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List of abbreviations (Chapter 6) 

ACT, atypical cartilaginous tumour 

CT, computed tomography 

CS, chondrosarcoma 

CS2, grade II chondrosarcoma 

ICC, intraclass correlation coefficient 

LASSO, least absolute shrinkage and selection operator 

MRI, magnetic resonance imaging 

RFE, recursive feature elimination 

SMOTE, synthetic minority oversampling technique 

WHO, World Health Organization 
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Abstract 

Background. Atypical cartilaginous tumour (ACT) and grade II chondrosarcoma (CS2) of 

long bones are respectively managed with watchful waiting or curettage and wide resection. 

Preoperatively, imaging diagnosis can be challenging due to interobserver variability and 

biopsy suffers from sample errors. The aim of this study is to determine diagnostic 

performance of MRI radiomics-based machine learning in differentiating ACT from CS2 of 

long bones. 

Methods. One-hundred-fifty-eight patients with surgically treated and histology-proven 

cartilaginous bone tumours were retrospectively included at two tertiary bone tumour 

centres. The training cohort consisted of 93 MRI scans from centre 1 (n=74 ACT; n=19 CS2). 

The external test cohort consisted of 65 MRI scans from centre 2 (n=45 ACT; n=20 CS2). 

Bidimensional segmentation was performed on T1-weighted MRI. Radiomic features were 

extracted. After dimensionality reduction and class balancing in centre 1, a machine-learning 

classifier (Extra Trees Classifier) was tuned on the training cohort using 10-fold cross-

validation and tested on the external test cohort. In centre 2, its performance was compared 

with an experienced musculoskeletal oncology radiologist using McNemar’s test. 

Findings. After tuning on the training cohort (AUC=0.88), the machine-learning classifier 

had 92% accuracy (60/65, AUC=0.94) in identifying the lesions in the external test cohort. 

Its accuracies in correctly classifying ACT and CS2 were 98% (44/45) and 80% (16/20), 

respectively. The radiologist had 98% accuracy (64/65) with no difference compared to the 

classifier (p=0.134). 

Interpretation. Machine learning showed high accuracy in classifying ACT and CS2 of long 

bones based on MRI radiomic features. 

Funding. ESSR Young Researchers Grant.
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Research in context 

Evidence before this study. Radiomic studies to date have focused on the classification of 

bone chondrosarcoma, including atypical cartilaginous tumour and high-grade 

chondrosarcoma, using radiomics alone or combined with machine learning. In long bones, 

therapeutic strategies for those lesions are entirely different and mainly based on imaging. In 

a recent study, we focused on CT radiomics-based machine learning and the distinction 

between atypical cartilaginous tumour and high-grade (II and higher) chondrosarcoma of 

long bones, including 120 patients from two institutions. Machine learning had 75% accuracy 

with no difference compared to an experienced radiologist. Previously, we used machine 

learning in combination with MRI radiomics to discriminate atypical cartilaginous tumour 

from high-grade chondrosarcoma. Only 58 patients from the same centre were included and 

the machine learning classifier was internally tested using a hold-out set as a test cohort, 

achieving 75% accuracy. 

Added value of this study. In the current study, we attempted to differentiate atypical 

cartilaginous tumours from grade II chondrosarcoma of long bones using MRI radiomics-

based machine learning. Higher-grade chondrosarcomas are more easily identified on MRI 

and were thus not included. The population of our current study was larger than previous 

publications, including 158 patients from two specialized institutions, which allowed for 

model validation on independent data from the external test cohort. Our classifier had 92% 

accuracy based on T1-weighted MRI radiomics, overlapping a dedicated bone tumour 

radiologist with 35-year experience who read all available MRI sequences. Thus, compared 

to previous studies, our method showed better performance to solve the most relevant clinical 

problem of atypical cartilaginous tumour/grade II chondrosarcoma differentiation. 

