
To explore drug space smarter: artificial intelligence in drug design for
G protein-coupled receptors
Liu, X.

Citation
Liu, X. (2022, February 15). To explore drug space smarter: artificial intelligence in drug
design for G protein-coupled receptors. Retrieved from https://hdl.handle.net/1887/3274010

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3274010

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3274010

DrugEx v2

113

Chapter 5

DrugEx v3: scaffold-constrained

drug design with graph Transformer-based

reinforcement learning

Xuhan Liu, Kai Ye, Herman W. T. van Vlijmen, Adriaan P. IJzerman and Gerard J. P.

van Westen*. Preprint. Https://doi.org/10.26434/chemrxiv-2021-px6kz

Chapter 4

114

Abstract

Due to the large drug-like chemical space available to search for feasible drug-like

molecules, rational drug design often starts from the specific scaffold to which side

chains/substituents are added or modified. With the rapid growth of the application of deep

learning in drug discovery, a variety of effective approaches have been developed for de

novo drug design. In previous work, we proposed a method named DrugEx, which can be

applied in polypharmacology based on multi-objective deep reinforcement learning.

However, the previous version is trained under fixed objectives similar to other known

methods and does not allow users to input any prior information. In order to improve the

general applicability, we updated DrugEx to design drug molecules based on the scaffold

which can contain multiple fragments provided by users. In this work, the Transformer

model was employed to generate the structure of molecules. The Transformer is a multi-

head self-attention deep learning model containing an encoder for receiving scaffolds as

input and a decoder generating molecules as output. In order to deal with the graph

representation of molecules, we proposed a novel positional encoding for each atom and

bond based on an adjacency matrix to extend the architecture of the Transformer. Each

molecule was generated by growing and connecting procedures for the fragments in the

given scaffold that were unified into one model. Moreover, we trained this generator under

a reinforcement learning framework to increase the number of desired ligands. As a proof

of concept, our proposed method was applied to design ligands for the adenosine A2A

receptor (A2AAR) and compared it with SMILES-based methods. The results demonstrated

its effectiveness in that 100% of generated molecules are valid and most of them had high

predicted affinity value towards A2AAR with given scaffold.

Keywords: deep learning, reinforcement learning, policy gradient, drug design,

Transformer, multi-objective optimization

DrugEx v3

115

5.1. Introduction

Due to the large drug-like chemical space (i.e. estimated at 1033 - 1060 organic molecules)

[1], it is impossible to screen every corner of it to discover optimal drug candidates,

although high-throughput screening (HTS) technology has been improved significantly in

recent years [2]. Commonly, the specific scaffolds derived from endogenous substances are

taken as a starting point to design analogs after side chains/substituents are added or

modified [3]. These fragments are used as ‘building blocks’ to develop proper drug leads

with combinatorial chemistry such as growing, linking and merging [4]. After a promising

drug lead has been discovered, it is further optimized by modifying side chains to improve

potency and selectivity which in turn can improve safety and tolerability [5].

The adenosine receptors (ARs) belong to a class of rhodopsin-like GPCRs including four

subtypes (A1, A2A, A2B and A3). Each of them has a unique pharmacological profile, tissue

distribution, and effector coupling [6,7]. ARs are ubiquitously distributed throughout the

human tissues, and involved in many biological processes and diseases [8]. Because

adenosine is the endogenous agonist of ARs, a number of known ligands of the ARs are

adenosine analogs and have a common scaffold. Examples include purines, xanthines,

triazines, pyrimidines, and the inclusion of a ribose moiety [9]. In scaffold-based rational

drug design, it is generally accepted that a chemical space consisting of 109 diverse

molecules can be sampled with only 103 fragments [10].

Based on rapid developments in the last decade, deep learning has achieved a breakthrough

in visual recognition, natural language processing, and other data-rich fields [11]. In drug

discovery, deep learning methods have also been extensively used for drug de novo design

[12]. For distribution-directed issues, Gomez-Bombarelli et al. implemented variational

autoencoders (VAE) to map molecules into a latent space where each point can also be

decoded into unique molecules inversely [13]. They used recurrent neural networks (RNNs)

to successfully learn SMILES (simplified molecular-input line-entry system) grammar and

construct a distribution of molecular libraries [14]. For goal-directed issues, Sanchez-

Lengeling et al. combined reinforcement learning and generative adversarial networks

Chapter 5

116

(GANs) to develop an approach named ORGANIC to design active compounds toward

given targets [15]. Olivecrona et al. proposed the REINVENT algorithm which updated the

reinforcement learning with a Bayesian approach and combined RNNs to generate

SMILES-based desired molecules [16,17]. Moreover, Lim et al. proposed a method for

scaffold-based molecular design with a graph generative model [18]. Li et al. also used

deep learning to develop a tool named DeepScaffold for this issue [19]. Arús‑Pous et al.

employed RNNs to develop a SMILES-based scaffold decorator for de novo drug design

[20]. Yang et al. used the Transformer model [21] to develop a tool named SyntaLinker for

automatic fragment linking [22].

In previous studies, we investigated the performance of RNNs and proposed a method

named DrugEx by integrating reinforcement learning to balance distribution-directed and

goal-directed tasks [23]. Furthermore, we updated it with multi-objective reinforcement

learning and applied it in polypharmacology [24]. However, the well-trained model cannot

receive any input data from users and only reflect the distribution of the desired molecules

with fixed conditions. If the objectives are changed, the model needs to be trained again.

