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Abstract 

Background. Feature reproducibility and model validation are two main challenges of 

radiomics. This study aims to systematically review radiomic feature reproducibility and 

predictive model validation strategies in studies dealing with CT and MRI radiomics of bone 

and soft-tissue sarcomas. The ultimate goal is to promote achieving a consensus on these 

aspects in radiomic workflows and facilitate clinical transferability. 

Results. Out of 278 identified papers, forty-nine papers published between 2008 and 2020 

were included. They dealt with radiomics of bone (n=12) or soft-tissue (n=37) tumors. 

Eighteen (37%) studies included a feature reproducibility analysis. Inter/intra-reader 

segmentation variability was the theme of reproducibility analysis in 16 (33%) 

investigations, outnumbering the analyses focused on image acquisition or post-processing 

(n=2, 4%). The intraclass correlation coefficient was the most commonly used statistical 

method to assess reproducibility, which ranged from 0.6 and 0.9. At least one machine 

learning validation technique was used for model development in 25 (51%) papers and K-

fold cross validation was the most commonly employed. A clinical validation of the model 

was reported in 19 (39%) papers. It was performed using a separate dataset from the primary 

institution (i.e., internal validation) in 14 (29%) studies and an independent dataset related to 

different scanners or from another institution (i.e., independent validation) in 5 (10%) 

studies. 

Conclusions. The issues of radiomic feature reproducibility and model validation varied 

largely among the studies dealing with musculoskeletal sarcomas and should be addressed 

in future investigations to bring the field of radiomics from a preclinical research area to the 

clinical stage.  
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2.1 Background 

Bone and soft-tissue primary malignant tumors or sarcomas are rare entities with 

several histological subtypes, and each has an incidence < 1/100,000/year [1, 2]. Among 

them, osteosarcoma is the most common sarcoma of the bone. Along with Ewing sarcoma, 

it has a higher incidence in the second decade of life, while chondrosarcoma is the most 

prevalent bone sarcoma in adulthood [1]. The most frequent soft-tissue sarcomas are 

liposarcoma and leiomyosarcoma [2]. Due to the rarity of these diseases, bone and soft-tissue 

sarcomas are managed in tertiary sarcoma centers according to current guidelines [1, 2]. Both 

biopsy and imaging integrate clinical data prior to the beginning of any treatment, with the 

former representing the reference standard for preoperative diagnosis [1, 2]. However, biopsy 

may be inaccurate in large, heterogenous tumors due to sampling errors and, in turn, 

inaccurate diagnosis may lead to inadequate treatment and subsequent need for further 

interventions, with increased morbidity. Additionally, the risk of biopsy tract contamination 

remains a concern. Imaging already plays a pivotal role in the assessment of bone and soft-

tissue sarcomas. Magnetic resonance imaging (MRI) and computed tomography (CT) are 

employed for local and general staging, respectively [1, 2]. These modalities may certainly 

benefit from new imaging-based tools such as those based on radiomics, which may 

potentially provide additional information regarding both diagnosis and prognosis non-

invasively [3]. 

The term “radiomics” derives from a combination of “radio”, referring to medical 

images, and “omics”, which indicates the analysis of high amounts of data representing an 

entire set of some kind, like genome (genomics) and proteome (proteomics) [3]. Therefore, 

“radiomics” includes extraction and analysis of large numbers of quantitative parameters, 

known as radiomic features, from medical images [4]. This technique has recently gained 

much attention in oncologic imaging as it can potentially quantify tumor heterogeneity, 

which can be challenging to capture by means of qualitative imaging assessment or sampling 

biopsies. Particularly, radiomic studies to date have focused on discriminating tumor grades 

and types before treatment, monitoring response to therapy and predicting outcome [5].  

