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Abstract 
Objective: The electrically evoked compound action potential (eCAP) has been widely studied 

for its clinical value in evaluating cochlear implants (CIs). However, to date, single-fiber 

recordings have not been recorded from the human auditory nerve, and many unknowns remain 

about the firing properties that underlie the eCAP in patients with CIs. In particular, the temporal 

properties of auditory nerve fiber firing might contain valuable information that may be used to 

estimate the condition of the surviving auditory nerve fibers. This study aimed to evaluate the 

temporal properties of neural firing underlying human eCAPs with a new deconvolution model. 

Design: Assuming that each auditory nerve fiber produces the same unitary response (UR), the 

eCAP can be seen as a convolution of a UR with a compound discharge latency distribution 

(CDLD). We developed an iterative deconvolution model that derived a two-component 

Gaussian CDLD and a UR from recorded eCAPs. The choices were based on a deconvolution 

fitting error minimization routine (DMR). The DMR iteratively minimized the error between the 

recorded human eCAPs and the eCAPs simulated by the convolution of a parameterised UR and 

CDLD model (instead of directly deconvolving recorded eCAPs). Our new deconvolution model 

included two separate steps. In step one, the underlying URs of all eCAPs were derived, and the 

average of these URs was called the human UR. In step two, the CDLD was obtained by using 

the DMR in combination with the estimated human UR. With this model, we investigated the 

temporal firing properties of eCAPs by analysing the CDLDs, including the amplitudes, widths, 

peak latencies, and areas of CDLDs. The differences of the temporal properties in eCAPs 

between children and adults were explored. Finally, we validated the two-Gaussian component 

CDLD model with a multiple-Gaussian component CDLD model. 

Results: The estimated human UR contained a sharper, narrower negative component and a 

wider positive phase, compared to the previously described guinea pig UR. Furthermore, the 

eCAPs from humans could be predicted by the convolution of the human UR with a two-

Gaussian component CDLD. The areas under CDLD (AUCD) reflected the number of excited 
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nerve fibers over time. Both the CDLD magnitudes and AUCDs were significantly correlated 

with the eCAP amplitudes. Furthermore, different eCAPs with the same amplitude could lead to 

greatly different AUCDs. Significant differences of the temporal properties of eCAPs between 

children and adults were found. At last, the two-Gaussian component CDLD model was 

validated as the most optimal CDLD model. 

Conclusion: This study described an iterative method that deconvolved human eCAPs into 

CDLDs, under the assumption that auditory nerve fibers had the same electrically evoked UR. 

Based on human eCAPs, we found a human UR that was different from the guinea pig UR. 

Furthermore, we found that CDLD characteristics revealed age-related temporal differences 

between human eCAPs. This temporal information may contain valuable clinical information on 

the survival and function of auditory nerve fibers. In turn, the surviving nerve condition might 

have prognostic value for speech outcomes in patients with CIs. 

Key words: Cochlear implants; Sensorineural hearing loss; eCAPs; Deconvolution; Unitary 

response; Temporal properties 

3.1. Introduction 
A cochlear implant (CI) is a device that restores hearing by directly applying electrical 

stimulation to the auditory nerve fibers inside the cochlea. A CI can also be used to record 

auditory nerve activity via a telemetry function; this recording yields the electrically evoked 

compound action potential (eCAP). The eCAP is an objective measure that can be used to assess 

the quality of the electrode-nerve interface (Zhu et al., 2002; Miller et al., 2008; Botros and 

Psarros, 2010) and the physiological status of the auditory nerve (Ramekers et al., 2014; Strahl 

at al., 2016). Clinically, the eCAP is generally evaluated by examining the main peaks, namely 

the first negative peak (N1) and the first positive peak (P1) (Stypulkowski and van den Honert, 

1984; Lai and Dillier, 2000; Abbas et al., 1999; Kim et al., 2010; Alvarez et al., 2011, He et al., 

2017). However, the temporal properties of the eCAP are often overlooked. It has been shown 

that the acoustically evoked compound action potential (CAP) amplitude was linearly correlated 
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with the number of activated nerve fibers (Goldstein and Kiang, 1958; Versnel et al., 1992a). It 

is generally assumed that the neural response of each single nerve fiber, called the unitary 

response (UR), is constant and that all URs contribute equally to the CAP (Goldstein and Kiang, 

1958; Prijs, 1985; Versnel et al., 1992a). In this study, we assume that this unitary response 

concept also holds for the eCAPs (e.g., van Gendt et al., 2019), since the eCAP is the 

superposition of many action potentials from individual auditory nerve fibers in response to an 

electric stimulus over time. Hence, the eCAP can be described as the convolution of a UR with 

a compound discharge latency distribution (CDLD), according to equation (3.1): 

eCAP(t) =  CDLD(τ) ∗ UR(t − τ) dτ୲ିஶ                     (3.1) 

where t is time, CDLD is a probability density function, and τ is the variable of integration. The 

CDLD weights all URs of each excited nerve fiber over time, and it reflects the synchronicity 

(i.e., the temporal properties) of the excited nerve fibers. The area under the CDLD (AUCD) 

indicates the exact number of excited fibers.  

