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Technical validation of digital endpoints



58	 trial@home for childeren – Novel non-invasive methodology for the pediatric clinical trial of the future

 

Chapter 3

Development and technical validation of a 
smartphone-based cry detection algorithm
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Introduction

Crying is a primary indicator of decreased infant well-being1. Besides the normal crying-
behaviour that is natural for every infant, a change in cry duration, intensity or pitch can 
be a symptom of illness2. Cry duration has been used as a biomarker for diagnostic and fol-
low-up purposes for a wide range of clinical conditions of infancy, such as gastroesopha-
geal reflux and cow milk allergy3,4. However, traditional methods to record cry behaviour, 
such as parent- or nurse- reported cry duration, are subjective and vulnerable to observer 
bias5. On the other hand, more objective manual annotating of audio recordings is labour 
intensive and may be subject to privacy-concerns by parents. An objective, automated and 
unobtrusive method to quantify crying behaviour in an at-home and clinical setting may 
improve the diagnostic process in excessively crying infants, allow for objective determi-
nation of treatment effects by physicians, and enable researchers to include objectively 
determined cry duration as digital biomarker in clinical trials. Therefore, a classifica-
tion algorithm is necessary for the automatic recognition of cries in audio files. Given the 
importance for researchers to study the relationship between an infant’s crying patterns 
and their health, automatic detection and quantification of infant cries from an audio sig-
nal is an essential step in remote baby monitoring applications6.

Automatic cry detection has been reported in the form of remote baby monitors for 
non-intrusive clinical assessments of infants in hospital settings6-9, and several research-
ers have shown that classification of cry- and non-cry- sounds is possible with machine-
learning algorithms10-12. However, most algorithms lack validation in a completely inde-
pendent dataset, which is crucial to predict performance in new- and real-world settings, 
while data regarding intra- and inter- device variability and other factors that may influ-
ence repeatability is lacking as well (10,13,14). Finally, algorithms are often developed 
for use on personal computers or dedicated devices. Usability of an algorithm would be 
increased if it were available on low-cost consumer-devices such as smartphones, which 
are readily available in most households and are easy to operate. Furthermore, smart-
phones have adequate processing power to analyse and transmit data continuously for 
monitoring in real-time. The aim of this study was to develop and validate a smartphone-
based cry-detection algorithm that is accurate, reliable, and robust to changes in ambient 
conditions. 

Abstract

Introduction The duration and frequency of crying of an infant can be indicative of 
its health. Manual tracking and labelling of crying is laborious, subjective, and sometimes 
inaccurate. The aim of this study was to develop and technically validate a smartphone-
based algorithm able to automatically detect crying.

Methods For the development of the algorithm a training dataset containing 897 
5-second clips of crying infants and 1263 clips of non-crying infants and common domes-
tic sounds was assembled from various online sources. Opensmile software was used to 
extract 1591 audio features per audio clip. A random forest classifying algorithm was fitted 
to identify crying from non-crying in each audio clip. For the validation of the algorithm, an 
independent dataset consisting of real-life recordings of 15 infants was used. A 29-minute 
audio clip was analyzed repeatedly and under differing circumstances to determine the 
intra- and inter- device repeatability and robustness of the algorithm. 

Results The algorithm obtained an accuracy of 94% in the training dataset and 99% 
in the validation dataset. The sensitivity in the validation dataset was 83%, with a speci-
ficity of 99% and a positive- and negative predictive value of 75% and 100%, respectively. 
Reliability of the algorithm appeared to be robust within- and across devices, and the per-
formance was robust to distance from the sound source and barriers between the sound 
source and the microphone. 

Conclusion The algorithm was accurate in detecting cry duration and was robust to 
various changes in ambient settings. 
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Methods), a dedicated speaker, and processed to opensmile features with the chdr 
more® application. Additionally, the raw file was processed using opensmile software 
on a personal computer. Considering the data was derived from the exact same audio file, 
the distribution of features should be identical during all conditions (Supplementary Text 
S3). However, this was not the case for all features, particularly those that were derived 
from the extremes of each feature (e.g. Percentile 1% percentile 99%). Therefore, distri-
bution plots were judged visually by the authors and each feature that demonstrated a 
clear difference in means or standard deviations across conditions was excluded from the 
final dataset. After selection, 980 features audio features remained in the dataset. Two 
discriminative classifiers (Random Forest and Logistic Regression17-20) and one generative 
classifier (Naïve Bayes) were considered for the classification of crying and non-crying 
sounds. For each classifier, a 5-fold cross-validated grid-search to select the best combi-
nation of features and hyper-parameters was performed to minimize the error estimates 
in the final model. The primary objective of the model was to identify crying and there-
fore, hyper-parameters that optimized for sensitivity were prioritized. This was followed 
by 5-fold cross-validation to robustly estimate the model performance and generalization 
of the model. The classifier with the highest Matthew’s Correlation Coefficient (mcc) was 
chosen as the final model and subjected to algorithm validation. 