Despite its great potential as a non-invasive tumor biomarker, radiomics still faces 

challenges preventing its clinical implementation. Two main initiatives have addressed 

methodological issues of radiomic studies to bridge the gap between academic endeavors 

and real-life application. In 2017, Lambin et al. proposed the Radiomics Quality Score that 
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details the sequential steps to follow in radiomic pipelines and offers a tool to asses 

methodological rigor in their implementation [6]. In 2020, the Image Biomarkers 

Standardization Initiative produced and validated reference values for radiomic features, 

which enable verification and calibration of different software for radiomic feature extraction 

[7]. However, numerous challenges still remain to ensure clinical transferability of 

radiomics. As radiomics is essentially a two-step approach consisting of data extraction and 

analysis, in the first step (i.e., data extraction), the main challenge is reproducibility of 

radiomic features, which can be influenced by image acquisition parameters, region of 

interest segmentation technique and image post-processing technique [8, 9]. In the second 

step (i.e., data analysis), models can be built upon either conventional statistical methods or 

machine learning algorithms with the aim of predicting the diagnosis or outcome of interest. 

In either case, the main challenge is model validation [9]. 

The challenges of reproducibility and validation strategies in radiomics have been 

recently addressed in a review focusing on renal masses [10]. The aim of our study is to 

systematically review radiomic feature reproducibility and predictive model validation 

strategies in studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas. 

The ultimate goal is to promote and facilitate achieving a consensus on these aspects in 

radiomic workflows. 

 

2.2 Methods 

2.2.1 Reviewers 

No Local Ethics Committee approval was needed for this systematic review. 

Literature search, study selection, and data extraction were performed independently by two 

recently-boarded radiologists with experience in musculoskeletal tumors and radiomics (S.G. 

and F.M.). In case of disagreement, agreement was achieved by consensus of these two 

readers and a third reviewer with radiology specialty and doctorate in artificial intelligence 

and radiomics (R.C.). The Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) guidelines [11] were followed. 

 

2.2.2 Literature search 

An electronic literature search was conducted on EMBASE (Elsevier) and PubMed 

(MEDLINE, U.S. National Library of Medicine and National Institutes of Health) databases 
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for articles published up to 31st December 2020 and dealing with CT and MRI radiomics of 

bone and soft-tissue sarcomas. A controlled vocabulary was adopted using medical subject 

headings in PubMed and the thesaurus in EMBASE. Search syntax was built by combining 

search terms related to two main domains, namely “musculoskeletal sarcomas” and 

“radiomics”. The exact search query was: (“sarcoma”/exp OR “sarcoma”) AND 

(“radiomics”/exp OR “radiomics” OR “texture”/exp OR “texture”). Studies were first 

screened by title and abstract, and then the full text of eligible studies was retrieved for further 

review. The references of selected publications were checked for additional publications to 

include. 

 

2.2.3 Inclusion and exclusion criteria 

Inclusion criteria were: (i) original research papers published in peer-reviewed 

journals; (ii) focus on CT or MRI radiomics-based characterization of sarcomas located in 

bone and soft-tissues for either diagnosis- or prognosis-related tasks; (iii) statement that local 

ethics committee approval was obtained, or ethical standards of the institutional or national 

research committee were followed.  

Exclusion criteria were: (i) papers not dealing with mass characterization, such as 

those focused on computer-assisted diagnosis and detection systems; (ii) papers dealing with 

head and neck, retroperitoneal or visceral sarcomas; (iii) animal, cadaveric or laboratory 

studies; (iv) papers not written in English language. 

 

2.2.4 Data extraction 

Data were extracted to a spreadsheet with a drop-down list for each item, as defined 

by the first author, grouped into three main categories, namely baseline study characteristics, 

radiomic feature reproducibility strategies and predictive model validation strategies. Items 

regarding baseline study characteristics included first author’s last name, year of publication, 

study aim, tumor type, study design, reference standard, imaging modality, database size, 

use of public data, segmentation process, and segmentation style. Those concerning radiomic 

feature reproducibility strategies included reproducibility assessment based on repeated 

segmentations, reproducibility assessment related to acquisition or post-processing 

techniques, statistical method used for reproducibility analysis, and cut-off or threshold used 

for reproducibility analysis. Finally, data regarding predictive model validation strategies 
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included the use of machine learning validation techniques, clinical validation performed on 

a separate internal dataset, and clinical validation performed on an external or independent 

dataset. 

 

2.3 Results 

2.3.1 Baseline study characteristics 

A flowchart illustrating the literature search process is presented in Figure 1. After 

screening 278 papers and applying our eligibility criteria, 49 papers were included in this 

systematic review. Tables 1 and 2 detail the characteristics of papers dealing with radiomics 

of bone (n=12) and soft-tissue (n=37) tumors, respectively. 

