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Abstract 
 

Due to the large drug-like chemical space available to search for feasible drug-like 

molecules, rational drug design often starts from the specific scaffold to which side 

chains/substituents are added or modified. With the rapid growth of the application of deep 

learning in drug discovery, a variety of effective approaches have been developed for de 

novo drug design. In previous work, we proposed a method named DrugEx, which can be 

applied in polypharmacology based on multi-objective deep reinforcement learning. 

However, the previous version is trained under fixed objectives similar to other known 

methods and does not allow users to input any prior information. In order to improve the 

general applicability, we updated DrugEx to design drug molecules based on the scaffold 

which can contain multiple fragments provided by users. In this work, the Transformer 

model was employed to generate the structure of molecules. The Transformer is a multi-

head self-attention deep learning model containing an encoder for receiving scaffolds as 

input and a decoder generating molecules as output. In order to deal with the graph 

representation of molecules, we proposed a novel positional encoding for each atom and 

bond based on an adjacency matrix to extend the architecture of the Transformer. Each 

molecule was generated by growing and connecting procedures for the fragments in the 

given scaffold that were unified into one model. Moreover, we trained this generator under 

a reinforcement learning framework to increase the number of desired ligands. As a proof 

of concept, our proposed method was applied to design ligands for the adenosine A2A 

receptor (A2AAR) and compared it with SMILES-based methods. The results demonstrated 

its effectiveness in that 100% of generated molecules are valid and most of them had high 

predicted affinity value towards A2AAR with given scaffold.  

 

Keywords: deep learning, reinforcement learning, policy gradient, drug design, 

Transformer, multi-objective optimization 
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5.1. Introduction 

Due to the large drug-like chemical space (i.e. estimated at 1033 - 1060 organic molecules) 

[1], it is impossible to screen every corner of it to discover optimal drug candidates, 

although high-throughput screening (HTS) technology has been improved significantly in 

recent years [2]. Commonly, the specific scaffolds derived from endogenous substances are 

taken as a starting point to design analogs after side chains/substituents are added or 

modified [3]. These fragments are used as ‘building blocks’ to develop proper drug leads 

with combinatorial chemistry such as growing, linking and merging [4]. After a promising 

drug lead has been discovered, it is further optimized by modifying side chains to improve 

potency and selectivity which in turn can improve safety and tolerability [5]. 

 

The adenosine receptors (ARs) belong to a class of rhodopsin-like GPCRs including four 

subtypes (A1, A2A, A2B and A3). Each of them has a unique pharmacological profile, tissue 

distribution, and effector coupling [6,7]. ARs are ubiquitously distributed throughout the 

human tissues, and involved in many biological processes and diseases [8]. Because 

adenosine is the endogenous agonist of ARs, a number of known ligands of the ARs are 

adenosine analogs and have a common scaffold. Examples include purines, xanthines, 

triazines, pyrimidines, and the inclusion of a ribose moiety [9]. In scaffold-based rational 

drug design, it is generally accepted that a chemical space consisting of 109 diverse 

molecules can be sampled with only 103 fragments [10]. 

 

Based on rapid developments in the last decade, deep learning has achieved a breakthrough 

in visual recognition, natural language processing, and other data-rich fields [11]. In drug 

discovery, deep learning methods have also been extensively used for drug de novo design 

[12]. For distribution-directed issues, Gomez-Bombarelli et al. implemented variational 

autoencoders (VAE) to map molecules into a latent space where each point can also be 

decoded into unique molecules inversely [13]. They used recurrent neural networks (RNNs) 

to successfully learn SMILES (simplified molecular-input line-entry system) grammar and 

construct a distribution of molecular libraries [14]. For goal-directed issues, Sanchez-

Lengeling et al. combined reinforcement learning and generative adversarial networks 
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(GANs) to develop an approach named ORGANIC to design active compounds toward 

given targets [15]. Olivecrona et al. proposed the REINVENT algorithm which updated the 

reinforcement learning with a Bayesian approach and combined RNNs to generate 

SMILES-based desired molecules [16,17]. Moreover, Lim et al. proposed a method for 

scaffold-based molecular design with a graph generative model [18]. Li et al. also used 

deep learning to develop a tool named DeepScaffold for this issue [19]. Arús‑Pous et al. 

employed RNNs to develop a SMILES-based scaffold decorator for de novo drug design 

[20]. Yang et al. used the Transformer model [21] to develop a tool named SyntaLinker for 

automatic fragment linking [22].  

 

In previous studies, we investigated the performance of RNNs and proposed a method 

named DrugEx by integrating reinforcement learning to balance distribution-directed and 

goal-directed tasks [23]. Furthermore, we updated it with multi-objective reinforcement 

learning and applied it in polypharmacology [24]. However, the well-trained model cannot 

receive any input data from users and only reflect the distribution of the desired molecules 

with fixed conditions. If the objectives are changed, the model needs to be trained again. 

