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Abstract 

In polypharmacology, ideal drugs are required to bind to multiple specific targets to 

enhance efficacy or to reduce resistance formation. Although deep learning has achieved a 

breakthrough in de novo drug design, most of its applications only focus on a single drug 

target to generate drug-like active molecules in spite of the reality that drug molecules often 

interact with more than one target which can have desired (polypharmacology) or 

undesired (toxicity) effects. In a previous study we proposed a new method named DrugEx 

that integrates an exploration strategy into RNN-based reinforcement learning to improve 

the diversity of the generated molecules. Here, we extended our DrugEx algorithm with 

multi-objective optimization to generate drug molecules towards more than one specific 

target (two adenosine receptors, A1AR and A2AAR, and the potassium ion channel hERG 

in this study). In our model, we applied an RNN as the agent and machine learning 

predictors as the environment, both of which were pre-trained in advance and then 

interplayed under the reinforcement learning framework. The concept of evolutionary 

algorithms was merged into our method such that crossover and mutation operations were 

implemented by the same deep learning model as the agent. During the training loop, the 

agent generates a batch of SMILES-based molecules. Subsequently scores for all 

objectives provided by the environment are used to construct Pareto ranks of the generated 

molecules with non-dominated sorting and Tanimoto-based crowding distance algorithms. 

Here, we adopted GPU acceleration to speed up the process of Pareto optimization. The 

final reward of each molecule is calculated based on the Pareto ranking with the ranking 

selection algorithm. The agent is trained under the guidance of the reward to make sure it 

can generate more desired molecules after convergence of the training process. All in all 

we demonstrate generation of compounds with a diverse predicted selectivity profile 

towards multiple targets, offering the potential of high efficacy and low toxicity. 

 

Keywords: deep learning; adenosine receptors; cheminformatics; reinforcement learning; 

multi-objective optimization; exploration strategy. 
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4.1. Introduction 

The ‘one drug, one target, one disease’ paradigm, which has dominated the field of drug 

discovery for many years, has made great contributions to drug development and the 

understanding of their molecular mechanisms of action [1]. However, this strategy is 

encountering problems due to the intrinsic promiscuity of drug molecules, i.e. recent 

studies showed that one drug molecule could interact with six protein targets on average 

[2]. Side effects of drugs caused by binding to unexpected off-targets are one of the main 

reasons of clinical failure of drug candidates and even withdrawal of FDA-approved novel 

drugs [3,4]. Up to now, more than 500 drugs have been withdrawn from the market due to 

fatal toxicity [5]. Yet, disease often results from the perturbation of biological systems by 

multiple genetic and/or environmental factors, thus complex diseases are more likely to 

require treatment through modulating multiple targets simultaneously. Therefore, it is 

crucial to shift the drug discovery paradigm to “polypharmacology” for many complex 

diseases [6,7]. 

 

In polypharmacology, ideal drugs are required to bind to multiple specific targets to 

enhance efficacy or to reduce resistance formation (in which case multiple targets can be 

multiple mutants of a single target) [8]. It has been shown that partial inhibition of a small 

number of targets can be more efficient than the complete inhibition of a single target, 

especially for complex and multifactorial diseases [6,9]. In parallel, common structural and 

functional similarity of proteins results in drugs binding to off-targets. Hence we also 

demand drugs to have a high target selectivity to avoid binding to unwanted target proteins. 

For example, the adenosine receptors (ARs) are a class of rhodopsin-like G protein-coupled 

receptors (GPCRs) having adenosine as the endogenous ligand. Adenosine and ARs are 

ubiquitously distributed throughout the human tissues, and their interactions trigger a wide 

spectrum of physiological and pathological functions. There are four subtypes of ARs, 

including A1, A2A, A2B and A3, each of which has a unique pharmacological profile, tissue 

distribution, and effector coupling [10,11]. The complexity of adenosine signaling and the 

widespread distribution of ARs have always given rise to challenges in developing target-

specific drugs [12]. In addition to the similarity of the pharmacophores of some generic 
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proteins (e.g. the human Ether-à-go-go-Related Gene, hERG) should also be taken into 

consideration as they can be sensitive to binding exogenous ligands and cause side effects. 

hERG is the alpha subunit of a potassium ion channel [13] and has an inclination to interact 

with drug molecules because of its larger inner vestibule as the ligand binding pocket [14]. 

When hERG is inhibited this may cause long QT syndrome [15]. 

 

In addition to visual recognition, natural language processing and decision making, deep 

learning has been increasingly applied in drug discovery [16]. It does not only perform well 

in prediction models for virtual screening, but is also used to construct generative models 

for drug de novo design and/or drug optimization [17]. For example, our group 

implemented a fully-connected deep neural network (DNN) to construct a 

proteochemometric model (PCM) with all high quality ChEMBL data [18] for prediction 

of ligand bioactivity [19]. Its performance was shown to be better than other shallow 

machine learning methods. Moreover, we also developed a generative model with recurrent 

neural networks (RNNs), named DrugEx for SMILES-based de novo drug design [20]. It 

was shown that the generated molecules had large diversity and were similar to known 

ligands to some extent to make sure that reliable and diverse drug candidates can be 

designed.  

