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7
Using BERT for Named Entity Recognition

“Look at all the exciting new discoveries, look at all the knowledge here.”
Bert, Sesame street ep. 1621, ‘Bert and Ernie in a Pyramid’

Accepted for publication as: Brandsen, A., Verberne, S., Lambers, K., & Wansleeben,
M., 2021. Can BERT Dig It? – Named Entity Recognition for Information Retrieval
in the Archaeology Domain. Journal on Computing and Cultural Heritage
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The amount of archaeological literature is growing rapidly. Until recently,
these data were only accessible through metadata search. We implemented a
text retrieval engine for a large archaeological text collection (∼ 658 Million
words). In archaeological IR, domain-specific entities such as locations, time pe-
riods, and artefacts, play a central role. This motivated the development of a
Named Entity Recognition (NER) model to annotate the full collection with ar-
chaeological named entities. In this paper, we present ArcheoBERTje, a BERT
model pre-trained on Dutch archaeological texts. We compare the model’s quality
and output on a Named Entity Recognition task to a generic multilingual model
and a generic Dutch model. We also investigate ensemble methods for combin-
ing multiple BERT models, and combining the best BERT model with a domain
thesaurus using Conditional Random Fields (CRF). We find that ArcheoBERTje
outperforms both the multilingual and Dutch model significantly with a smaller
standard deviation between runs, reaching an average F1 score of 0.735. The
model also outperforms ensemble methods combining the three models. Combin-
ing ArcheoBERTje predictions and explicit domain knowledge from the thesaurus
did not increase the F1 score. We quantitatively and qualitatively analyse the
differences between the vocabulary and output of the BERT models on the full
collection and provide some valuable insights in the effect of fine-tuning for spe-
cific domains. Our results indicate that for a highly specific text domain such as
archaeology, further pre-training on domain-specific data increases the model’s
quality on NER by a much larger margin than shown for other domains in the
literature, and that domain-specific pre-training makes the addition of domain
knowledge from a thesaurus unnecessary.

7.1 Introduction

Like in other domains, archaeologists produce large amounts of text about their
research. Besides research leading to scholarly output, commercial archaeology
companies survey and excavate areas before developers build there and might
destroy the archaeological remains. For each of these investigations, a report
is written and stored in a repository. In the Netherlands, more than 4,000 of
these documents are produced every year (Rijksdienst voor het Cultureel Erfgoed,
2019a), with the total currently estimated at 70,000. These documents are used
to some extent by both academic and commercial archaeologists to do further
research.

Currently, this so-called ‘grey literature’ is underused, as the available search
tools only offer metadata search, making searching through these reports time



7.1. INTRODUCTION 115

consuming and inaccurate (Habermehl, 2019). A strong need for better search
tools has been well documented in prior work (Van den Dries, 2016; Habermehl,
2019; Richards et al., 2015; Brandsen et al., 2019), as the information in the full
text of the reports can be of great value. Archaeological information needs are
often recall-oriented list questions, consisting of a combination of What, Where
and When aspects, e.g. “Find all cremations from the Early Middle Ages in the
Netherlands” (Brandsen et al., 2019). These are difficult to satisfy as the previ-
ously available search interfaces only offer search on the title, a short description,
and sometimes information about the dating and type of archaeology encountered
(stored in metadata fields), but the latter two are often missing or incorrectly as-
signed. Archaeologists want to search in more detail, and are often interested in
the so-called ‘by-catch’: a single find unlike the rest of an excavation. For ex-
ample, on an excavation yielding mainly Bronze Age material, a single Medieval
cremation most likely will not be mentioned in the metadata, making it difficult
to retrieve without manually searching through all the PDFs.

To address these needs, we implemented a text retrieval engine for a large
collection of archaeological reports in the Netherlands. The retrieval collection
contains an export (obtained in 2017) of every PDF file in the DANS repository1

with the label ‘Archaeology’. This totals over 60 thousand documents and 658
Million tokens.

A full text search would alleviate a lot of the current challenges archaeologists
face in their search of information, but as Habermehl (2019) mentions, even in
the relatively structured metadata, both synonymy and polysemy are a challenge,
which is likely to be even worse in the free text in the body of the documents.

• Synonymy is a challenge because it leads to a lower recall: as there are
numerous ways to write concepts relevant to archaeology, a search for one
of these variants will not return the others. Specifically time periods have
many synonyms. For example, the ‘Early Middle Ages’ can also be ex-
pressed as the ‘Early Medieval Period’, or ‘Merovingian Period’, or as dates
that fall within the period, such as ‘600 CE’ and ‘1400 BP’.

• Polysemy on the other hand, causes precision to be lower because one word
can have multiple meanings, causing irrelevant meanings to appear in the
search results. A good archaeological example is Swifterbant, which is a
location, a type of pottery, an excavation event, and a time period. This
problem of polysemy causes query ambiguity, as a full-text search engine
does not know which meaning the user is looking for in their query, and
then also does not know which meaning to retrieve from the corpus.

1https://easy.dans.knaw.nl/ui/home
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Automatic query expansion is often used to combat problems with synonymy,
either by using thesauri or embeddings to add synonyms and similar terms to
a query and increase the recall (Soto et al., 2008; Carpineto & Romano, 2012).
Unfortunately in the case of time periods, this is difficult, as some time periods
span thousands or millions of years, and adding each year with multiple variations
(AD, BC, CE, BCE, BP) would result in an extremely large query. Polysemy is
usually addressed in web search engines by diversifying search results or query
suggestions (Capannini et al., 2011; Song et al., 2011): for each possible meaning
of the ambiguous query, at least one relevant result is shown. For our specific
domain, this is not possible because we do not have the large amount of user
traffic that generic web search engines have, to be able to learn the different
relevant results for any query term.