In this work, we compared different end-to-end deep learning methods and updated the

DrugEx model to allow users to provide prior information, such as fragments that should

occur in the generated molecules. Based on the extensive experience in our group with the

A2AAR, we continue to take this target as an example to evaluate the performance of our

proposed methods. In the following context, we will discuss the case of scaffold-

constrained drug design, i.e. the model takes the scaffolds containing multiple fragments

as input to generate desired molecules which also can be predicted to be active to A2AAR.

All python code for this study is freely available at http://github.com/XuhanLiu/DrugEx.

5.2. Materials and methods

5.2.1. Data source

Chemical compounds were downloaded from ChEMBL using a SMILES notation (version

27) [25]. After data preprocessing implemented by RDKit, which included neutralizing

charges, removing metals and small fragments , ~1.7 million molecules remained for model

DrugEx v3

117

pre-training. These data were reused from the work about DrugEx v2 (ChEMBL set) [24].

In addition, 10,828 ligands and bioactivity data were extracted from ChEMBL to construct

the LIGAND set containing structures and activities from bioassays towards four human

adenosine receptors. The LIGAND set was used for fine-tuning the generative model.

Molecules with annotated A2AAR activity were used to train a prediction model. If multiple

measurements for the same ligands existed, the average pChEMBL value (pX, including

pKi, pKd, pIC50 or pEC50) was calculated and duplicate items were removed. In order to

judge if the molecule is desired or not, the threshold of affinity was defined as pX = 6.5 to

predict if the compound was active (>= 6.5) or inactive (< 6.5).

Fig. 5.1: scaffold-molecule pair dataset construction. (A) Each molecule in the dataset is decomposed

hierarchically into a series of fragments with the BRICS algorithm. (B) Subsequently data pairs between

input and output are created. Combinations of leaf fragments form the scaffold as input, the whole

molecule becomes the output. Each token in SMILES sequences is separated by different colors. (C)

After conversion to the adjacency matrix, each molecule was represented as a graph matrix. The graph

matrix contains five rows, standing for the atom, bond, previous and current positions and fragment

index. The columns are composed with three parts to store the information of scaffolds, growing section

and linking section. (D) All of tokens are collected to construct the vocabularies for SMILES-based and

graph-based generators, respectively. (E) An example of the input and output matrices for the SMILES

representation of scaffolds and molecules

Furthermore, the dataset was constructed with an input-output pair for each data point.

Each molecule was decomposed into a batch of fragments with BRICS methods [26] in

RDKit (Fig. 5.1A). If the molecule contained more than four leaf fragments, the smaller

Chapter 5

118

fragments were ignored and a maximum of four larger fragments were reserved to be

randomly combined at one time. Here, the scaffold was defined as the combination of

different fragments which can be either continuously (linked) or discretely (separated).

Their SMILES sequences were joined with ‘.’ as input data which were paired with the full

SMILES of molecules. The resulting fragments-molecule pair forms the output data (Fig.

5.1B). After completion of constructing the data pairs, the set was split into a training set

and test set with the ratio 9:1 based on the input scaffolds. The resulting ChEMBL set

contained 10,418,681 and 1,083,271 pairs for training and test set, respectively. The

LIGAND set contained 61,413 pairs in the training set and 7,525 pairs in the test set.

5.2.2. Molecular representations

In this study we tested two different molecular representations: SMILES and graph. For

SMILES representations each scaffold-molecule pair was transformed into two SMILES

sequences which were then split into different tokens to denote atoms, bonds, or other

tokens for grammar control (e.g. parentheses or numbers). All of these tokens were put

together to form a vocabulary which recorded the index of each token (Fig. 1D). Here, we

used the same conversion procedure and vocabulary as in DrugEx v2. In addition, we put

a start token (GO) at the beginning of a batch of data as input and an end token (END) at

the end of the same batch of data as output. After sequence padding with a blank token at

empty positions, each SMILES sequence was rewritten as a series of token indices with a

fixed length. Subsequently all of these sequences for both scaffolds and molecules were

concatenated to construct the input and output matrix (Fig. 1E).

For the graph representation each molecule was represented as a five-row matrix, in which

the first two rows stand for the index of the atom and bond types, respectively. The third

and fourth rows represent the position of previous and current atoms connected by a bond

(Fig. 1C). The columns of this matrix contain three sections to store scaffolds, growing

parts, and linking parts. The scaffold section began with a start token in the first row and

the last row was labelled the index of each scaffold starting from one. The fragments in the

given scaffold for each molecule are put in the beginning of the matrix, followed by the

growing part for the scaffold, and the last part is the connection bond between these

DrugEx v3

119

growing fragments with single bonds. For the growing part and linking sections, the last

row was always zero and these two sections were separated by the column of end token. It

is worth noticing that the last row was not directly involved in the training process. The

vocabulary for graph representation was different from the SMILES format and it contains

38 atom types (Table S5.1) and four bond types (single, double, triple bonds and none). If

the atom is the first occurrence in a given scaffold the type of the bond will be empty

(indexed as 0 with token ‘*’). In addition, if the atom at the current position has been

recorded in the matrix, the type of the atom will be empty. In order to grasp more details

of the graph representation, we also provided the pseudocode for encoding (Table S5.2)

and decoding (Table S5.3).

5.2.3. End-to-end deep learning

In this work, we compared three different sequential end-to-end DL architectures to deal

with different molecular representations of either graph or SMILES (Fig. 5.2). These

methods included: (A) Graph Transformer, (B) LSTM-based encoder-decoder model

(LSTM-BASE), (C) LSTM-based encoder-decoder model with attention mechanisms

(LSTM+ATTN) and (D) Sequential Transformer model. All of these DL models were

constructed with PyTorch [27].