 

Since the first version of DrugEx (v1) demonstrated effectiveness for designing novel 

A2AAR ligands, we began to extend this method for drug design toward multiple targets. 

In this study, we updated DrugEx to the second version (v2) through merging crossover 

and mutation operations, which were derived from evolutionary algorithms, into the 

reinforcement learning (RL) framework. We also used Pareto ranking for multi-objective 

selection. In order to evaluate the performance of our additions we tested our method into 

both multi-target and target-specific cases. For the multi-target case, desired molecules 

should have a high affinity towards both A1AR and A2AAR. In the target-specific case, on 

the other hand, we required molecules to have only high affinity towards the A2AAR but a 

low affinity to the A1AR. In order to decrease toxicity and adverse events, molecules were 

additionally obliged to have a low affinity for hERG in both cases. It is worth noting that 
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generated molecules should also be chemically diverse and have similar physico-chemical 

properties to known ligands. All python code for this study is freely available at 

http://github.com/XuhanLiu/DrugEx. 

 

4.2. Materials and methods 

4.2.1. Data source 

Drug like molecules represented as SMILES format were downloaded from the ChEMBL 

database (version 26). After data preprocessing, including recombining charges, removing 

metals and small fragments, we collected 1.7 million molecules and named it the ChEMBL 

set, used for SMILES syntax learning. This data preprocessing step was implemented in 

RDKit [21]. Furthermore, 25,731 ligands were extracted from the ChEMBL database to 

construct the LIGAND set, which had bioactivity measurements towards the human A1AR, 

A2AAR, and hERG. The LIGAND set was used to construct prediction models for each 

target and fine-tuning the generative models. The number of ligands and bioactivities for 

these three targets in the LIGAND set is represented in Table 4.1. Duplicate items were 

removed and if multiple measurements for the same ligands existed, the average pChEMBL 

value (pX, including pKi, pKd, pIC50, or pEC50) was calculated. To judge if a molecule 

is active or not, we defined the threshold of bioactivity as pX = 6.5. If the pX < 6.5, the 

compound was predicted as undesired (low affinity to the given target); otherwise, it was 

regarded as desired (having high affinity) [19]. 

 

4.2.2. Prediction model 

In order to predict the pX for each generated molecule for a given target, regression QSAR 

models were constructed with different machine learning algorithms. To increase the 

chemical diversity available for the QSAR model we included lower quality data without 

pChEMBL value, i.e. molecules that were labeled as “Not Active” or without a defined pX 

value. For these data points we defined a pX value of 3.99 (slightly smaller than 4.0) to 

eliminate the imbalance of the dataset and guarantee the model being able to predict the 

negative samples. During the training process, sample weights for low quality data were 

set as 0.1, while the data with exact pX were set as 1.0. This allowed us to particularly 
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incorporate the chemical diversity, while avoiding degradation of model quality. 

Descriptors used as input were ECFP6 fingerprints [22] with 2048 bits (2048 dimensions, 

or 2048D) calculated by the RDKit Morgan Fingerprint algorithm (using a three-bond 

radius). Moreover, the following 19D physico-chemical descriptors were used: molecular 

weight, logP, number of H bond acceptors and donors, number of rotatable bonds, number 

of amide bonds, number of bridge head atoms, number of hetero atoms, number of spiro 

atoms, number of heavy atoms, the fraction of SP3 hybridized carbon atoms, number of 

aliphatic rings, number of saturated rings, number of total rings, number of aromatic rings, 

number of heterocycles, number of valence electrons, polar surface area and Wildman-

Crippen MR value. Hence, each molecule in the dataset was transformed into a 2067D 

vector. Before being input into the model, the value of input vectors were normalized to 

the range of [0, 1] by the MinMax method. Model output value is the probability whether 

a given chemical compound was active based on this vector. 

 

Table 4.1: The number of ligands and bioactivities for each of the human protein targets A1AR, 

A2AAR and hERG in the LIGAND set. 

 A1AR A2AAR hERG 

Total Ligands 7,700 8,406 16,733 

Bioactivities 13,100 12,129 22,156 

Active Ligands 

(pX >= 6.5) 
1,990 2,511 924 

Inactive Ligands 

(pX < 6.5) 
1,859 1,709 6,438 

Inactive Ligands 

(No pX) 
1,764 1,993 1,275 

Other Ligands 2,087 4,704 8,906 

 

Four algorithms were benchmarked for QSAR model construction, Random Forest (RF), 

Support Vector Machine (SVM), Partial Least Squares regression (PLS), and Multi-task 

Deep Neural Network (MT-DNN). RF, SVM and PLS models were implemented through 

Scikit-Learn [23], and the MT-DNN model through PyTorch [24]. In the RF, the number 

of trees was set as 1000 and split criterion was “gini”. In the SVM, a radial basis function 
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(RBF) kernel was used and the parameter space of C and γ were set as [2-5, 215] and [2-15, 

25], respectively. In the MT-DNN, the architecture contained three hidden layers activated 

by a rectified linear unit (ReLU) between input and output layers, and the number of 

neurons were 2048, 4000, 2000, 1000 and 3 in these subsequent layers. The training process 

consisted of 100 epochs with 20% of hidden neurons randomly dropped out between each 

layer. The mean squared error was used to construct the loss function and was optimized 

by the Adam algorithm [25] with a learning rate of 10-3. 

