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Abstract. Transfer learning can speed up training in machine learning,
and is regularly used in classification tasks. It reuses prior knowledge
from other tasks to pre-train networks for new tasks. In reinforcement
learning, learning actions for a behavior policy that can be applied to new
environments is still a challenge, especially for tasks that involve much
planning. Sokoban is a challenging puzzle game. It has been used widely
as a benchmark in planning-based reinforcement learning. In this paper,
we show how prior knowledge improves learning in Sokoban tasks. We
find that reusing feature representations learned previously can acceler-
ate learning new, more complex, instances. In effect, we show how cur-
riculum learning, from simple to complex tasks, works in Sokoban. Fur-
thermore, feature representations learned in simpler instances are more
general, and thus lead to positive transfers towards more complex tasks,
but not vice versa. We have also studied which part of the knowledge is
most important for transfer to succeed, and identify which layers should
be used for pre-training (Codes we used for this work can be found at
https://github.com/yangzhao-666/TLCLS).
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1 Introduction

Humans are good at reusing prior knowledge when facing new problems. As
a consequence, we learn new tasks quickly, a skill of great interest in machine
learning. In the human brain, information received by our sensors is first trans-
formed into different forms, and different types of transformed information are
stored in different areas of our brain. When another problem arrives later on, we
retrieve useful information and adjust it to better suit solving this new problem.
The knowledge stored in artificial neural networks is also re-usable and trans-
ferable [31]. In supervised learning, pre-trained networks are commonly applied
in computer vision [17,25] and natural language processing [3,9]. Feature repre-
sentations learned from images or words overlap to some extent, which makes
such feature representations reusable and transferable. In reinforcement learning
(RL), transfer learning is relatively new, although with the spread of deep neu-
ral networks, reusing pre-trained models becomes possible in RL as well [1,7].
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Fig. 1. An example instance of Sokoban.

Transfer learning works well in RL for recognition tasks, but tasks that rely
heavily on planning are harder.

In this paper, we study transfer learning of behavior in Sokoban, a popular
RL game in which planning is important [10,12]. It has already been proved
that Sokoban is PSPACE-complete [8] and NP-hard problem [10]. An example
instance from [22] is shown in Fig. 1. The goal of Sokoban is to control a ware-
house worker that pushes all boxes onto targets. Sokoban is a challenging game
where one wrong move can lead to a dead end (after a box has been pushed, it can
not be pulled, and we cannot undo an inadvertent push). This non-reversibility
is known to make games harder for AI agents [5]. Learning to solve Sokoban
tasks is a challenge, especially in the multi-box scenario. For humans, if we have
learned the basics of Sokoban (what is a box, what can an agent do), and if we
are faced with a new, more complex instance, then we immediately focus on the
new challenges in the instance, rather than re-learning the basics again. This
building on prior knowledge saves time in the problem-solving process.

We investigate if we can achieve this kind of pretraining/fine-tuning learning
in an RL agent. Our main hypothesis is that feature representations learned in
Sokoban instances can be reused to improve solving other instances, and that
features learned in simpler instances are more general and better transferable.
We test this hypothesis by means of different experiments, in which parts of the
neural network that has previously been trained on one type of instances (e.g.
one box one target) are taken over (unchanged) to a new type of instances (e.g.
two boxes two targets), whereas the remaining part of the network is trained
on these new instances from scratch. The overall idea is that we see successful
transfer if the preserved knowledge (in terms of network layers) leads to a faster
learning process on the new problem type.

The main contributions of this paper are as follows: First, we show that fea-
ture representations learned in simple Sokoban instances can accelerate learn-
ing in more complex instances, indicating that curriculum learning can be used
in Sokoban. Second, feature representations of simpler instances are more gen-
eral and reusable than features learned in more complex instances. Third, our
results confirm that in RL lower layers learn more general features. Interestingly,
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in some cases the best performance is achieved when more specific features are
transfered, when source task and target task are similar enough to support these
more specific features. Fourth, we found negative transfer from a simple super-
vised learning task, which tells us that choice and design of the source tasks are
crucial. Fifth, we show that transferring top-fully-connected layers will not only
be unhelpful but also harmful to the learning. We also used popular visualiza-
tion techniques to explore potential reasons for successful transfers, which we
explain in detail. Our code and test environments will be made available after
blind review.

