
To explore drug space smarter: artificial intelligence in drug design for
G protein-coupled receptors
Liu, X.

Citation
Liu, X. (2022, February 15). To explore drug space smarter: artificial intelligence in drug
design for G protein-coupled receptors. Retrieved from https://hdl.handle.net/1887/3274010
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3274010
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3274010


GenUI 

 

177 

 

 

 

 

Chapter 7 

 

Conclusions and future perspectives 
 



Chapter 7 

 

178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and future perspectives 

 

179 

Having provided a review about computational approaches for de novo drug design and 

four research projects in the previous chapters, I am well versed in cutting-edge AI 

technologies, especially deep learning, applied in different scenarios of de novo drug design. 

In the following paragraphs, I will draw conclusions of this thesis and give a future outlook 

to illustrate its appropriateness in drug discovery and to bring forward other promising 

scopes for its application. 

 

7.1. Conclusions 

Drug discovery is a time- and resource-consuming process. To this end, computational 

approaches that are applied in de novo drug design play an important role to improve the 

efficiency and decrease the costs to develop novel drugs. Over several decades, a variety 

of methods have been proposed and applied in practice [1]. Traditionally, drug design 

problems are always taken as the combinational optimization in discrete chemical space, 

such as evolutionary algorithms [2,3], heuristic search algorithms [4], simulated annealing 

algorithms [5], etc.. Hence optimization methods were exploited to search for new drug 

molecules that meet multiple objectives. With the accumulation of data and the 

development of machine learning methods, computational drug design methods have 

gradually shifted to a new paradigm. There has been particular interest in the potential 

application of deep learning methods to drug design [6]. In Chapter 2, we gave a brief 

description of these two different de novo methods, compared their application scopes and 

discussed their possible development in the future. 

 

Over the last ten years deep learning has progressed tremendously in both image 

recognition, natural language processing and other data rich fields [7]. In drug discovery, 

recurrent neural networks (RNNs) have been shown to be an effective method to generate 

novel chemical structures in the form of SMILES [8]. However, ligands generated by 

current methods have so far provided relatively low diversity and do not fully cover the 

whole chemical space occupied by known ligands. In Chapter 3, we therefore propose a 

new method (DrugEx) to discover de novo drug-like molecules. DrugEx is an RNN model 

(generator) trained through a special exploration strategy integrated into reinforcement 
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learning. As a case study we applied our method to design ligands for the adenosine A2A 

receptor. From ChEMBL data, a machine learning model (predictor) was created to predict 

whether generated molecules are active or not. Based on this predictor as the reward 

function, the generator was trained by reinforcement learning without any further data. We 

then compared the performance of our method with two previously published methods, 

REINVENT [9] and ORGANIC [10]. We found that the candidate molecules our model 

designed and predicted to be active, had a larger chemical diversity and better covered the 

chemical space of known ligands compared to the state-of-the-art (SOTA). 

 

Although deep learning has led to breakthroughs in drug discovery, most of its applications 

only focus on a single drug target to generate drug-like active molecules. This is in spite of 

the reality that drug molecules often interact with more than one target which can have 

desired (polypharmacology) or undesired (toxicity) effects. In polypharmacology ideal 

drugs are required to bind to multiple specific targets to enhance efficacy or to reduce the 

development of resistance [11]. In Chapter 4, we extended our DrugEx algorithm with 

multi-objective optimization to generate drug molecules towards multiple targets or one 

specific target while avoiding off-targets (the two adenosine receptors, A1AR and A2AAR, 

and the potassium ion channel hERG). In our model, we applied an RNN as the agent and 

machine learning predictors as the environment, both of which were pre-trained in advance 

and then interplayed under the reinforcement learning framework. The concept of 

evolutionary algorithms was merged into our method such that crossover and mutation 

operations were implemented by the same deep learning model as the agent. During the 

training loop, the agent generates a batch of SMILES-based molecules. Subsequently 

scores for all objectives provided by the environment are used for constructing Pareto ranks 

of the generated molecules with non-dominated sorting and Tanimoto-based crowding 

distance algorithms. Here, we adopted GPU acceleration to speed up the process of Pareto 

optimization. The final reward of each molecule is calculated based on the Pareto ranking 

with the ranking selection algorithm [12]. The agent is trained under the guidance of the 

reward to make sure it can generate more desired molecules after convergence of the 

training process. All in all we demonstrated the generation of compounds with a diverse 
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predicted selectivity profile toward multiple targets, offering the potential of high efficacy 

and lower toxicity. 