 

4.2.3. Generative model 

As in DrugEx v1, we organized the vocabulary for the SMILES construction. Each 

SMILES-format molecule in the ChEMBL and LIGAND sets was split into a series of 

tokens. Then all tokens existing in this dataset were collected to construct the SMILES 

vocabulary. The final vocabulary contained 84 tokens (Table S4.1) which were selected 

and arranged sequentially into valid SMILES sequences through correct grammar.  

 

The RNN model constructed for sequence generation contained six layers: one input layer, 

one embedding layer, three recurrent layers and one output layer. After being represented 

by a sequence of tokens, molecules can be received as categorical features by the input 

layer. In the embedding layer, vocabulary size, and embedding dimension were set to 84 

and 128, meaning each token could be transformed into a 128 dimensional vector. For a 

recurrent layer, the long-short term memory (LSTM) was used as recurrent cell with 512 

hidden neurons instead of the gated recurrent unit (GRU) [26] which was employed only 

in DrugEx v1. The output at each position was the probability that determined which token 

in the vocabulary would be chosen to grow the SMILES string. 

 

During the training process we put a start token (GO) at the beginning of a batch of data as 

input and an end token (END) at the end of the same batch of data as output. This ensures 

that our generative network could choose correct tokens each time based on the sequence 

it had generated previously. A negative log likelihood function was used to construct the 

loss function to guarantee that the token in the output sequence had the largest probability 
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to be chosen after being trained. In order to optimize the parameters of the model, the Adam 

algorithm [25] was used for the optimization of the loss function. Here, the learning rate 

was set at 10-3, the batch size was 512, and training steps were set to 1000 epochs. 

 

 

Fig. 4.1: The workflow of the training process of our deep learning-based molecule generator 

DrugEx2 utilizing reinforcement learning. After the generator has been pre-trained/fine-tuned, (1) a 

batch of SMILES are generated by sampling tokens step by step based on the probability calculated by 

the generator; (2) These valid SMILES are parsed to be molecules and encoded into descriptors to get 

the predicted pXs with well-trained predictors; (3) The predicted pXs are transformed into a single value 

as the reward for each molecule based on Pareto optimization; (4) These SMILES sequences and their 

rewards are sent back to the generator for training with policy gradient methods. These four steps 

constitute the training loop of reinforcement learning. 

 

4.2.4. Reinforcement learning 

SMILES sequence construction under the RL framework can be viewed as a series of 

decision-making steps (Fig. 4.1). The generator (G) and the predictors (Q) are regarded as 

the policy and reward function, respectively. In this study we used multi-objective 

optimization (MOO), and each objective was a requirement to be achieved maximally for 

each scenario, albeit with differences in desirability. Our aim was defined by the following 

problem statement: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅1, 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅2, … , 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑛 

Here, n equals the number of objectives (n = 3 in this study), and Ri, the score for each 

objective i, was calculated as follows: 
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𝑅𝑖 = { 

𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝑖), 𝑖𝑓 ℎ𝑖𝑔ℎ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

 1 − 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝑖), 𝑖𝑓 𝑙𝑜𝑤 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

0, 𝑖𝑓 𝑆𝑀𝐼𝐿𝐸𝑆 𝑖𝑛𝑣𝑎𝑙𝑖𝑑

 

here the pXi (the range from 3.0 to 10.0) was the prediction score given by each predictor 

for the ith target, which was normalized to the interval [0, 1] as the reward score. If having 

no or low affinity for a target was required (off-target) this score would be subtracted from 

1 (inverting it). For the multi-target case, the objective function is: 

{ 

𝑅𝐴1 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴1)               

 𝑅𝐴2𝐴 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴2𝐴)            

 𝑅ℎ𝐸𝑅𝐺 = 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋ℎ𝐸𝑅𝐺)

 

while the objective function for the target-specific case, is: 

{ 

𝑅𝐴1 = 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴1)       

 𝑅𝐴2𝐴 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴2𝐴)            

 𝑅ℎ𝐸𝑅𝐺 = 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋ℎ𝐸𝑅𝐺)

 

In order to evaluate the performance of the generators, three coefficients are calculated 

with the generated molecules, including validity, desirability, and uniqueness which are 

defined as: 

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 

where Ntotal is the total number of molecules, Nvalid is the number of the molecules parsed 

by the valid SMILES sequences, Nunique is the number of molecules which are different 

from others in the dataset, and Ndesired is the number of desired molecules. Here, we 

determine whether generated molecules are desired based on the reward Ri if all of them 

are larger than the threshold (0.5 by default when pX = 6.5). In addition, we calculated the 