All studies were published between 2008 and 2020. Twenty-three out of 49 

investigations (47%) were published in 2020, 14 (29%) in 2019, 4 (8%) in 2018 and 8 (16%) 

between 2008 and 2017. The design was prospective in 6 studies (12%) and retrospective in 

the remaining 43 (88%). The imaging modality of choice was MRI in 42 (86%), including 

one or multiple MRI sequences, and CT in 7 (14%) cases. The median size of the database 

was 60 patients (range, 19-226). Public data were used only in 3 (6%) studies. 

The research was aimed at predicting either diagnosis or prognosis, as follows: 

benign vs. malignant tumor discrimination (n=14); grading (n=10); tumor histotype 

discrimination (n=4); proliferation index Ki67 expression (n=1); survival (n=12); response 

to therapy, either chemotherapy or radiotherapy (n=8); local and/or metastatic relapse (n=9). 

It should be noted that the aim was twofold in some studies, as detailed in Tables 1 and 2. In 

those focused on diagnosis-related tasks, including benign vs. malignant discrimination, 

grading, tumor histotype discrimination and proliferation index expression, histology was 

the reference standard in all cases excepting benign lesions diagnosed on the basis of stable 

imaging findings over time in two papers [12, 13]. In studies focused on prediction of 

response to chemotherapy or radiotherapy, the reference standard was histology if lesions 

were surgically treated, based on the percentage of viable tumor and necrosis relative to the 

surgical tissue specimen, or consistent imaging findings if lesions were not operated. In 

studies focused on prediction of tumor relapse, the diagnosis was based on histology or 

consistent imaging findings, as the reference standard. In studies dealing with survival 

prediction, survival was assessed based on follow-up. 
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Regarding segmentation, the process was performed manually in 45 (92%) studies 

and semiautomatically in 4 (8%) studies. In no case the segmentation process was fully 

automated. The following segmentation styles were identified: 2D without multiple sampling 

in 11 (23%) studies; 2D with multiple sampling in 3 (6%); 3D in 35 (71%). Of note, a single 

slice showing maximum tumor extension was chosen in all studies employing 2D 

segmentation without multiple sampling, excepting one case [14] where it was chosen based 

on signal intensity homogeneity. 

 

 
 

Fig. 1 PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart of systematic 
identification, screening, eligibility and inclusion information from retrieved studies. 
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Table 1 Characteristics of the papers dealing with bone sarcomas included in the systematic review. MS, 
multiple sampling. 
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Table 2 Characteristics of the papers dealing with soft-tissue sarcomas included in the systematic review. MS, 
multiple sampling (continued on the next page). 
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Table 2 (continued) Characteristics of the papers dealing with soft-tissue sarcomas included in the systematic 
review. MS, multiple sampling. 
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2.3.2 Reproducibility strategies 

Eighteen (37%) of the 49 studies included a reproducibility analysis of the radiomic 

features in their workflow. In 16 (33%) investigations [13, 15–29], the reproducibility of 

radiomic features was assessed on the basis of repeated segmentations performed by different 

readers and/or the same reader at different time points. Two (4%) studies presented an 

analysis to assess the reproducibility based on different acquisition [30] or post-processing 

[31] techniques. Of note, segmentations were validated by a second experienced reader in 15 

studies [12, 32–45] without however addressing the issue of radiomic feature reproducibility. 

The intraclass correlation coefficient (ICC) was the statistical method used in most 

of the papers reporting a reproducibility analysis [13, 15–18, 20, 22–25, 27–29, 31]. ICC 

threshold ranged between 0.6 [13] and 0.9 [22] for reproducible features. The following 

statistical methods were used less commonly: analysis of variance [30, 31]; Cronbach alpha 

statistic [26]; Pearson correlation coefficient [19] and Spearman correlation coefficient [21]. 

 

2.3.3 Validation strategies 

At least one machine learning validation technique was used in 25 (51%) of the 49 

papers. K-fold cross validation was used in most of the studies [13, 25, 28, 31–33, 37, 38, 

40, 43, 44, 46–50]. The following machine learning validation techniques were used less 

commonly: bootstrapping [42, 51]; leave-one-out cross validation [34, 35, 41]; leave-p-out 

cross validation [52]; Monte Carlo cross validation [23]; nested cross validation [25, 27]; 

random-split cross validation [20]. Figure 2 provides an overview of machine learning 

validation techniques. Figure 3 illustrates an example of a radiomics-based machine learning 

pipeline. 

