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REVIEW ARTICLE

Knowledge gaps in late-onset neonatal sepsis in preterm
neonates: a roadmap for future research
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H. Rob Taal1,5✉
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Late-onset neonatal sepsis (LONS) remains an important threat to the health of preterm neonates in the neonatal intensive care
unit. Strategies to optimize care for preterm neonates with LONS are likely to improve survival and long-term neurocognitive
outcomes. However, many important questions on how to improve the prevention, early detection, and therapy for LONS in
preterm neonates remain unanswered. This review identifies important knowledge gaps in the management of LONS and describe
possible methods and technologies that can be used to resolve these knowledge gaps. The availability of computational medicine
and hypothesis-free-omics approaches give way to building bedside feedback tools to guide clinicians in personalized management
of LONS. Despite advances in technology, implementation in clinical practice is largely lacking although such tools would help
clinicians to optimize many aspects of the management of LONS. We outline which steps are needed to get possible research
findings implemented on the neonatal intensive care unit and provide a roadmap for future research initiatives.
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IMPACT:

● This review identifies knowledge gaps in prevention, early detection, antibiotic, and additional therapy of late-onset neonatal
sepsis in preterm neonates and provides a roadmap for future research efforts.

● Research opportunities are addressed, which could provide the means to fill knowledge gaps and the steps that need to be
made before possible clinical use.

● Methods to personalize medicine and technologies feasible for bedside clinical use are described.

INTRODUCTION
Neonatal sepsis is one of the main causes of death and morbidity
in preterm neonates worldwide.1–3 Preterm neonates are espe-
cially vulnerable for acquiring late-onset neonatal sepsis (LONS).
The incidence of LONS, defined as sepsis onset >72 h after birth, is
up to 20% among very low birth weight neonates (VLBW; birth
weight <1500 g) with 40% of those with a birth weight <750 g
having more than one LONS.2,4 Despite extensive research efforts
in the past decades, many preterm neonates do not recover from
LONS or survive with risk of neurodevelopmental impairment.5,6

Strategies to optimize care for preterm neonates with LONS are
likely to improve survival and outcome, but many important
questions on how to improve the prevention, detection, and
therapy of LONS in preterm neonates remain unanswered. This
review focuses on identifying knowledge gaps in the manage-
ment of LONS, which could provide important information to
improve the outcome of preterm neonates suffering from LONS.
We recognize the importance of a clear definition of neonatal
sepsis for further research efforts and easy comparison of study
results, but this will not be within the scope of this review as it is
currently still under debate.7–9

Figure 1 shows the conceptual framework for neonates at risk
for LONS and the most important knowledge gaps. Below, we will
focus on these knowledge gaps for the management of LONS,
illustrate their importance, and suggest a roadmap for future
research efforts.

PREVENTION OF LONS
In many neonatal intensive care units strategies for preventing
LONS are implemented, such as hand hygiene protocols, wearing
face masks, and care bundles to reduce catheter-related LONS.
Below we describe supplements and drugs that could benefit
prevention of LONS (summarized in Table 1).

Probiotics
Delayed bacterial colonization and an abnormal gut microflora
have been observed in VLBW neonates. This might lead to
interrupted integrity of the intestinal barrier, causing bacteria to
translocate into the bloodstream.10 With the aim to prevent this,
prophylactic use of probiotics was introduced. There is conflicting
evidence on the impact of probiotic treatment on the
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development of LONS. A recent meta-analysis of 67 trials in 15,712
patients showed a reduced overall mortality and incidence of NEC
in VLBW neonates, but the risk reduction for culture proven sepsis
was non-significant. At the same time the authors acknowledge
that there was large heterogeneity in the included studies.11

Another meta-analysis of 37 randomized controlled trials (RCT)
showed that probiotics only decreased the risk of acquiring LONS
in mother’s milk fed preterm neonates.12 Both analyses conclude
that only probiotic mixtures, not single-strain products, were
effective in reducing LONS incidence.11,12 This was supported by a
recent network meta-analysis by Chi et al., which showed that
different combinations of pre- and probiotics could be beneficial
for different neonatal endpoints.13

Knowledge gaps and opportunities for future research. In the
future, more focus should go to clarifying the relationship
between probiotic supplementation and feeding practices in
preterm neonates. Additional research should also focus on type
of probiotic microorganisms, dose, starting time of and duration of
administration to make the available evidence more comparable.
The recent network meta-analysis could be used as a starting
point for strain combinations tot test.13

Mother’s milk and donor milk
Feeding preterm neonates with their own mother’s milk has a lot
of benefits including decreased rates of LONS, necrotizing
enterocolitis (NEC), and improved neurodevelopmental out-
comes.14–17 If mother’s milk is unavailable, donor human milk
(DHM) can be used as substitute, with several limitations.
Unfortunately, the process of pasteurization of DHM, when
performed, destroys or significantly decreases the concentration
of many of the essential protective molecules.18–21 Feeding DHM
instead of formula did not significantly affect mortality or
frequency of LONS.22,23 However, DHM feeding might still be
more beneficial compared to formula feeding as a meta-analysis
showed DHM compared to formula feeding resulted in a
decreased risk of developing NEC.23 More recently, research
groups have been focusing on the specific effects of colostrum
which is very rich in protective immune components.24,25