Instead, we opt for Named Entity Recognition (NER) to automatically detect
archaeological entities in the corpus, and then allow archaeologists to find these
using an entity-based query interface, combined with a full text search. The
entity search attempts to solve the polysemy problem, as the user specifies – in
the structured query interface – which meaning of a word they are looking for,
e.g. the Location2 Swifterbant. In this case, only documents where the Location
entity Swifterbant has been detected will be returned. Although this helps the
user specify their query, it also means that entities that have not been correctly
identified will not be returned; in other words, errors in the NER output might
propagate to retrieval errors. Therefore, to give the user freedom in the query
form that best suits their information need, we combine entity search with full-
text search.

We have previously published a prototype of our search engine online. The
search engine uses ElasticSearch (Gormley & Tong, 2015) to index the full text,
and in the prototype, entities were automatically labelled with a baseline NER
model based on Conditional Random Fields (CRF). The resulting entity-based
full-text search was experienced as positive by a focus group of archaeologists
(Brandsen et al., 2019).

However, the baseline NER model offers room for improvement. As prior
work on archaeological NER indicated, CRF with common token-, context- and
thesaurus-based features leads to relatively low F1 scores, around 0.50 to 0.70
(Brandsen et al., 2019, 2020). In the last couple of years, transfer learning, and
specifically BERT models (Devlin et al., 2019), have been used successfully to
get state-of-the-art (SotA) results for NER. On general domain benchmarks the
SotA methods yield impressive F1 scores of up to 0.943 (Yamada et al., 2020).

2Entity types will be capitalised from here on for clarity.
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However, in other domains and languages the performance of NER systems is
generally lower (Lee et al., 2019).

BERT has not been applied to the archaeology domain yet in any language,
and we believe this domain could benefit from context-dependent embeddings
due to the above-mentioned polysemy. Two generic Dutch BERT models have
been released (De Vries et al., 2019; Delobelle et al., 2020) which can help our re-
search. Prior work on language- and domain-specific BERT models reports mixed
results on the effect of pre-training on language- and domain-specific data (see
Section 7.2.4). In this paper, we investigate whether BERT can improve NER
in the Dutch archaeology domain, and to what extent further pre-training on
domain-specific texts improves the quality of the model. We compare Google’s
multilingual model (Devlin et al., 2019), the Dutch BERTje model (De Vries
et al., 2019), and our own ArcheoBERTje model that we further pre-trained on
Dutch excavation reports. We do not compare the Dutch RobBERT model as
it has a different training procedure and longer training times. We analyse the
differences between the three models and we experiment with ensembles to com-
bine multiple models and a domain-specific thesaurus. As there is unfortunately
no test collection with relevance assessments available for the Dutch archaeology
domain, we do not evaluate the performance of the information retrieval, only
the performance of the NER.

We address the following research question:

1. To what extent does further pre-training a BERT model with domain-
specific training data improve the model’s quality in our highly specific
domain?

2. Can a domain-specific BERT model be improved by adding domain knowl-
edge from a thesaurus in a CRF ensemble model?

3. What errors are made by the models and what are the differences in pre-
dicted entities between the three models?

The contributions of our paper are three-fold: First, we propose entity-driven
full-text search in which the professional user enters a structured query, and doc-
uments are filtered for the occurrence of the query entities detected by our new
domain-specific BERT model. Second, we show that for a highly specific do-
main such as archaeology, further pre-training on domain-specific data increases
the model’s quality on NER by a much larger margin than shown for other do-
mains in the literature. Third, we show that the domain-specific BERT model
outperforms ensemble methods combining different BERT models, and also out-
performs a CRF-based ensemble of BERT with explicit domain knowledge from
the archaeological thesaurus.
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Wemake our modified training data set, the pre-trained ArcheoBERTje model,
and the fine-tuned ArcheoBERTje model for NER publicly available (Brandsen,
2021b).3

7.2 Related Work

In this section, we first summarise different approaches to NER (knowledge-driven
and data-driven), followed by a discussion of related work on NER for document
retrieval, on IR and NER in the archaeological domain, and we summarise the
prior work on domain-specific BERT models.

7.2.1 Knowledge-driven and Data-driven NER

Early NER systems were knowledge-based, and relied on thesauri and handcrafted
rules to detect entities (Rau, 1991). These methods are limited by the coverage
of the thesaurus. Therefore, data-driven methods have become more popular,
typically approaching NER as a supervised machine learning problem.

A highly effective machine learning method is Conditional Random Fields
(CRF) (Lafferty et al., 2001), which has become a common baseline for NER.
Since 2011, word embeddings have become increasingly important as represen-
tations in NER. Especially Word2vec (Mikolov et al., 2013) has been used ex-
tensively for NER (Sienčnik, 2015; Seok et al., 2016). These embeddings-based
methods typically feed the embeddings to CRF and/or Bi-LSTM algorithms to
make NER predictions.

A big shift in NLP was introduced by Devlin et al. (2019), who presented their
BERT (Bidirectional Encoder Representations from Transformers) architecture in
2019. BERT and other contextual embedding architectures are currently achiev-
ing SotA results with transfer learning for a large range of NLP tasks, including
NER. Two major differences with previous embedding models are (1) that BERT
embeddings are contextual, meaning that the same token can have a different
embedding based on context, and (2) that it handles out-of-vocabulary words
effectively, by dividing tokens into sub-tokens it does have in vocabulary, using
the WordPiece (Devlin et al., 2019) or SentencePiece (Kudo & Richardson, 2018)
tokeniser.

Recent results indicate that ensemble methods that combining generic and
domain-specific BERT models (Copara et al., 2020), combining BERT with dic-

3https://doi.org/10.5281/zenodo.4739063, also available via the HuggingFace library for
ease of use: https://huggingface.co/alexbrandsen

https://doi.org/10.5281/zenodo.4739063
https://huggingface.co/alexbrandsen
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tionary features (Li et al., 2020), or adding a CRF on top of BERT (Souza et al.,
2019) can improve NER quality. In this paper, we investigate whether addition
of information from a thesaurus can improve NER in a highly specific domain.

7.2.2 NER for Document Retrieval

In the context of document retrieval, NER can play a role in better ranking or
filtering documents based on entities in the query. Guo et al. (2009) were the
first to address the task of recognising named entities in queries. They found
that, despite queries in web search being short, 70% of the queries contained
a named entity. They classify the entities according to a predefined taxonomy
using a weakly supervised topic modelling approach on the query data. Cowan
et al. (2015) also address NER in queries, but for the travel domain. They use
CRF on the queries for extracting the relevant entities.