Implications of all the available evidence. Radiomics-based machine learning is an objective 

method that may be used in clinical decision making by accurately differentiating atypical 

cartilaginous tumour from chondrosarcoma of long bones.  
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6.1 Introduction 

Chondrosarcoma (CS) accounts for 20-30% of primary bone tumours in adulthood 
1. Based upon pathology, conventional CS was graded into three categories, where grade I, 

also called atypical cartilaginous tumour (ACT), has an indolent biologic behaviour, whereas 

grades II-III are aggressive malignant tumours with metastatic potential and high recurrence 

rates after surgery 2. In the 2020 edition of the World Health Organization (WHO) 

classification, the term ACT is reserved for formerly named ACT/grade I CS only when 

located in long bones 3. Cartilaginous tumours with the same histology, but located in the 

axial skeleton, are classified as grade I CS 3. ACTs of long bones are indolent as compared 

to axial grade I CS and appendicular or axial grade II-III CS. Also, the increase of prevalence 

of ACT secondary to increased use of MRI over the past decades, relative to the lack of 

increase of grade II-III CS in the long bones, does not support the previous opinion that there 

is a risk of higher-grade CS developing in ACT 4. Thus, this new classification better 

connects to therapeutic options that are different between ACT and CS grades I-III. 

Intralesional curettage, or even watchful waiting has been proposed for ACT, whereas for 

CS grades I-III, wide resection remains the therapy of choice 5–8. 

As a consequence of these therapeutic options, clinical management currently 

depends on our ability  to differentiate between ACT and grade II CS (CS2) of long bones 8. 

Biopsy suffers from sample errors and is no longer standard of care in many tertiary centres 
9. MRI is the method of choice for diagnosis and differentiating between ACT and CS2 in 

long bones 10. There is, however, discussion on accuracy of the various subjective MRI 

parameters, and there is the inherent interobserver variability 11,12. New imaging-based tools 

like radiomics have recently been proposed to characterize cartilaginous bone tumours more 

objectively 13,14. Radiomics includes the analysis of quantitative features extracted from 

imaging studies, known as radiomic features, which can be combined with machine learning 

algorithms to create classification models for the diagnosis of interest 15–17. 

Machine learning has already shown good accuracy in discriminating ACT from 

all-grade CS based on computed tomography (CT) 13 and MRI 14 radiomics. However, no 

validated study to date has addressed the more relevant and specific distinction between ACT 

and CS2. Thus, the aim of this study is to determine diagnostic performance of MRI 

radiomics-based machine learning for classification of ACT and CS2 of long bones. 
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6.2 Methods 

6.2.1 Ethics 

Institutional Review Board from each involved centre approved this retrospective 

study and waived the need for informed consent (Protocols: “RETRORAD” in centre 1 and 

“G19.047” in centre 2). Patients included in this study granted written permission for 

anonymized data use for research purposes at the time of the MRI. After matching imaging, 

pathological, and surgical data, our database was completely anonymized to delete any 

connections between data and patients’ identity according to the General Data Protection 

Regulation for Research Hospitals. 

 

6.2.2 Study design and inclusion/exclusion criteria 

Consecutive patients with ACT or CS2 of long bones and MRI available at one of 

two tertiary bone tumour centres (centre 1, IRCCS Orthopaedic Institute Galeazzi, Milan, 

Italy; centre 2, Leiden University Medical Centre, Leiden, The Netherlands) were considered 

for inclusion. Information was retrieved through medical records from the orthopaedic 

surgery and pathology departments. Inclusion criteria were: (i) ACT or primary central CS2 

of long bones that was surgically treated with curettage or resection; (ii) definitive 

pathological diagnosis based on the surgical specimen assessment; (iii) MRI scan with at 

least T1-weighted and fluid-sensitive sequences in two directions performed within 3 months 

before surgery. Exclusion criteria were: (i) metacarpal, metatarsal, and phalangeal lesions; 

(ii) recurrent lesions; (iii) presence of pathological fracture. A flowchart of the patient 

selection process is shown in Fig. 1. 
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Fig. 1 Flowchart of patient selection. 

