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List of abbreviations (Chapter 5) 
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Abstract 

Background. Clinical management ranges from surveillance or curettage to wide resection 

for atypical to higher-grade cartilaginous tumours, respectively. Our aim was to investigate 

the performance of computed tomography (CT) radiomics-based machine learning for 

classification of atypical cartilaginous tumours and higher-grade chondrosarcomas of long 

bones. 

Methods. One-hundred-twenty patients with histology-proven lesions were retrospectively 

included. The training cohort consisted of 84 CT scans from centre 1 (n=55 G1 or atypical 

cartilaginous tumours; n=29 G2-G4 chondrosarcomas). The external test cohort consisted of 

the CT component of 36 positron emission tomography-CT scans from centre 2 (n=16 G1 or 

atypical cartilaginous tumours; n=20 G2-G4 chondrosarcomas). Bidimensional 

segmentation was performed on preoperative CT. Radiomic features were extracted. After 

dimensionality reduction and class balancing in centre 1, the performance of a machine-

learning classifier (LogitBoost) was assessed on the training cohort using 10-fold cross-

validation and on the external test cohort. In centre 2, its performance was compared with 

preoperative biopsy and an experienced radiologist using McNemar’s test. 

Findings. The classifier had 81% (AUC=0.89) and 75% (AUC=0.78) accuracy in identifying 

the lesions in the training and external test cohorts, respectively. Specifically, its accuracy in 

classifying atypical cartilaginous tumours and higher-grade chondrosarcomas was 84% and 

78% in the training cohort, and 81% and 70% in the external test cohort, respectively. 

Preoperative biopsy had 64% (AUC=0.66) accuracy (p=0.29). The radiologist had 81% 

accuracy (p=0.75). 

Interpretation. Machine learning showed good accuracy in classifying atypical and higher-

grade cartilaginous tumours of long bones based on preoperative CT radiomic features. 

Funding. ESSR Young Researchers Grant.  
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Research in context 

Evidence before this study. To date, radiomic studies have dealt with MRI of cartilaginous 

bone lesions with the aim of discriminating among benign enchondroma, atypical 

cartilaginous tumour and malignant chondrosarcoma, predicting local recurrence of 

chondrosarcoma and differentiating chondrosarcoma from other entities such as skull 

chordoma. Machine learning was used in combination with radiomics to address some of 

these issues. Particularly, an adaptive boosting classifier (AdaBoostM1) was a good predictor 

of tumour grade based on MRI radiomic features derived from unenhanced T1-weighted 

sequences, showing 75% accuracy in the test cohort for classification of atypical 

cartilaginous tumours and chondrosarcomas. This previous study included 58 patients from 

the same institution and the machine-learning classifier was internally tested using a hold-

out set as a test cohort. To our knowledge, no published study has focused on machine 

learning and CT radiomics of cartilaginous bone lesions, as done in our study.  

Added value of this study. We also attempted to differentiate atypical cartilaginous tumours 

from chondrosarcomas of long bones, as this is the most relevant clinical question and 

orientates towards a conservative approach or aggressive surgery. Our CT radiomics-based 

machine-learning classifier (boosted [LogitBoost] linear logistic regression classifier) 

achieved 75% accuracy overall, 81% accuracy in identifying atypical cartilaginous tumours 

and 70% accuracy in identifying higher-grade chondrosarcomas in the external test cohort, 

respectively, with no difference in comparison with an experienced radiologist (p=0.75). 

These results agree with those previously reported for tumour grading based on MRI 

radiomics. Furthermore, our findings were obtained in a more than twice larger population 

and validated in an independent test cohort from a second institution, thus ensuring their 

generalizability in clinical practice. Finally, although statistical significance was not reached 

(p=0.29), the machine-learning classifier’s accuracy was slightly superior compared to 

preoperative biopsy. We may speculate that this difference could become significant in a 

larger population. 

Implications of all the available evidence. Radiomics-based machine learning may 

potentially aid in preoperative tumour characterization by integrating the multidisciplinary 

approach currently based on clinical, conventional imaging and histological assessment. 

  



 

 91 

5.1 Introduction 

Chondrosarcoma accounts for 20 to 30% of primary malignant bone lesions (1).  