More recently, the relevance of NER on queries has been emphasised for the
e-commerce domain. Wen et al. (2019) and Cheng et al. (2020) both implement
end-to-end query analysis methods for e-commerce search; the extracted queries
are then used to filter the retrieved products.

As opposed to the prior work, we do not focus on query analysis but on
document analysis; our expert users prefer the use of structured queries, which
makes query analysis unnecessary (see Section 7.4.4). Our documents, on the
other hand, are long and unstructured (as opposed to the products in e-commerce
search), making NER on the document side necessary for matching structured
queries to the relevant documents.

7.2.3 IR and NER in Archaeology

As argued by Richards et al. (Richards et al., 2015), archaeology has great
potential for thesaurus-based IR and NER, as it has a relatively well-controlled
vocabulary and there are thesauri of archaeological concepts available in multiple
languages. However, unlike some other fields, archaeology terminology partly
consists of common words, like ‘pit’, ‘well’ and ‘post’. In addition, words can be
archaeological entities or not, depending on the context in which they are used
(past or present). For example, the word ‘road’ is not archaeologically relevant
in the snippet “pit next to the main road”, but is part of an archaeological entity
in the snippet “a Roman road from 34 CE”.

Archaeology has started experimenting with IR relatively recently. The fo-
cus of the prior work is on Information or Knowledge Extraction, mainly for
automatically generating document metadata. An early study by Amrani et al.



120 CHAPTER 7. USING BERT FOR NER

(2008) aimed specifically at extracting information for archaeology profession-
als in a knowledge-based approach. A more data-driven approach using ma-
chine learning to detect Time Period entities was investigated in the OpenBoek
project (Paijmans & Brandsen, 2010, 2009), but since then most studies have been
knowledge-driven (Jeffrey et al., 2009; Byrne & Klein, 2010; Vlachidis et al., 2013,
2017).

More recently, Talboom experimented with embeddings in a Bi-LSTM model
to recognise zooarchaeological entities (species and specific bones) (Talboom,
2017). A notable exception to the Information Extraction research we often
see in archaeology is the work by Gibbs & Colley (2012) who created a full-text
search engine on a small Australian corpus (roughly 1,000 documents) combined
with facets based on manually entered metadata.

So far, NLP in the archaeology domain has not benefitted from BERT-based
models. We believe it is a good candidate domain for BERT as the polysemy
mentioned in the introduction and the present/past distinction mentioned above
should be easier to detect with the context-dependent embeddings that BERT
produces.

7.2.4 Language- and Domain-specific BERT Models

The original BERT paper (Devlin et al., 2019) did not only present an English
BERT model, but also a multilingual model (multiBERT) trained on data in 104
languages. This model is often used when no single-language model is available
(Hakala & Pyysalo, 2019; Moon et al., 2019; Kim & Lee, 2020). Research by Wu
& Dredze (2020) shows that multiBERT achieved higher accuracy on NER and
other NLP tasks than monolingual models trained with comparable amounts of
data. Moon et al. (2019) also showed that fine-tuning multiBERT on a mixed
language NER dataset provided better results than fine-tuning on individual
languages.

However, recent work has shown that for some languages, multiBERT is out-
performed by language-specific BERT models (Nozza et al., 2020). For NER, this
has been shown for Finnish (Virtanen et al., 2019), Dutch (De Vries et al., 2019),
German (Chan et al., 2021) and Russian (Kuratov & Arkhipov, 2019), among
other languages.

For specific domains, it has been shown that further pre-training the English
BERT-base model on large amounts of text from that domain increases the quality
of the model on multiple tasks, although sometimes by a small margin. BioBERT
in the biomedical domain shows an increase in F1 for NER of only 0.62% point
(Lee et al., 2019). SciBERT, trained on a large amount of scientific texts from
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different domains, shows an increase in F1 for NER of 2 to 5% points, indicating
that domain pre-training is useful for NER (Beltagy et al., 2020). They also
show that training BERT from scratch with a domain-specific vocabulary does
not increase F1 substantially compared to fine-tuning an existing BERT model
with an existing generic vocabulary, gaining only 0.6% points.

When we look at research done on non-English in a specialised domain like
our study, there is little prior work. A study in the Russian cyber-security domain
shows that the Russian model (RuBERT) outperformed multiBERT, and further
pre-training RuBERT with domain-specific documents yielded the highest F1
(Tikhomirov et al., 2020). In the Spanish biomedical domain, Akhtyamova (2020)
shows a similar result, although their NER BERT model is trained for 30 epochs,
possibly leading to over fitting.

To our knowledge, we are the first to address domain-specific NER for Dutch,
and we are the first to automatically label a large archaeological document col-
lection with our domain-specific BERT model for the purpose of professional
search.

7.3 Data

The unlabelled data set we use for further pre-training the Dutch BERTje model
to ArcheoBERTje consists of over 60k documents and 658 Million tokens across
16.6 Million sentences, around 2GB of data. The documents mainly consist of
survey/excavation reports, but also include other documents such as research
plans, appendices, maps, and data descriptions.

The labelled training data we use for NER we created previously (Brandsen
et al., 2020), and consists of fifteen documents that have been annotated by ar-
chaeology students. While fifteen reports is a relatively low number, these are
longer than average documents, totalling 1,343 pages (average 89 pages per doc-
ument), containing roughly 440,000 tokens and almost 43,000 annotated entities
across six categories: Artefacts, Time Periods, Locations, Contexts, Materials
and Species, see Table 7.1. The Inter Annotator Agreement reported is 95% (av-
erage pairwise F1 score), so it is of relatively high quality (Brandsen et al., 2020).
The data is stored in the BIO annotation schema, and is available for download.4

The data set has been split into 5 folds of 3 documents each. All methods are
evaluated using this 5 fold split.