SA score (from 1 to 10) for each molecule to measure the synthesizability of which larger 

value means more difficult to be synthesized [27]. And we also computed the QED (from 

0 to 1) score to evaluate the drug-likeness of which larger value means more drug-like for 

each molecule [28]. The calculation of both SA and QED scores were implemented by 

RDKit. 
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To orchestrate and combine these different objectives, we compared two different reward 

schemes: the Pareto front (PF) scheme and the weighted sum (WS) scheme. These were 

defined as follows: 

(a) Weighted sum (WS) scheme: the weight for each function is not fixed but dynamic, 

and depends on the desired ratio for each objective, which is defined as: 

r𝑖 =
𝑁𝑖
𝑠

𝑁𝑖
𝑙  

here for objective i the N
s 

i  and N
l 

i  are the number of generated molecules which have a 

score smaller or larger than the threshold. Moreover, the weight is normalized ratio defined 

as: 

𝑤𝑖 =
𝑟𝑖

∑ 𝑟𝑘
𝑀
𝑘=1

 

and the final reward R* was calculated by 

𝑅∗ =∑𝑤𝑖𝑅𝑖

𝑛

𝑖=1

 ,  

(b) Pareto front (PF) scheme: operates on the desirability score, which is defined as 

D𝑖 = {
 1, 𝑖𝑓 𝑅𝑖 > 𝑡𝑖

 
𝑅𝑖
𝑡𝑖
⁄ , 𝑖𝑓 𝑅𝑖 ≤ 𝑡𝑖

 

where ti is the threshold of the ith objective, and we set all of objectives had the same 

threshold as 0.5 as stated in the methods. Given two solutions m1 and m2 with their scores 

(x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 if and only if:   

∀ j ∈ {1,… , n}: 𝑥𝑗  ≥ 𝑦𝑗  𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 

otherwise, m1 and m2 are non-dominated with each other. After the dominance between all 

pair of solutions being determined, the non-dominated scoring algorithm [29] is exploited 

to obtain different layers of Pareto frontiers which consist of a set of solutions. The 

solutions in the top layer are dominated by the other solutions in the lower layer [30]. In 

order to speed up the non-dominated sorting algorithm, we employed PyTorch to 

implement this procedure with GPU acceleration. After obtaining the frontiers ranking 

from dominated solutions to dominant solutions, the molecules were ranked based on the 

average of Tanimoto-distance instead of crowding distance with other molecules in the 



DrugEx v2 

 

91 

same frontier, and molecules with larger distances were ranked on the top. The final reward 

R* is defined as: 

R𝑖
∗ =

{
 

  0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 
𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
, 𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 

here the parameter k is the index of the solution in the Pareto rank, and rewards of undesired 

and desired solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively.  

 

During the generation process, for each step, G determines the probability of each token 

from the vocabulary to be chosen based on the generated sequence in previous steps. Its 

parameters are updated by employing a policy gradient based on the expected end reward 

received from the predictor. The objective function is designated as follows: 

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

 

By maximizing this function, the parameters 𝜃 in G can be optimized to ensure that G can 

construct desired SMILES sequences which can obtain the highest reward scores judged 

by all the Qs. 

 

4.2.5. Algorithm extrapolation 

Evolutionary algorithms (EAs) are common methods used in drug discovery [31]. For 

example, Molecule Evoluator is one of EAs, with mutation and crossover operations based 

on SMILES representation [32] for drug de novo design. In addition, some groups also 

proposed other variations of EAs [33], e.g., estimation of distribution algorithm (EDA) 

which is a model-based method and replaces the mutation and crossover operations with 

probability distribution estimation and sampling of new individuals (Fig. 4.2) [34]. Similar 

to EDA, DrugEx is a model-based method too, in which the deep learning model was 

employed to estimate the probability distribution of sequential decision making. However, 

we used a DL method to define model-based mutation and crossover operations. Moreover, 

we employed an RL method to replace the sample selection step for the update of model 

or population in EDA or EA, respectively. 
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Fig. 4.2: Flowchart comparison of evolutionary algorithm (A), estimation of distribution 

algorithm (B) and our proposed method (C).  

 

4.2.6. Exploration strategy 

In our previous study, we had implemented the exploration strategy through importing a 

fixed exploration net to enlarge the diversity of the generated molecules during the training 

loops. In this study, we continued to extend the methods of this exploration strategy, which 

resemble the crossover and mutation operations from evolutionary algorithms (EAs). Here, 

besides the agent net (GA), we also defined exploration strategy with two other DL models: 

crossover net (GC) and mutation net (GM), which have the same RNN architecture (Fig. 

4.3). The pseudo code of the exploration strategy is described in Table S4.2. Before the 

training process, GM was initialized by the pre-trained model while GA and GC were started 

from the fine-tuned model. The GM was the basic strategy employed in the previous version 

and its parameters were fixed and not updated during the whole training process. The GC 

implemented in this work was an extended strategy whose parameters were updated 

iteratively based on the GA. During the training process, each SMILES sequence was 

generated through combining these three RNNs: for each step, a random number from 0 to 

1 is generated. If it is larger than the mutation rate (ε), the probability for token sampling 

is controlled by the combination of GA and GC, otherwise, it is determined by GM. For each 

training loop, only the parameters in GA were updated instantly based on the gradient of the 

RL objective function. An iteration was defined as the period of epochs after the desirability 

score of molecules generated by GA did not increase. Subsequently the parameters of GC 

were updated with GA directly and the training process continued for the next iteration. The 
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training process would continue till the percentage of desired molecules in the current 

iteration was not better than in the previous iterations. 