The temporal information contained in the CDLD can potentially reflect additional, valuable 

information that the eCAP amplitude does not show directly. For instance, in patients with CIs, 

speech perception has been related to auditory nerve fiber survival and function and the number 

of spiral ganglion cells (Khan et al., 2005; Fayad and Linthicum, 2006; Ramekers et al., 2014; 

Seyyedi et al., 2014). Consequently, the AUCD might serve as a predictor of the survival and 

function of auditory nerves. Additionally, the CDLD can be used to study the mechanisms 

underlying the double peaks in eCAPs (Stypulkowski and van den Honert, 1984; van de Heyning 

et al., 2016). In these double-peaked eCAPs, the identity of the firing neuron population remains 

unclear; i.e., it remains unknown whether each peak represents a distinct population or both 

peaks are evoked by the same group of neurons. 

Several studies have reported that there is a relationship between acoustically evoked CAPs and 

the underlying single fiber discharge patterns. This relationship was found in CAPs recorded in 

guinea pigs with the convolution model given in equation 3.1 (e.g., Wang, 1979; Dolan et al., 
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1983). From those recordings, the UR of guinea pigs was derived (Versnel et al. 1992a, 1992b, 

see also Fig. 3.1). In some studies, the inverse problem was studied; i.e., predicting the firing 

properties by directly deconvolving CAPs and eCAPs with a known UR (Charlet de Sauvage et 

al., 1987; Strahl et al., 2016). In the study by Strahl et al., this method was applied to investigate 

the CDLD of human eCAPs with the guinea pig UR, and a two-Gaussian component CDLD was 

derived. When we reproduced their method on human patient data, we found a physiologically 

unrealistic CDLD, with negative phases and sharp peaks (Fig. 3.2). Strahl et al. (2016) corrected 

the negative phases and the high-frequency components by filtering and shifting the CDLD. 

However, the collective URs that contribute to the eCAP dictate that the CDLD starts after the 

onset of the electric stimulus. Therefore, the CDLD should be strictly zero before the onset of 

the stimulus and positive after its onset. Alternatively, it would be better to improve the 

deconvolution model to obviate the need to post-process the CDLDs. 

 

Fig. 3.1 The unitary responses derived from human eCAPs (𝑈𝑅) and recorded from guinea pig 
auditory single nerve fibers (𝑈𝑅). The 𝑈𝑅 is plotted in blue, and the 𝑈𝑅 (obtained in the 
present study) is plotted in green. The shaded area indicates the error bars (standard deviation). 

Here, we present an iterative method to model the deconvolution computation. In this method, 

an eCAP, calculated by convoluting a UR model and a two-Gaussian component CDLD model, 
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was optimized to match a recorded eCAP by minimizing the fitting error. The recorded eCAPs 

were used as input for this iterative method to obtain the UR and CDLDs. Based on this method, 

two steps were performed to investigate the temporal information in human eCAPs: in the first 

step, human UR was investigated; in the second step, the two-Gaussian component CDLDs were 

derived. Some studies reported that the eCAP amplitude has a proportional relationship with the 

number of excited nerve fibers (e.g., Versnel et al., 1992a; Miller et al., 1998, 1999). However, 

the synchronicity of the excited nerve fibers could also affect the eCAP amplitude. In comparison 

to the eCAP amplitude, the AUCD, however, can more accurately reflect the number of the 

excited nerve fibers and give information on the synchronicity of the excited nerve fibers. Thus, 

we investigated whether the AUCD rises proportionally with the eCAP amplitude. The 

differences of the temporal information in eCAPs between children and adults were investigated. 

After the derivation of this CDLD model of Strahl et al. (2016), we further explored the optimal 

number of Gaussian components to parameterize the CDLD. To this end, we designed a multiple-

Gaussian component CDLD model for predicting recorded eCAPs, and we varied the number of 

components. 

Accordingly, in this study, we aimed to develop an iterative deconvolution model that did not 

depend on any CDLD post-processing to explore the temporal information contained in human 

eCAPs. 
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Fig. 3.2 Direct deconvolution of one example of an electrically evoked compound action 
potential (eCAP) with Strahl’s direct deconvolution model. (Left) The recorded eCAP (R-eCAP, 
grey dashed line) and the corresponding predicted eCAP (P-eCAP, blue line). (Right) The 
compound discharge latency distribution (CDLD) that resulted from the direct deconvolution of 
this eCAP. Both the filtered (blue) and unfiltered (red) CDLDs are shown. 