4Zenodo repository: http://doi.org/10.5281/zenodo.3544544

http://doi.org/10.5281/zenodo.3544544
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Entity Description Examples
Artefact An archaeological object

found in the ground.
Axe, pot, stake, arrow head,
coin

Time Period A defined (archaeological) pe-
riod in time.

Middle Ages, Neolithic, 500
BC, 4000 BP

Location A placename or (part of) an
address.

Amsterdam, Steenstraat 1,
Lutjebroek

Context An anthropogenic, definable
part of a stratigraphy. Some-
thing that can contain Arte-
facts

Rubbish pit, burial mound,
stake hole

Material The material an Artefact is
made of.

Bronze, wood, flint, glass

Species A species’ name (in Latin or
Dutch)

Cow, Corvus Corax, oak

Table 7.1: Descriptions and examples for each entity type. Examples are trans-
lated from Dutch. Adapted from (Brandsen et al., 2020, p. 4574).

7.3.1 Pre-processing

For cross-validation, we divided the fifteen annotated documents across five folds
so that each fold has a roughly equal number of tokens. The exact fold split and
training data can be found on in the Zenodo repository.

We found that in the data set, sentences often exceed the maximum sequence
length of 512 WordPiece tokens. This is not because sentences actually have more
than 512 words, but partly because tables and OCRed maps and images create
very long ‘sentences’ that are not cut up by the sentence detection algorithm.
The other cause is that words that are uncommon outside of archaeology are cut
up into many sub-tokens by the WordPiece tokeniser, as they do not exist in the
vocabulary (also see Section 7.6.2).

Since sentences longer than 512 tokens will be trimmed, some of the input
tokens will not get a prediction. To counteract this, we wrote a pre-processing
script that attempts to break at a punctuation mark (‘.’, ‘;’ or ‘,’) between the 60th
and 90th token and if there are none, it inserts a line break after the 90th token.
This shortened the sentences sufficiently to have almost no instances where the
sentence was longer than 512 WordPiece tokens. Only 136 tokens in the entire
data set fell outside the 512 limit and received no prediction. These tokens only
contained two entities, so the effect on the performance metrics will be negligible.



7.4. METHODS 123

7.4 Methods

7.4.1 Baselines

As the first baseline, we use the method we published previously (Brandsen et al.,
2020), where we trained a CRF model using common word shape features (e.g.
occurrence of uppercase letters, numbers), part-of-speech tags (e.g. noun, verb)
and an archaeological thesaurus in a five word window, and performed hyperpa-
rameter optimisation. We used the same features, leading to a micro F1 score of
0.62. This is relatively low when comparing the score to NER in other domains,
where F1 scores between 0.8 and 0.9 are common (Akhtyamova, 2020; Lee et al.,
2019).

The second baseline is the standard NER pipeline of spaCy 2.0, with default
parameters (architecture: TransitionBasedParser.v2, random seed, max_steps:
20,000, Adam.v1 optimiser with learn_rate of 0.001). This method uses pre-
existing Dutch word embeddings (nl_core_news_lg) with a deep convolutional
neural network with residual connections, and a transition-based approach as the
classifier (Honnibal & Montani, 2017).

7.4.2 Fine-tuning BERT for Dutch Archaeology and NER

Model training for evaluation To train ArcheoBERTje, we started with the
Dutch BERTje model (De Vries et al., 2019) and further pre-trained the model
with our complete unlabelled archaeological collection, split into a 90/10 train
and validation set.5 We used the same configuration as BERTje, with a batch size
of 4. We decided not to train a model from scratch as previous research showed
only a minimal increase in quality compared to further pre-training (Beltagy
et al., 2020) an existing model, and because our corpus is relatively small and
would probably not be enough to train an effective model.

To fine-tune the BERT models for the NER task, we used the labelled data
and 5-fold cross-validation as described in Section 7.3.6 For model comparison
and to investigate the stability of each model with different random seeds, we
trained all three models 10 times per fold, each time using a different seed (1, 2,
4, 8, 16, 32, 64, 128, 254, 512) and report averages over all runs and folds (50
runs in total per BERT model).

5We used HuggingFace’s (Wolf et al., 2020) language modelling script version 3.0.2.
6We used HuggingFace’s token classification script version 3.0.2.
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Model for full collection labelling To create the best possible model for
inference on the entire corpus, we performed a grid search across hyperparameters
as suggested by (Devlin et al., 2019). We optimised the hyperparameters with
fold 2 as test set, fold 1 as development set, and the other folds as training set, as
this combination had the median F1 score across all models and folds. The grid
search yielded the following optimal parameters for our data: 2 training epochs,
5 ∗ 10−5 learning rate and 0.1 weight decay. We then fine-tuned the inference
model on all labelled data with these hyperparameters. This way we maximise
the amount of training data available for training the model that we use to label
the full collection.

7.4.3 Ensemble Methods

As far as we are aware, we are the first to combine a multilingual model, a
language-specific model and a domain-specific model into one ensemble method.
We evaluate the following ensemble methods (one run over 5 folds per ensemble):

• Majority voting on the predictions of multiBERT, BERTje and ArcheoBERTje;
• CRF which uses the prediction labels of the three models as features;
• CRF which uses the prediction labels of ArcheoBERTje only;
• CRF which uses the prediction labels of the three models as features, com-
bined with the baseline features;

• CRF which uses the prediction labels of ArcheoBERTje only, combined
with the baseline features;

• CRF which uses the embeddings produced by ArcheoBERTje as features.

The above mentioned ‘baseline features’ are those adopted from prior work
(See Section 7.4.1) and include word shape, part-of-speech tags and thesaurus
features. We optimised the hyperparameters of each CRF ensemble with gradient
descent using the L-BFGS method, optimising c1 and c2 (the coefficients for L1
and L2 regularisation). The optimisation was run separately for each fold. All
CRF ensembles use a 5-token window, taking into account the features from the
two tokens before and after the current token.