 

 
Fig. 4.3: The mechanism of updated exploration strategy, including agent net GA, mutation net GM 

(red) and crossover net GC (blue). In the training loop, GM is fixed, Gc is updated iteratively and GA is 

trained at each epoch. For each position, a random number from 0 to 1 is generated. If it is larger than 

the mutation rate (ε), the probability for token sampling is controlled by the combination of GA and GC, 

otherwise, it is determined by GM.  

 

4.2.7. Molecular diversity 

To measure molecular diversity, we adopted the metric proposed by Solow and Polasky in 

1994 to estimate the diversity of a biological population in an eco-system [35]. It has been 

shown to be an effective method to measure the diversity of drug molecules [36]. The 

formula to calculate diversity was redefined to normalize the range of values from [1, m] 

to (0, m] as follows: 

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆 

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s and 
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F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for the distance 

function of each pair of molecule provided as follows: 

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗  

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance with 

ECFP6 fingerprints as follows: 

𝑑𝑖𝑗 = 𝑑(𝑠𝑖, 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 ,  

where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the number 

of union fingerprint bits.  

 

4.3. Results and discussion 

4.3.1. Performance of predictors 

All molecules in the LIGAND set were used for training the QSAR models, after being 

transformed into predefined descriptors (2048D ECFP6 fingerprints and 19D 

physicochemical properties). We then tested the performance of these different algorithms 

with five-fold cross validation and an independent test of which the performances are 

shown in Fig. 4.4A-B. Here, the dataset was randomly split into five folds in the cross 

validation, while a temporal split with a cut-off at the year of 2015 was used for the 

independent test. In the cross validation test, the MT-DNN model achieved the highest 

value for R2 and the lowest RMSE value for A1AR and A2AAR, but the RF model had the 

best performance for hERG based on R2 and RMSE. However, for the independent test the 

RF model reached the highest R2 and lowest RMSE across the board, although it was worse 

than the performance in the cross-validation test. A detailed performance overview of the 

RF model is shown in Fig. 4.4C-E. Because the generative model might create a large 

number of novel molecules, which would not be similar to the molecules in the training set, 

we took the robustness of the predictor into consideration. In this situation the temporal 

split has been shown to be more robust [19,37]. Hence the RF algorithm was chosen for 

constructing our environment which provides the final reward to guide the training of the 

generator in RL. 
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Fig. 4.4: Performance comparison of different machine learning regression models. In these two 

histograms (A-B), the results were obtained based on five-fold cross validation (A) and independent test 

(B) for the three targets. The R2 and RMSE scores were used for evaluating the performance of different 

machine learning models including DNN, KNN, PLS, SVM RF and MT-DNN. In the scatter plots (C-

E), each point stands for one molecule with its real pX (x-axis) and the predicted pX (y-axis) by the RF 

model which was chosen as the final predictors for A1AR (C), A2AAR (D) and hERG (E) based on five-

fold cross validation (blue) and independent test (orange).  

 

4.3.2. Model optimization 

As in our previous work in DrugEx v1, we firstly pre-trained and fine-tuned the generator 

with the ChEMBL and LIGAND set, respectively. When testing the different types of RNNs, 
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we analyzed the performance of the pre-trained model with 10,000 SMILES generated, and 

found that LSTM generated more valid SMILES (97.5%) than GRU (93.1%) which had 

been adopted in our previous work. Moreover, for the fine-tuning process, we split the 

LIGAND set into two subsets: training set and validation set; the validation set was not 

involved in parameters updating but it was essential to avoid model overfitting and to 

improve uniqueness of generated molecules. Subsequently 10,000 SMILES were sampled 

for performance evaluation. We found that the percentage valid SMILES was 97.9% for 

LSTM, larger than GRU with 95.7% valid SMILES, a slight improvement compared to the 

pre-trained model. In the end, we employed the LSTM-based pre-trained/fine-tuned 

models for the following investigation.  

 

We employed the models for two cases (multi-target and target-specific) of multi-objective 

drug design towards three protein targets. During the training loop of DrugEx v2, the 

parameter of ε was set to different values: 10-2, 10-3, 10-4 and we also tested it without 

mutation net, i.e. the value of ε was set to 0. Generators were trained by using a policy 

gradient with two different rewarding schemes. After the training process converged, 

10,000 SMILES were generated for each model for performance evaluation. The 

percentage of valid, desired, unique desired SMILES and the diversity were calculated 

(Table 4.2). Furthermore, we also compared the chemical space of these generated 

molecules with known ligands in the LIGAND set. Here, we employed the first two 

components of t-SNE on the ECFP6 descriptors of these molecules to visualize the 

chemical space.  