However, due to its low quantity, administration via a feeding

tube is difficult and extremely preterm neonates can be intolerant
to feeding. Oromucosal administration of very low quantities
every 3 h has been associated with higher sIgA and lactoferrin
concentrations in a group of preterm infants.24 Currently, the first
study on the effect of colostrum on neonatal outcome is
ongoing.26

Knowledge gaps and opportunities for future research. It is
important to understand which components of human milk are
essential for the protective effect against LONS. Next, processes of
preparation and storage of DHM need then to be adapted to
retain these essential components and subsequently the adapted
DHM should be evaluated in patient studies. Also, beneficial
components that reduce LONS incidence may be used to improve
formula feeding. Additionally, the potential benefits of early
colostrum administration needs to be further studied in RCTs.

Maternal immunization
As IgA is transferred in mother’s milk, it might be also interesting
to think about immunizing mothers with the pathogens found in
routine skin and rectal swabs. Several studies on the protective
role of breastmilk in women vaccinated during pregnancy
identified a high amount of vaccine-specific sIgA in the breastmilk
samples up to several weeks postpartum.27–29 Consequently, a
lower incidence of respiratory illness with fever episodes in young
infants of influenza-vaccinated mothers was reported.28,29 The
potential of neonatal immunization against Gram-negative
bacteria has also been described, either a maternal vaccination
to pregnant woman, via breastmilk and directly to the neonate.30

Knowledge gaps and opportunities for future research. Protection
offered to the newborn via secretory antibodies present in
mothers milk support need for robust immunization strategies
that include pregnant women. Effective protection of pregnant
women may translate to dual protection to both mother and the
infant. Maternal vaccination has already been shown to protect
the neonate from severe infections and currently represents the
best preventive option against various pathogens. Development
of vaccination strategies in pregnant women with imminent
preterm labor or possibly soon after preterm birth could improve
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Fig. 1 Conceptual framework for preterm neonates at risk for LONS—knowledge gaps. This framework shows opportunities for optimizing
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prevention of LONS by enhancing the immune system of the
neonate. These strategies should be evaluated in prospective,
preferably randomized, studies.

Lactoferrin
Lactoferrin is a major iron-binding glycoprotein in mature human
milk with direct antimicrobial and anti-inflammatory effects.31 In
several small RCTs the oral supplementation of bovine lactoferrin
(bLF) was associated with a decrease of LONS incidence, although
studies were small with high risk of bias and possibility of
publication bias was noted.32,33 Until now, however, no adverse
effects of bLF in neonates have been reported.33 Larger, already
ongoing studies will hopefully provide more data on the
effectiveness of lactoferrin supplementation.

Knowledge gaps and opportunities for future research. Next to a
potential interaction between probiotics and bLF, which might
warrant further study, optimal dosing regimens, types of
lactoferrin (human vs bLF), and their effects on long-term
outcomes need to be determined.22

Monoclonal antibodies
The use of monoclonal antibodies to modulate the neonatal
immune system to prevent LONS is interesting. Most evidence to
prevent staphylococcal sepsis in preterm neonates has been
reported on pagibaximab. In several smaller studies, a good safety
and tolerability profile was demonstrated; however, no effect on
LONS was established so far.19,34,35 Pagibaximab is a humanized
mouse chimeric monoclonal antibody directed against lipoteichoic
acid (LTA), a major cell wall component of Gram-positive bacteria,
which promotes staphylococcal phagocytosis.36 The ability of two
other antistaphylococcal immunoglobulins, Altastaph and INH A-2,
to augment the neonatal immune system to prevent infections has
also been studied although not recommended yet.37 A new
promising humanized immunoglobulin SpAKKAA-mAb bound with
high affinity, blocked IgG binding to protein A, and provided
protection against S. aureus sepsis in neonatal mice.38

Knowledge gaps and opportunities for future research. Further
research should focus on exploring the development and use of
monoclonal antibodies to prevent LONS. Phase 1–3 trials are
required for the transition to neonates. The pharmacokinetic (PK)
knowledge on monoclonal antibodies and immunoglobulins in
preterm neonates may highly benefit from the approach by Malik
et al.39 who described the PK profile of monoclonal antibodies in
preterm neonates using a physiologically based pharmacokinetic
(PBPK) model, based on the reported PK of pagibaximab and
palivizumab, as well as immunoglobulins. This enables a predic-
tion of the disposition of other as well as new monoclonal
antibodies and immunoglobulins in preterm infants.