Clinical management primarily depends on tumour grading. Particularly, low-grade (G1) 

chondrosarcomas of long bones, recently downgraded from malignant to locally aggressive 

lesions and renamed “atypical cartilaginous tumours” (2), are managed with intralesional 

curettage or even watchful waiting. Appendicular higher-grade and axial skeleton 

chondrosarcomas require wide resection with free margins (3). The 10-year overall survival 

decreases from 88% for atypical cartilaginous tumour/G1 to 62% and 26% for G2 and G3 

chondrosarcoma, respectively (4). Both imaging and biopsy integrate clinical information 

before any treatment is started (3). Magnetic resonance imaging (MRI) is the best imaging 

modality for local staging (5). Computed tomography (CT) is used for biopsy guidance (6) 

and provides additional information, such as matrix mineralization and cortex changes (3). 

CT and positron emission tomography-CT (PET-CT) can be both employed for general 

staging (3). Biopsy is considered the reference standard for preoperative assessment but 

suffers from the disadvantages of sampling errors (7) and overlapping histological findings 

leading to discrepancies even among expert bone pathologists (8). Thus, the need for new 

imaging-based tools like radiomics is advocated to better characterize cartilaginous bone 

lesions preoperatively (9). 

Radiomics includes extraction and analysis of large numbers of quantitative 

characteristics, known as radiomic features, from imaging studies (10). This research field 

has gained much attention in oncologic imaging as a potential tool for quantification of 

tumour heterogeneity, which is hard to capture with conventional imaging assessment or 

sampling biopsies (11). Most radiomic studies to date have focused on discriminating tumour 

grades and types before treatment, monitoring response to therapy and predicting outcome 

(11). Due to its high-dimensional nature consisting of numerous radiomic features, radiomics 

benefits from powerful analytic tools and artificial intelligence with machine learning 

perfectly addresses this issue (12). Machine learning algorithms can be trained using subsets 

of radiomic features creating classification models for the diagnosis of interest (13–15). 

Machine learning has recently shown good accuracy in discriminating between 

atypical cartilaginous tumours and higher-grade bone chondrosarcomas based on 

unenhanced MRI radiomic features (16). The aim of this study is to investigate the diagnostic 
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performance of CT radiomics-based machine learning for classification of atypical 

cartilaginous tumours and higher-grade chondrosarcomas of long bones. 

 

5.2 Methods 

5.2.1 Ethics 

Our Institutional Review Board approved this retrospective study and waived the 

need for informed consent (Protocol: “AI tumori MSK”). Our database was anonymized 

according to the General Data Protection Regulation for Research Hospitals. 

 

5.2.2 Study design and inclusion criteria 

Information was retrieved through electronic records from the orthopaedic surgery 

and pathology departments. Consecutive patients with an atypical cartilaginous tumour or 

appendicular chondrosarcoma and CT or PET-CT performed over the last 10 years at one of 

two tertiary bone tumour centres (centre 1, IRCCS Orthopaedic Institute Galeazzi in Milan, 

Italy; centre 2, IRCCS Regina Elena National Cancer Institute in Rome, Italy) were 

considered for inclusion. Inclusion criteria were: (i) atypical cartilaginous tumour or 

conventional G2-G3-G4 (dedifferentiated) chondrosarcoma of long bones that was surgically 

treated with intralesional curettage or resection; (ii) definitive histological diagnosis defined 

on the basis of the surgical specimen assessment; (iii) CT (centre 1) or PET-CT (centre 2) 

scan performed before biopsy and within 1 month before surgery; and (iv) in centre 2, 

preoperative biopsy performed within 1 month before surgery. Patients with pathological 

fractures, secondary tumours arising from pre-existing cartilaginous lesions, recurrent 

tumours or metal devices resulting in beam hardening artifacts were excluded. A flowchart 

of patient selection is shown in Fig. 1.  
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Fig. 1 Flowchart of patient selection. ACT, atypical cartilaginous tumours. 
 