The paper is structured as follows: we first briefly review related work on
transfer learning and Sokoban in the next section; then the environment and
methods we are using are described in Sect. 3; Sect. 4 shows the experimental
settings and results; in the last section, we conclude our work and discuss some
potential future directions.

2 Related Work

De la Cruz et al. [6] studied the reuse of feature representations between two
similar games: Breakout and Pong, using Deep Q Network (DQN). They used
a 3-layer convolutional network. Weights learned in one game were transferred
to improve learning the other game; results showed positive transfer of features
between the different games. Pong and Breakout do not require planning; in our
experiments, in Sokoban, we study how a curriculum of simpler instances can
benefit the learning of complex instances. Spector et al. [26] used self-transfer in
a DQN grid-world task to identify which parts should be transferred and which
parts should be fixed, showing significant benefit of knowledge transfer.

Sokoban is a planning task that has been used as a benchmark for model-
based reinforcement learning [16,22]. It has also been used in model-free
RL [14,15], achieving performance competitive with model-based methods. The
efficiency of AlphaZero-style curriculum learning has been shown by solving hard
single Sokoban instances [11,12]. Previous works were aimed at solving single
Sokoban instances; our paper focuses on the transferability of learned knowl-
edge among different instances.

This transferability of learned feature representations was first studied in
image classification problems [31]. It was shown that bottom layers in Con-
volutional Neural Networks (CNNs) extract more general features while ones
extracted from back layers are more specific. In this paper, we verify this idea
under RL settings.

Reinforcement learning [21,27] aims to reinforce behaviors of the learning
agent by rewarding signals obtained from interactions with the environment.
It has reached super-human performance in games such as Go [24], StarCraft
[20,29], as well as Atari games [2] and robotic tasks. In this paper we follow the
conventional MDP notation for RL [27].

Transfer learning reuses prior knowledge to improve the learning efficiency or
performance in new tasks [28,30]. In reinforcement learning, higher-level knowl-
edge such as macro actions, skills and lower-level knowledge such as reward



190 Z. Yang et al.

functions, policies could be transferred. Transferring learned knowledge could
take different approaches, such as reward shaping [4], learning from demonstra-
tion [19] and policy reuse [13].

3 Experimental Setup

The environment used in the paper is the Gym environment for Sokoban [23];
for the agent algorithms we follow Weber et al. [22]. Examples are shown in
Fig. 2. The game is solved by controlling the agent (green sprite) to push all
boxes (yellow squares) onto corresponding targets (red squares). There’s no hint
about which boxes should on which targets, and boxes can only be pushed;
some actions are irreversible, and can leave the game in an unsolvable state. The
difficulty of the game can be increased easily by putting more boxes as well as
targets into generated rooms. The agent can go up, down, left, and right. The
agent gets a final reward of 10 by pushing all boxes on targets. Pushing a box
on a target will result a reward of 1 and a penalty of −1 for pushing a box off a
target. We also give a small penalty of 0.1 for each step the agent takes.

We perform three types of experiments: (1) related tasks (source and tar-
get tasks are both RL tasks, while source tasks are to solve n-boxes Sokoban
instances and target tasks are to solve m-boxes Sokoban instances, where
n �= m), (2) different tasks (source tasks are supervised learning (SL) tasks
and target tasks are reinforcement learning (RL) tasks), and (3) different tex-
ture appearance (source and target tasks are both RL tasks, while source tasks
are to solve original Sokoban instances and target tasks are to solve Sokoban
instances with different texture appearance). The agent was first pre-trained
on source tasks and then fine-tuned on target tasks. RL tasks are to solve 100
randomly generated n-boxes Sokoban instances. SL tasks are to recognize the
location of the agent in Sokoban instances.

Fig. 2. Examples of Sokoban instances, increasing in difficulty from 1 box and 1 target
to 3 boxes and 3 targets (Color figure online)

The overall statistics of the maps are shown in Fig. 3. As the number of
objectives increases, the number of steps for the optimal solution also increases,
and so does the difficulty of solving the game.
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Fig. 3. Distribution of optimal solutions in different Sokoban instances.