Algorithm validation 

Data collection An independent validation dataset was obtained from two 
sources. First, audio recordings were made in an at-home setting of 4 babies aged 0-6 
months using the G5 or G6 smartphones. Second, audio recordings were made with the 
G5 or G6 smartphones of 11 babies aged 0-6 months admitted to the pediatric ward due to 
various reasons. Audio recordings were made after obtaining informed consent from both 
parents and were stripped of medical- and personal information prior to analysis. 

Performance analysis Each 5-second epoch in the recordings was annotated as 
crying- and non-crying by one annotator. In the case of doubt on how to classify an epoch, 
two additional annotators were included, and a choice was made via blinded majority vot-
ing. The developed algorithm was used to classify each epoch, and annotations and clas-
sifications were compared to calculate the accuracy, mcc, sensitivity, specificity, positive 
predictive value (ppv) and negative predictive value (npv) in the complete dataset and in 
the hospital- and home datasets separately. 

Materials and methods

Location and ethics

This was a prospective study conducted by the Centre for Human Drug Research (chdr) 
and Juliana Children’s Hospital. The study protocol  was submitted to the medical eth-
ics committee Zuidwest Holland (id 19-003, Leiden, the Netherlands), who judged the 
protocol did not fall under the purview of the Dutch Law for Research with Human Sub-
jects (wmo). The study was conducted in compliance with the General data protection 
regulation (gdpr). The algorithm was developed and reported in accordance with equa-
tor guidelines15. A schematic overview of the analysis steps is displayed in Supplemen-
tary Figure S1.  

Algorithm development

Training dataset A training dataset was obtained from various online sources 
(Supplementary Table S2) and consisted of both crying- and non-crying sounds. Non-
crying sounds consisted of common real-life sounds and included talking, breathing, 
footsteps, cats, sirens, dogs barking, cars honking, snoring, glass breaking, and ringing of 
church clocks. Furthermore, non-crying infant sounds (hiccoughs, wailing, yelling, bab-
bling, gurgles and squeaking), as well as adult crying sounds, were included in the training 
dataset. All sounds were played back through a loudspeaker and processed into non-over-
lapping 5-second epochs on a G5 (Motorola, Chicago, il, usa) or G6 (Motorola, Chicago, 
il, usa) smartphones and. A total of 1591 audio features (Supplementary Text S3) were 
extracted from each 5-second epoch with opensmile (version 2.3.0, audeering, Gilch-
ing, Germany)16 on the smartphone. Each 5-second epoch was manually annotated as 
crying or non-crying. A 5-second epoch was selected due to the fact that the median cry 
duration (without a silent break) in the training dataset was 4 seconds.

Algorithm training To prevent overfitting of the algorithm on non-robust audio 
features provide by the software, manual feature selection was performed to exclude fea-
tures that exhibited different distributions when analyzed under different conditions 
(Supplementary Text S3). Feature selection was performed using the audio file gener-
ated during the robustness tests. The file was played back through a laptop speaker dur-
ing differing ambient conditions with (see paragraph Robustness tests in Materials & 
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10 most important audio features for the algorithm were derived from Mel Frequency ceps-
tral coefficients, Mel frequency bands and Voicing Probability. A variable importance plot of 
the 10 most important features included in the final algorithm is displayed in Supplemen-
tary Figure S4. 

Table 1. Performance of the final algorithm 

Training dataset Validation dataset
Parameter Performance

(Mean (sd))*
Hospital
subjects
(n = 11)

Home
subjects
(n = 4)

All
subjects
(n= 15)

Accuracy 93.8% (+/-1.1%) 98.5% 99.7% 98.7%
mcc 87.3% (+/- 2.2%) 75.5% 98.6% 78.4%
Sensitivity 93.8% (+/- 1.1%) 80.6% 97.5% 83.2%
Specificity 94.8% (+/- 1.1%) 99.1% 100% 99.2%
ppv - 72.2% 100% 75.2%
npv - 99.4% 99.6% 99.5%

Abbreviations: mcc: Matthew’s Correlation Coefficient, ppv: positive predictive value, npv: negative predictive value. * 
Mean (sd) performance of 5-fold cross validation 