In this work, we compared different end-to-end deep learning methods and updated the 

DrugEx model to allow users to provide prior information, such as fragments that should 

occur in the generated molecules. Based on the extensive experience in our group with the 

A2AAR, we continue to take this target as an example to evaluate the performance of our 

proposed methods. In the following context, we will discuss the case of scaffold-

constrained drug design, i.e. the model takes the scaffolds containing multiple fragments 

as input to generate desired molecules which also can be predicted to be active to A2AAR. 

All python code for this study is freely available at http://github.com/XuhanLiu/DrugEx.  

 

5.2. Materials and methods 

5.2.1. Data source 

Chemical compounds were downloaded from ChEMBL using a SMILES notation (version 

27) [25]. After data preprocessing implemented by RDKit, which included neutralizing 

charges, removing metals and small fragments , ~1.7 million molecules remained for model 
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pre-training. These data were reused from the work about DrugEx v2 (ChEMBL set) [24]. 

In addition, 10,828 ligands and bioactivity data were extracted from ChEMBL to construct 

the LIGAND set containing structures and activities from bioassays towards four human 

adenosine receptors. The LIGAND set was used for fine-tuning the generative model. 

Molecules with annotated A2AAR activity were used to train a prediction model. If multiple 

measurements for the same ligands existed, the average pChEMBL value (pX, including 

pKi, pKd, pIC50 or pEC50) was calculated and duplicate items were removed. In order to 

judge if the molecule is desired or not, the threshold of affinity was defined as pX = 6.5 to 

predict if the compound was active (>= 6.5) or inactive (< 6.5).  

 

 

Fig. 5.1: scaffold-molecule pair dataset construction. (A) Each molecule in the dataset is decomposed 

hierarchically into a series of fragments with the BRICS algorithm. (B) Subsequently data pairs between 

input and output are created. Combinations of leaf fragments form the scaffold as input, the whole 

molecule becomes the output. Each token in SMILES sequences is separated by different colors. (C) 

After conversion to the adjacency matrix, each molecule was represented as a graph matrix. The graph 

matrix contains five rows, standing for the atom, bond, previous and current positions and fragment 

index. The columns are composed with three parts to store the information of scaffolds, growing section 

and linking section. (D) All of tokens are collected to construct the vocabularies for SMILES-based and 

graph-based generators, respectively. (E) An example of the input and output matrices for the SMILES 

representation of scaffolds and molecules  

 

Furthermore, the dataset was constructed with an input-output pair for each data point. 

Each molecule was decomposed into a batch of fragments with BRICS methods [26] in 

RDKit (Fig. 5.1A). If the molecule contained more than four leaf fragments, the smaller 
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fragments were ignored and a maximum of four larger fragments were reserved to be 

randomly combined at one time. Here, the scaffold was defined as the combination of 

different fragments which can be either continuously (linked) or discretely (separated). 

Their SMILES sequences were joined with ‘.’ as input data which were paired with the full 

SMILES of molecules. The resulting fragments-molecule pair forms the output data (Fig. 

5.1B). After completion of constructing the data pairs, the set was split into a training set 

and test set with the ratio 9:1 based on the input scaffolds. The resulting ChEMBL set 

contained 10,418,681 and 1,083,271 pairs for training and test set, respectively. The 

LIGAND set contained 61,413 pairs in the training set and 7,525 pairs in the test set.  

 

5.2.2. Molecular representations 

In this study we tested two different molecular representations: SMILES and graph. For 

SMILES representations each scaffold-molecule pair was transformed into two SMILES 

sequences which were then split into different tokens to denote atoms, bonds, or other 

tokens for grammar control (e.g. parentheses or numbers). All of these tokens were put 

together to form a vocabulary which recorded the index of each token (Fig. 1D). Here, we 

used the same conversion procedure and vocabulary as in DrugEx v2. In addition, we put 

a start token (GO) at the beginning of a batch of data as input and an end token (END) at 

the end of the same batch of data as output. After sequence padding with a blank token at 

empty positions, each SMILES sequence was rewritten as a series of token indices with a 

fixed length. Subsequently all of these sequences for both scaffolds and molecules were 

concatenated to construct the input and output matrix (Fig. 1E).  

 

For the graph representation each molecule was represented as a five-row matrix, in which 

the first two rows stand for the index of the atom and bond types, respectively. The third 

and fourth rows represent the position of previous and current atoms connected by a bond 

(Fig. 1C). The columns of this matrix contain three sections to store scaffolds, growing 

parts, and linking parts. The scaffold section began with a start token in the first row and 

the last row was labelled the index of each scaffold starting from one. The fragments in the 

given scaffold for each molecule are put in the beginning of the matrix, followed by the 

growing part for the scaffold, and the last part is the connection bond between these 
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growing fragments with single bonds. For the growing part and linking sections, the last 

row was always zero and these two sections were separated by the column of end token. It 

is worth noticing that the last row was not directly involved in the training process. The 

vocabulary for graph representation was different from the SMILES format and it contains 

38 atom types (Table S5.1) and four bond types (single, double, triple bonds and none). If 

the atom is the first occurrence in a given scaffold the type of the bond will be empty 

(indexed as 0 with token ‘*’). In addition, if the atom at the current position has been 

recorded in the matrix, the type of the atom will be empty. In order to grasp more details 

of the graph representation, we also provided the pseudocode for encoding (Table S5.2) 

and decoding (Table S5.3). 