3.2. Materials and methods 

3.2.1. Patients and recordings 

The eCAPs used in this study were obtained intraoperatively from 111 patients that had 

undergone CI implantations at the Leiden University Medical Center (Table 3.1). These eCAPs 

were recorded as part of the clinical intraoperative routine to assess CI function. All patients 

received a HiRes90K device (Advanced Bionics, Sylmar, CA), either with a 1J or a Mid-Scala 

electrode array. These electrode arrays consisted of 16 electrode contacts (numbered from 1 to 

16 in apical to basal order). The eCAPs were recorded with the forward masking paradigm 

provided in the Research Studies Platform Objective Measures (RSPOM) software program 

(Advanced Bionics, Sylmar, CA). The eCAPs were measured on eight odd electrode contacts 

with stimulus levels ranging from 50 to 500 CU. The eCAP signal analysis was performed 

automatically by the RSPOM program (for details, see Biesheuvel et al. 2017). In brief, the 

eCAPs were evoked using monopolar charge-balanced, biphasic pulses (32 μs/phase) and 

recorded with a sampling rate of 56 kHz and a gain of 300. Raw eCAP recordings were 1.7 ms 

in duration and were filtered with a zero-phase shift, low-pass filter, using a cut-off frequency of 

8 kHz. The N1 peak was identified as the minimum over the period from 180 to 490 μs, and P1 

as the maximum from 470 to 980 μs after the end of stimulation. The eCAP amplitude was 

defined as the voltage difference between P1 and N1. After an automated analysis, the identified 

N1 and P1 peaks were visually inspected.  

The noise level was defined as the average of the tail section of the eCAP, i.e., the last 30 samples 

of the recorded eCAP. It was assumed that no possible remaining neural response or stimulus 

artifact was present in this tail section (Biesheuvel et al. 2017). Similarly, at a baseline level of 
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eCAPs, there is no neural response or remaining artifact such that this should be mathematically 

equal to zero (e.g., Prijs, 1985; Charlet de Sauvage et al., 1987). Thus, we used the average level 

of the tail section as the baseline of the recorded eCAPs. The signal-to-noise ratio (SNR) was 

defined as the eCAP amplitude divided by the noise amplitude. Then, the eCAP was verified 

using a semiautomatic method programmed using MATLAB (Mathworks, Natick, MA, USA) 

with two criteria: the eCAP amplitude was larger than 20 μV; the SNR of the eCAP exceeded 

+13 dB. If eCAP recordings did not meet these criteria, they were excluded. 

The eCAP waveforms were pre-processed before we analysed them with the deconvolution 

model. The baseline of each recorded eCAP was corrected to zero. Then, 50 additional samples 

were added to the start and end of the eCAP waveforms by performing a linear extrapolation to 

zero, to ensure that the entire eCAP waveform was included in the deconvolution analysis and 

to avoid introducing distortion with the deconvolution algorithm. This extrapolation only 

influenced the CDLD before and after the recording window (Strahl et al., 2016). We analysed a 

total of 4982 eCAPs. 

 

3.2.2. Deconvolution model 

To explore the temporal information in eCAPs, according to Eq.3.1, we modelled the eCAPs as 
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the convolution of a UR model with a CDLD model. Because the human UR was thought to be 

similar to the guinea pig UR (Briaire and Frijns 2005; Whiten 2007), we applied a guinea pig 

UR model in the present study (Versnel et al. 1992a), as shown in equation 3.2. 

UR(t) =  (t − t)e[ି(౪ష౪బ)మమಚమ ]                     (3.2) 

The UR consisted of a negative (N) and positive (P) phase. The transition point between the 

negative phase and the positive phase was defined as t. Thus, U = U and σ = σ for t < t; 

and U = U and σ = σ for t > t, where σ and σ described the widths (s) of the negative 

and positive phases of the UR, respectively. The U and U described the magnitudes (V) of 

the two peaks. 

Consistent with Strahl et al (2016), the CDLD model consisted of two Gaussian components, as 

shown in equation 3.3. 

CDLD =  αଵ* N(µଵ, σଵ) +αଶ* N(µଶ, σଶ)                  (3.3) 

where N represents a Gaussian distribution; the variables αଵ, µଵ  and σଵ  belong to the early 

Gaussian component (in time), and the variables, αଶ, µଶ and σଶ belong to the late Gaussian 

component. The αଵ and αଶ are the peak amplitudes; the µଵand µଶ are the peak latencies; and 

the σଵ and σଶ are the peak widths. 