3.1 Neural Network Architecture

The neural network we employ is taken from the DeepMind baseline [22] directly
without hyper-parameter tuning. The model consists of 3 convolutional (Conv)
layers with kernel size 8 × 8, 4 × 4, 3 × 3, strides of 4, 2, 1, and number of
output channels 32, 64, 64. This is followed by a fully connected (FC) hidden
layer with 512 units. The outputs of this FC layer will be fed into two heads: one
for outputting the policy logits and one for outputting the state value. This is
one of the most commonly-used architectures in RL, we selected it also in order
to show what can be achieved with popular architecture. Details of architecture
and hyper parameters we employ are found in Table 1.

Table 1. Hyper-parameters of the neural network and training.

Learning rate 7 · 10−4

Discount factor 0.99

Entropy coefficient 0.1

Value loss coefficient 0.5

Eps in RMSprop 10−5

Alpha in RMSprop 0.99

Rollout storage size 5

No. of environments for collecting trajectories 30
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Fig. 4. Three different transfer approaches, red layers are fixed while green layers are
trainable. They correspond k = 1, 2, 3 from left to right respectively. (Color figure
online)

3.2 Transfer Approach

The main idea of our transfer approach is to reuse feature representations
from source tasks learned by the Conv layers in new unseen target tasks. As
detailed in the last sub-section, our model consists of 3 Conv layers and 2 FC
layers. The feature representations were transferred to new tasks by copying
the weights of the first k Conv layers trained in source tasks (where there are
ns boxes/targets) to initialize the new learning model in target tasks (where
there are nt boxes/targets). Then we froze these weights (they were no longer
trainable) and retrained the remaining part of the model. In our experiments,
k ∈ {1, 2, 3}, ns ∈ {1, 2, 3}, nt ∈ {1, 2, 3}. Please refer to Fig. 4 for an explanation
of this approach. Different squares represent different layers of our neural net-
work. The first 3 layers are Conv layers and the last two are FC layers. Reds are
weights taken from pre-trained model and fixed, greens are weights reinitialized
and trainable.

Solved ratios were used for evaluating agents, and evaluation executes every
1,000 environment steps. 20 randomly selected test instances were performed by
the current learning agent. We say the transfer is positive when the performance
with the transfer is better than without (training from scratch), and negative
when the performance with the transfer is worse than without.

4 Experiments

We designed experiments with different source, target tasks and k, in order
to verify the hypotheses we proposed. We experimented with Sokoban instances
with 1, 2, and 3 boxes. All experiments were run for 1 million environment steps.
We use abbreviations for each experiment. For instance, s1t1k1 means source
tasks are 1-box instances, target tasks are 1-box instances and we transfer and
fix the 1 (first) layer. Exceptions are sPt1k1 and s1t1fc game2. sPt1k1 stands
for the source task is a supervised learning prediction task, and target task is the
RL task over 1-box instances while we only keep the first layer. s1t1fc game2
is that the source and target tasks are both RL tasks over 1-box instances,
but we transfer fully connected layers to instances with different appearance.
The neural networks were trained using Advantage Actor Critic (A2C), a single
threaded variant of A3C [18]. All experiments were performed 5 times with
different random seeds, and figures were drawn using averaged results with 0.95
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confidence interval. Heavy fluctuations were caused by irreversible actions, one
irreversible action during the game could make the whole game unsolvable.

4.1 Transfer Among Related Tasks

Related tasks are tasks where the only difference between source and task is the
difficulties of instances, i.e. the number of boxes and targets. (Recall that both
source and task are trained on 100 different map-layouts, in all experiments.)