 

5.2.3. End-to-end deep learning 

In this work, we compared three different sequential end-to-end DL architectures to deal 

with different molecular representations of either graph or SMILES (Fig. 5.2). These 

methods included: (A) Graph Transformer, (B) LSTM-based encoder-decoder model 

(LSTM-BASE), (C) LSTM-based encoder-decoder model with attention mechanisms 

(LSTM+ATTN) and (D) Sequential Transformer model. All of these DL models were 

constructed with PyTorch [27]. 

 

For SMILES representation three different models were constructed as follows (Fig. 5.2, 

right). The encoder and decoder in the LSTM-BASE model (Fig. 5.2B) had the same 

architectures, containing one embedding layer, three recurrent layers and one output layers 

(as we did for DrugEx v2) [24]. The number of neurons in the embedding and hidden layers 

were 128 and 512, respectively. The hidden states of the recurrent layer in the encoder are 

directly sent to the decoder as the initial states. On the basis of LSTM-BASE model, an 

attention layer was added between the encoder and decoder to form the LSTM+ATTN 

model (Fig. 5.2C). The attention layer calculates the weight for each position of the input 

sequence to determine which position the decoder needs to focus on during the decoding 

process. For each step, the weighted sums of the output calculated by the encoder are 

combined with the output of the embedding layer in the decoder to form the input for the 
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recurrent layers. The output of the recurrent layers is dealt with by the output layer to 

generate the probability distribution of tokens in the vocabulary in both of these two models.  

 

 

 

Fig. 5.2: Architectures of four different end-to-end deep learning models: (A) The Graph 

Transformer; (B) The LSTM-based encoder-decoder model (LSTM-BASE); (C) The LSTM-based 

encoder-decoder model with attention mechanisms (LSTM+ATTN); (D) The sequential Transformer 

model. The Graph Transformer accepts a graph representation as input and SMILES sequences are taken 

as input for the other three models. 

 

The sequential Transformer has a distinct architecture compared to the LSTM+ATTN 

model although it also exploits an attention mechanism. For the embedding layers “position 

encodings” are added into the typical embedding structure as the first layer of the encoder 

and decoder. This ensures that the model no longer needs to encode the input sequence 

token by token but can process all tokens in parallel. For the position embedding, sine and 

cosine functions are used to define its formula as follows: 

𝑃𝐸(𝑝,2𝑖) = sin(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄ ) 

𝑃𝐸(𝑝,2𝑖+1) = cos(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄ ) 

where PE(p, i) is the ith dimension of the position encoding at position p. It has the same 

dimension dm = 512 as the typical embedding vectors so that the two can be summed.  

 

In addition, self-attention is used in the hidden layers to cope with long-range dependencies. 
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For each hidden layer in the encoder, it employs a residual connection around a multi-head 

self-attention sublayer and feed-forward sublayer followed by layer normalization. Besides 

these two sublayers in the decoder a third sublayer with multi-head attention is inserted to 

capture the information from output of the encoder.  

 

This self-attention mechanism is defined as the scaled dot-product attention with three 

vectors: queries (Q), keys (K) and values (V), of which the dimensions are dq, dk, dv, 

respectively. The output matrix is computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊺

√𝑑𝑘
)𝑉 

Instead of a single attention function, the Transformer adopts multi-head attention to 

combine information from different representations at different positions which is defined 

as: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 

where h is the number of heads. For each head, the attention values were calculated by 

different and learned linear projections with Q, K and V as follows:  

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

where WO, WQ, WK and WV are metrics of learned weights and we set h = 8 as the number 

of heads and dk = dv = 64 in this work.  