5.2.3 Study cohorts 

One-hundred-twenty patients were retrospectively included. The training cohort 

consisted of 84 CT scans by as many patients from centre 1 (n=55 G1 or atypical 

cartilaginous tumours; n=29 G2-G4 chondrosarcomas). The external test cohort was 

constituted by the CT component of 36 PET-CT scans by as many patients from centre 2 

(n=16 G1 or atypical cartilaginous tumours; n=20 G2-G4 chondrosarcomas). Patients’ 

demographics and data regarding lesion location, grading and surgical treatment are detailed 

in Table 1. In centre 1, all examinations were performed using a 64-slice CT unit (Siemens 

SOMATOM Emotion, Erlangen, Germany). CT specifications were: matrix, 512 x 512; field 

of view (range), 138-380 mm; slice thickness, 1 mm. In centre 2, all examinations were 

performed using a 16-slice PET-CT unit (Siemens Biograph, Erlangen, Germany). PET-CT 

specifications were: matrix, 512 x 512; field of view, 500 mm; slice thickness, 4 mm. All 

DICOM images were exported and converted to the NiFTI format prior to the analysis (17). 
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Table 1 Demographics and clinical data. Age is presented as median and interquartile (1st-3rd) range. 

 Centre 1 Centre 2 
Age 52 (45-65) years 57 (46-69) years 

Sex 
Men: n=30 
Women: n=54 

Men: n=13 
Women: n=23  

Lesion location 

Femur: n=40 
Fibula: n=9 
Humerus: n=30 
Radius: n=1 
Tibia: n=4 

Femur: n=21 
Fibula: n=6 
Humerus: n=5 
Tibia: n=4 
 

Lesion grading 

G1: n=55 
G2: n=13 
G3: n=9 
G4 (dedifferentiated): n=7 

G1: n=16 
G2: n=12 
G3: n=3 
G4 (dedifferentiated): n=5 

Surgery 

G1/Atypical cartilaginous tumours 
Curettage: n=47 
Wide resection: n=8* 

G1/Atypical cartilaginous tumours 
Wide resection: n=16* 

G2-G4 chondrosarcomas 
Curettage + wide resection: 

n=5** 
Wide resection: n=24 

G2-G4 chondrosarcomas 
Wide resection: n=20 

 

*Wide resection was performed in n=8 G1/atypical cartilaginous tumours from centre 1 in case of specific 
anatomic location (like fibular head) or to prevent the risk of biopsy sampling errors. It was performed in all 
cases from centre 2 to prevent the risk of biopsy sampling errors, as per routine procedure. 
**Curettage was initially performed in n=5 G2 chondrosarcomas from centre 2, as preoperative biopsy 
downgraded the lesions as G1. A second surgery consisting of wide resection was thus required. 

 

5.2.4 Segmentation 

A recently-boarded musculoskeletal radiologist (S.G.) manually performed 

contour-focused segmentation using a freely available, open-source software, ITK-SNAP 

(v3.6) (18). In detail, bidimensional regions of interest were annotated on the axial slice 

showing the maximum lesion extension. Unenhanced CT scan or CT scan performed as part 

of PET-CT protocol was used. According to the intraclass correlation coefficient (ICC) 

guidelines by Koo et al. (19), in a subgroup of 30 patients randomly selected from centre 1, 

segmentations were additionally performed independently by two radiology residents 

experienced in musculoskeletal and oncologic imaging (M.A. and A.C.) to meet the 

requirements of a reliability analysis in terms of patients and readers involved. All the readers 

knew the study would deal with cartilaginous bone lesions, but they were unaware of tumour 

grading and disease course, as well as the slice other readers used for segmentation. 
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5.2.5 Feature extraction 

Image preprocessing and feature extraction were performed using PyRadiomics 

(v3.0.0) (20). Regarding preprocessing, image resampling (to an 1x1 mm in-plane resolution) 

was performed to ensure the correct calculation of texture features, following current 

guidelines (21). Grey level normalization and discretization followed. For the first, after z-

score normalization, grey level values were scaled by a factor of 100. The resulting arrays 

were shifted by a value of 300 to avoid negative-valued pixels that could cause issues with 

texture analysis. After this process, the final image grey level range is expected to fall 

between 0 and 600, excluding outliers. To select the correct bin width for discretization, an 

exploratory extraction of first order parameters (i.e., grey level range) was performed 

exclusively on the training set, to avoid any information leak from the external test cohort. 