 

4.3.3. Performance comparisons 

We compared the performance of DrugEx v2 with DrugEx v1 and two other DL-based de 

novo drug design methods: REINVENT [38] and ORGANIC [39]. In order to make a fair 

benchmark, we trained these four methods with the same environments to provide the 

unified predicted bioactivity scores for each of the generated molecules. It should be 

mentioned that these methods are all SMILES-based RNNs generators but trained under 

different RL frameworks. Therefore, these generators were constructed with the same RNN 
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structures of and initialized with the same pre-trained/fine-tuned models. We also tested 

REINVENT 2.0 [40] but found the training loop did not converge in the PF scheme. We 

speculate this is due to the number of desired molecules generated by the initial state of the 

model being too small, not containing enough information. Moreover, addition of a scaffold 

filter is repetitive when integrated into thePF scheme because it is similar to the similarity-

based crowding distance algorithm in the PF scheme. Finally, a scaffold filter is a hard 

condition, because it directly penalizes the score of similar molecules to 0 while the PF 

scheme decreased the similar molecules. Hence we have not shown these results here. 

 

In the WS scheme we did not choose fixed weights for objectives but dynamic values which 

can be adjusted automatically during the training process. The reason for this is that if the 

fixed weights should be optimized as the hyperparameters, which would be more time 

consuming. Moreover, the distribution of scores for each objective was not comparable. If 

the affinity score was required to be higher, few of the molecules generated by the model 

with the initial state were satisfactory, but if a lower affinity score was required, most of 

the generated molecules by the pre-trained/fine-tuned model met this need without further 

training of RL. Therefore, weights were set as dynamic parameters and determined by the 

ratio between desired and undesired molecules generated by the model at the current 

training step. This approach ensures that the objectives with lower scores would get more 

importance than others during the training loop to balance the different objectives and 

generate more desired molecules.  

 

The performance of the model with different ε is shown in Table S4.3. A higher ε generates 

molecules with larger diversity but low desirability compared to a lower ε in both multi-

target and target-specific cases. In addition, an appropriate ε guarantees the model 

generates molecules which have a more similar distribution of important substructures with 

the desired ligands in the LIGAND set (Fig. S4.1). With the WS scheme, the model 

generates molecules with a high desirability, but the diversity is lower than the desired 

ligands in the training set. On the contrary, the PF scheme helped the model generate 

molecules with a larger diversity than the ligands in the training set, but the desirability 
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was not as high as in the WS rewarding scheme. Moreover, the generated molecules in the 

PF scheme have more similar distribution of substructures to the LIGAND set than in the 

WS scheme.  

 

Table 4.2: Comparison of the performance of the different methods in the multi-target case.  

Rewarding 

Scheme 
Dataset Validity Desirability Uniqueness Diversity 

Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

 LIGAND 100.00% 12.40% 100.00% 0.66 21.30% 35.44% 79.24% 

PF 

DrugEx v1 98.28% 43.27% 88.96% 0.71 17.37% 41.05% 80.95% 

DrugEx v2 99.57% 80.81% 87.29% 0.7 13.97% 32.01% 80.26% 

ORGANIC 98.84% 66.01% 82.67% 0.65 17.27% 56.38% 68.87% 

REINVENT 99.54% 57.43% 98.84% 0.77 0.64% 40.38% 92.05% 

WS 

DrugEx v1 97.76% 38.44% 93.44% 0.71 10.76% 36.42% 86.99% 

DrugEx v2 99.80% 97.45% 89.08% 0.49 3.63% 21.06% 96.18% 

ORGANIC 99.08% 61.10% 77.65% 0.68 9.08% 70.99% 83.91% 

REINVENT 99.54% 70.98% 99.11% 0.71 0.04% 23.23% 96.28% 

Shown are validity, desirability, uniqueness, and substructure distributions of SMILES generated by 

four different methods in the multi-target case with PF and WS rewarding schemes. For the validity, 

desirability and uniqueness, the highest values are bold, while for the distribution of substructures, the 

bold data are labeled as the most closed to the values in the LIGAND set. 

 

In the multi-target case, these four methods with different rewarding schemes show similar 

performance, i.e. the WS scheme can help models improve the desirability while the PF 

scheme assists models to achieve better diversity and distribution of substructures (Table 

4.2). Here, REINVENT with the PF scheme achieved the largest diversity, whereas DrugEx 

v1 had the most similar substructure distribution to the molecules in the LIGAND set, and 

DrugEx v2 achieved the best desirability with both PR and WS schemes compared to the 

three other algorithms. The diversity and distribution of substructures were also most 

similar to the best results. In addition, in the target-specific case results were similar to the 

multi-target case, (Table 4.3), and for the distribution of purine and furan rings, DrugEx v2 

surpassed v1 to be most similar to the LIGAND set. When investigating the SA and QED 

scores, we observed that the PF scheme helped all of generated molecules being more drug-

like because of higher QED scores than the WS scheme in both multi-target case (Fig. 