 

6.2.3 Study cohorts 

One-hundred-fifty-eight patients were retrospectively included. The training cohort 

consisted of 93 MRI scans from Centre 1 (n=74 ACT; n=19 CS2). The external test cohort 

consisted of 65 MRI scans from Centre 2 (n=45 ACT; n=20 CS2). Patients’ demographics 

and data regarding lesion location are detailed in Table 1. In Centre 1, examinations were 

performed on one of two 1.5-T MRI systems (Magnetom Avanto, Siemens Healthineers, 

Erlangen, Germany; or Magnetom Espree, Siemens Healthineers, Erlangen, Germany). In 

Centre 2, examinations were performed on a 3-T (Ingenia or Intera, Philips Medical System, 

The Netherlands) or 1.5-T (Ingenia, Philips Medical System, The Netherlands) MRI system. 

Also, externally obtained MRI scans of patients referred to centre 2 were included in this 

study as long as the minimal MRI protocol was available. MRI specifications for Centre 1 

and Centre 2 are summarized in Supplementary Table 1. All DICOM images were extracted 

and converted to the NiFTI format prior to the analysis using the dcm2niix software 18. 
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Table 1 Demographics and clinical data. Age is presented as median and interquartile (1st-3rd) range. 
 Center 1 Center 2 
Age 53 (45-62) years 62 (49-72) years 
Sex Men: n=29 

Women: n=64 
Men: n=31 
Women: n=34 

Lesion location Femur: n=41 
Fibula: n=9 
Humerus: n=37 
Radius: n=1  
Tibia: n=5  

Femur: n=46 
Humerus: n=10  
Tibia: n=9 

 

 

6.2.4 Segmentation 

A 2-year-experienced musculoskeletal radiologist (S.G.) performed contour-

focused segmentation on preoperative T1-weighted MRI using the freely available, open-

source software ITK-SNAP (v3.8) 19. The axial, as first choice, or coronal or sagittal 

sequence was used based on availability and lesion location. In detail, bidimensional regions 

of interest were manually annotated on the slice showing the maximum lesion diameter. 

Radiomic analysis was not performed on fluid-sensitive sequences based on previous 

findings that, when extracting both T2- and T1-weighted MRI features, only the latter passed 

feature selection during dimensionality reduction 14. Contrast-enhanced MRI was not 

available in all our cases, particularly ACT in centre 1, and was also not used. 

In order to meet the numerical requirements of a reliability analysis according to the 

intraclass correlation coefficient (ICC) guidelines by Koo et al. 20, namely 3 observers and 

30 observations, segmentations were additionally performed by other two radiologists in a 

subgroup of 30 patients randomly extracted from the training cohort. The additional 

segmentations performed by the second and third readers on this subset of 30 patients were 

exclusively used to assess feature reproducibility. The segmentations employed to build and 

test the classification model were all performed by the first reader. Each radiologist was 

independent and unaware of the slice other readers selected for segmentation, as well as 

blinded regarding lesion grading and disease course. 

 

6.2.5 Feature extraction 

Image pre-processing and feature extraction were performed using PyRadiomics 

(v3.0.1) 21. The suggested pre-processing steps were employed 22: image resampling, grey 

level normalization and discretization. In particular, pixels were resampled to a 1×1 mm in-

plane resolution, z-score normalized to a 0-600 grey level value range and discretized with a 
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fixed bin width. In order to determine the ideal bin width value, a preliminary extraction 

exclusively of the first order range parameter was performed on training data alone. The 

parameter file for the radiomic data extraction is available in a freely accessible online 

repository (https://github.com/rcuocolo/mri_act_cs2). 

Radiomic features were obtained from original and filtered images, including 

Laplacian of Gaussian filtering and wavelet decomposition. All available radiomic features 

for bidimensional masks were extracted 

(https://pyradiomics.readthedocs.io/en/latest/features.html), subdivided into the following 

classes: first-order (histogram analysis), 2D shape-based, Gray Level Co-occurrence Matrix, 

Gray Level Size Zone Matrix, Gray Level Run Length Matrix, Neighbouring Gray Tone 

Difference Matrix and Gray Level Dependence Matrix. 

 

6.2.6 Machine learning analysis 

Radiomic data processing and machine learning analysis were performed using the 

“irr” R package 23, “pandas” and “scikit-learn” Python packages 24. Radiomic feature 

selection was performed using the training cohort data alone and consisted of stability, 

variance and pairwise correlation analyses as well as cross-validation based least absolute 

shrinkage and selection operator (LASSO) regression and recursive feature elimination 

(RFE). Feature stability was assessed by obtaining feature ICC using a two-way random 

effect, single rater, absolute agreement model. Features were considered stable if the ICC 

95% confidence interval lower bound was ≥ 0.75. Then, low variance (threshold = 0.01) and 

highly intercorrelated (Pearson correlation coefficient threshold ≥ 0.80) were removed. 