The thesaurus we use in our CRF baseline and ensembles is the ABR (Arche-
ologisch Basisregister) (Brandt et al., 1992; Brandsen et al., 2020), a thesaurus
containing time periods (e.g. Bronze Age), artefacts (e.g. axe) and materials (e.g.
flint). A token is assigned the binary feature ‘occurs in period/artefact/material
list’ if it is part of an n-gram that occurs in the thesaurus. So the token ‘Bronze’
would only be assigned a positive value for the feature if the token ‘age’ follows
it.



7.4. METHODS 125

7.4.4 Entity-driven Document Search

Indexing Before we index the documents, we first run the inference NER model
on each page to detect the entities. We then store the entities and full text in
a JSON file for each document, together with the relevant metadata (authors,
DOI, coordinates, document type, etc) retrieved from the DANS repository via
an API.

To tackle the synonymy problem for time periods (see Section 7.1), we use a
custom script that translates all extracted Time Period entities to year ranges.
It uses regular expressions to convert dates (e.g. ‘100 BCE’, ‘start of the 9th
century’) and an extended and customised version of the PeriodO time period
gazetteer (Rabinowitz et al., 2016) to translate Time Periods (e.g. ‘Bronze Age’,
‘Medieval period’). These date ranges are added to the JSON and can be used to
filter results by allowing users to specify a date range in their query. These JSON
files are then sent to an instance of ElasticSearch running on a webserver, which
indexes them. At the moment, the retrieval unit is a page, so for any query the
terms/entities must occur together on a page. We are aware this is not optimal,
as search terms might be split across pages. As such, in future work we will index
per document section by using a section detection algorithm.

Query Interface and Analysis Our search engine has a faceted search in-
terface in which metadata filters are combined with entity fields and full-text
search (Tunkelang, 2009). We have included facets for document type and sub-
ject (metadata fields). In addition, as requested by our target group, we added
geographical search via a map functionality, which allows users to draw a rectan-
gle or polygon to search only in a certain region.

At query time, the user can specify if they are looking for a specific entity
type and/or specify a date range in which they are interested. The entities and
date range are used to filter the result set and can be combined with a standard
full text search. This allows for relatively complex queries such as “Artefact: urn
AND Context: cremation AND startdate < −2000 AND enddate > −800 AND
fulltext: upside down”. This example is a real request entered by an archaeologist,
who was looking for upside down urns in the Bronze Age in or around cremations.
Users do not need to use complex query syntax, but can instead define their query
by filling in the relevant fields in the graphical user interface, as shown in Figure
7.1.

Document Ranking Most archaeological information needs are recall-oriented
tasks: the users want a complete list and do not mind having irrelevant results
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Figure 7.1: Query interface showing query for “Artefact: urn AND Context: cre-
mation AND startdate < -2000 AND enddate > -800 AND fulltext:
upside down”. Interface and query translated to English for the read-
ers’ convenience.

in the (top of) the result set (Brandsen et al., 2019). As the focus of our work
is on entity-driven search, we opt for the default ElasticSearch ranking model,
consisting of Term Frequency - Inverse Document Frequency (TF-IDF) and the
field-length norm (the shorter the field, the higher the relevance) (ElasticSearch,
2018). The only field included for ranking is the page text content, other fields
are only used for filtering.

Note that we do not evaluate the ranking, because there is no test collection
available yet for Dutch archaeological document retrieval. Therefore, the scope
of this paper is limited to the NER and the evaluation thereof.

7.5 Results

7.5.1 Model Stability and Quality

Table 7.2 shows the micro average precision, recall, and F1 score for the three
BERT models, compared to the CRF and spaCy baselines. We find that the
multilingual BERT model does not outperform the baselines, but the more spe-
cialised BERTje and ArcheoBERTje models do, with ArcheoBERTje achieving
the highest F1 score.

We also show the average standard deviation over 10 runs with different seeds
for 5 folds. The standard deviation between runs is very low, between 0.015 and
0.004. The recent work by Tikhomirov et al. reports a standard deviation of
0.015 to 0.008, similar to our results (Tikhomirov et al., 2020). When comparing
the predicted labels of each of the models in a pairwise manner, the differences are
significant according to McNemar’s test (χ2 between 650 and 4276, p < 0.00001).
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Model Precision Recall F1 (Std.) Fails
CRF Baseline 0.785 0.526 0.630 n/a
spaCy Baseline 0.717 0.602 0.654 n/a
multiBERT 0.623 0.550 0.583 (0.015) 4
BERTje 0.718 0.682 0.699 (0.005) 0
ArcheoBERTje 0.743 0.729 0.735 (0.004) 0

Table 7.2: Micro average precision, recall and F1 score at token level (B and I
labels), over 10 runs with different seeds, for each of the 5 folds (50
runs total). Standard deviation of F1 over the 10 runs is added in
brackets for the BERT models. Standard deviation of precision and
recall lies between 0.006 and 0.020. The ‘Fails’ column indicates the
number of times the model failed to learn (F1 = 0).
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Figure 7.2: Distribution of F1 scores over ten runs with different seeds, for each
of the 5 folds (50 runs per model). The zero scores for multiBERT
are runs where the model failed to learn.
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Figure 7.2 shows the distribution of F1 scores over the 50 runs per model
in a boxplot. Here we again see that the standard deviation is low, and that
ArcheoBERTje consistently outperforms the other two models. The F1 scores
of 0 for multiBERT are outliers, and we assume these are caused by the ADAM
optimiser getting stuck in a local minimum where the loss does not decrease. In
this local minimum, predicting the majority class (O) seems to yield the highest
accuracy, but of course O labels are not taken into account when calculating an
F1 score for NER, so we get a score of zero. This can be solved by changing
the learning rate, but this would not change the overall view that BERTje and
ArcheoBERTje outperform multiBERT, so we did not investigate further on fixing
this for multiBERT.

The low standard deviations for ArcheoBERTje indicate that further pre-
training with domain-specific data does not only increase the model quality on
average, but also makes the model more stable, reducing the chance of getting a
sub-optimal model in a run.