EARLY DETECTION OF LONS
Timely initiation of adequate antibiotic and supportive therapy is
critical to improve survival of patients suffering from LONS.40 In
most cases of LONS the first clinical symptoms are subtle and non-
specific (e.g. instability of feeding, temperature, or breathing), but
the course can be fulminant and leading to death within a few
hours.41,42

Physiological parameters
Ideally, non-invasive methods should be able to predict the onset
of LONS. Up until now, several physiological parameters
(physiomics) have been investigated, of which heart rate
variability (HRV) is the most widely used. Multiple mathematical
computations of the heart rate can be used to monitor changes in
HRV.43,44 Changes in HRV are associated with the onset of LONS
and HRV monitoring has been shown to reduce mortality in VLBW
neonates in a large randomized controlled trial.45 However, the
specificity is low, which may lead to more blood cultures taken
and an increased use of antibiotics.46,47 It was already shown that
adding cross-correlation of SpO2 with HRV, or respiratory rate and
body temperature, increased the predictive value for occurrence
of LONS and NEC, although specificity remained low.48,49

Predictive ability improved when adding physiological parameters

Table 1. Knowledge gaps in pharmacological and immunological therapy to prevent and treat LONS and the associated opportunities to
close these.

Therapeutic agent Component of sepsis
management

Knowledge gaps Opportunities

Probiotics Prevention Effect of type of feeding, type of
microorganism/mixture, starting time, dose,
and duration of administration

Studies according to feeding type, studies
evaluating different microorganisms and
regimens

Mother’s milk Prevention Components in breastmilk that are essential
for the protective effect; effect of
pasteurization on human donor milk

Study different preparation techniques for
human donor milk, adapt mother’s milk by
treating or supplement mothers

Maternal immunization Prevention Timing and effect of maternal immunization
on specific secretory IgA in mother’s milk for
potential causative microorganisms of LONS

Adapt secretory IgA patterns to possibly
support the immune system of preterm
neonates

Lactoferrin Prevention Optimal dosing regimen, types of lactoferrin
(human vs bovine lactoferrin), long-term
effects

Larger studies with longer follow-up

Pagibaximib Prevention Correct dose; exact effect on the reduction of
sepsis if used for prevention, as well as for
treatment

Study dose–effect relationship in preterm
animals, investigate potential benefit in the
treatment of staphylococcal infections

Targeted antibiotics Treatment Lack of effect markers, lack of neonatal PK
target, high inter-individual variability

MIPD, routine therapeutic drug monitoring,
more research into effect biomarkers

Pentoxifylline Treatment Best time to start therapy unknown, best dose
unknown, duration of therapy unknown

Dose finding trials, efficacy trials with
different time points to start treatment

Mesenchymal
stromal cells

Treatment Information on safety, correct dosage,
underlying working mechanism and possible
patient selection

Might bear potential but must be studied in
larger trials

MIPD model-informed precision dosing, LONS late-onset neonatal sepsis.
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to baseline characteristics and conventional risk factors of LONS.50

Also, adding ECG-derived estimates of neonatal movements adds
information on top of HRV.51

Knowledge gaps and opportunities for future research. Despite the
common knowledge that vital signs change in patients with LONS,
predictive monitoring is not used widely in the NICU due to
limited predictive ability (low specificity). Future research should
focus on improving specificity by combining multiple physiologi-
cal parameters and adding new non-invasive continuously
measured physiological parameters such as skin conductance,
changes in microcirculation, and peripheral pulse rate variability.
The rapid progress in the development of electronics will produce
other non-invasive techniques observing the infants that may
outperform those currently available. Combining non-invasive
signals with rapidly available (serum) biomarkers is a promising
scenario to investigate.
Using today’s technology of big data mining combined with

machine learning (ML) and artificial intelligence (AI) approaches52–56

will most likely allow to characterize those with changing physiology
indicative of LONS. Data incorporated in ML/AI models include
electronic health record data, vital sign analysis, administered
therapy, and rapidly available biomarkers. Unfortunately, in adult ICU
most ML and AI models remain in prototyping environment and are
not tested in bedside settings.57 Challenges lie in data management
(sample size, privacy regulations, model generalizability, standar-
dized data formats), development of models (ensuring data quality,
preprocessing of data, data labeling, measurement errors), and
implementation in clinical workflow (lack of insight in model
development limiting possibility of validation studies, concerns for
patient safety).57–59 Developed predictive algorithms should be
prospectively validated, ideally in randomized controlled trials, for
their effect on short- and long-term outcome. To improve model
performance and generalizability, initiatives should be employed to
share high-frequency vital sign datasets with paired outcome data
including a harmonized definition of sepsis in order to give
researchers the possibility to develop predictive models with the
biggest dataset possible.

Serum biomarkers
“Classical” biomarkers. Many studies investigating single biomar-
kers or a combination of several biomarkers to diagnose or rule
out LONS have been performed without establishing an adequate
solution for clinical use.60–66 In addition, the dynamics of many
biomarkers in response to LONS as well as the different phases of
a neonates immune response have not been fully understood.67 It
seems unlikely that a single biomarker will have sufficient
predictive value to accurately diagnose or rule out LONS. This
emphasizes the need for profiles of multiple biomarkers to identify
the status of infections as well as the neonatal immune response
in order to improve diagnostic ability.68 A solution could be found
in -omics approaches.