In this step, bin widths 2, 3, 4 and 5 were used to analyse grey level range of the normalized 

images. In addition to the original images, features were also extracted from filtered ones, 

i.e. after Laplacian of Gaussian (sigma=1, 2, 3, 4, 5) filtering and wavelet decomposition (all 

combinations of high and low-pass filtering on the x and y axes). All available first-order 

(histogram analysis), 2D shape-based and texture features were extracted, described in detail 

in the PyRadiomics official documentation 

(https://pyradiomics.readthedocs.io/en/latest/features.html). 

 

5.2.6 Machine learning analysis 

Radiomic data processing and machine learning analysis were performed using the 

Weka data mining platform (v3.8.4), R and scikit-learn Python package (22–24). A 

normalization (min-max range=0-1) scaler was fitted on the training data and applied to both 

training and external test cohorts prior to the analysis. Feature selection was performed 

exclusively using the training cohort data and included stability assessment as well as 

variance and intercorrelation analyses. The first was performed by obtaining feature ICC 

with a two-way random effect, single rater, absolute agreement model. Features were 

considered stable if the ICC 95% confidence interval lower bound was ≥0.75. Next, low 

variance (0.15 threshold) or highly inter-correlated (Pearson correlation coefficient threshold 

0.80) features were removed. Finally, features with an information gain ratio >0.35 were 

selected.  
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Given the unbalanced nature of the training dataset, the synthetic minority 

oversampling technique (SMOTE) was used to balance this data by creating new instances 

from the minority class in centre 1, thus increasing the number of G2-G4 chondrosarcomas 

to 55 (25). The test set underwent no oversampling as it was not employed to build the 

classification model but only to assess its performance. Thereafter, a boosted (LogitBoost) 

linear logistic regression machine-learning classifier was trained and validated on the 

training cohort using 10-fold cross validation and tested on the external cohort. The Brier 

score was obtained, together with calibration curves, for the external test set in order to 

evaluate prediction and calibration loss. Our radiomics-based machine-learning workflow 

pipeline is shown in Fig. 2.  

 
Fig. 2 Radiomics-based machine learning workflow pipeline. 

 

5.2.7 Qualitative imaging assessment 

A musculoskeletal radiologist with 12 years of experience in bone sarcomas (V.A.) 

read all CT studies from centre 2 blinded to any information regarding tumour grading, 

disease course and radiomics-based machine learning analysis. G2-G4 chondrosarcomas 

were differentiated from atypical cartilaginous tumours based on the presence of at least one 

of the following parameters: medullary cavity expansion with thinner cortex, cortical 

breakthrough, aggressive periosteal reaction, soft-tissue mass (5,26). Additionally, 

maximum lesion diameter was measured. 
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5.2.8 Statistical analysis 

Continuous data are presented as median and interquartile (1st-3rd) range. 

Categorical data are presented as value counts and proportions. Data management was 

performed using the pandas Python software package. The “irr” and “stats” R packages were 

used for ICC assessment and remaining statistical tests, respectively. In the external test 

cohort, the classifier’s performance was compared with preoperative biopsy and the 

radiologist’s performance using McNemar’s test. Mann-Whitney and Fisher’s tests were 

used to assess age and sex differences between the two cohorts. A 2-sided p-value <0.05 

indicated statistical significance. 

Accuracy measures of the machine-learning classifier performance included, among others: 

• F-score, i.e. the harmonic average of the precision (i.e. positive predictive value) 

and recall (i.e. sensitivity), ranging from 0 to 1 (perfect accuracy) 

• Area under the precision-recall curve, i.e. an alternative to the area under the ROC 

curve, which is more informative for imbalanced classes. 

A radiologist with experience in radiomics and artificial intelligence (R.C.) assessed 

Radiomics Quality Score in the attempt to estimate the methodological rigor of our study, as 

suggested by Lambin et al. (27). 

 

5.2.9 Role of funding source 

This research was partially funded by the Young Researchers Grant awarded by the 

European Society of Musculoskeletal Radiology (S.G.). The funding source provided 

financial support without any influence on the collection, analysis, and interpretation of data; 

on the writing of the report; and on the decision to submit the paper for publication. 