 

2.3.4 Clinical validation 

A clinical validation of the radiomics-based prediction model was reported in 19 

(39%) of the 49 papers. It was performed on a separate set of data from the primary 

institution, i.e. internal test set, in 14 (29%) studies [15, 16, 22, 24, 28, 31, 32, 35, 37, 38, 41, 

46, 47, 52]. It was performed on an independent set of data from the primary institution 

(related to a different scanner) or from an external institution, i.e. external test set, in 5 (10%) 

studies [25, 27, 29, 43, 51]. 
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(2a) 
 

 
 

(2b) 
 

 
 

(2c) 
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(2d) 
 

 
 

(2e) 
 

 
 

(2f) 
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(2g) 
 

                 

 
 

Fig. 2 Overview of machine learning validation techniques. (a) Bootstrapping is based on resampling with 
replacement, allowing to create n datasets from an original sample. These may include any number of copies of 
a specific instance from the original case, even none. (b) K-fold cross-validation is based on dividing the dataset 
in k parts, using each in turn as the validation set and the remaining as the training data. (c) In leave-one-out 
cross-validation, each instance in the dataset is used for model validation, using the remaining for model training. 
(d) In nested cross-validation, two loops of validation take place. The training data from each outer loop 
undergoes an additional K-fold cross-validation. The figure depicts a 4-fold outer loop paired with a 3-fold inner 
loop. In (e) Monte Carlo and (f) random split cross-validation, the folds are not made up of contiguous data but 
from random sampling of the entire dataset. During the first, a sample may appear in multiple folds, which is not 
possible in random split cross-validation. (g) In leave-P-out cross validation, the K-fold cross validation process 
is iterated to obtain all possible folding splits for the data.  
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Fig. 3 Example of a radiomics-based machine learning pipeline, listing the most commonly employed steps in 
an ideal order of execution. 

 
2.4 Discussion 

This systematic review focused on the radiomics literature regarding MRI and CT 

of bone and soft-tissue sarcomas with particular emphasis on reproducibility and validation 

strategies. The number of papers reporting the assessment of radiomic feature reproducibility 

and the use of independent or external clinical validation was relatively small. This finding 

is in line with recent literature reviews showing that the quality of sarcoma radiomics studies 

is low [53, 54], which may hamper performance generalizability of radiomic models on 

independent cohorts and, consequently, their practical application [53]. Thus, these issues 

need to be addressed in the radiomic workflow of future studies to facilitate clinical 

transferability. 

 

2.4.1 Baseline study characteristics 

MRI and CT radiomics of bone and soft-tissue sarcomas has progressively gained 

attention in musculoskeletal and oncologic imaging. The number of papers has rapidly 

increased over the recent years, and almost half of those included in our review (47%) was 

published in 2020. Radiomics was used in attempt to answer clinical questions related to both 
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diagnosis and prognosis of musculoskeletal sarcomas. Most studies (88%) were retrospective 

in nature, as this design allowed including relatively large number of patients with imaging 

data already available and bone or soft-tissue sarcomas, which are rare diseases. A 

prospective analysis, while not strictly necessary in radiomic studies [5], may however have 

advantages for controlling data gathering in reproducibility assessment and matching certain 

patient or imaging characteristics in independent datasets. Public data were used in no study 

regarding bone sarcomas and in a small proportion of the studies (6%) concerning soft-tissue 

sarcomas. A public database [55] available on The Cancer Imaging Archive 

(https://www.cancerimagingarchive.net) was used in all these studies. Public databases 

afford opportunities for researchers who do not have sufficient data at their institution and 

allow research groups from around the world to test and compare new radiomic methods 

using common data. Thus, research employing radiomics in this field would certainly be 

enhanced if further imaging databases are made publicly available in the near future. 