Systems biology; -omics approaches. Relatively novel systems
biology approaches such as proteomics (simultaneous determina-
tion of large numbers of proteins), transcriptomics (RNA tran-
scripts), and metabolomics (cellular metabolites) seem promising
to detect the changing (patho)physiology of a preterm neonate
during LONS.69 Mass spectrometry (MS) and liquid chromatogra-
phy techniques have made high-throughput determination of
-omics platforms possible.70–72 Several studies have investigated
the use of -omics profiles in diagnosing LONS, yielding promising
results.73–83 Several biological metabolic pathways, like glucose
metabolism, oxidative stress, and the fatty acid pathway,77–80 have
been shown to be involved in LONS and are promising targets to
investigate. In the largest proteomic study so far including data
from 258 predominantly preterm neonates,74 biomarker discovery
was performed and subsequently, a composite score (ApoSAA

score) was constructed. Then, prospectively validated in a single
center setting, the ApoSAA score showed high specificity and
sensitivity (0.84 and 0.89, respectively).74 However, the ApoSAA
score remains to be evaluated in a multi-center setting. A gene-
expression-based risk score (Sepsis MetaScore, comprised of 11
gene-expression levels) showed a high diagnostic yield (AUROC
0.92–0.93 in three separate centers) but remains to be prospec-
tively validated.83 These studies illustrate that despite promising
results, the route taking research results to the bedside is
challenging.

Knowledge gaps and opportunities for future research. Future
studies should define biomarker cut-off levels specific for (small)
ranges of gestational and postnatal age as biomarker levels are
affected by both.22 New biomarkers should be studied that rapidly
change in a short time-period, because they are more likely to
provide a high predictive value for diagnosing or excluding LONS.
Because sepsis is a complex immunological process, it is likely that
the predictive value of multiple pro- and anti-inflammatory
biomarkers yields more information than a single biomarker,
and should be assessed in age (both post-menstrual and
postnatal) and weight specific groups of neonates. Large and
well-defined patient populations are needed for discovery of
novel -omics biomarkers as well as confirming prospective studies
are needed for clinical implication.
In general, predictive models are not likely to consistently show

absence of false-negative results, which has the highest clinical
concern because of the potential consequences of delayed
treatment of LONS. Therefore, a combination of biomarkers with
a high positive predictive value could serve as alert to medical
staff to consider (early) antibiotic treatment or additional testing.

From -omics research approaches to the bedside. Although
hypothesis-free approaches are promising and will likely yield
interesting results, the road to bedside implementation is long.
Research efforts will have to be made to minimize the amount of
blood needed for these -omics approaches as well as making
them available 24/7 with a rapid turnover time. For both
proteomics and metabolomics technical advances show promise
in minimizing equipment size and blood sample volume for
bedside implementation, when the appropriate proteomic and/or
metabolomic targets have been identified.84–87 As -omics
approaches currently are only used in research settings, biobank-
ing of biological specimens and international collaboration will be
critical for success.
Furthermore, future research should also focus on continuously

measuring informative biomarkers using new techniques such as
sensors and micro-dialysis devices,88 and measuring biomarkers in
other, freely available body materials such as urine, saliva, or the
microbiome of the skin.89 In order for these tests to have an
impact on clinical decision-making and neonatal outcome such
biomarkers sets should be made available as rapid onsite tests.
Another option may be measuring volatile organic compounds
(VOC). VOCs have been shown to change several before clinical
LONS and NEC diagnosis and are specific to causative bacteria.90

An eNose in an incubator could continuously analyze exhaled air
and can be an addition to early detection of LONS.91,92

ANTIBIOTIC THERAPY
Empirical antibiotic therapy
During the initial treatment phase, if sepsis is suspected, it is of
utmost importance to assure efficacy of treatment.10,93 Usually,
empirical antibiotic therapy is initiated covering the most
common causative microorganisms.94 Upon determination of
the causative microorganism and its antibiotic sensitivity, the
antibiotic therapy can be narrowed with specific antibiotics or
stopped if the blood culture remains negative and the clinical
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signs do not fit sepsis.10,94 Unfortunately, many blood cultures
remain negative although sepsis cannot be ruled out clinically,
inevitably leading to unnecessary use of antibiotics. This has been
associated with an increased risk of NEC and death in patients
receiving large amounts of antibiotics,95 and the emergence of
multidrug-resistant Gram-negative bacteria.96

Knowledge gaps and opportunities for future research. Instantly
available information on the causative microorganism would limit
unnecessary use of antibiotics. This is critical for effective
treatment and to prevent formation of more resistant strains.
One way to go forward with this could be the use molecular
diagnostics such as PCR or MALDI-TOF MS, a mass spectrometry
technique on blood specimens after laser exposure, which have
been shown to lead to quicker and more sensitive results, but
with limited specificity.62,97 In the future the added value of
these techniques in patients with negative cultures needs to
be investigated to reduce the use of antibiotics in culture-negative
sepsis. Also, biomarkers to detect resistant microorganisms and
enabling adapted empiric antibiotic therapy are needed (Table 2).