For SMILES representation three different models were constructed as follows (Fig. 5.2,

right). The encoder and decoder in the LSTM-BASE model (Fig. 5.2B) had the same

architectures, containing one embedding layer, three recurrent layers and one output layers

(as we did for DrugEx v2) [24]. The number of neurons in the embedding and hidden layers

were 128 and 512, respectively. The hidden states of the recurrent layer in the encoder are

directly sent to the decoder as the initial states. On the basis of LSTM-BASE model, an

attention layer was added between the encoder and decoder to form the LSTM+ATTN

model (Fig. 5.2C). The attention layer calculates the weight for each position of the input

sequence to determine which position the decoder needs to focus on during the decoding

process. For each step, the weighted sums of the output calculated by the encoder are

combined with the output of the embedding layer in the decoder to form the input for the

Chapter 5

120

recurrent layers. The output of the recurrent layers is dealt with by the output layer to

generate the probability distribution of tokens in the vocabulary in both of these two models.

Fig. 5.2: Architectures of four different end-to-end deep learning models: (A) The Graph

Transformer; (B) The LSTM-based encoder-decoder model (LSTM-BASE); (C) The LSTM-based

encoder-decoder model with attention mechanisms (LSTM+ATTN); (D) The sequential Transformer

model. The Graph Transformer accepts a graph representation as input and SMILES sequences are taken

as input for the other three models.

The sequential Transformer has a distinct architecture compared to the LSTM+ATTN

model although it also exploits an attention mechanism. For the embedding layers “position

encodings” are added into the typical embedding structure as the first layer of the encoder

and decoder. This ensures that the model no longer needs to encode the input sequence

token by token but can process all tokens in parallel. For the position embedding, sine and

cosine functions are used to define its formula as follows:

𝑃𝐸(𝑝,2𝑖) = sin(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄)

𝑃𝐸(𝑝,2𝑖+1) = cos(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄)

where PE(p, i) is the ith dimension of the position encoding at position p. It has the same

dimension dm = 512 as the typical embedding vectors so that the two can be summed.

In addition, self-attention is used in the hidden layers to cope with long-range dependencies.

DrugEx v3

121

For each hidden layer in the encoder, it employs a residual connection around a multi-head

self-attention sublayer and feed-forward sublayer followed by layer normalization. Besides

these two sublayers in the decoder a third sublayer with multi-head attention is inserted to

capture the information from output of the encoder.

This self-attention mechanism is defined as the scaled dot-product attention with three

vectors: queries (Q), keys (K) and values (V), of which the dimensions are dq, dk, dv,

respectively. The output matrix is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊺

√𝑑𝑘
)𝑉

Instead of a single attention function, the Transformer adopts multi-head attention to

combine information from different representations at different positions which is defined

as:

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂

where h is the number of heads. For each head, the attention values were calculated by

different and learned linear projections with Q, K and V as follows:

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)

where WO, WQ, WK and WV are metrics of learned weights and we set h = 8 as the number

of heads and dk = dv = 64 in this work.

For the graph representation of molecules, we updated the sequential Transformer structure

to propose a Graph Transformer (Fig. 5.2A). Similar to the sequential Transformer the

Graph Transformer also requires the encodings of both word and position as the input. For

the input word, the atom and bond cannot be processed simultaneously; therefore we

combined the index of atom and bond together and defined it as follows:

𝐼 = 𝐼𝑎𝑡𝑜𝑚 × 4 + 𝐼𝑏𝑜𝑛𝑑

meaning the index of the input word (I) calculating word vectors are calculated from atom

index (Iatom) multiplied by four (the total number of bond types defined) and add the bond

index (Ibond). Similarly, the position of each step cannot be used to calculate the position

encoding directly. Faced with more complex data structure than sequential data,

Chapter 5

122

Dosovitskiy et al. proposed a new positional encoding scheme to define the position for

each patch in image data for image recognition [28]. Inspired by their work the position

encoding at each step was defined as:

𝑃 = 𝑃𝑐𝑢𝑟𝑟 × 𝐿𝑚𝑎𝑥 + 𝑃𝑝𝑟𝑒𝑣

here the input position (P) for calculating the position encoding was the current position

(Pcurr) multiplied by the max length (Lmax) and adding the previous position (Pprev), which

was then processed with the same positional encoding method as with the sequential

Transformer. For the decoder, the hidden vector from the transformer was taken as the

starting point to be decoded by a GRU-based recurrent layer; and the probability of atom,

bond, previous and current position was decoded one by one sequentially.

When graph-based molecules are generated, the chemical valence rule is checked in every

step. The invalid values of atom and bond types will be masked and an incorrect previous

and current position will be removed ensuring the validity of all generated molecules. It is

worth noticing that before being encoded, each molecule will be kekulized, meaning that

the aromatic rings will be inferred to transform into either single or double bonds. The

reason for this is that aromatic bonds interfere with the calculation of the valence value for

each atom.

During the training process of SMILES-based models, the negative log likelihood function

was used to construct the loss function to guarantee that the token in the output sequence

had the largest probability to be chosen. In comparison, the loss function used by the Graph

Transformer model also contains four parts for atom, bond, previous and current sites. And

the sum of these negative log probability values is minimized to optimize the parameters

in the model. For this, the Adam algorithm was used for the optimization of the loss

function. Here, the learning rate was set at 10-4, the batch size was 256, and training steps

were set to 20 epochs for pre-training and 1,000 epochs for fine-tuning.

5.2.4. Multi-objective optimization

In order to combine multiple objectives we exploited a Pareto-based ranking algorithm

DrugEx v3

123

with GPU acceleration as mentioned in DrugEx v2 [24]. Given two solutions m1 and m2

with their scores (x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 if

and only if:

∀ j ∈ {1,… , n}: 𝑥𝑗 ≥ 𝑦𝑗 𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗

otherwise, m1 and m2 are non-dominated with each other. After the dominance between all

pair of solutions being determined, the non-dominated scoring algorithm is exploited to

obtain a rank of Pareto frontiers which consist of a set of solutions. After obtaining frontiers

between dominant solutions molecules were ranked based on the average Tanimoto-

distance with other molecules instead of crowding distance in the same frontier.