Algorithm validation 

The 15 infants (mean age: 2 months (sd 1.9)) created a total of 150 minutes (1,805 5-sec-
ond epochs) of crying and 4372 minutes (52,464 5-second epochs) of non-crying. The 
median cry duration of the infants recorded at home was shorter (1.4 minutes, iqr 0.58 
- 2.6) compared to children recorded during their admission to the hospital (5.8 minutes, 
iqr 2.2-16.7). Performance of the algorithm in the independent validation dataset is dis-
played in Table 1. Overall accuracy was 98.7%, but sensitivity was lower (83.2%) compared 
to the performance in the training dataset. Due to the relatively low crying incidence 
compared to non-crying incidence, the specificity of 99.2% led to a ppv of 75.2%. Sup-
plementary Figure S5 displays individual timelines for each infant, displaying the epochs 
where crying- and misclassifications were present. After post-processing of cry epochs 
into cry sequences, the median number of cry sequences per infant in the validation data-
set was 3 (iqr 1-3), for a total of 39 cry sequences. The median difference between true 
and predicted cry sequences was 1 (iqr 0.25-1). Furthermore, the median difference 
between true and predicted cry sequences duration was 6 minutes (iqr 2-15 minutes, 
Table 2). Individual timelines and concordance between true and predicted cry sequences 
are displayed in Figure 1.

Postprocessing of cry epochs into novel biomarkers Some infants 
are reported to cry often, but with short intervals in between. Only counting the num-
ber of epochs that contain crying for such infants could result in an underestimation of 
the burden for infants and parents. As such, the duration of ‘cry sequences’ (periods dur-
ing which an infant is crying either continuously or occasionally) is an important additional 
feature. To calculate this, postprocessing of detected cries was performed to calculate the 
number and duration of cry sequences as separate candidate biomarkers. A cry sequence 
was defined by the authors with a start criterion (at least six 5-second epochs containing 
crying within one minute) and a stop criterion (no crying detected for five minutes). Indi-
vidual timelines were constructed for true- and predicted cry sequences to determine the 
reliability of the algorithm for this novel biomarker. 

Robustness tests A series of robustness tests was conducted to ensure that the 
developed algorithm was robust to varying conditions when used with a smartphone with 
the final application (chdr more®) installed, which is how the algorithm would be 
deployed in practice. A 29-minute-long clip containing 16.7 minutes of crying was played 
from a speaker with a smartphone with the chdr more® application in proximity. This 
application, developed in-house, has incorporated opensmile technology and is able 
to extract and transmit audio features. The following conditions were tested during this 
phase of the study: intra-device variability (n=10), inter-device variability (n=10), distance 
from audio source (0.5, 1, 2 and 4 meter) and by placing the phone behind several barriers 
and in the presence of background tv sounds. For intra-device variability, a single phone 
was used 10 times to determine repeatability within a single device. For inter-device vari-
ability, 10 different devices of the same type (G6) were used to determine the repeatability 
across devices. Because it was not technically possible to pair the application output with 
the raw audio features of the original recording, cumulative cry count plots were construed 
for each condition and compared with cumulative cries in the original recording. 

Results
Algorithm training 

The training set consisted of 897 5-second audio clips, as well as 1263 non-crying 5-second 
clips. Of the three methods applied to develop the algorithm, the Random Forest method 
achieved the highest accuracy and mcc with 93.8% and 87.3%, respectively (Table 1). The 
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Figure 1. True and predicted cry sequence per infant.  

Discussion

This paper describes the development and validation of a smartphone-based cry detec-
tion algorithm in infants. A random forest classifier had the highest accuracy in the train-
ing dataset and achieved a 98.7% accuracy in an independent validation set. Although the 
sensitivity of 83.2% was slightly lower compared to the estimated accuracy in the training 
dataset, the individual classification timelines show that this should not lead to unreliable 
estimation of cry duration. The fact that most misclassifications occurred directly before 

Table 2. Individual algorithm performance

Characteristics Cry epochs Cry sessions
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Hospital dataset
1 764 145 120 80% 99.5% 66.2% 99.7% 3 5 37 59
2 610 65 43 90.7% 99.6% 60% 99.9% 3 3 19 21
3 245 12 11 90.9% 99.9% 83.3% 99.9% 1 1 5 6
4 648 52 20 80% 99.5% 30.7% 99.5% 3 3 17 25
5 540 17 12 91.7% 99.9% 64.7% 99.9% 1 1 7 8
6 317 721 711 82.3% 95.6% 81.1% 95.9% 7 7 117 122
7 16.5 26 24 87.5% 97.1% 80.7% 98.2% 1 1 6 8
8 441 200 158 66.5% 98.2% 52.5% 98.9% 7 8 55 72
9 77.5 70 80 75% 98.8% 85.7% 97.7% 3 3 18.5 26
10 356 99 79 62% 98.8% 49.5% 99.3% 3 3 22 36
11 452 320 290 87.9% 98.7% 79.7% 99.3% 6 7 64 80
Home dataset
12 36 38 40 95% 100% 100% 99.5% 1 1 2.8 2.4
13 13 7 7 100% 100% 100% 100% 0 0 0 0
14 2 25 25 100% 100% 100% 100% 0 0 0 0
15 1 8 8 100% 100% 100% 100% 0 0 0 0