Subsequently, the UR and CDLD were used to predict the recorded eCAP waveforms with a 

deconvolution fitting error minimization routine (DMR). The DMR iteratively optimized the 

parameters of both UR and CDLD by minimizing the fitting error with a least-squares curve fit 

using MATLAB. The UR had to be solved before the temporal information could be derived. To 

this end, we performed two steps, as shown in Figure 3.3. 
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Fig. 3.3 Deconvolution model flow-chart. In step one, both the parameterised unitary response 
(UR) model (𝑈𝑅 ) and the parameterised compound discharge latency distribution (CDLD) 
model (𝐶𝐷𝐿𝐷) could be manipulated with the deconvolution fitting error minimization routine 
(DMR, asterisk). In this step, the URs of all eCAPs were derived, and the average of these URs 
was defined as the human UR (𝑈𝑅, black square). In step two, the 𝑈𝑅 was fixed, and only 
the 𝐶𝐷𝐿𝐷  could be manipulated with the DMR. Then, the CDLDs of all eCAPs were 
calculated (CDLDs, black square). 

3.2.2.1. The derivation of the human UR 

In step one, a human UR was estimated. The parameters of the UR model (Eq. 3.2) and the 

CDLD model (Eq. 3.3) were simultaneously, iteratively adjusted with the DMR to approximate 

the recorded eCAPs (Fig. 3.3). To obtain realistic CDLDs and URs, the boundaries of the 

variables for the UR and CDLD models were iteratively varied to restrict the DMR. The 

boundary limits of the deconvolution model were based on the parameters of guinea pig UR: U 

[0.02, 0.25], σ [0.02, 0.13], U [0, 0.12], σ [0.08, 0.25], t [-0.25, 0.06], αଵ [0, 0.35], μଵ 

[0.04, 1.3], σଵ  [0, 0.3], αଶ  [0, 0.35], μଶ  [0.04, 1.3], σଶ  [0, 0.3]. Assuming that the UR was 

constant for all contributing auditory nerve fibers and that the UR was identical between human 

subjects, we derived a human UR by averaging all the URs estimated from eCAPs, across 

subjects, electrode contacts, and stimulus levels. 

3.2.2.2. The derivation of CDLDs 

In step two, the temporal properties of eCAPs recorded in humans were analysed with our 

iterative deconvolution method. With a fixed human UR, as derived in step one (Fig. 3.3), we 
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could optimize the parameters of the CDLD model. Because of the fixed UR, the UR and CDLD 

models could not interact with each other, so that all the temporal information in eCAPs was 

forced into CDLDs. According to guinea pig UR, the boundaries of the variables of the CDLD 

model were set at the following values: 𝛼ଵ  [0, 0.35], 𝜇ଵ  [0.15, 1.35], 𝜎ଵ  [0, 0.45], 𝛼ଶ  [0, 

0.35], 𝜇ଶ [0.15, 1.35], 𝜎ଶ [0, 0.45]. The 322 eCAP waveforms consist of an unusually large P1 

and a small N1, and the ratio of the P1 to the N1 is larger than 1. These deviant eCAPs cannot 

be predicted by our deconvolution model, because the convolution of the human UR, consisting 

of a large negative phase and a small positive phase (green line, Fig. 3.1), with a strictly positive 

CDLD, cannot generate such eCAP waveforms. An example of the deviant eCAPs was shown 

in Fig. 3.4C (green line). Therefore, these 322 eCAPs were excluded.  

 

Fig. 3.4 Typical examples of electrically evoked compound action potentials (eCAPs) observed 
in this study. (Top row) The predicted eCAPs (blue dashed lines) and the recorded eCAPs (green 
solid lines); (bottom row) the corresponding compound discharge latency distributions (CDLDs). 
The columns show examples of a single-peak eCAP (A), a double-peak eCAP (B), and a deviant 
eCAP (C) and the corresponding CDLDs (D, E and F). R-eCAP: recorded eCAP; P- eCAP: 
predicted eCAP; E-Gauss: early Gaussian component; L-Gauss: late Gaussian component. 

3.2.2.3. Analysis of the temporal information in eCAPs in CDLDs 

As explained in section 1 (Introduction), we expected the temporal information in eCAPs to be 
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captured in CDLDs. First, the histograms of 6 CDLD parameters (in Eq. 3.4) derived from 4660 

eCAPs were plotted individually in Figure 3.5. Second, because α indicated the CDLD 

magnitude, we assumed that α was positively associated with the eCAP amplitudes. Therefore, 

we evaluated the association between the α of the CDLD and the eCAP amplitude. Third, more 

excited nerve fibers led to both a larger eCAP amplitude and a larger AUCD. However, only the 

AUCD, which was calculated by integrating the CDLD over time, reflected the exact number of 

activated nerve fibers. Hence, we explored the AUCD as the best proxy for the exact number of 

activated nerve fibers over time. We also examined the correlation between the AUCD and the 

eCAP amplitude. The correlation analysis in this section was assessed using Pearson’s coefficient 

using MATLAB. 