Subsequently molecules with smaller distances were ranked on the top. The final reward

R* is defined as:

𝑅∗ =

{

 0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
, 𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

here k is the index of the solution in the Pareto rank and rewards of undesired and desired

solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively.

In this work, we took two objectives into consideration: 1) QED score [29] as implemented

by RDKit (from 0 to 1) to evaluate the drug-likeness of each molecule (a larger value means

more drug-like) ; 2) an affinity score towards A2AAR which was implemented by a random

forest regression model with Scikit-Learn [30] like in DrugEx v2. The input descriptors

consisted of 2048D ECFP6 fingerprints and 19D physico-chemical descriptors

(PhysChem). PhysChem included: molecular weight, logP, number of H bond acceptors

and donors, number of rotatable bonds, number of amide bonds, number of bridge head

atoms, number of hetero atoms, number of spiro atoms, number of heavy atoms, the

fraction of SP3 hybridized carbon atoms, number of aliphatic rings, number of saturated

rings, number of total rings, number of aromatic rings, number of heterocycles, number of

valence electrons, polar surface area, and Wildman-Crippen MR value. Again it was

determined if generated molecules are desired based on the Affinity score (larger than the

threshold = 6.5). In addition, the SA score was also exploited to evaluate the

synthesizability of generated molecules, which is also calculated by RDKit [31].

Chapter 5

124

5.2.5. Reinforcement learning

In this work we constructed a reinforcement learning framework based on the interplay

between the Graph Transformer (agent) and the two scoring functions (environment). A

policy gradient method was implemented to train the reinforcement learning model, the

objective function is designated as follows:

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

here for each step t during the generation process, the generator (G) determines the

probability of each token (yt) from the vocabulary to be chosen based on the generated

sequence in previous steps (y1:t-1). In the sequence-based models yt can only be a token in

the vocabulary to construct SMILES while it can be different type of atoms or bonds or the

previous or current position in the graph-based model. The parameters in is objective

function are updated by employing a policy gradient based on the expected end reward (R*)

received from the predictor. By maximizing this function the parameter 𝜃 in the generator

can be optimized to ensure that the generator designs desired molecules which obtain a

high reward score.

In order to improve the diversity and reliability of generated molecules, we implemented

our exploration strategy for molecule generation during the training loops. In the training

loop our generator is trained to produce the chemical space as defined by the target of

interest. In this strategy there are two networks with the same architectures, an exploitation

net (Gθ) and an exploration net (Gφ). Gφ did not need to be trained and its parameters were

always fixed and it is based on the general drug-like chemical space for diverse targets

obtained from ChEMBL. The parameters in Gθ on the other hand were updated for each

epoch based on the policy gradient. Again an exploring rate (ε) was defined with a range

of [0.0, 1.0] to determine the percentage of scaffolds being randomly selected as input by

Gφ to generate molecules. Conversely Gθ generated molecules with other input scaffolds.

After the training process was finished Gφ was removed and only Gθ was left as the final

model for molecule generation.

DrugEx v3

125

5.2.6. Performance evaluation

In order to evaluate the performance of the generators, four coefficients were calculated

from the population of generated molecules (validity, accuracy, desirability, and uniqueness)

which are defined as:

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

Accuracy =
𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑁𝑡𝑜𝑡𝑎𝑙

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙

here Ntotal is the total number of molecules, Nvalid is the number of molecules parsed as valid

SMILES sequences, Naccurate is the number of molecules that contained given scaffolds,

Ndesired is the number of desired molecules that reach all required objectives, and Nunique is

the number of molecules which are different from others in the dataset .

To measure molecular diversity, we adopted the Solow Polasky measurement as in DrugEx

v2 [24]. This approach was proposed by Solow and Polasky in 1994 to estimate the

diversity of a biological population in an eco-system [32]. The formula to calculate

diversity was redefined to normalize the range of values from [1, m] to (0, m] as follows:

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s and

F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for the distance

function of each pair of molecule provided as follows:

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance with

ECFP6 fingerprints as follows:

𝑑𝑖𝑗 = 𝑑(𝑠𝑖 , 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 ,

Chapter 5

126

where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the number

of union fingerprint bits.

Fig 5.3: Analysis of some properties of fragments in the ChEMBL set and three LIGAND subsets.

(A) Violin plot for the distribution of the number of fragments per molecules; (B) Distribution of

molecular weight of these fragments; (C) Distribution of the similarity of the fragments measured by

the Tanimoto-similarity with ECFP4 fingerprints; (D) Venn diagram for the intersection of the fragments

existing in the three subsets of the LIGAND set.

5.3. Results and discussion

5.3.1. Fragmentation of molecule

As stated we decomposed each molecule into a series of fragments with the BRICS

algorithm to construct scaffold-molecule pairs. Within BRICS each organic compound can

DrugEx v3

127

be split into retrosynthetically interesting chemical substructures with a compiled elaborate

set of rules. For the ChEMBL and LIGAND sets, we respectively obtained 194,782 and

2,223 fragments. We further split the LIGAND set into three parts: active ligands

(LIGAND+, 2,638), inactive ligands (LIGAND-, 2710) and undetermined ligands (LIGAND0,

5480) based on the pX of bioactivity for A2AAR. The number of fragments in these four

datasets have a similar distribution and there are approximately five fragments on average

for each molecule with a 95% confidence between [0, 11] (Fig. 5.3A).