Figure 5 and Fig. 6 show results for training on 1-box, 2-boxes, 3-boxes
instances with reusing features learned in different tasks, and we fix k = 3.
All results showed that transferring feature representations learned in single-
box instances is positive. Performance of agents (s1t1k3, s1t2k3, s1t3k3) who
are using features learned from single-box instances always outperform other
agents, including agents training from scratch and using features learned from
other instances. The transfer, however, is not ‘bi-directional’, feature represen-
tations learned in multiple-box instances could not be successfully transferred
to the learning in single-box instances. Their performance (s2t1k3, s3t1k3) con-
verged to a relatively low solved ratio, which indicates that transferred features
are not suitable for single-box instances. Just as humans learn more general
knowledge in simpler cases, our agents also showed that the knowledge learned
from single-box instances is more general and transferable than ones learned in
multiple-box instances.

To further enhance performances of transferring features learned in single-
box instances, we tried different k. We expected that the performance will be the
best when k = 1 since the first layer learn the most general features. However,
the results in Fig. 7 instead show that not k = 1 but k = 2 (s1t2k2, s1t3k2)

Fig. 5. Performance of transferring feature representations learned in 1-box, 2-boxes,
3-boxes instances to learning in 1-box with k = 3. ns = 1, 2, 3, nt = 1, k = 3. Pre-
training on 1-box instances is much better than pre-training on 2 or 3 box instances
when training new 1-box instances.
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Fig. 6. Performance of transferring feature representations learned in 1-box, 2-boxes, 3-
boxes instances to learning in 2-boxes (left) and 3-boxes (right) with k = 3. ns = 1, 2, 3,
nt = 2, 3, k = 3.

perform the best. Similar to [6], features learned in the first 2 layers are still
general enough for transfer; in addition, the difference between source tasks and
target tasks is not as large as expected, and features learned between different
instances are more overlapping than expected.

It is also interesting to see the influence of how many layers are fixed on the
success of the transfer. In particular, we want to know whether a smaller k could
change the negative transfer from multiple-box instances to single-box instances
into positive. (We believe features from multiple and single-box instances are
overlapping to some extent.) Results are shown in Fig. 8. We see that indeed the
first layer (s2t1k1, s3t1k1) did learn enough general features from multiple-boxes
instances to solve the single-box instances. Although agents with features only
learned by the first layer could converge to decent performance in the end, the
transfer is still negative. An interesting point is that k = 3 (s2t1k3) performs
better than k = 2 (s2t1k2) when source tasks are 2-boxes instances. Note that
k = 2 (s3t1k2) performs better than k = 3 (s3t1k3) when source tasks are 2-boxes
instances. There are more overlapping features between the 2-boxes instances
and single instances.

4.2 Transfer Among Different Tasks (SL/RL)

Feature representations learned from previous tasks can either be helpful or
harmful. In the previous subsection we saw some positive transfer to related
Sokoban tasks, in this subsection we study if transfer between supervised and
reinforcement learning tasks works. We follow prior work, Anderson et al. [1]
showed that features can be transfered from hand-crafted supervised learning
(SL) tasks to reinforcement learning (RL). Their model was first trained to
predict state dynamics of the environment, and then pre-trained hidden layers
were helpful to accelerate solving RL tasks.

For transfer to different (randomly chosen) instances in Sokoban, we also
formed a supervised task, which was to train a prediction model to recognize
the location of the agent, shown in Fig. 9a. When humans are solving Sokoban,
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Fig. 7. Performance of transferring feature representations learned in 1-box instances
to learning in 2-boxes (left) and 3-boxes (right) with different k. ns = 1, nt = 2, 3,
k = 1, 2, 3.

Fig. 8. Performance of transferring feature representations learned in 2-boxes (left)
and 3-boxes (right) instances to learning in 1-box instances with different k. ns = 2, 3,
nt = 1, k = 1, 2, 3.

we first need to know where the agent is before we draw up a plan. If we already
know the location of objectives, the solving process could be faster. After the
prediction model could correctly recognize where the agent is, we took feature
representations of the trained model and plug them into a new agent. The first
layer of learned features is fixed, and we only train the remaining part. Figure 9b
shows the performance of transferring and training from scratch. We find nega-
tive transfer for (sPt1k1): the performance is much worse compare with training
from scratch.