LASSO regression coefficient analysis followed by RFE were finally used to determine the 

feature set to employ for model training. RFE used an Extra Trees model with default 

hyperparameters as its estimator and area under the ROC curve as the reference score. Both 

LASSO and RFE employed 10-fold stratified cross-validation. 

Given the unbalanced nature of the training cohort, the synthetic minority 

oversampling technique (SMOTE) was used to balance the dataset by creating new instances 

from the minority class in Centre 1, thus increasing the number of CS2 to n=74 25. No 

oversampling was performed in the external test cohort. Thus, a machine-learning classifier 

(Extra Trees Classifier) was tuned via 10-fold stratified cross-validation using a random 

hyperparameter search on the training cohort. Decision tree forests are a commonly 
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employed ensemble machine learning architecture. As decision trees alone have a tendency 

to overfit the training data, the use of random resampling through bootstrapping and a 

subsample of the available features reduces model variance by introducing a degree of 

randomness. Compared to Random Forests, Extra Trees also perform random selection of 

feature thresholds within each tree node. This leads to further reduce the variance of the final 

ensemble (https://scikit-learn.org/stable/modules/ensemble.html#forest). The random search 

hyperparameter space was defined as follows:  

1. Number of trees = 100-1000 

2. Criterion = entropy, Gini 

3. Maximum tree depth = 1-10  

4. Maximum number of features per tree = 1-All 

5. Bootstrap = true, false  

6. Maximum number of samples per tree = 0-100% 

The training process also included sigmoid model calibration via 5-fold stratified cross-

validation nested within each loop of the 10-fold stratified cross-validation. The final model 

consisted of the best performing pipeline which was then fitted on the entire training dataset 

and tested on the external test cohort. Our radiomics-based machine learning workflow is 

illustrated in Fig. 2. This workflow is similar to one recent study from our group 13, with 

differences mainly related to feature selection process and machine learning classification. 

To offer some insights on the model’s predictions, Shapley values were obtained for each 

feature using the “SHAP” Python package 26. These provide a game-theory based assessment 

of the contribution of each parameter to the final output of the classifier. 

 

6.2.7 Qualitative imaging assessment 

An expert bone tumour radiologist with 35 years of work experience in a tertiary 

sarcoma centre (J.L.B.) read all MRI studies from the external test cohort blinded to any 

information about lesion grading, disease course and radiomics-based machine learning 

analysis. All available MRI sequences were used for qualitative assessment. The following 

parameters were assessed to differentiate CS2 from ACT and give the final impression: 

peritumoral bone marrow oedema, expansion of the medullary canal with thinner cortex, 

cortical breakthrough, periosteal reaction and cortical remodelling, reactive soft-tissue 

oedema and soft-tissue extension 10. 
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Fig. 2 Radiomics-based machine learning workflow pipeline. This workflow is similar to one recent study from 
our group 13, with differences mainly related to feature selection process and machine learning classification. 

 

6.2.8 Statistical analysis 

Continuous data are presented as median and interquartile (1st-3rd) range. 

Categorical data are presented as value counts and proportions. The R “stats” package was 

used for the following statistical analyses. Chi-square test and Mann-Whitney tests were used 

to evaluate sex and age differences between the training and external test cohorts, 

respectively. In the external test cohort, McNemar’s test was used to compare the classifier 

performance with the radiologist’s one. A two-sided p-value <0.05 indicated statistical 

significance. 

Accuracy measures of the classifier performance included, among others: F-score, 

which is the harmonic average of precision (also known as positive predictive value) and 

recall (also known as sensitivity) and ranges from 0 to 1 (perfect accuracy); area under the 

precision-recall curve, which is an alternative to the area under the ROC curve and more 

informative for imbalanced classes. 