In the LIGAND set the three subsets have a similar molecular weight distribution of the

fragments (Fig. 5.3B) while the average is 164.3Da, smaller than in the ChEMBL set

(247.3Da). In order to check the similarity of these fragments we used the Tanimoto

similarity calculation with ECFP4 fingerprints between each pair of fragments in the same

dataset. We found that most of them were smaller than 0.5 indicating that they are dissimilar

to each other (Fig. 5.3C). Especially, the fragments in the LIGAND+ set have the largest

diversity. Moreover, the distribution of different fragments in these three subsets of the

LIGAND set are shown in Fig. 5.3D. The molecules in these three subsets have their unique

fragments and share some common substructures.

5.3.2. Pre-training & fine-tuning

After finishing the dataset construction, four models were pre-trained on the ChEMBL set

and fine-tuned on the LIGAND set. Here, these models were benchmarked on a server with

four GTX1080Ti GPUs. After the training process converged each fragment in the test set

was presented as input for 10 times to generate molecules. The performance is shown in

Table 5.1. The training of Transformer models was faster but consumed more

computational resources than LSTM-based methods. In addition, Transformer methods

outperformed LSTM-based methods using SMILES. Although the three SMILES-based

models improved after being fine-tuned they were still outperformed by the Graph

Transformer because of the advantages of the graph representation. To further check the

accuracy of generated molecules we also compared the chemical space between the

generated molecules and the compounds in the training set with three different

Chapter 5

128

representations 1) MW ~ logP; 2) PCA with 19D PhysChem descriptors; 3) tSNE with

2048D ECFP6 fingerprints (Fig. 5.4). The region occupied by molecules generated by the

Graph Transformer overlapped completely with the compounds in both the ChEMBL and

LIGAND sets.

Table 5.1: The performance of four different generators for pre-training and fine-tuning processes.

Methods
Pre-trained Model Fine-tuned Model

Time Memory
Validity Accuracy Validity Accuracy

Graph

Transformer
100% 99.3% 100% 99.2% 453.8 s 14.5 GB

Sequential

Transformer
96.7% 72.0% 99.3% 95.7% 832.3 s 31.7 GB

LSTM-BASE 93.9% 44.1% 98.7% 91.8% 834.6 s 5.5 GB

LSTM+ATTN 89.7% 52.2% 96.4% 90.2% 1212.5 s 15.9 GB

The graph representation for molecules has more advantages over the SMILES

representation when dealing with fragment-based molecule design: 1) Invariance in the

local scale: During the process of molecule generation multiple fragment in the given

scaffold can be put into any position in the output matrix without changing the order of

atoms and bonds in that fragment. 2) Extendibility in the global scale: When the

fragments in the scaffold are growing or being linked, they can be flexibly appended in the

end column of the graph matrix while the original data structure does not need changing.

3) Free of grammar: Unlike in SMILES sequences there is no explicit grammar to

constrain the generation of molecules, such as the parentheses for branches and the

numbers for rings in SMILES; 4) Accessibility of chemical rules: For each added atom or

bond the algorithm can detect if the valence of atoms is valid or not and mask invalid atoms

or bonds in the vocabulary to guarantee the whole generated matrix can be successfully

parsed into a molecule. With these advantages the Graph Transformer generates molecules

faster while using less memory.

DrugEx v3

129

Fig. 5.4: The chemical space of generated molecules by the Graph Transformer pre-trained on the

ChEMBL set (A, C and E) and being fine-tuned on the LIGAND set (B, D and F). Chemical space was

represented by either logP ~ MW (A, B) and first two components in PCA on PhysChem descriptors (C,

D) and t-SNE on ECFP6 fingerprints (E, F).

Chapter 5

130

Fig. 5.5: the distribution of QED score (A, C) and SA score (B, D) of desired ligands in the LIGAND

set and of molecules generated by four different generators.

However, after examining the QED scores and SA scores, we found that although the

distribution of QED scores was similar to each other, the synthesizability of the molecules

generated by the Graph Transformer were no better than the SMILES-based generators,

especially when fine-tuning on the LIGAND set (Fig. 5.5). The possible reason is that the

molecules generated by the Graph Transformer contains some uncommon rings when the

model dealt with long-distance dependencies. In addition, because of more complicated

data structure and more parameters in the model, the synthesizability performance of Graph

Transformer was not considered high enough when being trained on the small dataset (e.g.

the LIGAND set). It is also worth noticing that there still was a small fraction of generated

DrugEx v3

131

molecules that did not contain the given scaffolds. This is caused by the kekulization

problem. For example, a scaffold ‘CCC’ can be grown into ‘C1=C(C)C=CC=C1’. After

being sanitized, it can be transformed into ‘c1c(C)cccc1’. In this process one single bond

in the scaffold is changed to an aromatic bond, which causes the mismatch between the

scaffold and the molecule. Currently our algorithm cannot solve this problem because if

the aromatic bond is taken into consideration, the valence of aromatic atoms is difficult to

be calculated accurately. This would lead to the generation of invalid molecules. Therefore,

there is no aromatic bond provided in the vocabulary and all of the aromatic rings are

inferred automatically through the molecule sanitization method in RDKit.

5.3.3. Policy gradient

Because the Graph Transformer generates molecules accurately and fast it was chosen as

the agent in the RL framework. Two objectives were tested in the training process of this

work. The first one was affinity towards A2AAR, which is predicted by the random forest-

based regression model from DrugEx v2; the second one was the QED score calculated

with RDKit to measure how similar the generated molecule is to known approved drugs.

