where
the red isothermal line crosses a value of 2/3 in Fig. A1. In
terms of our MCMC analysis, our log-uniform priors were
on the quantities N0 and σ0. This fine-tuned value of r1/r0

translates into a fine-tuned value of N0 ≈ 2.91, and it is this
required fine-tuning that produces the bias against small
cross-sections.

17 These are omitted for clarity, including them leads to a mess!
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We explicitly verified that changing our priors to boost
the prior volume associated with profiles that map onto an
NFW profile with r1 � rs shifts the CDM-only σ/m poste-
riors downwards, by re-running our MCMC analyses using
a reparameterised model. We parameterised the isothermal
profile in terms of σ0 and Ñ0 = N0−2.91, and then adopted
a flat prior on log10 Ñ0 between -2 and 5. This does in-
deed shift down the σ/m posteriors for CDM, leaving fits to
the simulations with non-zero cross-sections relatively un-
changed. However, this procedure is fairly arbitrary18 and,

18 If our prior on log10 Ñ0 extended to even lower values than -2
then this would further boost the prior volume associated with

small cross-sections.

importantly, only works for DM-only haloes. In the pres-
ence of baryons the isothermal profiles are altered and it is
no longer true that N0 ≈ 2.91 corresponds to an isothermal
profile that can match an NFW at r1 � rs.

To conclude on the effects of resolution, we do not be-
lieve that the results for the 50 most massive haloes in each
of our simulations should be affected much by the spatial res-
olution of our simulations, given that we only fit the density
profiles down to 1% of r200. However, there are complications
associated with prior volumes and inside-out matching that
lead to a bias towards larger cross-sections when r1 � rs.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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