Regarding segmentation, the process was performed manually in most of the studies 

(92%) and semiautomatically in the remaining, both requiring human intervention to some 

extent. Even though the influence of inter-observer and/or intra-observer variability on the 

reproducibility of radiomic features can be assessed as part of the radiomic workflow, fully 

automated segmentation algorithms would ideally achieve higher reliability and deserve 

future investigation. Annotations included the entire lesion volume (3D segmentation) in 

most of the studies (71%) and a single slice (2D), without multiple sampling, in the remaining 

(23%). However, to date no study has compared the outcome of 2D and 3D segmentations 

in musculoskeletal sarcomas. As 2D annotations are time saving and have recently proven 

higher performance than 3D segmentation in oropharyngeal cancers [56], this should 

represent another area of research in the near future. Of note, a limited number of studies 

(6%) used a 2D segmentation style with multiple sampling as a data augmentation technique 

to increase the number of labeled slices [26, 48, 57]. This practice can be useful for an 

uncommon entity as musculoskeletal sarcomas but should be employed with care to avoid 

the introduction of bias in the final model. The inclusion of samples from the same case in 

both the training and test sets could lead to overly optimistic results. 
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2.4.2 Reproducibility strategies 

A great variability in radiomic features has emerged as a major issue across studies 

and attributed to different segmentation, image acquisition and post-processing approaches 

[4]. Therefore, methodological analyses are advisable prior to conducting radiomic studies 

in order to assess feature robustness and avoid biases due to non-reproducible, noisy features. 

This concept is in line with recent literature emphasizing the importance of reproducibility 

in artificial intelligence and radiology [58]. In our review, we noted that about one third of 

the included papers described a reproducibility analysis in their workflow. In this subgroup 

of papers, inter- and/or intra-reader segmentation variability was the main focus of the 

reproducibility analysis. Segmentation variability-related analyses outnumbered those 

addressing reproducibility issues due to image acquisition or post-processing differences, 

which were reported in one paper per each [30, 31]. This finding underlines that further 

research should deal with dependencies of radiomic features on image acquisition and post-

processing. While these analyses may already be performed in retrospective series, when 

patients underwent more than one study in a short interval, prospective studies could 

facilitate the identification of reliable radiomic features within this domain. Finally, ICC was 

the statistical method used in most of the papers evaluating radiomic feature reproducibility. 

Of note, guidelines for performing and assessing ICC are available and can be followed to 

achieve consensus on the cut-off and threshold values [59]. 

 

2.4.3 Validation strategies 

Proper validation of radiomic models is highly desirable to bridge the gap between 

concepts and clinical application [53]. Machine learning validation techniques are employed 

to avoid any information leak from the test to the training set during model development 

[60]. Resampling strategies can be extremely useful, especially with relatively limited 

samples of data, which may not be truly representative for the population of interest, with 

the aim of reducing overfitting and better estimating the performance of the radiomics-based 

predictive model on new data (i.e., the test set) [61, 62]. K-fold cross validation was the most 

commonly used technique for this task in the studies included in this review.  

Ideally, in both prospective and retrospective studies, a clinical validation of the 

model is performed against completely independent sets of data, i.e., the external or 

independent test set [4]. We found that clinical validation was performed against an 
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independent dataset from the primary institution (using different scanners) or from a different 

institution only in a small number of studies (10%) included in this systematic review. More 

studies (29%) validated the model using a separate set of data from the primary institution, 

i.e., an internal test set. Therefore, future studies should be carried out in more than one 

institution and include external testing of the model with large and independent sets of data. 

 

2.5 Limitations and conclusions 

This study is limited to a systematic review of the literature, and no meta-analysis 

was performed due to the lack of homogeneity between studies in terms of objectives and 

subgroups of sarcoma with a rather limited number of papers per each objective and 

subgroup. Different metrics were also used, preventing us from providing an estimation of 

model performance for each objective. Furthermore, it was outside of the scope of the review 

to perform a formal assessment of the quality of each included study, as our focus was on 

reporting methodological data that can be in and of themselves quality indicators. Limitations 

notwithstanding, we reviewed the radiomics literature regarding bone and soft-tissue 

sarcomas with emphasis on the methodologic issues of feature reproducibility and predictive 

model validation. They varied largely among the included studies, and, in particular, no 

reproducibility analysis was provided in more than half the papers. Additionally, less than 

half the studies included a clinical validation and only 10% used an independent dataset for 

this purpose. Thus, in order to bring the field of radiomics from a preclinical research area to 

the clinical stage, both these issues should be addressed in future studies dealing with 

musculoskeletal sarcomas.  
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