 

6.2.9 Role of funding source 

This research was partially funded by the Young Researchers Grant awarded by the 

European Society of Musculoskeletal Radiology (S.G.). The funding source provided 

financial support without any influence on the study design; on the collection, analysis, and 
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interpretation of data; and on the writing of the report. The first author had the final 

responsibility for the decision to submit the paper for publication. 

 

6.3 Results 

No statistical difference in sex (p=0.053 [Chi-square test]) was present between the 

training (64 women and 29 men) and external test (34 women and 31 men) cohorts. Age was 

younger (p=0.001 [Mann-Whitney test]) in patients from the training cohort (53 [45-62] 

years) compared to the external test cohort (62 [49-72] years). A bin width value of 3 

presented the best results for feature extraction, with a median of 34 (22-55) bins in the 

training cohort. A total of 919 radiomic features were extracted from each lesion. The rate of 

stable features was 78% (n = 720). Removing low variance (n = 2) and highly inter-correlated 

(n=633) features yielded a dataset of 87 features. Next, features with LASSO coefficients 

shrinking to zero (n=67) were removed. Of the remaining features, an optimal number of 17 

features was identified with RFE, as summarized in Table 2. 

After tuning on the training cohort (AUC=0.88), the machine-learning classifier had 

92% accuracy (60/65) in identifying the cartilaginous bone lesions in the external test cohort. 

Specifically, its accuracy in classifying ACT and CS2 was 98% (44/45) and 80% (16/20), 

respectively. Areas under the ROC (Fig. 3) and precision-recall (Fig. 4) curves were 0.94 

and 0.90, respectively. Other evaluation metrics are derived from confusion matrix in Table 

3 and detailed in Table 4. Fig. 5 depicts the calibration curve of the classifier in the external 

test cohort. The Brier score was 0.09, with lower values suggestive for better calibration. 

Shapley values for the model are presented in Fig. 6. The model, its implementation 

instructions, all required files for data extraction and processing are available in the online 

study repository (https://github.com/rcuocolo/mri_act_cs2). 

The experienced radiologist had 98% accuracy (64/65 correct diagnosis provided) 

in classifying the lesions with no statistical difference compared to the classifier (p=0.134 

[McNemar’s test]). The radiologist’s accuracy was 100% (45/45) and 95% (19/20) in 

classifying ACT and CS2, respectively. The radiologist and the classifier agreed on the final 

diagnosis in 94% (61/65) of cases, as one case was misdiagnosed by both. Fig. 7 shows 

cartilaginous lesions of long bones in three different patients from the external test cohort. 
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Table 2 List of selected features by feature class and source image, including original, Laplacian of Gaussian-
filtered (LoG) and wavelet-transformed images. 

Feature name Feature class Source image 
10th percentile First Order Original 
Minor Axis Length 2D shape Original 
Informational Measure of Correlation 2 GLCM LoG (sigma = 1) 
Inverse Difference Normalized GLCM LoG (sigma = 1) 
Run Entropy GLRLM LoG (sigma = 1) 
Informational Measure of Correlation 1 GLCM LoG (sigma = 2) 
Dependence Variance GLDM LoG (sigma = 2) 
Small Area Emphasis GLSZM LoG (sigma = 3) 
Dependence Variance GLDM LoG (sigma = 3) 
Informational Measure of Correlation 1 GLCM LoG (sigma = 4) 
Informational Measure of Correlation 1 GLCM LoG (sigma = 5) 
Small Area Emphasis GLSZM LoG (sigma = 5) 
Gray Level Non-Uniformity GLDM Wavelet (low-high pass filter) 
Informational Measure of Correlation 1 GLCM Wavelet (high-high pass filter) 
Size-Zone Non-Uniformity Normalized GLSZM Wavelet (high-high pass filter) 
Short Run Low Gray Level Emphasis GLRLM Wavelet (low-low pass filter) 
Large Area Emphasis GLSZM Wavelet (low-low pass filter) 

Abbreviations. GLCM, Gray Level Co-occurrence Matrix; GLDM, Gray Level Dependence Matrix; GLRLM, 
Gray Level Run Length Matrix; GLSZM, Gray Level Size Zone Matrix. 

 
Table 3 Confusion matrix for the external test cohort. 