Personalized antibiotic therapy
Ideally, we want to give the most specific, narrow, and optimally
dosed antibiotic therapy, individualized for each patients with
suspected LONS, and avoid empirical broad-spectrum antibiotic
therapy. This would reduce unnecessary use of antibiotics and the
accompanying risk of side effects and resistance. To accomplish
personalized antibiotic treatment in LONS patients, rapidly
available information on the causative microorganism is needed.
Conventional blood culture methods are clearly too slow.98,99

Knowledge gaps and opportunities for future research. Future
research should focus on the development of bedside molecular

diagnostics in order to facilitate personalized antibiotic treatment.
Information from classical serum biomarkers (e.g. C-reactive
protein (CRP), interleukin-6 (IL-6)) provide limited information in
adults, but this has not been investigated in neonatal popula-
tions.100–103 Analysis of the entire metabolome or proteome has
great potential to find predictive biomarkers for the causative
microorganism of LONS.104–106 However, it could be that only a
subgroup of patients is suitable for personalized antibiotic
treatments, based on their biomarker profiles predicting a
causative microorganism with a high certainty. Possibly some
patients do not need antibiotic therapy at all. If reliable biomarkers
can be established, adapted antibiotic therapy needs to be
investigated in a sufficiently powered RCT in order to assess safety
and efficacy.107

PKs of antibiotics
Due to the lack of available PK data, it has long been a challenge
to understand the factors driving the drug levels in septic
neonates.108 Fortunately, this has drastically improved in the last
decade due to more sensitive laboratory equipment that enabled
quantification of drug levels in small plasma volumes and
advances in PK modeling and simulation.109 Nowadays, the most
commonly used antibiotics have been labeled for neonatal age
and PK data are available.110 The most relevant antibiotics for the
treatment of LONS are known to be predominantly eliminated
renally.111 It may therefore be expected that determinants of
antibiotic clearance are similar for most of these drugs. These
determinants reflect prenatal (birth weight, gestational age) and
postnatal maturation (postnatal age, current body weight).112,113

Nevertheless, different existing models for one antibiotic often
result in slightly different dosage advice. The reasons for these
difference relate to include the inclusion of different patient

Table 2. Knowledge gaps in detection, treatment, and monitoring in late-onset neonatal sepsis and the associated opportunities to close these.

Subject Component of
sepsis management

Knowledge gaps Opportunities

Detection methods Detection For classical blood cultures, the result takes up
to 48 h; high rate of culture-negative sepsis

Explore predictive ability new algorithms
including multiple physiological parameters
and/or chemical biomarkers; machine learning
and artificial intelligence to improve early
detection of LONS

Serum biomarkers Detection No perfect biomarker exists Study the complex interaction between
biomarker and pathogen in neonates using
-omics approaches; assess predictive ability of
a combination of biomarkers

-Omics to bedside Detection Clinical application is limited due to small
sample sizes and lack of validation

Larger patient populations for discovery of
novel -omics biomarkers and establishment of
profiles indicative of LONS

Dosing antibiotics Treatment Multiple models based on small studies with
slightly different results; collected PK data are
too sparse to make good inferences on the PK;
large unexplained variability in the PK remains
in models

Data sharing and model-based meta-analysis
to bundle all available evidence and get to a
best-practice dosing; use clinical trial
simulation to calculate power and determine
sampling time points for clinical trials

MIC breakpoints Treatment MIC breakpoints have been defined for adults Define MIC breakpoints in neonates

Assessing the
immune response

Monitoring Biomarker dynamics over time and in relation
to immunological phase of sepsis unknown

Combining knowledge of the developing
immune system of the neonate, inflammatory
state, causative pathogen, and drug
concentrations to assess whether a change in
a biomarker reflects an upcoming change in
the patient’s condition

In vitro/
in vivo models

Monitoring Development of the neonatal immune system
not completely understood

Preclinical studies in high-throughput in vitro/
in vivo models to understand neonatal
immune response, its dynamics and timing of
immune-modulating interventions

MIC minimally inhibitory concentration, PK pharmacokinetics, LONS late-onset neonatal sepsis.
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populations, small cohorts and different PK targets as these have
not yet been clearly defined for neonates (Table 2).