 

For the graph representation of molecules, we updated the sequential Transformer structure 

to propose a Graph Transformer (Fig. 5.2A). Similar to the sequential Transformer the 

Graph Transformer also requires the encodings of both word and position as the input. For 

the input word, the atom and bond cannot be processed simultaneously; therefore we 

combined the index of atom and bond together and defined it as follows: 

𝐼 = 𝐼𝑎𝑡𝑜𝑚 × 4 + 𝐼𝑏𝑜𝑛𝑑 

meaning the index of the input word (I) calculating word vectors are calculated from atom 

index (Iatom) multiplied by four (the total number of bond types defined) and add the bond 

index (Ibond). Similarly, the position of each step cannot be used to calculate the position 

encoding directly. Faced with more complex data structure than sequential data, 
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Dosovitskiy et al. proposed a new positional encoding scheme to define the position for 

each patch in image data for image recognition [28]. Inspired by their work the position 

encoding at each step was defined as: 

𝑃 = 𝑃𝑐𝑢𝑟𝑟 × 𝐿𝑚𝑎𝑥 + 𝑃𝑝𝑟𝑒𝑣 

here the input position (P) for calculating the position encoding was the current position 

(Pcurr) multiplied by the max length (Lmax) and adding the previous position (Pprev), which 

was then processed with the same positional encoding method as with the sequential 

Transformer. For the decoder, the hidden vector from the transformer was taken as the 

starting point to be decoded by a GRU-based recurrent layer; and the probability of atom, 

bond, previous and current position was decoded one by one sequentially.  

 

When graph-based molecules are generated, the chemical valence rule is checked in every 

step. The invalid values of atom and bond types will be masked and an incorrect previous 

and current position will be removed ensuring the validity of all generated molecules. It is 

worth noticing that before being encoded, each molecule will be kekulized, meaning that 

the aromatic rings will be inferred to transform into either single or double bonds. The 

reason for this is that aromatic bonds interfere with the calculation of the valence value for 

each atom.  

 

During the training process of SMILES-based models, the negative log likelihood function 

was used to construct the loss function to guarantee that the token in the output sequence 

had the largest probability to be chosen. In comparison, the loss function used by the Graph 

Transformer model also contains four parts for atom, bond, previous and current sites. And 

the sum of these negative log probability values is minimized to optimize the parameters 

in the model. For this, the Adam algorithm was used for the optimization of the loss 

function. Here, the learning rate was set at 10-4, the batch size was 256, and training steps 

were set to 20 epochs for pre-training and 1,000 epochs for fine-tuning.  

 

5.2.4. Multi-objective optimization 

In order to combine multiple objectives we exploited a Pareto-based ranking algorithm 
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with GPU acceleration as mentioned in DrugEx v2 [24]. Given two solutions m1 and m2 

with their scores (x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 if 

and only if: 

∀ j ∈ {1,… , n}: 𝑥𝑗  ≥ 𝑦𝑗  𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 

otherwise, m1 and m2 are non-dominated with each other. After the dominance between all 

pair of solutions being determined, the non-dominated scoring algorithm is exploited to 

obtain a rank of Pareto frontiers which consist of a set of solutions. After obtaining frontiers 

between dominant solutions molecules were ranked based on the average Tanimoto-

distance with other molecules instead of crowding distance in the same frontier. 

Subsequently molecules with smaller distances were ranked on the top. The final reward 

R* is defined as: 

𝑅∗ =

{
 

  0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 
𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
,                   𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 

here k is the index of the solution in the Pareto rank and rewards of undesired and desired 

solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively.  

 

In this work, we took two objectives into consideration: 1) QED score [29] as implemented 

by RDKit (from 0 to 1) to evaluate the drug-likeness of each molecule (a larger value means 

more drug-like) ; 2) an affinity score towards A2AAR which was implemented by a random 

forest regression model with Scikit-Learn [30] like in DrugEx v2. The input descriptors 

consisted of 2048D ECFP6 fingerprints and 19D physico-chemical descriptors 

(PhysChem). PhysChem included: molecular weight, logP, number of H bond acceptors 

and donors, number of rotatable bonds, number of amide bonds, number of bridge head 

atoms, number of hetero atoms, number of spiro atoms, number of heavy atoms, the 

fraction of SP3 hybridized carbon atoms, number of aliphatic rings, number of saturated 

rings, number of total rings, number of aromatic rings, number of heterocycles, number of 

valence electrons, polar surface area, and Wildman-Crippen MR value. Again it was 

determined if generated molecules are desired based on the Affinity score (larger than the 

threshold = 6.5). In addition, the SA score was also exploited to evaluate the 

synthesizability of generated molecules, which is also calculated by RDKit [31].  
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5.2.5. Reinforcement learning  

In this work we constructed a reinforcement learning framework based on the interplay 

between the Graph Transformer (agent) and the two scoring functions (environment). A 

policy gradient method was implemented to train the reinforcement learning model, the 

objective function is designated as follows: 

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

 

here for each step t during the generation process, the generator (G) determines the 

probability of each token (yt) from the vocabulary to be chosen based on the generated 

sequence in previous steps (y1:t-1). In the sequence-based models yt can only be a token in 

the vocabulary to construct SMILES while it can be different type of atoms or bonds or the 

previous or current position in the graph-based model. The parameters in is objective 

function are updated by employing a policy gradient based on the expected end reward (R*) 

received from the predictor. By maximizing this function the parameter 𝜃 in the generator 

can be optimized to ensure that the generator designs desired molecules which obtain a 

high reward score. 