Algorithm robustness

To ensure the algorithm and smartphone application performs sufficiently for the 
intended use, multiple tests were conducted to test robustness with the resulting smart-
phone application. Figure 2A shows the estimated repeatability of the algorithm by 
repeatedly classifying the same recording with the same device. Figure 2B shows the 
cumulative cry count of 8 different devices of the same type, which gives an indication of 
the repeatability. The distance from the audio source, up to 4 meters, did not appear to 
impact the accuracy of the algorithm (Figure 2C) Finally, blocking the audio signal by plac-
ing the phone behind several physical barriers in front of the audio source demonstrated 
comparable accuracy across conditions (Figure 2D). Creating additional background noise 
generated by a television appeared to slightly decrease the specificity of the algorithm, as 
the final cry count according to the algorithm was higher compared to the true number of 
cries in the audio file. 
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et al. also used a neural network approach and achieved a reported precision of 87% and 
80%, respectively11,12. However, algorithms often lack validation in an independent data-
set as, and real-life performance in new and challenging environments will most likely 
be lower. Our algorithm has several advantages compared to other approaches that have 
been described in the past. Most importantly, the algorithm was validated on indepen-
dent and real-life data obtained from two settings where the application could be used in 
the future. Validation invariably leads to a drop in accuracy compared to the performance 
of the training data but gives reassurance regarding the generalizability of the algorithm 
in new settings that were not included during training. Furthermore, the algorithm can be 
deployed on all Android smartphones and no additional equipment is needed for acquiring 
the acoustic features. Although it is possible to implement complex deep learning algo-
rithms on portable devices, we demonstrated that a shallow learning algorithm such as a 
random forest achieves good classifying capability. This means that audio processing and 
classification can be performed on the device in real-time with the more® application, 
and thus, precludes direct transmission of audio to a central location with inherent pres-
ervation of privacy. Finally, the manual feature selection that was performed should lead 
to further generalizability of the algorithm in new condition, since the observed variability 
in the excluded audio features would most likely result in a drop in accuracy in challenging 
acoustic environments. While automated feature selection methods could have been used, 
automated feature selection requires a static definition of similarity between distributions 
within features. This is not a straightforward task. Given the nature of the features, we 
chose to manually exclude features that presented a clearly different distribution from the 
rest of the features. 

All in all, the performance of the algorithm in combination with the mentioned advan-
tages indicate reliability of the algorithm, and may be preferable over manual track-
ing of cry duration through a diary in several situations. Although the literature regarding 
sources of inaccuracy in cry monitoring via a diary is sparse, several factors make man-
ual tracking through a diary a subjective assessment5. Observer bias can cause parents 
to overestimate the true duration of crying, and placebo-effects may cause parents to 
underestimate true cry duration after an intervention25. Additionally, parents may under-
report nocturnal cry duration when they sleep through short cry sequences during the 
night. Current tracking of cry duration in clinical settings is performed by nurses, who have 
other clinical duties as well, possibly making the quality of the cry diary dependent on the 
number of patients under their care. While the consequences of all of these factors are not 

or after crying indicates that such misclassifications may be due to cry-like fussing, which 
are difficult to classify for both the algorithm and the human annotators. Post-process-
ing of the detected cry epochs into cry sequences decreased the mismatch and resulted in 
excellent performance for each individual infant. 