Knowledge gaps and opportunities for future research. Future
research should therefore focus on pooling all available data on
one drug114 or performing model-based meta-analyses,115 which
will result in more uniform and more reliable dosage advice. In
addition, more studies are needed to identify the appropriate PK
targets in neonates. In case of performing new PK trials, clinical
trial simulations prior to the actual start of a study can help to
choose the most informative blood sampling time scheme to
ensure the study is sufficiently powered for PK analyses.116

Determining the right dose for antibiotics
Minimal inhibitory concentration. To determine the most ade-
quate dose for the antibiotic therapy of LONS, the minimal
inhibitory concentration (MIC) is often used. This concentration
describes the lowest concentration at which bacterial growth is
inhibited in vitro.117 However, the resulting MIC breakpoints that
define whether a pathogen is susceptible are based on PK,
pharmacodynamics (PD), and outcome data in adults and not in
children, let alone neonates. Differences in neonatal immune
response leading to altered bacterial killing patterns might lead to
a need for a higher MIC to effectively kill the bacteria. This
becomes even more relevant if the microorganism has a high
MIC.118 Furthermore, the elimination and distribution of drugs in
neonates is different from older children and adults.119 Even when
reaching similar plasma concentrations in the blood by means of
individualized dosing, the concentration at the site of infection
might vary. This concentration, will, in turn impact the immune
response, the pathogen load, and possible biomarkers for
diagnosing LONS and/or monitoring treatment effect (see Fig. 2).

PK/PD relationships. For different classes of antibiotics, different
MIC-related PK/PD indices, relating PK parameters to efficacy, have
been defined depending on the mechanism of action. These
include concentration-dependent killing and time-dependent
killing and a combination of the two.93 For example, vancomycin

shows time- and concentration-dependent killing that is best
described by the area under the curve (AUC)/MIC. In clinical
practice, AUC/MIC is assessed by using the trough concentration
as a surrogate for AUC.120 However, due to their significantly lower
clearance in neonates and other differences in PK, a sufficient
AUC/MIC ratio can be achieved aiming for lower trough
concentrations.121 Moreover, the choice of dosing interval and
daily dose leading to the target AUC has a great impact on the
corresponding trough concentration.122 This underlines that the
adult PK target cannot simply be extrapolated to neonates and
that more research into suitable PK targets for neonates is needed.

Knowledge gaps and opportunities for future research. In absence
of targets determined for neonates, model-informed precision
dosing (MIPD) bears the potential to initiate antibiotic treatment
with the optimal individual dosage. MIPD captures drug, disease,
and patient characteristics in modeling approaches and can be
used to perform Bayesian forecasting and dose optimization
(Table 2). Despite all reported PK models, this has hardly been
implemented yet.123 Depending on the antibiotic drug, this may
imply to start with a loading dose for an immediate adequate
exposure and quick onset of effect. Subsequently, therapeutic
drug monitoring (TDM) can be used to further optimize individual
exposure which should aim for the most evidence based target so
far: AUC. Due to the observed large inter-individual difference in
PK in preterm neonates, TDM is of additional value with respect to
preventing toxicity as well as assuring treatment efficacy.124 One
good example for this could be beta-lactams as recent studies
have shown that in neonates with sepsis therapy failure, as little as
20% of the benzyl penicillin concentrations were within the target
range.125

MONITORING SEPSIS COURSE
Assessing treatment effect
LONS may compromise the cardiovascular system, leading to
reduced cardiac output and/or disturbed microcirculation, but also
other organ systems. Adequate biomarkers to judge effectiveness

Effect of
drug

toxicity on
organ

function/
PK

Effect of
inflammation on
organ function

Effect of
pathogen on

immune
response

Drug pathogen
interaction

Fig. 2 Schematic representation of the complex interplay of different factors that complicate quantifying treatment effects in preterm
neonates with late-onset sepsis. Pink: causative pathogen, blue: immune system, orange: organ function, green: drug, adapted from https://
ascpt.onlinelibrary.wiley.com/doi/epdf/10.1002/cpt.2194.
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of LONS management would significantly improve clinical care;
knowing you are on the right track even before the patient shows
clinical recovery, potentially prevents overuse of supportive
therapy and unnecessary switches to broad-spectrum antibiotics.
An ideal biomarker to assess treatment effect should have a high
predictive value and a fast response to changes in the disease
state and easily available. Preferably, the biomarker changes
before the clinical condition of the patient improves or
deteriorates and is measured non-invasively.105,126 Conventional
methods for assessing the hemodynamic status during sepsis,
such as blood pressure, urine output, and heart rate, seem
inaccurate and unreliable.127,128 More objective physiological
biomarkers of the (micro) circulation could be used during disease
monitoring. Repeated assessment of cardiac output measure-
ments, obtained by (neonatologist performed) echocardiography,
may also provide objective physiological biomarkers that could be
used during for disease status monitoring.129,130 However, these
measurements require intensive training and there is a lack
knowledge regarding the targets to aim for. Furthermore,
assessment is limited to central blood flow, while end-organ
(micro)circulation is not measured.129,130 To this end, near-infrared
spectroscopy or transcutaneous assessment of capillary flow
might be used to monitor regional perfusion, but again targets
are lacking and are likely to be individual.131–134

Knowledge gaps and opportunities for future research. Future
research should develop methods that enable us to measure end-
organ blood flow or microcirculation to improve hemodynamic
assessment during sepsis, which could facilitate tailored manage-
ment. Objective measuring tools are needed that generate easy
interpretable results with targets available that need to be
pursued. Once established, prospective studies should be
performed to evaluate whether these tools improve neonatal
outcome, when implemented and targeted for.