4.3 Transfer to Different Appearance

Experiments we described in previous subsections were all trying to transfer
Conv layers which learned feature representations. In the next experiment, we
try to make the agent utilize another part of the learned model, which are back
FC layers of the whole model. The source and target tasks were both single-
box instances, but the target tasks were instances with different appearances.
Figure 10b is an example. The maps used for two groups of tasks were the same,
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Fig. 9. (a): How SL tasks work. Input states and neural network will learn to predict
locations of the agent. (b): Performance of training from scratch and training with
transferred feature representations from SL tasks.

the only difference was how they look like, the appearance was changed, with
different textures, and we call it Game2. Figure 10a shows the transfer approach.
We took FC layers trained in source tasks and fixed them, and retrained the
remaining Conv layers. Since maps were the same, solutions of the instances
were the same. When Conv layers learn new feature representations successfully,
instances are solved then.

Figure 11a shows the performance. One would expect that transferred FC
layers (s1t1fc game2) are faster because the agent only needs to learn new feature
representations. However, the experiments did not show this result. Apparently,
when the whole model is trained jointly, it has more flexibility to be trained into
the final shape; when the last part of the model is fixed, the learning of the first
part will be trying to cater for the last part in order to solve the problem, which
made the learning slower.

4.4 Visualizing Agent Detection

In order to better understand what the network learned, we provide a visualiza-
tion. We follow Yosinski et al. who showed that convolutional neural networks
can detect latent objectives without explicit labels [31]. We visualized a fea-
ture map of a trained neural network on 1-box RL tasks. Figure 11b shows the
latent ‘agent detector’ for Sokoban. The neural network automatically learned
to detect the agent without giving any labels or information. Left rows are pixel
inputs, right rows are outputs of one specific feature map. Yellow-green units
are detected agents. We note that although the network was trained in single-
box instances, it still performed quite well in multiple-box instances, which is
a potential reason for the successful transfer. The agent’s abilities that were
learned in source tasks are useful in target tasks.
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Fig. 10. (a): Transfer approach for transfer to Game2. FC layers are taken from previ-
ously training and fixed, only conv layers will be retrained. (b): An example instance
in Game2. We changed appearances in Game2 with different textures of objectives.

Fig. 11. (a): Training on Game2 using transferred FC layers. Its performance is worse
than training from scratch. (b): The agent detector. Outputs of the twenty third feature
map of the first convolutional layer, which is an agent detector learned from 1-box
instances, and it’s still usable in multiple-boxes scenarios. (Color figure online)

5 Conclusion and Future Work

Our experiments showed that in a reinforcement learning setting the agent in
Sokoban can learn four characteristics that are similar to humans. (1) Fea-
ture representations learned previously can accelerate the new learning in other
Sokoban instances. Knowledge learned in previous related tasks could be reused
to accelerate new learning, transfer learning is occurring, creating an implicit
learning curriculum. (2) Feature representations learned in single-box instances
are more general, and are more effective for learning in multiple-boxes instances,
but not vice versa. Knowledge learned in simpler tasks is more general and
more effective, even in more complex tasks. Further experiments showed neg-
ative learning, that confirms these results. (3) Feature representations learned
in unrelated supervised learning tasks can hurt fine-tuning performance. If the
learned knowledge is required to be helpful in new coming tasks, it’s better to
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learn from similar tasks, otherwise the choice of tasks needs to be careful. (4)
Fixing the top-fully-connected layers and retraining the bottom convolutional
layers slows down learning and hurts performance. We conclude that learning
should have explicit order, less flexibility will not only be unhelpful but also hurt
the learning process and the performance.

Our experiments showed that with a simple 5-layer convolutions/fully con-
nected network (based on DeepMind’s baseline [22]), transfer learning and cur-
riculum learning of behavior to occur in Sokoban. This is surprising, since
Sokoban is a planning-heavy problem, for which one would expect more elaborate
network architectures to be necessary. Reusing pre-trained feature representa-
tions in RL fields is not well studied, and to the best of our knowledge, these
are the first results show transfer learning and curriculum learning with such
a simple network in such a planning-heavy behavioral task. In the future, we
would like to see more utilization of pre-trained feature representations and of
the entire pre-trained model in RL. We believe that reusing pre-trained model
can significantly improve data-efficient reinforcement learning.
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