 

Due to the huge chemical space in which feasible drug-like molecules are searched for, 

rational drug design always starts from specific molecular scaffolds as the core to which 

side chains are added or modified. With the rapid growth of deep learning methods and 

their application in drug discovery, a variety of approaches has been developed for de novo 

drug design. However, earlier versions of DrugEx are trained under fixed objectives and 

do not allow users to input any prior information, like most goal-directed methods. In order 

to improve its generality, DrugEx was updated to design drug molecules based on multiple 

scaffolds given by users. In Chapter 5 we extended the transformer model [13], which is 

a multi-head self-attention deep learning model containing an encoder and a decoder, to 

deal with each molecule as a graph. The encoder of the graph transformer receives the input 

graph of the scaffolds containing multiple fragments and its decoder outputs the graph-

based molecule containing given scaffolds. Each molecule was generated by growing and 

connecting procedures for the fragments in given scaffolds that were unified into one model. 

Moreover, we trained this generator under the reinforcement learning framework to 

increase the number of active ligands. As proof our proposed method was applied to design 

adenosine A2A receptor ligands which were compared with SMILES-based methods. The 

results demonstrated its effectiveness as most of the generated molecules contained the 

given scaffolds and had a high virtual affinity towards the adenosine A2A receptor.  

 

Despite the rapid growth of AI techniques in drug discovery, widespread adoption of new 

de novo drug design approaches in the fields of medicinal chemistry and chemical biology 

is still lagging behind the most recent developments. It is urgently needed to establish a 

close collaboration between diverse teams of experimental and theoretical scientists. To 

accelerate the adoption of both modern and traditional de novo molecular generators, we 

developed GenUI (Generator User Interface), a software platform that makes it possible to 

integrate molecular generators within a feature-rich graphical user interface that is easy to 

use by experts of varying backgrounds. GenUI is implemented as a web service and its 
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interfaces offer access to cheminformatics tools for data preprocessing, model building, 

molecule generation, and interactive chemical space visualization. Moreover, the platform 

is easy to extend with customizable frontend React.js components and backend Python 

extensions. GenUI is open source which has integrated DrugEx as a proof of principle. In 

Chapter 6, we presented the architecture and implementation details of GenUI and discuss 

how it can facilitate collaboration in the disparate communities interested in de novo 

molecular generation and computer-aided drug discovery. 

 

7.2. Further perspectives 

With the four projects mentioned above we catch a glimpse of the overwhelming power of 

AI in drug de novo design. However, it is impossible to make a thorough investigation of 

its capability in every scope of drug discovery with only four years study. In my view, there 

are still a plethora of promising issues about the development and application of AI to 

design chemical compounds that attract researchers’ interest and are worth addressing. 

 

7.2.1. New AI technologies 

Deep learning is the most attractive branch in AI and it is still growing rapidly. First 

convolutional neural networks and recurrent neural networks achieved a breakthrough in 

image recognition and natural language processing [7]. Consequently the transformer 

model was proposed based on a self-attention mechanism in 2017 and achieved SOTA 

performance in language processing [13]. Subsequently, a large number of variants have 

been developed. For example, BERT, which is the encoder part of the transformer and is 

pre-trained with large amounts of data, improved the performance of sequence data 

prediction dramatically [14]. This led to more and more researchers employing it to 

construct predictive models for biological and chemical data [15,16]. In addition, GPT-3, 

which is also derived from the transformer model, achieved SOTA performance in many 

sequence generation tasks [17]. Moreover, transformer-based methods can also deal with 

graph data [18], allowing it to be applied to graph-based molecular design. Therefore they 

are promising algorithms to be used in drug design. 
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With respect to the huge number of parameters in the complicated architectures of deep 

learning, there are also many new methods to effectively train these models. For example, 

when dealing with image generation, generative adversarial networks [10] and variational 

autoencoders [19] are commonly used to train the model to generate the most similar 

samples. When introducing different computational methods in drug design in Chapter 2, 

we discussed the possibility of the combination of deep learning methods and optimization 

methods. Afterwards, we proposed a new kind of training method through simulating the 

idea of evolutionary algorithms in Chapter 4. Moreover, there are many studies about the 

application of evolutionary algorithms [20] or Bayesian optimization [21] to update the 

parameters in deep learning models. With the architecture of deep learning becoming more 

and more complex, it is worth discussing about how to effectively train models to avoid 

the issues of the local minimum and overfitting. 

 

7.2.2. Different constraint conditions 

Besides the objectives mentioned in the previous chapters, such as affinity for adenosine 

receptors and the drug-likeness score, the ideal drug molecule also needs to meet more 

objectives in reality. In addition to the affinity for one or more given targets, it also needs 

to have qualified ADME (absorption, distribution, metabolism, and excretion) properties 

[22] and low toxicity. More specifically, some of these requirements can be conflicting and 

cannot be satisfied simultaneously. Therefore, an important issue is to orchestrate the many 

objectives for effective drug design. However, most of current studies just simply transform 

the multi-objectives into a single objective with the weighted sum of these scores in order 

to guide the training of deep learning models. Actually, there are plenty of multi-objective 

optimization methods [12] being developed as mentioned in Chapter 2. These methods 

are worth exploring their integration with deep learning models. 