3.2.2.4. Differences of the temporal information in eCAPs between children and adults 

To explore the differences of the temporal information of the excited auditory nerve fibers 

between children and adults, we compared the differences of 6 CDLD parameters between child 

group (< 12 years) and adult group (>= 12 years) in Table 3.1 using the Wilcoxon Mann-Whitney 

U test. The significance level of each comparison was adjusted to 0.0083 using the Bonferroni 

correction (0.05 divided by 6 comparisons). 

3.2.3 The validation of the two-Gaussian component CDLD model 

We designed a multiple-Gaussian component CDLD model to determine whether the 

two-Gaussian component CDLD model was optimal. The formula for the CDLD model was: 

CDLD = ∑ (ɑ ∗ 𝑁(µ, σ୬))ୀଵ                    (3.4) 

where N represents a Gaussian distribution, m represents the number of Gaussian components, α୬ represents the amplitude, μ୬ represents the peak latency, and σ୬ represents the variance of 

the latencies in the Gaussian component n. 

The fitting errors of simulations using different multiple-Gaussian component CDLD models 

were assessed by calculating the mean squares error (MSE) in MATLAB. 
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3.3.1 The unitary response of human auditory nerve fibers 

To determine the human UR, we averaged all the URs obtained from the available 4982 eCAPs, 

by performing the DMR (step one in Fig. 3.3). Determined with Eq.3.2, the final parameters of 

the mean human UR with standard deviations were: U = 0.155 ± 0.003 µV, σ = 0.038 ± 0.002 

ms, U  = 0.022 ± 0.002 µV, σ  = 0.155 ± 0.009 ms, t  = -0.128 ± 0.003 ms (Fig. 3.2). 

Compared to the guinea pig UR (Versnel et al. 1992a, see Fig. 3.1), the σ of the negative phase 

of the human UR was 68% narrower, but 30% higher in magnitude, and the σp of the positive 

phase of the human UR was slightly broader, and 51% smaller in magnitude.  

 

Fig. 3.5 The six parameters for compound discharge latency distributions (CDLDs) and their 
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associations with the corresponding electrically evoked compound action potential (eCAP) 
amplitudes. (Upper 3 rows) Distribution histograms of the six main CDLD parameters. (Bottom 
row) Scatterplots of eCAP amplitudes (y-axis) plotted against the corresponding 𝛼ଵ (left) and 𝛼ଶ (right) values (x-axis).   

3.3. Results 
3.3.2 Typical cases in the deconvolution model 

With the DMR method and the human UR derived in step one, we could predict the recorded 

eCAPs (step two, Fig. 3.3). The morphological properties of the waveforms, 4660 eCAPs were 

classified according to visual inspection into two categories (Fig. 3.4), as described by Lai and 

Dillier (2000): single-peak eCAPs (75%) and double-peaked eCAPs (19%). Subsequently, we 

estimated the CDLDs from these eCAPs with the deconvolution model. We found 322 deviant 

eCAPs (6%), with a ratio of the P1 to N1 larger than 1. As explained above, they could not be 

predicted with our deconvolution model, and were excluded. The remaining 4660 eCAPs were 

used in subsequent analyses. Examples of these three eCAP categories (Fig. 3.4A, B and C) and 

the corresponding CDLDs (Fig. 3.4D, E and F, respectively) as predicted with the deconvolution 

model were shown. 

3.3.3 Temporal properties of human eCAPs 

3.3.3.1. The CDLD parameters 

To investigate the synchronicity of the excited nerve fibers, we evaluated the distributions of all 

CDLD parameters for all eCAPs, recorded at different electrode contacts and different stimulus 

levels (Fig. 3.5). We found that all the distributions were skewed; that is, all the parameters of 

the early and late components ( αଵ  and αଶ , µଵ  and µଶ , σଵ  and σଶ ) were not normally 

distributed, based on a two-sample Kolmogorov-Smirnov test (p < 0.001). The median 

amplitudes of the two Gaussian components were slightly, but not significantly different (p = 

0.15) using the Wilcoxon Mann-Whitney U test. The mean latency, µଵ  was significantly 

different from µଶ (p < 0.05). Furthermore, µଵ displayed a smaller degree of dispersion than µଶ 
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(standard deviations: 0.05 and 0.12 ms, respectively). The average width of the early Gaussian 

component of CDLDs was significantly different from the average width of the late Gaussian 

component using the Wilcoxon Mann-Whitney U test (p < 0.01), but the σଵ displayed a smaller 

standard deviation than σଶ  (0.03 and 0.07 ms, respectively). Moreover, the two CDLD 

amplitude parameters (αଵ , αଶ ) were correlated with the eCAP amplitudes using Spearman 

correlation coefficient (Fig. 3.5; linear regression, rଵ = 0.85, pଵ < 0.001; rଶ = 0.66,  pଶ <0.001). Table 3.2 shows the average (with standard deviation) and the median (with median 

deviation) of the 6 CDLD parameters. 