 

In order to improve the diversity and reliability of generated molecules, we implemented 

our exploration strategy for molecule generation during the training loops. In the training 

loop our generator is trained to produce the chemical space as defined by the target of 

interest. In this strategy there are two networks with the same architectures, an exploitation 

net (Gθ) and an exploration net (Gφ). Gφ did not need to be trained and its parameters were 

always fixed and it is based on the general drug-like chemical space for diverse targets 

obtained from ChEMBL. The parameters in Gθ on the other hand were updated for each 

epoch based on the policy gradient. Again an exploring rate (ε) was defined with a range 

of [0.0, 1.0] to determine the percentage of scaffolds being randomly selected as input by 

Gφ to generate molecules. Conversely Gθ generated molecules with other input scaffolds. 

After the training process was finished Gφ was removed and only Gθ was left as the final 

model for molecule generation. 
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5.2.6. Performance evaluation 

In order to evaluate the performance of the generators, four coefficients were calculated 

from the population of generated molecules (validity, accuracy, desirability, and uniqueness) 

which are defined as: 

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Accuracy =
𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑁𝑡𝑜𝑡𝑎𝑙

 

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 

here Ntotal is the total number of molecules, Nvalid is the number of molecules parsed as valid 

SMILES sequences, Naccurate is the number of molecules that contained given scaffolds, 

Ndesired is the number of desired molecules that reach all required objectives, and Nunique is 

the number of molecules which are different from others in the dataset .  

 

To measure molecular diversity, we adopted the Solow Polasky measurement as in DrugEx 

v2 [24]. This approach was proposed by Solow and Polasky in 1994 to estimate the 

diversity of a biological population in an eco-system [32]. The formula to calculate 

diversity was redefined to normalize the range of values from [1, m] to (0, m] as follows: 

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆 

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s and 

F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for the distance 

function of each pair of molecule provided as follows: 

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗  

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance with 

ECFP6 fingerprints as follows: 

𝑑𝑖𝑗 = 𝑑(𝑠𝑖 , 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 ,  
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where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the number 

of union fingerprint bits.  

 

  
Fig 5.3: Analysis of some properties of fragments in the ChEMBL set and three LIGAND subsets. 

(A) Violin plot for the distribution of the number of fragments per molecules; (B) Distribution of 

molecular weight of these fragments; (C) Distribution of the similarity of the fragments measured by 

the Tanimoto-similarity with ECFP4 fingerprints; (D) Venn diagram for the intersection of the fragments 

existing in the three subsets of the LIGAND set.  

 

5.3. Results and discussion 

5.3.1. Fragmentation of molecule 

As stated we decomposed each molecule into a series of fragments with the BRICS 

algorithm to construct scaffold-molecule pairs. Within BRICS each organic compound can 
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be split into retrosynthetically interesting chemical substructures with a compiled elaborate 

set of rules. For the ChEMBL and LIGAND sets, we respectively obtained 194,782 and 

2,223 fragments. We further split the LIGAND set into three parts: active ligands 

(LIGAND+, 2,638), inactive ligands (LIGAND-, 2710) and undetermined ligands (LIGAND0, 

5480) based on the pX of bioactivity for A2AAR. The number of fragments in these four 

datasets have a similar distribution and there are approximately five fragments on average 

for each molecule with a 95% confidence between [0, 11] (Fig. 5.3A).  

 

In the LIGAND set the three subsets have a similar molecular weight distribution of the 

fragments (Fig. 5.3B) while the average is 164.3Da, smaller than in the ChEMBL set 

(247.3Da). In order to check the similarity of these fragments we used the Tanimoto 

similarity calculation with ECFP4 fingerprints between each pair of fragments in the same 

dataset. We found that most of them were smaller than 0.5 indicating that they are dissimilar 

to each other (Fig. 5.3C). Especially, the fragments in the LIGAND+ set have the largest 

diversity. Moreover, the distribution of different fragments in these three subsets of the 

LIGAND set are shown in Fig. 5.3D. The molecules in these three subsets have their unique 

fragments and share some common substructures. 

 

5.3.2. Pre-training & fine-tuning 

After finishing the dataset construction, four models were pre-trained on the ChEMBL set 

and fine-tuned on the LIGAND set. Here, these models were benchmarked on a server with 

four GTX1080Ti GPUs. After the training process converged each fragment in the test set 

was presented as input for 10 times to generate molecules. The performance is shown in 

Table 5.1. The training of Transformer models was faster but consumed more 

computational resources than LSTM-based methods. In addition, Transformer methods 

outperformed LSTM-based methods using SMILES. Although the three SMILES-based 

models improved after being fine-tuned they were still outperformed by the Graph 

Transformer because of the advantages of the graph representation. To further check the 

accuracy of generated molecules we also compared the chemical space between the 

generated molecules and the compounds in the training set with three different 
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representations 1) MW ~ logP; 2) PCA with 19D PhysChem descriptors; 3) tSNE with 

2048D ECFP6 fingerprints (Fig. 5.4). The region occupied by molecules generated by the 

Graph Transformer overlapped completely with the compounds in both the ChEMBL and 

LIGAND sets.  