Another way to compare the models is by looking at differences between
the errors made. In Table 7.3 we report the top 10 most frequent error com-
binations for the three models. Here we can see that quite often, BERTje and
ArcheoBERTje have similar predictions (whether correct or not), while multiB-
ERT predicted a different label. We see that multiBERT often misses Locations
(LOC), Artefacts (ART) and Species (SPE), and sometimes predicts entities that
are not there. The first error combination where ArcheoBERTje outperforms
BERTje is number 9, having correctly predicted B-ARTs while the other 2 mod-
els do not. In Sections 7.5.3 and 7.6.1 we further analyse the output and errors
made by the ArcheoBERTje model to provide insight into the model’s behaviour.

7.5.2 Ensembles

Table 7.4 shows the results of the ensemble methods.7 The highest F1 (0.757) is
obtained by he optimised production ArcheoBERTje model.

The highest precision is obtained by the CRF ensemble with the baseline
features combined with the predicted labels from all three models. The highest
recall is achieved by ArcheoBERTje solo.8 Using a CRF with BERT embeddings

7As the standard deviation between multiple runs is low, combining multiple runs of the
same model in an ensemble model is very unlikely to increase the F1 score, at the expense of a
vastly increased computing time and cost. Hence we do not apply this approach.

8For general domain Portuguese NER, Souza et al. show the same pattern: Portuguese
BERT has the highest recall, while combining BERT with CRF yields the highest precision and
F1 (Souza et al., 2019).
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Freq. True multiBERT BERTje ArcheoBERTje
1137 B-LOC O B-LOC B-LOC
1122 B-ART O B-ART B-ART
1015 O B-ART O O
575 B-SPE O B-SPE B-SPE
561 O B-LOC O O
466 B-PER O B-PER B-PER
429 O O B-ART B-ART
425 I-PER O I-PER I-PER
402 B-ART O O B-ART
373 O I-PER O O

Table 7.3: The 10 most frequent error combinations between the 3 models for
which at least one model has the correct prediction. Errors are marked
in red.

Ensemble Precision Recall F1
ArcheoBERTje (50 runs avg) 0.743 0.729 0.735
ArcheoBERTje (optimised production model) 0.784 0.731 0.757
Majority Voting 0.784 0.695 0.737
CRF with 3 BERT model prediction labels as
features

0.786 0.683 0.731

CRF with only production ArcheoBERTje pre-
dictions as features

0.786 0.717 0.750

CRF with 3 BERT model prediction labels +
baseline features

0.795 0.644 0.712

CRF with production ArcheoBERTje prediction
labels + baseline features

0.793 0.649 0.714

CRF with only production ArcheoBERTje em-
beddings as features

0.767 0.604 0.676

Table 7.4: Micro F1 score, precision and recall for the six ensemble methods,
for one run over five folds. ArcheoBERTje results averaged over 50
runs and the optimised production model are added for comparison.
The ArcheoBERTje predictions used as features for CRF are from the
production model. The baseline features are the word- and context-
based features used for CRF in prior work.



130 CHAPTER 7. USING BERT FOR NER

Entity Total Unique Top 5
Artefacts 2,520,492 53,675 pottery, charcoal, flint, bone, brick
Contexts 1,602,124 21,319 pit, ditch, posthole, well, house
Materials 457,031 6,146 wooden, flint, wood, metal, bronze
Locations 3,488,698 147,077 nederland, ’ , groningen, noord - bra-

bant, gelderland
Species 928,437 34,540 cow, hazel, sheep, goat, pig
Time Periods 4,698,323 98,445 roman period, iron age, 150 - 210, late

medieval, modern
Total 13,695,105 361,202

Table 7.5: Overview of entities detected in the entirecorpus, showing total and
unique counts, plus the top 5 for each entity (translated from Dutch
where relevant).

as features instead of the default BERT classifier (softmax), does not increase per-
formance. Given the recall-oriented nature of professional search tasks like ours,
we prioritise recall over precision for the NER labelling, and use ArcheoBERTje
for labelling the full collection.

7.5.3 Analysis of the Retrieval Collection

After labelling the full retrieval collection with ArcheoBERTje, we analyse the
extracted entities. Table 7.5 shows for each entity type the total frequency and
the amount of unique entities. We also show the top 5 entities extracted for each
type (translated from Dutch to English).

As we already mentioned in the introduction, archaeologists are interested
in the What, Where and When of excavations. And so we see that Artefacts,
Locations and Time Periods are the most common entities.

• For Artefacts, we see that pottery and flint are common, which we ex-
pected, but apparently also charcoal, which we did not expect, but could
be explained by the use of carbon dating, which often uses charcoal as a
sample.

• In the Locations category, we see that the second most common entity is
an apostrophe (’). While this is clearly not a location, luckily it will not
affect retrieval as it is not something users would search for, and Elastic-
Search does not include apostrophes in its index, so it would not match
any documents. We speculate that ArcheoBERTje mislabels apostrophes
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Figure 7.3: Graph showing for each year in each detected time period, how often
it occurs in our data set, labelled by ArcheoBERTje. For clarity,
years before 10,000 BCE are not included. Major time periods are
denoted with dashed lines.

as locations because of the occurrence of apostrophes in some Dutch place
names (e.g. ’s Hertogenbosch).

• For Time Periods, the only unexpected entry in the top 5 is “150 - 210”.
When we investigated this further, we found this is actually a soil grain
size used in coring reports, which have been incorrectly labelled as a time
period by ArcheoBERTje. 150-210 µmm is the grain size for medium course
sand, apparently the most common grain size in the Netherlands. When
we look further down the Time Period top 100, we also see other common
grain sizes: 210-300, 105-150 and 105-210. This is an issue when searching
for archaeology between 105 and 300 CE, as these irrelevant coring reports
will also be returned. We believe that these errors are made because these
numbers come from tables, and as such do not have any sentence context,
making them difficult to predict correctly. The most likely way to fix this
is by making a post-processing correction on the extracted entities. This is
something we will improve in the next version of our NER method.