4.5A-D) and target-specific case (Fig. 4.5E-H). In comparison of these methods, the 

molecules generated by REINVENT were supposedly easier to be synthesized and more 
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drug-like than others, but the molecules of DrugEx v1 had more similar distributions with 

the molecules in the LIGAND set.  

 

Table 4.3: Comparison of the performance of the different methods in the target-specific case.  

Rewarding 

Scheme 
Dataset Validity Desirability Uniqueness Diversity 

Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

 LIGAND 100.00% 14.63% 100.00% 0.67 28.27% 50.61% 71.84% 

PF 

DrugEx v1 98.07% 48.42% 87.32% 0.73 29.65% 61.61% 70.99% 

DrugEx v2 99.53% 89.49% 90.55% 0.73 23.73% 56.23% 67.40% 

ORGANIC 98.29% 86.98% 80.30% 0.64 10.60% 89.27% 65.28% 

REINVENT 99.59% 70.66% 99.33% 0.79 3.85% 33.82% 92.53% 

WS 

DrugEx v1 97.61% 44.96% 95.89% 0.68 78.92% 80.21% 68.02% 

DrugEx v2 99.62% 97.86% 90.54% 0.31 19.58% 98.56% 51.87% 

ORGANIC 98.97% 88.14% 84.13% 0.49 9.68%% 96.66% 71.48% 

REINVENT 99.55% 81.27% 98.87% 0.34 25.13% 97.52% 74.61% 

Shown are validity, desirability, uniqueness, and substructure distributions of SMILES generated by 

four different methods in the target-specific case with PF and WS rewarding schemes. For the validity, 

desirability and uniqueness, the highest values are bold, while for the distribution of substructures, the 

bold data are labeled as the most closed to the values in the LIGAND set. 

 

 

Fig. 4.5: the distribution of SA score and QED score of desired ligands in the LIGAND set and of 

molecules generated by four different methods with PR (A, B, E and F) and WS (C, D, G and H) 

rewarding schemes in the multi-target case (A-D) and target-specific case (E-H). The molecules 

from the LIGAND set were shown as color of orange, and the molecules generated by DrugEx v1, v2, 

ORGANIC and REINVENT were represented with colors of blue, green, red, and purple, respectively. 

Overall DrugEx v1 and v2 are better able to emulate the observed distributions in the training set 

compared to ORGANIC and REINVENT. 
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Fig. 4.6: Comparison of the chemical space of the LIGAND set and generated molecules. Shown 

are all known ligands (orange) and desired molecules (black). Moreover shown are generated molecules 

by DrugEx v1 (A, E, I, M, blue), v2 (B, F, J, N, red), ORGANIC (C, G, K, O, green) and REINVENT (D, 

H, L, P, purple). Distinction can be made between the multi-target case (A-H) and target specific case 

(I-P). Additionally the distinction can be made between PF scheme based scoring (A-D and I-L) and 

WS scheme based scoring (E-H and M-P). Chemical space is represented by the first two components 

in t-SNE with ECFP6 descriptors of molecules. Similar to our previous work it can be seen that DrugEx 

better covers the whole chemical space of the input data. In particular in the multi-target case with a 

Pareto optimization based scoring function (E-H) the improved coverage in all sections, including 

isolated active ligands, becomes clear.   

 

With respect to chemical space, we employed t-SNE with the ECFP6 descriptors of all 

molecules for both multi-target (Fig. 4.6A-H) and target-specific cases (Fig. 4.6I-P). In the 
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multi-target case, most of the desired ligands in the LIGAND set were distributed in the 

margin and PF scheme could guide all of the generators to better cover chemical space than 

WS scheme. In the target-specific case, the desired ligands in the LIGAND set were 

distributed more dispersed in both of the margin and the center regions. For both of these 

two cases, only part of the region occupied by desired ligands in the LIGAND set were 

overlapped with REINVENT and ORGANIC, but almost all of it is covered by DrugEx v1 

and v2. Especially, in contrast to WS scheme DrugEx v2 had a significant improvement of 

chemical space coverage with PF scheme. Hence in this case, the PF scheme could not 

guide all generators better in the target-specific case regarding coverage compared to WS 

scheme except for DrugEx v2. A possible reason is that the molecules generated by DrugEx 

v1 and v2 offer a more similar distribution of substructures to desired ligands in the 

LIGAND set than REINVENT and ORGANIC.  

 

As an example, 16 possible antagonists (without ribose moiety and molecular weight < 500) 

generated by DrugEx v2 with PF scheme were selected as candidates for both multi-target 

cases and target specific case, respectively. These molecules were ordered by the selectivity 

which was calculated as the difference of pXs between two different protein targets. In the 

multi-target cases (Fig. 4.7A), because the desired ligands prefer A1AR and A2AAR to 

hERG, the row and column is the selectivity of A2AAR and A1AR against hERG, 

respectively, while the generated molecules are required to bind only A2AAR rather than 

A1AR and hERG in the target-specific case (Fig. 4.7B), selectivity of A2AAR against A1AR 

and hERG were represented as the row and column, respectively.  