Hyperinflammation
The preterm neonates immune system is immature and relies on a
less well developed innate immune system, making preterm
neonates more vulnerable to infections.135–139 Studies in neonatal
cord blood show that the neonatal immune system responds
differently to bacterial antigens at birth, compared to adults,
which results in different cytokine responses, e.g. lower levels of
tumor necrosis factor-α (TNF-α) and higher levels of IL-6.137,140

These differences can result in a dysregulated pro-inflammatory
response to infection, sometimes also called “cytokine-storm”.141

Such an inflammatory response can cause damage to
different organ systems126 which can, in turn, affect the PKs of
drugs (see Fig. 2). Depending on the causative pathogen, neonatal
immune response will vary. Cell models comparing the response
to different aerobe and anaerobe Gram-positive and Gram-
negative bacteria in umbilical cord cells and adults cells indicate
specific differences in the immune response for different
pathogens.142

Knowledge gaps and opportunities for future research. Means to
identify the different stages of inflammation in preterm neonatal
sepsis are of paramount importance to increase clinical under-
standing and potentially guide therapy. It is likely that the level of
biomarkers reflecting the immune response are affected by
complex host–pathogen–drug interactions.143 Many factors can
determine the level of such a biomarker: (1) the developing
immune system of the neonate, (2) the inflammatory state, (3) the
causative pathogen, and (4) administered drugs (see Fig. 2).
Research on immune response biomarkers increases the under-
standing of the neonatal immune response and its dynamics, and
should aim to define (immune) biomarkers that can be clinically
used for treatment response and for PK/PD of drug treatment. The

neonatal immune response could relatively easily be studied in
in vitro or high-throughput animal models of sepsis.144 Up until
now animal models of sepsis rarely yielded new biomarkers or
therapeutic agents that have been successfully used in clinical
practice.145 A promising new candidate model is zebrafish larvae.
The immune system of the zebrafish closely resembles the human
immune system.146 In zebrafish models, larvae can be infected
under controlled conditions and the immune response can be
observed for different pathogens and maturational statuses.
Zebrafish already have been successfully exposed to pathogens
relevant for neonatal sepsis, which has already resulted in the
identification of factors necessary for the establishment and
spread of the infection.144 Furthermore, the emergence of -omics
approaches enables researchers to map and understand physio-
logical changes during sepsis. Rapid onsite omics approaches
could be used to monitor the inflammatory response during the
course of sepsis, which would enable individualized management
according to the patient’s functional immune status.147

Prediction of severity of sepsis
During the sepsis course, some patients will develop severe sepsis
symptoms with need for inotropes or mechanical ventilation and
risk of mortality, while others may not. Identification of patients
with oncoming severe sepsis could enable personalized monitor-
ing and possible additional interventions to prevent subsequent
clinical deterioration. A recent study showed that commonly used
chemical biomarkers, such as IL-6, PCT, and CRP, may provide
information on who will have a severe LONS.148 Cut-off values for
the biomarkers were calculated to be used in clinical practice as a
warning signal for subsequent clinical deterioration. As one may
recognize, the severity of illness is also related to the underlying
causative microorganism (Gram-negative bacteria); thus, biomar-
kers establishing the causative organism rapidly after LONS
diagnosis are likely to show overlap with predicting severe LONS.
In adult sepsis it has been shown that PCT levels differ according
to specific causative organism101 and therefore could potentially
be used to predict the microorganism even before the result of
the blood culture. However, the discriminatory power of PCT as a
sole biomarker is too low to guide therapeutic decisions.101

Knowledge gaps and opportunities for future research. Future
research should focus on identifying patients with severe sepsis
and a developing hyper-inflammatory syndrome in order to
facilitate personalized monitoring (e.g. inserting peripheral arterial
line) and additional therapy (e.g. immune-modulating treatment)
in the early stages of sepsis, thereby going from reactive
management towards forward-looking management. Early pre-
diction of the causative organism by (set of) biomarkers might be
one way to facilitate this, where the focus should lie on identifying
a set of biomarkers rather than a single biomarker. Another
potential biomarker that could provide information on sepsis
severity could be a biomarker reflecting bacterial load. Prospective
studies are needed to investigate which biomarkers could be of
value in clinical practice.

ADDITIONAL THERAPY
Next to antibiotic therapy, several studies in neonates have
focused on additional therapies consisting of a variety of immune-
modulating intervention, up until now evidence remains sparse
(knowledge gaps and opportunities are summarized in Table 1).149