 

Table 5.1: The performance of four different generators for pre-training and fine-tuning processes. 

Methods 
Pre-trained Model Fine-tuned Model 

Time Memory 
Validity Accuracy Validity Accuracy 

Graph 

Transformer 
100% 99.3% 100% 99.2% 453.8 s 14.5 GB 

Sequential 

Transformer 
96.7% 72.0% 99.3% 95.7% 832.3 s 31.7 GB 

LSTM-BASE 93.9% 44.1% 98.7% 91.8% 834.6 s  5.5 GB 

LSTM+ATTN 89.7% 52.2% 96.4% 90.2% 1212.5 s 15.9 GB 

 

The graph representation for molecules has more advantages over the SMILES 

representation when dealing with fragment-based molecule design: 1) Invariance in the 

local scale: During the process of molecule generation multiple fragment in the given 

scaffold can be put into any position in the output matrix without changing the order of 

atoms and bonds in that fragment. 2) Extendibility in the global scale: When the 

fragments in the scaffold are growing or being linked, they can be flexibly appended in the 

end column of the graph matrix while the original data structure does not need changing. 

3) Free of grammar: Unlike in SMILES sequences there is no explicit grammar to 

constrain the generation of molecules, such as the parentheses for branches and the 

numbers for rings in SMILES; 4) Accessibility of chemical rules: For each added atom or 

bond the algorithm can detect if the valence of atoms is valid or not and mask invalid atoms 

or bonds in the vocabulary to guarantee the whole generated matrix can be successfully 

parsed into a molecule. With these advantages the Graph Transformer generates molecules 

faster while using less memory.  
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Fig. 5.4: The chemical space of generated molecules by the Graph Transformer pre-trained on the 

ChEMBL set (A, C and E) and being fine-tuned on the LIGAND set (B, D and F). Chemical space was 

represented by either logP ~ MW (A, B) and first two components in PCA on PhysChem descriptors (C, 

D) and t-SNE on ECFP6 fingerprints (E, F). 
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Fig. 5.5: the distribution of QED score (A, C) and SA score (B, D) of desired ligands in the LIGAND 

set and of molecules generated by four different generators. 

 

However, after examining the QED scores and SA scores, we found that although the 

distribution of QED scores was similar to each other, the synthesizability of the molecules 

generated by the Graph Transformer were no better than the SMILES-based generators, 

especially when fine-tuning on the LIGAND set (Fig. 5.5). The possible reason is that the 

molecules generated by the Graph Transformer contains some uncommon rings when the 

model dealt with long-distance dependencies. In addition, because of more complicated 

data structure and more parameters in the model, the synthesizability performance of Graph 

Transformer was not considered high enough when being trained on the small dataset (e.g. 

the LIGAND set). It is also worth noticing that there still was a small fraction of generated 
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molecules that did not contain the given scaffolds. This is caused by the kekulization 

problem. For example, a scaffold ‘CCC’ can be grown into ‘C1=C(C)C=CC=C1’. After 

being sanitized, it can be transformed into ‘c1c(C)cccc1’. In this process one single bond 

in the scaffold is changed to an aromatic bond, which causes the mismatch between the 

scaffold and the molecule. Currently our algorithm cannot solve this problem because if 

the aromatic bond is taken into consideration, the valence of aromatic atoms is difficult to 

be calculated accurately. This would lead to the generation of invalid molecules. Therefore, 

there is no aromatic bond provided in the vocabulary and all of the aromatic rings are 

inferred automatically through the molecule sanitization method in RDKit.  

 

5.3.3. Policy gradient 

Because the Graph Transformer generates molecules accurately and fast it was chosen as 

the agent in the RL framework. Two objectives were tested in the training process of this 

work. The first one was affinity towards A2AAR, which is predicted by the random forest-

based regression model from DrugEx v2; the second one was the QED score calculated 

with RDKit to measure how similar the generated molecule is to known approved drugs. 

With the policy gradient method as the reinforcement learning framework two cases were 

tested. On the one hand, predicted affinity for A2AAR was considered without the QED 

score. On the other hand, both objectives were used to optimize the model with Pareto 

ranking. In the first case 86.1% of the generated molecules were predicted active, while the 

percentage of predicted active molecules in the second case was 74.6%. Although the 

generator generated more active ligands without the QED score constraint most of them 

are not drug-like as they always have a molecular weight larger than 500Da. However, 

when we checked the chemical space represented by tSNE with ECFP6 fingerprints the 

overlap region between generated molecules and ligands in the training set was not 

complete implying that they fall out of the applicability domain of the regression model.  