3.3.3.2 Relationship between the eCAP amplitude and the AUCD 

We investigated whether the AUCD increases proportionally with the eCAP amplitude. Figure 

3.6 shows the AUCD plotted against the eCAP amplitude. As anticipated, the AUCD was 

significantly correlated with the eCAP amplitude (r = 0.83, p<0.001). Of note, different eCAPs 

with the same amplitudes could lead to very different CDLDs. For instance, two different eCAPs 

with the same amplitude (1 mV) had corresponding AUCDs that ranged from 200 to 500. This 

result indicated that the electrical stimulation did not necessarily activate the same number of 

nerve fibers each time, even when two eCAPs displayed the same amplitude. 

 

Fig. 3.6 Scatterplot showing the correlation between electrically evoked compound action 
potential (eCAP) amplitudes and the corresponding areas under the CDLD (AUCD) curves. 
CDLD: compound discharge latency distribution. 



Chapter 3                         Unravelling the Temporal Properties of Human eCAPs 

62 

 

3.3.3.3 Temporal information in CDLDs between children and adults 

We compared the differences of 6 CDLD parameters between the group of children and adults. 

The significance level of each comparison was corrected to 0.0083 using Bonferroni correction. 

Four CDLD parameters (αଵ, µଶ, σଵ and σଶ) showed significant differences between children 

and adults. We did not observe significant differences for the parameters αଶ  and µଵ . The 

averages (with standard deviation) of CDLD parameters between the two groups are shown in 

Table 3.3. 

 

 

3.3.3.4 Validation of the two-Gaussian component CDLD model 

Next, we determined whether our two-Gaussian component CDLD model was the most optimal 

model. We tested models with 1 to 6 Gaussian components in the CDLD model (m in Eq. 3.4), 

and the fitting error after performing a DMR was evaluated for all the modelled eCAPs (mean 

squares error, MSE). It turned out that when the m was increased above 2, the fitting errors 

dropped just slightly (Fig. 3.7). Apparently, a multi-Gaussian component CDLD model gained 

no substantial benefit by increasing the number of components beyond 2, meaning that a two-

Gaussian component CDLD (Eq. 3.3) was the best model. 

3.4. DISCUSSION 
In this study, a model was developed and tested that deconvolved human eCAPs into CDLDs, 

based on the UR assumption of auditory nerve fibers (Goldstein and Kiang,1958; Strahl et al., 
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2016). As a part of this model, we estimated a human UR that proved to be different from the 

UR of guinea pigs (Versnel et al. 1992a). To the best of our knowledge, this study was the first 

to describe a human UR. We modelled the CDLDs underlying human eCAPs to describe the 

number of electrically excited auditory nerve fibers and their latency. Using the CDLD model, 

we were able to show differences in temporal characteristics of eCAPs between children and 

adults were found. 

 

Fig. 3.7 Relationship between the Gaussian components of compound discharge latency 
distributions (CDLDs) and the average fitting error for all electrically evoked compound action 
potentials (y-axis) recorded in all patients. Error bars are MSEs (mean squares errors). 

3.4.1 The UR of human auditory nerve fibers 

To derive reliable CDLDs from human eCAPs through deconvolution, a representative human 

UR is critical (Kiang et al., 1976; Wang, 1979; Schoonhoven et al., 1989; Versnel et al., 1992a). 

However, the human UR waveform had not been previously published. To the best of our 

knowledge, no modelling studies or electrophysiological recordings have described the human 

UR in auditory nerve fibers. Previous studies assumed that the human UR was similar to that of 

guinea pigs (Briaire and Frijns 2005; Whiten 2007; Strahl et al., 2016). However, this may not 

hold true, given that the cochlea in guinea pigs is quite different in size and shape from the 

cochlea in humans (Nadol, 1988). In addition, the cell bodies of spiral ganglion cells are not 
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myelinated in humans, but they are in guinea pigs. These differences could lead to a different 

UR. Therefore, we aimed to derive a human UR based on human eCAPs. As a starting point, we 

used the UR function of guinea pigs published by Versnel et al. (1992a), in combination with 

wider boundary limits for fitting. We found that the human UR differed from the guinea pig UR. 

Hence, our modelled human UR was the first attempt to describe the UR of human auditory 

nerves. Compared to the guinea pig UR, the modelled human UR had a steeper negative 

component, but a slightly wider and shallower positive peak (Fig. 3.1). A possible explanation is 

that the absence of myelin in the human cell body can reduce the neural conduction velocities 

(Susuki 2010) and result in a delayed UR. Nadol (1988) has reported that the different cochlear 

morphology of cochlea in human and guinea pig, i.e., the size of the cochlea and the number of 

cochlear turns, may lead to different action potential waveforms. To further understand the 

differences of UR between human and guinea pig, more anatomical and electrophysiological 

studies are needed. 