 

5.3 Results 

No difference in patients’ age (p=0.25 [Mann-Whitney test]) and sex (p>0.99 

[Fisher’s test]) was found between the training and the external test cohorts. In our 

population, a bin width value of 3 presented the best results for feature extraction, with an 

average of 59 bins (± 30) in the training set. A total of 919 radiomic features were extracted 

from each segmentation. The rate of stable features was 30% (n=275), none of which had 

low variance. Removing all inter-correlated features yielded a dataset of 26 non-colinear 

features. Of these, the five with the highest gain ratio were selected and included: Major Axis 
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Length (2D shape-based) derived from the original images; Contrast (Neighbouring Gray 

Tone Difference Matrix) derived from wavelet-transformed images (Low-High pass filter); 

Short Run Low Gray Level Emphasis (Gray Level Run Length Matrix) from LoG-filtered 

images (sigma=5); Difference Entropy (Gray Level Co-occurrence Matrix) from the original 

images; Inverse Difference Moment (Gray Level Co-occurrence Matrix) derived from LoG-

filtered images (sigma=2). Feature dimensionality reduction is shown in Fig. 3. 

The machine learning classifier had 81% (89/110) and 75% (27/36) accuracy in 

identifying the cartilaginous bone lesions in the training and external test cohorts, 

respectively. Area under the ROC curve was, respectively, 0.89 and 0.78. In detail, its 

accuracy in classifying atypical cartilaginous tumours and higher-grade chondrosarcoma was 

84% (46/55) and 78% (43/55) in the training cohort, and 81% (13/16) and 70% (14/20) in 

the external test cohort, respectively. Other evaluation metrics are derived from confusion 

matrix in Table 2 and reported in Table 3. Fig. 4 shows the ROC curve illustrating the 

classifier performance in the external test cohort. Fig. 5 shows the precision-recall curve 

illustrating the classifier performance for G2-G4 chondrosarcoma identification in the 

external test cohort. The final model had a Brier score of 0.25, while Fig. 6 depicts its 

calibration curve in the external test cohort. Our Radiomics Quality Score was 47% 

(Supplementary material). 

In patients from centre 2, preoperative biopsy had 64% (23/36 correct tumour grade 

provided) accuracy in grading the cartilaginous bone lesions. Area under the ROC curve was 

0.66. Preoperative biopsy provided an inconclusive result (n=5) or downgraded the lesion 

(n=8) in the remaining patients. Biopsy accuracy was slightly lower in comparison with the 

machine-learning classifier’s accuracy, although this difference was not statistically 

significant (p=0.29 [McNemar’s test]). The experienced radiologist had 81% (29/36 correct 

diagnosis provided) accuracy in identifying the cartilaginous bone lesions with no statistical 

difference compared to the classifier (p=0.75 [McNemar’s test]). The radiologist’s accuracy 

was 75% (4/16) and 85% (17/20) in classifying atypical cartilaginous tumours and higher-

grade chondrosarcomas, respectively, as detailed in Table 4. 
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(2A) 

 

(2B) 

 
Fig. 3 Feature dimensionality reduction. A Feature selection process was performed exclusively using the 
training cohort data and included stability assessment as well as variance and intercorrelation analyses. The rate 
of stable features was 30% (n=275), none of which had low variance. Removing all inter-correlated features 
yielded a dataset of 26 non-colinear features. B The five features with the highest gain ratio were selected and 
included. 
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Fig. 4 ROC curve showing the classifier performance in the external test cohort. 
 

 
Fig. 5 Precision-recall curve illustrating the classifier performance for G2-G4 chondrosarcoma identification in 
the external test cohort. 
 

 
Fig. 6 Calibration curve in the external test cohort. The data is divided into bins, with the y-axis representing the 
distribution of positive cases in each bin while the x-axis the probability as predicted by the classifier. The closer 
the resulting calibration curve is to the reference line. the better the model’s predictions reflect the actual class 
distribution in the dataset. 
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Table 2 Confusion matrix for the training and external test cohorts. ACT, atypical cartilaginous tumour; CS, 
higher-grade chondrosarcoma. 