 
Predicted class 

ACT CS2 

Actual class 
ACT 44 1 
CS2 4 16 

 

 
Table 4 Classifier accuracy metrics weighted average and by class in the external test cohort. 

Class Precision Recall F-score 
ACT 0.92 0.98 0.95 
CS2 0.94 0.80 0.86 

Weighted average 0.92 0.92 0.92 
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Fig. 3 ROC curve showing the classifier performance in the external test cohort. 
 

 
Fig. 4 Precision-recall curve illustrating the classifier performance in the external test cohort. 
 

 
Fig. 5 Calibration curve in the external test cohort. 
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Fig. 6 Beeswarm plot of feature Shapley values in the final model. 
 

 
Fig. 7 Native and fat-saturated post-contrast T1-weighted sequences show three different cases of cartilaginous 
bone tumors, including ACT of the femur (a-b), CS2 of the femur (c-d) and CS2 of the humerus (e-f). Cortical 
breakthrough and soft-tissue extension are highly suspicious of high-grade lesion in the femur (c-d), whereas no 
suspicious feature is qualitatively seen in the humerus (e-f). Post-contrast images were qualitatively assessed by 
the radiologists, but they were not included in the radiomics-based machine learning analysis. 

 

6.4 Discussion 

The main finding of our study was that our machine learning method was 92% 

accurate in differentiating ACT from CS2 of long bones based on T1-weighted MRI radiomic 

features. This result was achieved in an independent cohort of patients from a second 

institution (external test cohort) and did not differ compared to a dedicated bone tumour 

radiologist with 35-year experience. 
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Our findings have clinical relevance as therapeutic strategies for ACT and CS2 in 

long bones are entirely different and mainly based on MRI. The difference in treatment 

strategies between ACT and enchondroma is disappearing, as watchful waiting in ACT has 

become an increasingly favoured option over intralesional curettage 6–8. Thus, radiological 

focus has shifted from differentiating enchondroma from ACT towards identifying high 

grade CS. The exact, conservative, options for managing enchondroma and ACT are 

currently under evaluation, but there is consensus that CS2 needs wide resection 8. 

Additionally, clinical outcome strongly depends on tumor grading, as reported 5- and 10-

year overall survival rates are 87-99% and 88-95% for ACT/grade I CS, while they are 74-

99% and 58-86% for CS2, respectively 3,4. 

Radiomic studies to date have focused on the classification of cartilaginous bone 

tumours, such as enchondroma, ACT and high-grade CS, using radiomics alone 27–29 or 

combined with machine learning 13,14. Particularly, in a recent study we focused on CT 

radiomics-based machine learning and the distinction between ACT and high-grade CS of 

long bones, including CS2, grade III and dedifferentiated CS in the latter group 13. One-

hundred-twenty patients were included from two institutions (IRCCS Orthopaedic Institute 

Galeazzi in Milan and IRCCS Regina Elena National Cancer Institute in Rome, Italy) and 

split into training and external test cohorts, as done in our current study. Machine learning 

had 75% accuracy in identifying the lesions in the external test cohort with no difference 

compared to an experienced radiologist 13. Previously, we used machine learning in 

combination with non-contrast MRI radiomics to discriminate ACT from high-grade CS 14. 

Only 58 patients from the same centre were included and the machine learning classifier was 

internally tested using a hold-out set as a test cohort, achieving 75% accuracy. In this work, 

radiomic features were extracted from both T1-weighted and T2-weighted sequences, but 

only T1-weighted MRI features were selected during dimensionality reduction (i.e. feature 

selection) process 14. Based on this preliminary finding, in the current study we intentionally 

focused on T1-weighted MRI radiomics. Our current study addressed the most relevant 

clinical issue of differentiating between ACT and CS2 of long bones 8, thus excluding higher-

grade CS, that more easily identified on MRI. The population of our study was larger than 

previous publications, including 158 patients from two specialized institutions (IRCCS 

Orthopaedic Institute Galeazzi in Milan, Italy and Leiden University Medical Centre in The 

Netherlands), which allowed for model validation on independent data from the external test 
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cohort. In the present study, the workflow was similar to the above discussed CT-based study 

from our group 13, although some differences mainly related to feature selection process and 

machine learning classification existed. Particularly, the pipeline was improved by 

employing a random search hyperparameter tuning process and classifier calibration through 

nested cross-validation. Our classifier (Extra Trees classifier) had 92% accuracy overall, 