The grain sizes are also clearly visible in Figure 7.3, in which we have plotted
the frequency of years found in entities in the corpus. The figure shows a number
of plateaus, indicating the use of time periods instead of single dates, i.e. the
last plateau is the Late Middle Ages ending in 1500 CE. These plateaus are
not completely flat as single dates and subperiods can cause spikes and smaller
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sub-plateaus.
The thin spike just after the year 0 can probably be attributed to misclassified

entities, i.e. the ‘10’ in ‘10-02-2006’ being labelled by ArcheoBERTje as a Time
Period and translated to 10 CE. Other than this we see a big plateau in the
middle (5300–2000 BCE), which represents the Neolithic. This indicates that a
large amount of data is available describing this period in the Stone Age.

7.6 Discussion

7.6.1 Error Analysis

Figure 7.4 shows the confusion matrix between labels predicted by ArcheoBERTje
and the true labels. The diagonal line and the first row and column are typical
for NER. The diagonal shows the true positives, the top row is where the model
predicted an entity where there isn’t one, and the first column is where the model
predicted O where there should be an entity. We also see the I / B label confusion
quite clearly, mainly for Time Periods and Locations, where the model predicts
an I instead of a B, or the other way around.

A more interesting error is the confusion between Materials and Artefacts.
This is caused by words like “flint”, which can be both an Artefact (“a piece
of flint”) or a Material (“a flint axe”). In Dutch, “pottery” has the same issue.
Even archaeologists struggle with distinguishing between the two (Brandsen et al.,
2020), so it is unsurprising that ArcheoBERTje finds this difficult as well. As there
is a lot of ambiguity in this entity category, perhaps merging the two categories
into one entity type would increase the overall performance. We have seen in
previous research that archaeologists will also confuse the two categories when
creating queries, so having them both in one search field might not even cause
any problems at search time.

Table 7.6 shows the evaluation per entity type. In general, the I labels are
more difficult to predict, and Materials are more difficult than the other entities.
In fact, Materials are currently not included in the search engine, as archaeologists
find it difficult to differentiate between Materials and Artefacts in their queries, so
this will not affect retrieval quality. When we remove Materials from the overall
micro F1 score calculation, we get an increase of only around 0.01, as there are
only a small number in our training data, around 3000.

When we look at some of the errors made by ArcheoBERTje in more depth,
we find some interesting patterns. For example, for missing B-ART labels, many
errors are adjectives that were assigned the O label, e.g. for “big axe” or “com-
plete pot”, the adjectives are labelled O, and axe / pot are labelled B-ART. This
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124 8 53 1 4 0 0 0 0 0 0 40 542

Figure 7.4: Confusion matrix between true labels and ArcheoBERTje predictions.
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Precision Recall F1
B-ART (Artefacts) 0.704 0.722 0.713
I-ART 0.582 0.486 0.530
B-CON (Contexts) 0.787 0.644 0.708
I-CON 0.358 0.143 0.204
B-MAT (Materials) 0.587 0.456 0.514
I-MAT 0.400 0.123 0.189
B-LOC (Locations) 0.831 0.799 0.815
I-LOC 0.685 0.538 0.603
B-SPE (Species) 0.785 0.769 0.777
I-SPE 0.759 0.702 0.729
B-PER (Time Periods) 0.866 0.837 0.851
I-PER 0.867 0.804 0.835
Macro Average 0.684 0.585 0.622
Micro Average 0.784 0.731 0.757

Table 7.6: ArcheoBERTje precision, recall and F1 score for each label.

error is not surprising as most archaeologists would probably find it difficult to
define these entities as well. In addition, users are more likely to only search for
the base artefact and not include an adjective, so they would search for “pot” not
“complete pot”. In a pilot study evaluating our archaeological search engine, we
analysed users’ search behaviour and found that of the 148 issued queries, none
included an adjective.9

For Time Periods, we again see that adjectives are missed from the start
of an entity, but also prepositions. Some examples include “from”, “between”
and “start of”. Also we find that connecting words between Time Periods are
missed, such as “and”, “or” and “Âś” (used to denote the standard deviation of a
carbon dating). While this does cause some noise, missing adjectives/prepositions
or connecting words are not a considerable issue if the main period has been
detected. I.e. for “start of 10th century”, if we miss “start of” this means the
year range is 900 to 1000 CE, instead of 900 to 925 CE. Again, as archaeologists
care more about recall than precision, this should not hinder their search.

The predicted Context10 entities also have some interesting anomalies. In
particular, we analysed the top 10 most misclassified tokens and we found that

9Extension and publication of this user study is part of our future work.
10For clarity, Contexts are defined as an anthropogenic structures or objects that can contain

Artefacts, i.e. rubbish pits, burials, houses, and so on.
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these are all words that can denote contemporary objects (and thus not a Context)
or actual (pre-)historical Contexts. An example is “put”, which can mean a trench
dug by archaeologists, or a water well found in an excavation, and both instances
of put can contain an artefact, leading to similar contexts around these words.
Other examples are “house”, “church”, “ditch”, “mine” and “settlement”. It
seems that even with the context-dependent embeddings BERT produces, these
ambiguous words are still a challenge. Perhaps future language models are more
refined and might be able to distinguish between these types of ambiguous terms.

A special case is the word “poel” (pond). We see that this token is always
labelled as O while it is in fact a Context. When we checked the sentences this
word occurs in, we see they are all very typical of Contexts, i.e. “we found
pottery in the pond”, which is similar to sentence structures of other Contexts
that are classified correctly. The only possible explanation we can find is that the
word poel only occurs in one of the documents, so when this document is in the
test set, the word does not occur at all in the train or dev set. This confirms the
importance of creating train-test splits on the document level, to avoid overfitting.
At the same time, this might be an issue that could be potentially alleviated by
increasing the size of the training data.

More generally speaking, we see that the BERTmodels make impossible B and
I predictions, i.e. an I label without a B label for the previous token. Unlike CRF,
which learns the probabilities of two labels occurring after one another, BERT
sees every token as an individual classification task without taking into account
the predicted label of the previous token. This might explain why the CRF model
with ArcheoBERTje labels as features (see Table 7.4) outperforms ArcheoBERTje
on precision, as it corrects some of these mistakes. Perhaps another approach to
correct this is a rule-based postprocessing step that checks the validity of I labels
following B labels, and corrects impossible combinations.