With the policy gradient method as the reinforcement learning framework two cases were

tested. On the one hand, predicted affinity for A2AAR was considered without the QED

score. On the other hand, both objectives were used to optimize the model with Pareto

ranking. In the first case 86.1% of the generated molecules were predicted active, while the

percentage of predicted active molecules in the second case was 74.6%. Although the

generator generated more active ligands without the QED score constraint most of them

are not drug-like as they always have a molecular weight larger than 500Da. However,

when we checked the chemical space represented by tSNE with ECFP6 fingerprints the

overlap region between generated molecules and ligands in the training set was not

complete implying that they fall out of the applicability domain of the regression model.

In the version of v2, we provided an exploration strategy which simulated the idea of

evolutionary algorithms such as crossover and mutation manipulations [24]. However,

when coupled to the Graph Transformer there were some difficulties and we had to give up

this strategy. Firstly, the mutation strategy did not improve with different mutation rates. A

Chapter 5

132

possible reason is that before being generated part the molecule was fixed with a given

scaffold, counteracting the effect of mutation caused by the mutation net. Secondly, the

crossover strategy is computationally very expensive in this context. This strategy needs

the convergence of model training and iteratively updates the parameters in the agent. With

multiple iterations, it takes a long period of time beyond the computational resources we

can currently access. As a result, we updated the exploration strategy as mentioned in the

Methods section with six different exploration rates: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].

Table 5.2: the performance of the Graph Transformer with different exploration rates in the RL

framework.

Changes to the exploration rate do not influence accuracy and have a low effect on diversity. However

desirability (finding active ligands) and uniqueness can be influenced significantly. Empirically

determining an optimal value for a given chemical space is recommended.

After training of the models, the scaffolds in the test set were input 10 times to generate

molecules. The results for accuracy, desirability, uniqueness, and diversity with different

exploration rates are shown in Table 5.2. With a low ε the model generates more desired

molecules, but the uniqueness of the generated molecules can be improved. At ε = 0.3 the

model generated the highest percentage of unique desired molecules (56.8%). Diversity

was always larger than 0.84 and the model achieved the largest value (0.88) with ε = 0.0 or

ε = 0.2. The chemical space represented by tSNE with ECFP6 fingerprints confirms that

our exploration strategy produces a set of generated molecules completely covering the

region occupied by the LIGAND set (Fig. 5.6).

ε Accuracy Desirability Uniqueness Diversity

0.0 99.7% 74.6% 60.7% 0.879

0.1 99.7% 66.8% 75.0% 0.842

0.2 99.8% 61.6% 80.2% 0.879

0.3 99.7% 56.8% 89.8% 0.874

0.4 99.7% 54.8% 88.8% 0.859

0.5 99.7% 46.8% 88.5% 0.875

DrugEx v3

133

Fig. 5.6: The chemical space of generated molecules by the Graph Transformer trained with different

exploration rates in the RL framework. The chemical space was represented by t-SNE on ECFP6

fingerprints.

Chapter 5

134

5.3.4. Generated molecules

In the chemical space for antagonists of A2AAR, furan, triazine, aminotriazole, and purine

derivatives such as xanthine and azapurine are common fragments. The Graph Transformer

model produced active ligands for A2AAR (inferred from the predictors) with different

combinations of these fragments as the scaffolds. Taking these molecules generated by the

Graph Transformer as an example, we filtered out the molecules with potentially reactive

groups (such as aldehydes) and uncommon ring systems and listed 30 desired molecules as

putative A2AAR ligands/antagonists (Fig. 5.7). For each scaffold, five molecules were

selected and assigned in the same row. These molecules are considered a valid starting

point for further considerations and work (e.g. molecular docking or simulation).

Fig. 5.7: Sample of generated molecules with the Graph Transformer with different scaffolds.

These scaffolds include: furan, triazine, aminotriazole, xanthine and azapurine. The generated molecules

based on the same scaffolds are aligned in the same row.

DrugEx v3

135

5.4. Conclusion and Future Perspective

In this study, DrugEx was updated with the ability to design novel molecules based on the

scaffolds containing multiple fragments as input. In this version (v3), a new positional

encoding scheme for atoms and bonds was proposed to make the Transformer model deal

with a molecular graph representation. With one model multiple fragments in the scaffold

can be grown at the same time and connected to generate a new molecule. In addition,

chemical rules on valence are enforced at each step of the process of molecule generation

to ensure that all generated molecules are valid. This is impossible for SMILES-based

generation, as SMILES-based molecules are constrained by grammar that allows a 2D

topology to be represented in a sequential way. With multi-objective reinforcement learning

the model generates drug-like ligands, in our case for the A2AAR target.

In future work, the Graph Transformer will be extended to include other information as

input to design drugs conditionally. For example, proteochemometric modelling (PCM)

can take information for both ligands and targets as input to predict the affinity of their

interactions, which allows promiscuous (useful for e.g., viral mutants) or selective (useful

for e.g., kinase inhibitors) properties [33]. The Transformer can then be used to construct

inverse PCM models which take the protein information as input (e.g. sequences, structures

or descriptors) to design active ligands for a given protein target without known ligands.

Moreover, the Transformer can also be used for lead optimization. For instance, the input

can be a “hit” already, generating “optimized” ligands, or a “lead” with side effects to

produce ligands with a better ADME/tox profile.

Chapter 5

136

Declarations

Availability of data and materials

The data used in this study is publicly available ChEMBL data, the algorithm published in

this manuscript is made available at https://github.com/XuhanLiu/DrugEx.

Authors’ Contributions

XL and GJPvW conceived the study and performed the experimental work and analysis.

KY, APIJ nd HWTvV provided feedback and critical input. All authors read, commented

on and approved the final manuscript.