98% in identifying ACT and 80% in identifying CS2 in the external test cohort based on T1-

weighted MRI radiomics, respectively, overlapping a dedicated bone tumour radiologist with 

35-year experience who read all available MRI sequences. Thus, although the different 

outcome cannot be distinctly attributed to larger population, differences in workflow or input 

image (MRI, rather than CT as in 13), our current method showed better performance than 

previous studies 13,14 to solve the clinical problem of ACT/CS2 differentiation.  

Some limitations of our study need to be addressed. First, the design of our study is 

retrospective that, however, allowed including a large number of patients with a relatively 

uncommon disease. Also, a prospective analysis is not strictly necessary for radiomic studies 
30. Second, we performed bidimensional segmentation on the MRI slice showing the largest 

lesion diameter. This decision was taken following our recent finding that no difference in 

reproducible feature rates exists between bidimensional and volumetric MRI-based texture 

analysis 31, and the latter would also be less easily performed in clinical practice. Third, ACT 

was over-represented compared to CS2 in our population of study. However, this accurately 

reflects the incidence of ACT and CS2 in clinical practice 4, and class balancing was 

performed to artificially oversample the minority class in the training cohort 25. Fourth, 

contrast-enhanced MRI was not used for radiomics-based machine learning analysis. On one 

hand, our intention was to keep our model as simple as possible by focusing on a single 

sequence and non-contrast T1-weighted images are almost always part of MRI protocols in 

these patients. On the other hand, we favoured having a large population of study over 

including contrast-enhanced MRI, which was not available in all our cases. Our findings 

open the possibility for future studies to investigate the added value of machine learning and 

contrast-enhanced MRI radiomics for classification of cartilaginous bone tumours. Finally, 

while a clear correlation of specific radiomic features with lesion phenotypical characteristics 

remains complex to identify, the Shapley value plot offers a degree of explainability and 

insight on the inner workings of our model. 
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In conclusion, our machine learning method was highly accurate in discriminating 

ACT from CS2 of long bones based on radiomic features obtained from T1-weighted MRI. 

Our large population of study and the excellent performance achieved using independent data 

from different institutions ensure the generalizability of our findings. Thus, radiomics-based 

machine learning is an objective MRI method that may be used in clinical decision making 

by accurately differentiating between ACT and CS2. Future studies are warranted to verify 

the transferability of our findings into clinical practice, particularly involving inexperienced 

radiologists, who may mostly benefit in using this tool. Additionally, our findings from the 

present and previous works may be compared with other studies from different groups, using 

meta-analysis, in order to deeper investigate the theoretical aspects of radiomics and machine 

learning regarding cartilaginous bone tumours.  
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Supplementary material 

Supplementary Table 1 MRI specifications for turbo spin echo T1-weighted axial sequence in both center 1 and 
center 2, expressed in millimeters. FOV, field of view. 

 Center 1 Center 2 
1.5T  1.5T  3T  1.5T 

Humerus FOV: 200 
Thickness: 4.5 
Pixel: 0.8x0.6 

FOV: 160 
Thickness: 3 
Pixel: 0.8x0.6 

FOV: 200 
Thickness: 6 
Pixel: 0.65x0.79 

FOV: 200 
Thickness: 6 
Pixel: 0.55x0.69 

Radius FOV: 160 
Thickness: 3 
Pixel: 0.7x0.5 

// // // 

Proximal femur FOV: 370 
Thickness: 3 
Pixel: 1x0.8 

// FOV: 300 
Thickness: 8 
Pixel: 0.96x0.96 

FOV: 300 
Thickness: 8 
Pixel: 0.85x0.86 

Distal femur 
 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 300 
Thickness: 8 
Pixel: 0.96x0.96 

FOV: 300 
Thickness: 8 
Pixel: 0.85x0.86 

Fibula 
Tibia 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 150 
Thickness: 7 
Pixel: 0.6x0.71 

FOV: 150 
Thickness: 7 
Pixel: 0.6x0.7 
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