Of note, the assumption that URs are identical between fibers has not been fully validated. For 

instance, fibers have different fiber diameters, fiber-to-electrode distances, and response 

properties, which might trigger different URs, and these URs might contribute to eCAPs 

differently. However, some research has suggested that nerve fiber diameters were comparable 

at different locations in the cochlea (Liberman and Oliver,1984) and that the URs contributed by 

different fibers along the cochlea were not significantly different (Miller et al., 1999). In the 

present study, we found significant correlations between the eCAP amplitudes and the CDLD 

parameters αଵ  and αଶ , and between the eCAP amplitudes and the AUCD. These findings 

indicate that the eCAP amplitude increases when more auditory nerve fibers are excited by 

electrical stimulation and that these nerve fibers fire with a higher level of synchronicity. These 

outcomes are consistent with the assumption that the (e)CAP amplitude is linearly correlated 

with the number of activated nerve fibers (Goldstein and Kiang, 1958; Versnel et al., 1992a). In 

this study, the recorded eCAPs from children and adults were effectively predicted using the 

same UR. This finding supports the assumption that the UR is identical between fibers and across 
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subjects (e.g., Goldstein and Kiang, 1958; Prijs, 1985; Versnel et al., 1992a). Based on these 

observations, we cautiously assumed that the UR of human auditory nerve fibers was constant. 

To address this assumption further, more modelling studies or electrophysiological recordings 

studies on human auditory nerve fibers are required. 

3.4.2 The temporal information of eCAPs contained in CDLDs 

In this study, we validated that the two-Gaussian component CDLD was the best model. We 

constructed a multi-Gaussian component CDLD model (with 1 to 6 components) to predict the 

recorded eCAPs by performing DMR. When the number of Gaussian components (n, in Eq. 3.4) 

rose from 1 to 2, the fitting outcome showed a reduced fitting error (78%). When the n increased 

from 2 to 3, the fitting outcome showed that little additional benefit was gained (4%; Fig. 3.7). 

These results indicated that the two-Gaussian component CDLD was the best model. This 

finding is consistent with the findings of Strahl et al (2016), who also described a two-Gaussian 

component CDLD. The human UR and the CDLD could interact with each other in step one as 

the parameters of the UR and the CDLD were both manipulated. Consequently, the temporal 

information in eCAPs could be demonstrated both in URs and CDLDs and locally but not 

globally optimal parameters of the CDLD model were derived. Therefore, the CDLDs derived 

in step one cannot reliably reflect the temporal information in eCAPs. To address this issue, we 

performed our iterative deconvolution again using a fixed UR so that only the parameter of 

CDLD can be optimized in step two (Fig. 3.3). During this iterative procedure, all the temporal 

information was encoded into CDLDs and these CDLDs accurately reflected the temporal 

information in eCAPs. 

Most of the eCAP waveforms, both the single peak eCAPs and the double peak eCAPs, in our 

study were fit better with a double Gaussian component CDLD model (Fig. 3.4) than with a 

single Gaussian component model. Our finding suggested that eCAP waveforms that appear to 

have a single peak could arise from a two-Gaussian component CDLD. If true, it follows that 

CDLDs might consist of two independent components that originate from two separate groups 
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of neural responses. This hypothesis was in line with the concept of double group neural 

responses proposed by Stypulkowski and van den Honert (1984) and with the simulations 

including a combination of neural responses arising from axons and peripheral processes (Lai 

and Diller, 2000). In their findings, the early Gaussian component of CDLDs could be attributed 

to direct excitation of the axonal process in the modiolus proximal to the spiral ganglion cell, 

and the late CDLD component could be attributed to the activation of the axon peripheral to the 

cell body of the bipolar ganglion cell. This hypothesis was supported by our finding that the time 

interval between µଵ and µଶ (0.2 ms, see in Fig. 3.5) was shorter than the absolute refractory 

period of these nerve fibers (approximately 0.45 ms), as reported by He et al. (2017). Therefore, 

we could rule out the possibility that the neural responses in the two-component of CDLD might 

have originated from the same group of auditory nerve fibers. A recent study, by Finley et al. 

(presented at CIAP 2019), indicated that multiple neural response sites with different waveform 

morphologies, latencies, magnitudes, and scalar distributions could contribute to differences in 

the eCAPs measured in the cochlea. 

A limitation of our deconvolution model was that it relied on the eCAP waveforms. In some 

cases, the eCAPs had deviant waveforms that could not be simulated by our deconvolution model. 

However, those instances were rare (approximately 6%). 