Acknowledgements

XL thanks Chinese Scholarship Council (CSC) for funding, GJPvW thanks the Dutch

Research Council and Stichting Technologie Wetenschappen (STW) for financial support

(STW-Veni #14410). Thanks go to Dr. Xue Yang for verifying Table S1 and Dr. Anthe

Janssen checking the convergence of tSNE. We also acknowledge Bert Beerkens for

providing the common scaffolds used to generate molecules as an example.

Competing Interests

The authors declare that they have no competing interests

https://github.com/XuhanLiu/DrugEx

DrugEx v3

137

References

1. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space

based on GDB-17 data. J Comput Aided Mol Des 27 (8):675-679. doi:10.1007/s10822-013-9672-4

2. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons

learned. Nat Rev Drug Discov 6 (3):211-219. doi:10.1038/nrd2220

3. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR,

Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) A family of phosphodiesterase

inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23

(2):201-207. doi:10.1038/nbt1059

4. Bian Y, Xie XS (2018) Computational Fragment-Based Drug Design: Current Trends, Strategies,

and Applications. AAPS J 20 (3):59. doi:10.1208/s12248-018-0216-7

5. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J

Pharmacol 162 (6):1239-1249. doi:10.1111/j.1476-5381.2010.01127.x

6. Fredholm BB (2010) Adenosine receptors as drug targets. Exp Cell Res 316 (8):1284-1288.

doi:10.1016/j.yexcr.2010.02.004

7. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the

challenges? Nat Rev Drug Discov 12 (4):265-286. doi:10.1038/nrd3955

8. Moro S, Gao ZG, Jacobson KA, Spalluto G (2006) Progress in the pursuit of therapeutic adenosine

receptor antagonists. Med Res Rev 26 (2):131-159. doi:10.1002/med.20048

9. Jespers W, Oliveira A, Prieto-Diaz R, Majellaro M, Aqvist J, Sotelo E, Gutierrez-de-Teran H (2017)

Structure-Based Design of Potent and Selective Ligands at the Four Adenosine Receptors.

Molecules 22 (11). doi:10.3390/molecules22111945

10. Sheng C, Zhang W (2013) Fragment informatics and computational fragment-based drug design: an

overview and update. Med Res Rev 33 (3):554-598. doi:10.1002/med.21255

11. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521 (7553):436-444.

doi:10.1038/nature14539

12. Liu X, IJzerman AP, van Westen GJP (2021) Computational Approaches for De Novo Drug Design:

Past, Present, and Future. Methods Mol Biol 2190:139-165. doi:10.1007/978-1-0716-0826-5_6

13. Gomez-Bombarelli R, Wei JN, Duvenaud D, Hernandez-Lobato JM, Sanchez-Lengeling B,

Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic

Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent Sci 4

(2):268-276. doi:10.1021/acscentsci.7b00572

14. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating Focused Molecule Libraries for

Drug Discovery with Recurrent Neural Networks. ACS Cent Sci 4 (1):120-131.

doi:10.1021/acscentsci.7b00512

15. Benjamin S-L, Carlos O, Gabriel L. G, Alan A-G (2017) Optimizing distributions over molecular

space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry

(ORGANIC). doi:10.26434/chemrxiv.5309668.v3

16. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo design through deep

reinforcement learning. Journal of cheminformatics 9 (1):48. doi:10.1186/s13321-017-0235-x

17. Blaschke T, Arus-Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, Papadopoulos K, Patronov

A (2020) REINVENT 2.0: An AI Tool for De Novo Drug Design. Journal of chemical information

and modeling 60 (12):5918-5922. doi:10.1021/acs.jcim.0c00915

18. Lim J, Hwang SY, Moon S, Kim S, Kim WY (2019) Scaffold-based molecular design with a graph

generative model. Chem Sci 11 (4):1153-1164. doi:10.1039/c9sc04503a

Chapter 5

138

19. Li Y, Hu J, Wang Y, Zhou J, Zhang L, Liu Z (2020) DeepScaffold: A Comprehensive Tool for

Scaffold-Based De Novo Drug Discovery Using Deep Learning. Journal of chemical information

and modeling 60 (1):77-91. doi:10.1021/acs.jcim.9b00727

20. Arus-Pous J, Patronov A, Bjerrum EJ, Tyrchan C, Reymond JL, Chen H, Engkvist O (2020)

SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of

cheminformatics 12 (1):38. doi:10.1186/s13321-020-00441-8

21. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin IJae-p

(2017) Attention Is All You Need.arXiv:1706.03762

22. Yang Y, Zheng S, Su S, Zhao C, Xu J, Chen H (2020) SyntaLinker: automatic fragment linking with

deep conditional transformer neural networks. Chem Sci 11 (31):8312-8322.

doi:10.1039/d0sc03126g

23. Liu X, Ye K, van Vlijmen HWT, IJzerman AP, van Westen GJP (2019) An exploration strategy

improves the diversity of de novo ligands using deep reinforcement learning: a case for the

adenosine A2A receptor. Journal of cheminformatics 11 (1):35. doi:10.1186/s13321-019-0355-6

24. Liu X, Ye K, van Vlijmen HWT, Emmerich M, IJzerman AP, van Westen GJP (2021) DrugEx v2:

de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in

polypharmacology. Journal of cheminformatics 13 (1):85. doi: 10.1186/s13321-021-00561-9

25. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S,

Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database

for drug discovery. Nucleic Acids Res 40 (Database issue):D1100-1107. doi:10.1093/nar/gkr777

26. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and using 'drug-

like' chemical fragment spaces. ChemMedChem 3 (10):1503-1507. doi:10.1002/cmdc.200800178