 

In the version of v2, we provided an exploration strategy which simulated the idea of 

evolutionary algorithms such as crossover and mutation manipulations [24]. However, 

when coupled to the Graph Transformer there were some difficulties and we had to give up 

this strategy. Firstly, the mutation strategy did not improve with different mutation rates. A 
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possible reason is that before being generated part the molecule was fixed with a given 

scaffold, counteracting the effect of mutation caused by the mutation net. Secondly, the 

crossover strategy is computationally very expensive in this context. This strategy needs 

the convergence of model training and iteratively updates the parameters in the agent. With 

multiple iterations, it takes a long period of time beyond the computational resources we 

can currently access. As a result, we updated the exploration strategy as mentioned in the 

Methods section with six different exploration rates: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].  

 

 

Table 5.2: the performance of the Graph Transformer with different exploration rates in the RL 

framework.  

Changes to the exploration rate do not influence accuracy and have a low effect on diversity. However 

desirability (finding active ligands) and uniqueness can be influenced significantly. Empirically 

determining an optimal value for a given chemical space is recommended. 

 

After training of the models, the scaffolds in the test set were input 10 times to generate 

molecules. The results for accuracy, desirability, uniqueness, and diversity with different 

exploration rates are shown in Table 5.2. With a low ε the model generates more desired 

molecules, but the uniqueness of the generated molecules can be improved. At ε = 0.3 the 

model generated the highest percentage of unique desired molecules (56.8%). Diversity 

was always larger than 0.84 and the model achieved the largest value (0.88) with ε = 0.0 or 

ε = 0.2. The chemical space represented by tSNE with ECFP6 fingerprints confirms that 

our exploration strategy produces a set of generated molecules completely covering the 

region occupied by the LIGAND set (Fig. 5.6).  

 

ε Accuracy Desirability Uniqueness Diversity 

0.0 99.7% 74.6% 60.7% 0.879 

0.1 99.7% 66.8% 75.0% 0.842 

0.2 99.8% 61.6% 80.2% 0.879 

0.3 99.7% 56.8% 89.8% 0.874 

0.4 99.7% 54.8% 88.8% 0.859 

0.5 99.7% 46.8% 88.5% 0.875 
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Fig. 5.6: The chemical space of generated molecules by the Graph Transformer trained with different 

exploration rates in the RL framework. The chemical space was represented by t-SNE on ECFP6 

fingerprints. 
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5.3.4. Generated molecules 

In the chemical space for antagonists of A2AAR, furan, triazine, aminotriazole, and purine 

derivatives such as xanthine and azapurine are common fragments. The Graph Transformer 

model produced active ligands for A2AAR (inferred from the predictors) with different 

combinations of these fragments as the scaffolds. Taking these molecules generated by the 

Graph Transformer as an example, we filtered out the molecules with potentially reactive 

groups (such as aldehydes) and uncommon ring systems and listed 30 desired molecules as 

putative A2AAR ligands/antagonists (Fig. 5.7). For each scaffold, five molecules were 

selected and assigned in the same row. These molecules are considered a valid starting 

point for further considerations and work (e.g. molecular docking or simulation). 

 

 

Fig. 5.7: Sample of generated molecules with the Graph Transformer with different scaffolds. 

These scaffolds include: furan, triazine, aminotriazole, xanthine and azapurine. The generated molecules 

based on the same scaffolds are aligned in the same row.  
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5.4. Conclusion and Future Perspective 

In this study, DrugEx was updated with the ability to design novel molecules based on the 

scaffolds containing multiple fragments as input. In this version (v3), a new positional 

encoding scheme for atoms and bonds was proposed to make the Transformer model deal 

with a molecular graph representation. With one model multiple fragments in the scaffold 

can be grown at the same time and connected to generate a new molecule. In addition, 

chemical rules on valence are enforced at each step of the process of molecule generation 

to ensure that all generated molecules are valid. This is impossible for SMILES-based 

generation, as SMILES-based molecules are constrained by grammar that allows a 2D 

topology to be represented in a sequential way. With multi-objective reinforcement learning 

the model generates drug-like ligands, in our case for the A2AAR target.  

 

In future work, the Graph Transformer will be extended to include other information as 

input to design drugs conditionally. For example, proteochemometric modelling (PCM) 

can take information for both ligands and targets as input to predict the affinity of their 

interactions, which allows promiscuous (useful for e.g., viral mutants) or selective (useful 

for e.g., kinase inhibitors) properties [33]. The Transformer can then be used to construct 

inverse PCM models which take the protein information as input (e.g. sequences, structures 

or descriptors) to design active ligands for a given protein target without known ligands. 

Moreover, the Transformer can also be used for lead optimization. For instance, the input 

can be a “hit” already, generating “optimized” ligands, or a “lead” with side effects to 

produce ligands with a better ADME/tox profile.  
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Table S5.1: Atoms in vocabulary for graph-based molecule generation.  