During the annotation process, we used a test document of a hundred sen-
tences (1,962 tokens) to calculate the Inter Annotator Agreement (Brandsen
et al., 2020). We added ArcheoBERTje predictions to this data, to see if Archeo-
BERTje predictions are more often wrong when humans also have disagreement,
indicating that the model mimics human confusion. We disregard tokens where
everyone (including ArcheoBERTje) predicts an O label, leaving 292 tokens. In
57.5% of these tokens, all annotators and ArcheoBERTje predict the same la-
bel. In 31.5% of tokens, there is some disagreement between annotators, but
ArcheoBERTje predicts the same label as the majority, and in 4.4% of tokens,
ArcheoBERTje predicts a label different from the majority. In 6.5% of tokens,
ArcheoBERTje predicts one label, while annotators all predict the same different
label. This is only a small sample, but the above suggests that BERT models
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are decently equipped to learn from the majority where there is inter-annotator
disagreement.

7.6.2 Tokenisation Issues

The vocabulary of a BERT model is determined by the collection used for pre-
training. The WordPiece tokeniser optimises the set of (sub-word) tokens to
maximise the coverage of the collection’s vocabulary. The same tokenisation is
applied to the input sentences at inference. An example is shown below, where
we compare tokenisation with the multiBERT and BERTje vocabularies. We
see that target entities (“Swifterbant”, “aardewerkscherven” and “Midden Ne-
olithicum”) are split up into three or more sub-tokens by the multiBERT and
BERTje tokenisers.

Original sentence:
“In put twee werden 3 Swifterbant aardewerkscherven aangetroffen uit het Midden
Neolithicum.” (“In trench two, 3 Swifterbant pottery shards from the Middle
Neolithic were found.”)

multiBERT tokenisation (23 tokens):
In put twee werden 3 Swift ##er ##bant aarde ##werks ##cher ##ven aan
##get ##roffen uit het Midden Neo ##lit ##hic ##um .

BERTje tokenisation (20 tokens), also used for ArcheoBERTje:
In put twee werden 3 Swift ##er ##ban ##t aardewerk ##scher ##ven
aangetroffen uit het Midden Neo ##lith ##icum .

As an additional analysis, we trained a SentencePiece tokeniser on our archae-
ological collection, with the same vocabulary size as the BERTje model (30k).

Archaeology tokenisation (14 tokens):
In put twee werden 3 Swifterbant aardewerk ##scherven aangetroffen uit het
Midden Neolithicum .

The examples show that a more specific pre-training corpus would lead to
more complete domain words. However, our collection is small for such from-
scratch pre-training and the experiments in the sciBERT paper have shown that
even a much larger pre-training collection only gives a +0.6% point F1 increase
compared to further pre-training the generic model (Beltagy et al., 2020).

Understandably, the problem of input sequences longer than 512 tokens was
occurring more often with the multilingual model, as the vocabulary (with fixed
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size) is not solely Dutch. This means that many less common Dutch words are not
in the vocabulary, and are cut into many sub-tokens by the WordPiece tokeniser.
This effect is aggravated by the Dutch language having a lot of compound words
and a much longer average word length (4.8 in English (Norvig, 2013) vs. 8 in
Dutch (Corstius, 1981)).

For our experiments comparing the different BERT models, it was sufficient to
split up long sentences in the training and test data as a data preprocessing step.
However, for the inference described in Section 7.5.3, we did not preprocess the
text, and as such, entities found in long sentences after 512 SentencePiece tokens
will have been assigned the incorrect “O” label, skewing the results. In future
research, we will implement an automatic sentence splitting module, similar to
the one implemented in FLAIR (Akbik et al., 2019).

7.7 Conclusion

In this paper, we have evaluated BERT models for Named Entity Recognition in
the Dutch archaeological domain, with the purpose of improving our archaeolog-
ical search engine. We implemented the search engine for a large archaeological
text collection, with a structured query interface that allows the specification of
entity types. The document collection is automatically annotated with archaeo-
logical named entities such as Location, Time Period, and Artefact.

In response to our research questions, first, we found that fine-tuning a BERT
model with domain-specific training data improves the model’s quality by a large
margin for the archaeological domain, larger than in related work addressing
domain-specific BERT models. We achieve an average F1 of 0.735 after hyper-
parameter optimisation, and very small standard deviations over runs with dif-
ferent random seeds.

Second, the domain-specific BERT model was superior in F1 and recall than
an ensemble combining multiple BERT models, and could not be further im-
proved by adding domain knowledge from a thesaurus in a CRF ensemble model.
This indicates that after pre-training and fine-tuning on a domain-specific collec-
tion, the BERT model already covers the relevant information from the domain
thesaurus. We did find a higher precision when we combined all three BERT
models in a CRF model and added domain knowledge. However, as almost all
information needs in archaeology are recall-oriented, and combining models is
computationally expensive and environmentally taxing Strubell et al. (2020), we
opt for the ArcheoBERTje model for labelling the full retrieval collection.

Third, our error analysis shows that there is confusion between the Artefact
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and Material entities, similar to what humans experienced in the annotation
process. For Artefacts and Time Periods, a common error is missing the adjective
or preposition in an entity. The detection of Time Periods is a bit noisy, with
other non-year numbers erroneously labelled as time ranges. Context entities
such as “house” and “ditch” are difficult for the models to distinguish from non-
entity words. Creating train-test splits on the document level is important to
avoid overfitting, as the consistently misclassified Context “poel” shows, which
only occurs in one document. An analysis of tokenisation by each of the models
indicates that the multiBERT model is hampered by the rough tokenisation,
splitting many relevant terms in sub-words.

In the near future, we will evaluate the entity-driven search engine with users,
both in a controlled experiment and in natural search contexts. We will also in-
vestigate entity-based query suggestion. Once entities are mapped to a thesaurus
or embedded in a semantic space, this allows for query improvement by suggesting
parent or sibling entities in the thesaurus or nearest-neighbours in the embedding
space.