 

Another important property of generated drug molecules is their synthesizability. However, 

the most current SMILES-based and Graph-based models cannot directly guarantee that 

the generated molecules can be synthesized [23]. Therefore, it is critical to predict the 

synthesizability of these generated molecules, which determines if they could be 
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experimentally tested in practice. For example, some researchers combined deep 

reinforcement learning and Monto Carlo tree search to put forward to methods to predict 

retrosynthesis score [24,25] for given molecules and provide the feasible synthetic schemes 

[26]. Moreover, some other groups directly generate molecule base on reaction, in which 

each molecule in the training set are decomposed as a reaction tree [27]. And the aim of 

the model is choosing the reaction from the library step by step. In the end, the molecule 

construct with the whole reaction tree is generated.  

 

In Chapter 3 & 4, all of the model conditions were fixed. This allowed the model to be 

trained well, but it cannot interact with users by receiving continued and updated 

information. If the conditions are changed, the model has to be trained again, which is an 

inconvenient and time-consuming process. In order to improve the generality of the model 

we proposed a new method in Chapter 5 in which an end-to-end model received scaffold 

information from users. General speaking, it can also take other information as input to 

design bioactive molecules conditionally. For example, it can be used for lead optimization, 

i.e. the input can be an inactive or toxic ligand, and the output should be a similar ligand 

but active or safe, respectively. Moreover, now that proteochemometric modelling (PCM) 

has been proposed for many years to take the information of both drug and target 

information as input and predict their affinity [28], it can also be used to construct inverse 

PCM models, which take protein information as input to design its active ligands [29]. 

Considering that the full sequence length of some proteins is too large to be dealt with by 

current deep learning models, protein descriptors can also be used as input information.  

 

7.2.3. Designing various kind of molecules 

In this thesis, we only focus on the generation of small organic molecules, but there are 

other biological/chemical molecules to be designed. For example, natural products have 

always been the effective components of traditional Chinese medicine, but their physico-

chemical properties are distinct from classical drug molecules. For instance unlike small 

synthetic molecules most of the natural products do not adhere to the Rule of 5 [30]. 

Compared with classical drug molecules, natural products also have different advantages 
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as drug candidates. Natural products have been optimized by long-term natural evolution 

to have particular bioactivities, including the regulation of endogenous defense 

mechanisms through the interaction with other organisms, which is the possible reason for 

its key role in therapeutic areas especially for infectious diseases and cancer [31]. Moreover, 

their use in traditional medicine may provide insights regarding efficacy and safety, 

covering a wider area of chemical space compared with small organic molecules [32]. Now 

that there are several AI methods for the retrosynthesis of organic molecules [26], they also 

provide a valuable direction to exploit these methods in the synthesis pathway prediction 

of natural products.  

 

Besides small organic molecules, peptides and proteins are important macromolecules for 

medicine. For example, some antimicrobial peptides can be used as drugs to inhibit the 

growth of a variety of microbes. The data representation of a peptide is a sequence of amino 

acid residues, which is feasible to be designed with deep learning models [33]. Moreover, 

there are variable domains in Fab regions of antibodies which determine specificity and 

efficacy to recognize the antigen. This part of the antibody also needs to be designed and 

can be generated by AI methods [34]. 

 

7.3. Final notes 

The main thrust of this thesis is a comprehensive study about the application of AI 

technologies in de novo drug design. An integrative Python-based toolkit named DrugEx 

was developed to facilitate the accessibility of our methods to other researchers. In order 

to decrease the threshold for experimental researchers who are not familiar with computer 

coding, this tool was also used as the engine integrated into a web-based graphic toolkit 

named GenUI which has powerful capabilities of interactions with users and developers. 

These two software packages are my main contributions to the scientific community. 

Generally speaking, the highlight of this thesis is sufficiently embodied on the cover page. 

Faced with the huge chemical space of drug-like molecules (unveiling of the capsule at the 

bottom), AI is an effective approach to rapidly narrow down the search scope. AI itself is 

a mimic of the human brain running in silico (the logo in the center). The chip located in 
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the center of the brain consists of a variety of different electronic components. Seven 

tandem diodes resemble the protein structure of a GPCR which has seven transmembrane 

domains. Its intracellular domain with the G protein (a total of four subunits represented 

by four gears) forms a virtual document which recodes with digits if the GPCR is activated 

or not. The component in the lower right side is like a magnifying glass that is identifying 

the active ligands after exploring the huge chemical space with this virtual lab. I hope the 

readers could be beneficial from this thesis to have broad and deep understanding of the 

role that AI methods play in drug discovery. 
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