Evidence for the most interventions, such as IVIG, lactoferrin, and
granulocyte–macrophage colony-stimulating factor, remains
inconclusive.10,33,94,150–153 When considering additional therapies,
it is important to adapt an individual approach, since the immune
response varies over time and the timing of immunomodulatory
therapy is critical.154
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Pentoxifylline (PTX)
PTX is a phosphodiesterase inhibitor, originally registered for
intermittent claudication in adults,155 which suppresses the
production of TNFα and other inflammatory cytokines and
prevents their subsequent effects.156–159 Furthermore, PTX has
beneficial effects on endothelial cell function, coagulation, and
microcirculation in preterm neonates with LONS.160–163 A recent
meta-analysis of six studies showed that PTX is associated with a
decreased mortality during hospitalization,164 which makes PTX
a promising candidate for the adjunctive treatment of LONS. A
larger study to confirm these effects and study long-term
outcome is currently ongoing (ACTRN12616000405415). Unfor-
tunately, available data on PKs of PTX and its active metabolites
in neonates are limited. Most clinical studies of PTX in neonates
used the same dosage of 5 mg/kg/h during 6 h.157,158 PTX
dosages of 5 mg/kg/h during 12 h led to increased plasma levels
and were well tolerated in seven preterm neonates.158,165

However, the most effective dosage and target concentration
as well as timing in preterm neonates still need to be
determined (dose per kilogram per day, duration of infusion
and treatment). In vivo animal models might help define optimal
timing and dosing, which subsequently could be validated in a
clinical trial.

Mesenchymal stromal cells
Mesenchymal stromal cells (MSCs) are non-hematopoietic multi
potent stromal cell that can be isolated from various tissues, such
as umbilical cord tissue. MSCs may reduce multi-organ dysfunc-
tion and improve survival in sepsis by several mechanisms, which
include reducing the inflammatory response, vascular injury, and
bacterial load.166–169 A phase-I trial in nine adults with sepsis
showed that infusion of MSCs seemed safe.170 Although MSC-
treatment seems promising in neonatal animal models,171

information on safety, correct dosage, underlying working
mechanism, and possible patient selection is missing in neonatal
sepsis. Clinical trials are needed to assess safety, feasibility,
effectiveness, and to determine the effective dosage.

Timing of additional therapy
The host immune response in sepsis varies in the same patient
over time172 and gestational age and postnatal age, but also sex,
affect the immune responses.173–175 Therefore, mapping the
immune status for each individual patient during the course of
sepsis would enable to select patients that might benefit from
immunomodulatory treatment at a certain time point during the
disease process (see “Hyperinflammation”).176

Knowledge gaps and opportunities for future research. Depending
on the immune state of the patient, immune-modulating drugs
may benefit the patient, while other patients may suffer from
adverse effects if the drug is administered at an inappropriate
time point because of its potentially harmful interference with the
developing immune system.176 For example, giving pentoxifylline
in a late stage of severe sepsis has adverse consequences in a
swine model of sepsis.177 However, knowledge regarding sepsis
phases in preterm human neonates is still largely lacking.22 Future
research should aim to understand immune response mechanisms
and study how and when the immune response should be
modulated to improve LONS outcome. As this is complicated to
study in preterm neonates, in vitro experiments and/or animal
models146 should be explored first before clinical application is
feasible. As a final step, an individualized management
based on immune status of the status should be prospectively
compared with a group-based approach ideally in a randomized
controlled trial.

PERSONALIZED MEDICINE IN CLINICAL PRACTICE
Ideally all information from a patient comes together in real-time
bedside “dashboard” of the patients clinical status. This dashboard
can incorporate physiological data, patient characteristics (e.g. GA,
PNA, sex), clinical data (e.g. previous diagnoses and therapies),
biomarkers, and metabolomic and proteomic profiles. Using
supervised ML models, all these characteristics could be able to
predict a causative organism, stratify the patient according to risk,
provide information on immune status, and detect if the patient is
responding to the initiated therapy.178 An optimal (additional)
treatment and monitoring strategy tailored to the individual
patient could be recommended. By continuously extracting
patient (physiological) data and additionally determined biomar-
kers, the data driven “dashboard” model could update treatment
and monitoring strategies and provide additional suggestions for
LONS management if needed.69,179 Development of predictive
modeling dashboards will require harmonized and large-scale
databases, fed by multicentre collaborations, if possible including
proteomics and/or metabolomics data.180

A ROADMAP FOR FUTURE RESEARCH
In conclusion, the research field of LONS, is entering an exciting
new era. The availability of computational power, computational
medicine algorithms, and hypothesis-free -omics approaches give
way to building bedside feedback tools to guide clinicians in
personalized management of LONS. However, important knowl-
edge gaps still need to be addressed. First, we need to identify
biomarkers, which ideally can be measured continuously and non-
invasively or in low fluid volumes, to identify preterm neonates
with LONS as early as possible and provide information on the
severity of LONS. This will enable personalized therapy and
monitoring of treatment effect. Second, means of assessing the
immune state of a preterm neonate are likely to harness important
information to provide optimal immune-modulating therapy at
the right time. Third, we need to improve our understanding and
utilization of neonatal pharmacology (pharmacokinetics and
pharmacodynamics), which may provide means to immediately
optimize treatment and supportive strategies. Last, we need to
develop clear and informative bedside dashboards, incorporating
biomarker information, ML, and AI and monitoring to help
clinicians optimize every step in the management of LONS in
preterm neonates and improve outcome.
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