We determined the distributions of the CDLD parameters shown in Eq. 3.3. The distribution of 

the σଵ  showed smaller means and variations compared to the distributions of the σଶ . The 

average of αଶ/αଵ (0.96) in our study was quite similar to that reported by Strahl in humans 

(apex: 0.96, middle: 0.86, base: 0.85). However, our µଵ (0.36 ms), µଶ (0.55 ms), σଵ (0.071 

ms), and σଶ (0.15 ms) values were smaller than those reported by Strahl (on average: µଵ = 0.52 

ms, µଶ = 0.9 ms, σଵ = 0.14, and σଶ = 0.27). When we used the guinea pig UR to derive the 

CDLD from our eCAPs, the µଵ and µଶ changed slightly in the direction of the value reported 

by Strahl et al. (2016): shifting from 0.36 ms and 0.55 ms to 0.41 ms and 0.69 ms, respectively, 

with a larger variance. This indicated that using a guinea pig UR leads to a poorer fitting of 

human CDLDs. Thus, these differences might be attributable to the UR used in Strahl’s study, 
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which was derived from guinea pig eCAPs, rather than human eCAPs. The distance between the 

electrode contact and the nerve fibers may affect CDLDs. Previous studies reported that the 

perimodiolar electrode arrays can yield a lower threshold in comparison to electrodes located 

close to the outer wall (e.g., Frijns et al., 1995; Briaire et al., 2000). When an electrode is located 

closer to the modiolus, less current is required to excite the auditory nerve fibers (e.g., Kang et 

al., 2015). Therefore, a shorter distance to modiolus can lead to activation of more nerve fibers 

and a larger αଵ, αଶ and AUCD can be obtained. Conversely, a larger distance could result in a 

smaller αଵ, αଶ and AUCD. 

We found that analysing CDLDs had at least two advantages over analysing eCAP amplitudes 

directly. First, when studying latency effects, the CDLD could more precisely reflect the latency 

of eCAPs over time than the N1 and P1 of eCAPs. Second, the AUCD (i.e., the integral of CDLD 

over time) could provide more accurate information about the number of excited nerve fibers. 

Because only healthy fibers can be activated, the AUCD might also reflect the survival of nerve 

fibers (Khan et al., 2005; Fayad and Linthicum, 2006). On the other hand, we found that eCAPs 

with equal amplitudes could lead to different AUCDs in the deconvolution model (Fig. 3.6), 

indicating that different eCAPs with same amplitude could arise from very different numbers of 

excited nerve fibers. Contrary to the unitary response concept, this would indicate that the eCAP 

amplitude could not accurately indicate the number of excited auditory nerve fibers.  

In this study, significant differences of the temporal information between children and adults 

were revealed by calculating CDLDs using iterative deconvolution (Table 3.3). These differences 

may be attributable to the observation that auditory nerve fibers of hearing-impaired adults 

undergo significant degeneration over the years (e.g., Abbas et al., 1991). For instance, in 

comparison to the group of children, we observed larger peak widths (σଵ  and σଶ ) in adults, 

presumably reflecting that the excited nerve fibers showed a lower level of synchronicity in this 

group. Compared with adults, a larger αଵ in the group of children may indicate that more nerve 

fibers can be excited in their central axon. A larger µଶ observed in the adult group likely implies 

more severe degeneration of the peripheral process compared with the children. 
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The outcomes of the present study suggested some potential applications for future clinical 

practice. First, although many studies have investigated the relationship between speech 

performance and nerve fiber survival (Kawano et al., 1998; Khan et al., 2005; Fayad and 

Linthicum, 2006; Xu et al., 2012), the findings were inconsistent. A likely explanation might be 

that most investigators focused mainly on the eCAP magnitudes, which could not precisely 

indicate the number of activated nerve fibers and their latency. With our deconvolution model, it 

is possible to investigate the relationship between the temporal information in eCAPs and speech 

perception in patients with CIs. For instance, our deconvolution model provided the growth 

function of the AUCD and the threshold of the AUCD, which might associate well with speech 

perception in patients with CIs. Additionally, consistent with the finding by Strahl et al. (2016)  

that some of the CDLD parameters could indicate the degeneration of nerve fibers, we found that 

the AUCDs derived with our method might be more accurate than the eCAP amplitude for 

indicating nerve fiber survival in patients because only the AUCD indicates the number of 

excited nerve fibers. Furthermore, our deconvolution model has low computational complexity. 

With the estimated UR, the computation of each CDLD could be completed in 0.1 s from the 

recorded eCAP using our deconvolution model in MATLAB. Thus, our deconvolution could be 

potentially integrated into clinical software to derive the temporal information of eCAPs in near-

real-time of CI recipients. 

3.5 Conclusions 
This study described an iterative deconvolution model, based on the UR hypothesis, to derive 

the CDLD from recorded human eCAPs. We estimated a human version of the UR, which was 

not available previously. Importantly, we found that the human UR differed from the guinea pig 

UR. With the estimated human UR, we derived the CDLDs of 4660 eCAPs. We demonstrated 

that CDLDs had advantages over the more commonly used eCAP amplitude because they better 

reflected the temporal properties of eCAPs. Therefore, CDLDs provided better estimates of the 

number of excited auditory nerve fibers and their firing latencies. 
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