 
Predicted class 

ACT CS 

Actual class 

Training 
ACT 46 9 

CS 12 43 

External test 
ACT 13 3 

CS 6 14 
 
Table 3 Classifier accuracy metrics weighted average and by class in both the training and external test cohorts. 
ACT, atypical cartilaginous tumour; CS, higher-grade chondrosarcoma; FP, false positive; PRC, precision-recall 
curve; ROC, receiver operator curve; TP, true positive; WA, weighted average. 

Cohort Class TP rate FP rate Precision Recall F-score ROC PRC 

Training 
ACT 0.836 0.218 0.793 0.836 0.814 0.891 0.876 
CS 0.782 0.164 0.827 0.782 0.804 0.891 0.915 
WA 0.809 0.191 0.810 0.809 0.809 0.891 0.895 

External test 
ACT 0.813 0.300 0.684 0.813 0.743 0.784 0.661 
CS 0.700 0.188 0.824 0.700 0.757 0.784 0.857 
WA 0.750 0.238 0.762 0.750 0.751 0.784 0.770 

 
Table 4 Qualitative imaging assessment performed by the experienced radiologist. Lesion diameter is presented as 
median and interquartile (1st-3rd) range. Other variables are presented as proportions. ACT, atypical cartilaginous 
tumour; CS, higher-grade chondrosarcoma. 

Class 
Bone 

expansion 
Cortical 

breakthrough 
Aggressive 
periostitis 

Soft-tissue 
mass 

Maximum 
diameter 

Correct 
diagnosis 

ACT 1/16 3/16 1/16 0/16 45 (31-54) mm 12/16 
CS 13/20 16/20 14/20 13/20 91 (59-124) mm 17/20 
Overall 14/36 19/36 15/36 13/36 60 (42-100) mm 29/36 

 

5.4 Discussion 

The main finding of this study is that we developed a machine-learning classifier 

for discrimination between atypical cartilaginous tumours and higher-grade 

chondrosarcomas of long bones based on preoperative CT radiomic features, which achieved 

good accuracy in an independent test cohort from an external institution. Its performance did 

not differ in comparison with both an experienced bone tumour radiologist and preoperative 

biopsy. 

Atypical cartilaginous tumours are locally aggressive lesions of the extremities, 

relatively indolent as compared with higher-grade tumours, and have a very low metastatic 

rate (2). Curettage is the standard of care (3), but its effectiveness in preventing 

transformation into higher-grade chondrosarcoma has not been demonstrated. Hence, given 

the similarity to benign enchondroma on both imaging (28) and histology (8), watchful 
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waiting has been proposed as an alternative strategy to prevent overtreatment and morbidity 

associated with surgery (29–31). An accurate differentiation from higher-grade 

chondrosarcomas requiring wide resection is thus necessary for treatment planning, and 

currently based on a multidisciplinary approach combining clinical presentation with 

imaging and biopsy (3). On imaging, MRI is the method of choice for local staging, while 

CT and PET-CT are employed for general staging (3). Both MRI (5) and PET-CT based on 

standard uptake values (32) are accurate in discriminating between atypical cartilaginous 

tumours and chondrosarcomas. On the other hand, biopsy may erroneously lead to tumour 

down-grading in large heterogenous lesions, as only small areas are sampled (7). 

Additionally, low reliability in tumour grading has been reported even among specialized 

bone pathologists (8) and the risk of biopsy-tract contamination also remains a concern. 

Thus, current imaging techniques may be further equipped to safely grade cartilaginous bone 

lesions non-invasively, and radiomics looks promising in this regard (9). 

To date, radiomic studies have dealt with MRI of cartilaginous bone lesions with 

the aim of discriminating among benign enchondroma, atypical cartilaginous tumour and 

malignant chondrosarcoma (16,33,34), predicting local recurrence of chondrosarcoma (35) 

and differentiating chondrosarcoma from other entities such as skull chordoma (36). Machine 

learning was used in combination with radiomics to address some of these issues (16,35,36). 