Symbol Valence Charge Number Word 

O 2 0 8 2O 

O+ 3 1 8 3O+ 

O- 1 -1 8 1O- 

C 4 0 6 4C 

C+ 3 1 6 3C+ 

C- 3 -1 6 3C- 

N 3 0 7 3N 

N+ 4 1 7 4N+ 

N- 2 -1 7 2N- 

Cl 1 0 17 1Cl 

S 2 0 16 2S 

S 6 0 16 6S 

S 4 0 16 4S 

S+ 3 1 16 3S+ 

S+ 5 1 16 5S+ 

S- 1 -1 16 1S- 

F 1 0 9 1F 

I 1 0 53 1I 

I 5 0 53 5I 

I+ 2 1 53 2I+ 

Br 1 0 35 1Br 

P 5 0 15 5P 

P 3 0 15 3P 

P+ 4 1 15 4P+ 

Se 2 0 34 2Se 

Se 6 0 34 6Se 

Se 4 0 34 4Se 

Se+ 3 1 34 3Se+ 

Si 4 0 14 4Si 

B 3 0 5 3B 

B- 4 -1 5 4B- 

As 5 0 33 5As 

As 3 0 33 3As 

As+ 4 1 33 4As+ 

Te 2 0 52 2Te 

Te 4 0 52 4Te 

Te+ 3 1 52 3Te+ 

* 0 0 0 * 

The column of ‘Symbol’ is the symbol of the atom and its charge; the column of ‘Valence’ is the value 

of valence of the state of each chemical element; the ‘Number’ column stands for the index of each 

element in the periodic table, the last row is the unique word for each state of these elements, a 

combination of its valence and symbol. 

  



Chapter 5 

 

140 

Table S5.2: The pseudo code for encoding the graph representation of molecules in DrugEx v3 

Algorithm encoding: 

 Input:  

mol: structure of the kekulized molecule 

subs: structure of the scaffolds 

vocab: vocabulary of tokens which is consisted of graph matrix 

Output:  

  matrix: the n x 5 matrix to represents the molecular graph. 

 

# Ensure the atom of the subs are put at the start in the molecule 

mol ← RANK_ATOM_BY_SUB(mol, subs)  

sub_atoms ← GET_ATOMS (subs) 

sub_bonds ← GET_BONDS (subs) 

mol_atoms ← GET_ATOMS (mol) 

frag, grow, link ← [('GO', 0, 0, 0, 1)], [], [(0, 0, 0, 0, 0)] 

For atom in mol_atoms: 

    # The bonds which connect to the atom having the index before this atom 

bonds ← GET_LEFT_BONDS (mol, atom) 

For bond in bonds: 

    tk_bond ← GET_TOKEN (vocab, bond) 

    other ← GET_OTHER_ATOM(mol, atom, bond) 

    If IS_FIRST (bonds, bond): 

        tk_atom ← GET_TOKEN (vocab, atom) 

    Else: 

        tk_atom ← GET_TOKEN (vocab, None) 

 

    # The index of the scaffold in which the current atom locates 

# Its value starts from 1. If it is not in the scaffold, it will be 0 

    scf ← GET_FRAG_ID (subs, atom) 

    column ← (tk_atom, tk_bond, GET_INDEX (other), GET_INDEX (atom), scf) 

If other in sub_atoms and atom in sub_atoms and bond not in sub_bonds: 

        Insert column to link 

    Else if bond in sub_bonds: 

        Insert column to frag 

    Else: 

        Insert column to grow 

 End 

End 

Insert ('EOS', 0, 0, 0, 0) to grow 

matrix ← CONCATENATE_BY_COLUMN (frag, grow, link) 

Return matrix 
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Table S5.3: The pseudo code for decoding the graph representation of molecules in DrugEx v3 

Algorithm decoding: 

 Input:  

        matrix: the n x 5 matrix to represents the molecular graph 

vocab: vocabulary of tokens which is consisted of graph matrix 

Output:  

mol: structure of the kekulized molecule 

subs: structure of the scaffolds 

 

mol ← new MOL () 

subs ← new SUB () 

For atom, bond, prev, curr, scf in matrix: 

    If atom == 'EOS' or atom == 'GO':  

continue 

    If atom != '*': 

        a ← new Atom (GET_ATOM_SYMBOL(vocab, atom)) 

        SET_FORMAL_CHARGE (a, GET_CHARGE(vocab, atom)) 

        ADD_ATOM (mol, a) 

        If scf != 0: ADD_ATOM (subs, a) 

    If bond != 0: 

        b ← new Bond (bond) 

        ADD_BOND(mol, b) 

    If frag != 0:  

ADD_BOND (subs, b) 

End 

 

# automatically determine the aromatic rings 

mol ← SANITIZE (mol) 

subs ← SANITIZE (subs) 

Return mol, subs 
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