27. PyTorch. https://pytorch.org/.

28. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M,

Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby NJae-p (2020) An Image is Worth 16x16

Words: Transformers for Image Recognition at Scale.arXiv:2010.11929

29. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical

beauty of drugs. Nat Chem 4 (2):90-98. doi:10.1038/nchem.1243

30. Scikit-Learn: machine learning in Python. http://www.scikit-learn.org/.

31. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules

based on molecular complexity and fragment contributions. Journal of cheminformatics 1 (1):8.

doi:10.1186/1758-2946-1-8

32. Solow AR, Polasky S (1994) Measuring biological diversity. Environmental and Ecological

Statistics 1 (2):95-103. doi:10.1007/BF02426650

33. van Westen GJ, Wegner JK, Geluykens P, Kwanten L, Vereycken I, Peeters A, Ijzerman AP, van

Vlijmen HW, Bender A (2011) Which compound to select in lead optimization? Prospectively

validated proteochemometric models guide preclinical development. PLoS One 6 (11):e27518.

doi:10.1371/journal.pone.0027518

DrugEx v3

139

Table S5.1: Atoms in vocabulary for graph-based molecule generation.

Symbol Valence Charge Number Word

O 2 0 8 2O

O+ 3 1 8 3O+

O- 1 -1 8 1O-

C 4 0 6 4C

C+ 3 1 6 3C+

C- 3 -1 6 3C-

N 3 0 7 3N

N+ 4 1 7 4N+

N- 2 -1 7 2N-

Cl 1 0 17 1Cl

S 2 0 16 2S

S 6 0 16 6S

S 4 0 16 4S

S+ 3 1 16 3S+

S+ 5 1 16 5S+

S- 1 -1 16 1S-

F 1 0 9 1F

I 1 0 53 1I

I 5 0 53 5I

I+ 2 1 53 2I+

Br 1 0 35 1Br

P 5 0 15 5P

P 3 0 15 3P

P+ 4 1 15 4P+

Se 2 0 34 2Se

Se 6 0 34 6Se

Se 4 0 34 4Se

Se+ 3 1 34 3Se+

Si 4 0 14 4Si

B 3 0 5 3B

B- 4 -1 5 4B-

As 5 0 33 5As

As 3 0 33 3As

As+ 4 1 33 4As+

Te 2 0 52 2Te

Te 4 0 52 4Te

Te+ 3 1 52 3Te+

* 0 0 0 *

The column of ‘Symbol’ is the symbol of the atom and its charge; the column of ‘Valence’ is the value

of valence of the state of each chemical element; the ‘Number’ column stands for the index of each

element in the periodic table, the last row is the unique word for each state of these elements, a

combination of its valence and symbol.

Chapter 5

140

Table S5.2: The pseudo code for encoding the graph representation of molecules in DrugEx v3

Algorithm encoding:

 Input:

mol: structure of the kekulized molecule

subs: structure of the scaffolds

vocab: vocabulary of tokens which is consisted of graph matrix

Output:

 matrix: the n x 5 matrix to represents the molecular graph.

Ensure the atom of the subs are put at the start in the molecule

mol ← RANK_ATOM_BY_SUB(mol, subs)

sub_atoms ← GET_ATOMS (subs)

sub_bonds ← GET_BONDS (subs)

mol_atoms ← GET_ATOMS (mol)

frag, grow, link ← [('GO', 0, 0, 0, 1)], [], [(0, 0, 0, 0, 0)]

For atom in mol_atoms:

 # The bonds which connect to the atom having the index before this atom

bonds ← GET_LEFT_BONDS (mol, atom)

For bond in bonds:

 tk_bond ← GET_TOKEN (vocab, bond)

 other ← GET_OTHER_ATOM(mol, atom, bond)

 If IS_FIRST (bonds, bond):

 tk_atom ← GET_TOKEN (vocab, atom)

 Else:

 tk_atom ← GET_TOKEN (vocab, None)

 # The index of the scaffold in which the current atom locates

Its value starts from 1. If it is not in the scaffold, it will be 0

 scf ← GET_FRAG_ID (subs, atom)

 column ← (tk_atom, tk_bond, GET_INDEX (other), GET_INDEX (atom), scf)

If other in sub_atoms and atom in sub_atoms and bond not in sub_bonds:

 Insert column to link

 Else if bond in sub_bonds:

 Insert column to frag

 Else:

 Insert column to grow

 End

End

Insert ('EOS', 0, 0, 0, 0) to grow

matrix ← CONCATENATE_BY_COLUMN (frag, grow, link)

Return matrix

DrugEx v3

141

Table S5.3: The pseudo code for decoding the graph representation of molecules in DrugEx v3

Algorithm decoding:

 Input:

 matrix: the n x 5 matrix to represents the molecular graph

vocab: vocabulary of tokens which is consisted of graph matrix

Output:

mol: structure of the kekulized molecule

subs: structure of the scaffolds

mol ← new MOL ()

subs ← new SUB ()

For atom, bond, prev, curr, scf in matrix:

 If atom == 'EOS' or atom == 'GO':

continue

 If atom != '*':

 a ← new Atom (GET_ATOM_SYMBOL(vocab, atom))

 SET_FORMAL_CHARGE (a, GET_CHARGE(vocab, atom))

 ADD_ATOM (mol, a)

 If scf != 0: ADD_ATOM (subs, a)

 If bond != 0:

 b ← new Bond (bond)

 ADD_BOND(mol, b)

 If frag != 0:

ADD_BOND (subs, b)

End

automatically determine the aromatic rings

mol ← SANITIZE (mol)

subs ← SANITIZE (subs)

Return mol, subs

Chapter 5

142