The observed accuracy of the algorithm is comparable to others described in the liter-
ature, although there is large variation in reported accuracy. Traditional machine learn-
ing classifiers and neural network-based classifiers have been used for infant cry analy-
sis and classification21. We found that several studies that explored the use of minimum, 
maximum, mean, standard deviation and the variance of mfccs and other audio features 
to differentiate normal, hypo-acoustic and asphyxia types using the Chillanto database6.  
Support Vector Machines (svm) are among the most popular infant classification algo-
rithms and routinely outperform neural network classifiers22,23. Furthermore, Osmani et 
al have illustrated that boosted and bagging trees outperform svm cry classification24. 
Additionally, sensitivities between 35-90% with specificities between 96-98% have 
been reported using a convoluted neural network approach10,14. Ferreti et al. and Severini 

Figure 2. Cumulative cry count during robustness tests. (A) Intra‑device repeatability. Each individual 
line is a different run with the same phone. (B) Inter‑device repeatability. Each individual line is a run with 
a different phone of the same type. ( C) Influence of device distance from the audio source. (D) Influence of 
physical barrier or ambient background noise. In each of the panels, the light-blue line is the reference from 
the audio file. 
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clinical and at-home settings. However, more research is needed before implementing 
the cry duration and the amount of cry sequences as digital endpoint in trials. Clinical 
validation of cry duration and cry sequence count as digital biomarker in a patient popula-
tion is necessary, and should focus on establishing new normative values for objectively 
determined cry- and sequence duration and -count, the difference between patients and 
healthy controls, correlation with disease-severity and sensitivity to change after an 
intervention28.

Conclusion

The proposed smartphone-based algorithm is accurate, robust to various conditions and 
has the potential to improve clinical follow-up of cry behaviour and clinical trials investi-
gating interventions to enhance infant well-being. 

Sup. Figure S1
Sup. Table S2 
Sup. Text S3 
Sup. Figure S4
Sup. Figure S5 

easy to quantify, the combination of these sources of inaccuracy leads to the conclusion 
that objective and automated cry-monitoring could significantly improve the reliability of 
objective follow-up of cry duration in both clinical trials and -care. Still, parental report of 
cry duration and cry behavior will remain an important component of follow-up. 

A technical limitation of any Android application, including the more® application, is 
that continuous recording can be interrupted by other smartphone applications apps that 
also access the microphone, like phone calls. However, using a dedicated smartphone for 
the purpose of cry monitoring will diminish this limitation. Only Motorola G5/G6 phones 
were used during each phase of algorithm development and validation. Although per-
formance on other smartphones is uncertain, the approach used in this paper could eas-
ily be replicated to adapt the algorithm to other devices and obtain a similar accuracy. 
In the future, incorporation of covariates such as age, sex or location in the model may 
improve classifying capability even further, and further stratification could allow to dis-
criminate different types of crying. In this manner cries from asphyxiated infants26, pre-
term infants27, or infants with respiratory distress syndrome could be differentiated from 
healthy infants13. One potential technical limitation of our approach is the use of loud-
speakers to create the training dataset. An ideal training dataset would include smart-
phone-based audio recordings of multiple subjects under different conditions over a long 
period of time. We found the most appropriate alternative was to re-record open-sourced 
cry corpus using smartphone. While the playback could have potentially hindered the 
quality of the openSmile features and thus the classification, it resulted in excellent classi-
fication performance of the home and hospital recordings. Hence the impact of the quality 
of the loudspeaker-based dataset was deemed acceptable. A follow-up study that uses an 
original smartphone-based cry corpus could potentially improve the accuracy of the clas-
sification algorithm. The start- and stop criteria used to determine the beginning and end 
of a cry sequence are a new proposal that was not previously described in the literature. 
However, the criteria appear reasonable and individual timeline figures demonstrated that 
this postprocessing step was able to generate a solid high-level overview of individual cry 
behaviour. Still, alternative criteria could obtain similar accuracy and may be explored in 
the future. 

The developed algorithm already provides an excellent overview of the cry behaviour 
of infants and preliminary tests of the robustness of the resulting algorithm show 
inter- and intradevice repeatability and reliability up to 4 meters from the audio source. 
The algorithm can replace current methods to track cry behaviour, such as cry diaries, in 

Schematic overview of analysis steps
Audio sources
Audio features and feature selection
Variable importance
Figure per baby showing true and predicted crying per epoch
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Smart Data (SmartData), 1233-1240. doi:10.1109/iThings/
GreenCom/cpscom/SmartData.2019.00206

27	 Orlandi S, Reyes Garcia ca, Bandini A, Donzelli G, Manfredi 
C. Application of Pattern Recognition Techniques to the 
Classification of Full-Term and Preterm Infant Cry. J Voice 
(2016) 30:656-663. doi:10.1016/j.jvoice.2015.08.007

28	 Kruizinga md, Stuurman fe, Exadaktylos V, Doll rj, 
Stephenson dt, Groeneveld gj, Driessen gja, Cohen af. 
Development of Novel, Value-Based, Digital Endpoints 
for Clinical Trials: A Structured Approach Toward Fit-for-
Purpose Validation. Pharmacol Rev (2020) 72 (4):899-909. 
doi:10.1124/pharmrev.120.000028
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