Particularly, machine learning was a good predictor of tumour grade based on MRI radiomic 

features derived from unenhanced T1-weighted sequences, showing 75% accuracy in the test 

cohort for classification of atypical cartilaginous tumours and chondrosarcomas (16). This 

previous study included 58 patients from the same institution and the machine-learning 

classifier was internally tested using a hold-out set as a test cohort (16). To our knowledge, 

no published study has focused on machine learning and CT radiomics of cartilaginous bone 

lesions, as done in this study. We also attempted to differentiate atypical cartilaginous 

tumours from chondrosarcomas of long bones, as this is the most relevant clinical question 

and orientates towards a conservative approach or aggressive surgery. Our machine-learning 

classifier achieved 75% accuracy overall, 81% accuracy in identifying atypical cartilaginous 

tumours and 70% accuracy in identifying higher-grade chondrosarcomas in the external test 

cohort, respectively, with no difference compared to a dedicated radiologist with 12 years of 

experience in bone sarcomas (p=0.75 [McNemar’s test]). These results agree with those 

previously reported for tumour grading based on MRI radiomics (16). Furthermore, our 
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findings were obtained in a more than twice larger population and validated in an 

independent test cohort from a second institution, thus ensuring their generalizability in 

clinical practice. Finally, although statistical significance was not reached (p=0.29 

[McNemar’s test]), the machine-learning classifier’s accuracy was slightly superior 

compared to preoperative biopsy. We may speculate that this difference could become 

significant in a larger population. 

Some limitations of our study need to be taken into account. First, our study is 

retrospective, as this design allowed including relatively large numbers of patients with an 

uncommon disease, such as chondrosarcoma, and imaging data already available. 

Additionally, a prospective analysis is not strictly needed for radiomic studies [13]. Second, 

we performed bidimensional segmentation and chose the image showing the maximum 

lesion extension. This decision was taken according to a recent study emphasizing that 

bidimensional segmentation yields better performance than volumetric approach (37), which 

would also be time-consuming in clinical practice. Third, feature stability was assessed by 3 

readers only in a subgroup of 30 patients randomly selected from the training cohort, as 3 

observers and 30 samples are the minimum numerical requirements for a reliability analysis 

according to the ICC guidelines by Koo et al. (19). Fourth, atypical cartilaginous tumours 

were twice more numerous than higher-grade chondrosarcomas in the training cohort. 

However, an imbalance of 2/3 is acceptable in machine-learning studies (38) and SMOTE 

was used to artificially oversample the minority class in the training cohort (25). Fifth, the 

training and external test cohorts respectively included CT scans and the CT portion of 

combined PET-CT scans with different acquisition parameters. Nonetheless, this is a further 

point in favour of the reliability of our findings, as the classifier performed well in both 

cohorts of patients. Sixth, only non-contrast CT was used in this study. However, contrast-

enhanced CT was not available in patients from centre 2, as PET-CT was used. It was 

available only for a limited number of patients from centre 1, where preoperative assessment 

routinely included both CT and contrast-enhanced MRI; contrast was also administered 

before CT according to need, mainly to assess tumour-vessel relationships in case of high-

grade chondrosarcoma. Our findings open the possibility for future studies to shed light on 

the value of contrast-enhanced CT radiomics and machine-learning assessment of 

cartilaginous bone tumours. 



 

 104 

In conclusion, our machine-learning classifier showed good accuracy in 

differentiating atypical cartilaginous tumours from higher-grade chondrosarcomas of long 

bones based on radiomic features derived from preoperative CT scans. Our large population 

of study relative to such an uncommon disease, along with the good performance achieved 

in an independent cohort of patients from an external institution, supports the generalizability 

of our findings and their transferability into clinical practice. Our method may potentially aid 

in preoperative tumour characterization by integrating the multidisciplinary approach 

currently based on clinical, conventional imaging and histological assessment. Future 

investigations with prospective design are warranted to further validate our findings. 
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Supplementary material 
  

Radiomics Quality Score 
Item 1 1 
Item 2 1 
Item 3 0 
Item 4 0 
Item 5 3 
Item 6 0 
Item 7 1 
Item 8 0 
Item 9 2 

Item 10 1 
Item 11 0 
Item 12 3 
Item 13 2 
Item 14 2 
Item 15 0 
Item 16 1 
Total 17 

Total (%) 47,22 
  
Reference: Lambin et al. Radiomics: the bridge between medical imaging and personalized medicine.  
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