 

In order to prove the effectiveness of our proposed method, we tested it with 20 goal-

directed molecule generation tasks on the GuacaMol benchmark platform [41]. These tasks 

contain different requirements, including similarity, physicochemical properties, 

isomerism, scaffold matching, etc. The detailed description of these tasks is provided in ref 

[41] and our results are shown in Table S4.4. We pre-trained our model with the dataset 

provided by the GuacaMol platform, in which all molecules from the ChEMBL database 

are included and similar molecules to the target ligands in the tasks were removed. Then 

we choose the top 1024 molecules in the training set to fine-tune our model for each task, 
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before reinforcement learning was started. Our method scores the best in 12 out of 20 tasks 

compared with the baseline models provided by the GuacaMol platform, leading to an 

overall second place. Moreover, the performance between the LSTM benchmark method 

and our methods were similar in these tasks, possibly because they have similar 

architectures of neural networks. All in all, this benchmark demonstrated that our proposed 

method has improved generality for drug de novo design tasks. It is worth being mentioned 

that our method is not effective enough yet for some tasks with contradictory objectives in 

the narrow chemical space. The main reason is that our method emphasizes to obtain a 

large number of feasible molecules to occupy the diverse chemical space rather than a small 

number of optimal molecules to achieve the highest score. For example, in the Sitagliptin 

MPO task, the aim is finding molecules which are dissimilar to sitagliptin but have a similar 

molecular formula to sitagliptin, and our method was not as good as Graph GA, which is a 

graph-based genetic algorithm.  

 

4.4. Conclusion and future prospect 

In this work, we proposed a Pareto-based multi-objective learning algorithm for drug de 

novo design towards multiple targets based on different requirements of affinity scores for 

multiple targets. We transferred the concept of an evolutionary algorithm (including 

mutation and crossover operations) into RL to update DrugEx for multi-objective 

optimization. In addition, Pareto ranking algorithms were also integrated into our model to 

handle the contradictory objectives common in drug discovery and enlarge the chemical 

diversity. In order to prove effectiveness, we tested the performance of DrugEx v2 in both 

multi-target and target-specific cases. We found that a large percentage of generated 

SMILES were valid and desired molecules without many duplications. Moreover, 

generated molecules were also similar to known ligands and covered almost every corner 

of the chemical space that known ligands occupy, which could not be repeated by tested 

competing methods. In addition to our work here other methods to improve the diversity 

of generated molecules were proposed such as REINVENT 2.0 [40]. In addition, some 

other teams also trained the new deep learning model (e.g. BERT, Transformer, GPT2) with 

a larger dataset and achieved better results [42,43]. In future work, we will continue to 
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update DrugEx with these new deep learning models to deal with different molecular 

representations, such as graphs or fragments [31]. We will also integrate more objectives 

(e.g. stability, synthesizability), especially when these objectives are contradictory, such 

that the model allows user-defined weights for each objective to generate more reliable 

candidate ligands and better steer the generative process.  

 

 

 

Fig. 4.7: Some candidate molecules were selected from molecules generated by DrugEx v2 with 

the PF scheme for both multi-target case and target-specific case. In multi-target case (A), these 

molecules were ordered by the selectivity of A1AR and A2AAR against hERG as x-axis and y-axis, 

respectively. In target-specific case (B), these molecules were ordered by the selectivity of A2AAR 

against A1AR and hERG as x and y-axis, respectively. For each cell, the structure at the left is the 

generated molecule labeled with its similarity to the most similar ligands in the LIGAND set, located at 

the right and labeled with their ChEMBL ID. 
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Table S4.1: All tokens in vocabulary for SMILES sequence construction with RNN model.  

Atoms Bonds Controls 

Common Atoms Aromatic Atoms -- Rings Branchs On-Off 

B [As+] [CH-] [N] [SH2] [b-] [se+] - 1 ( GO 

C [As] [CH2] [O+] [SH] [c+] [se] = 2 ) EOS 

F [B-] [CH] [O-] [Se+] [c-] [te+] # 3 

  

I [BH-] [I+] [OH+] [SeH] [cH-] [te] 

 

4 

  

L [BH2-] [IH2] [O] [Se] [n+] b 

 

5 

  

N [BH3-] [N+] [P+] [SiH2] [n-] c   6 

  

O [B] [N-] [PH] [SiH] [nH+] n   7 

  

P [C+] [NH+] [S+] [Si] [nH] o   8 

  

R [C-] [NH-] [S-] [Te] [o+] p   9 

  

S  [NH2+] [SH+] 

 

[s+] s   

   

Considering that the sterochemical information of molecules and ionic bonds were ignored, we removed the 

“@”, “\”, “/”, “.”.
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Table S4.2: The pseudo code of exploration strategy in DrugEx v2 

Algorithm explore: 

 Input:  

GA: Agent net, GC: Crossover net, GM: Mutation net,  

ε: mutation rate, size: number of generated molecules 

vocab: vocabulary of tokens which is consisted of SMILES sequence. 

Output:  

  samples: a list of generated SMILES sequences 

 

samples ← [] 

For i ← 1 to size: 

sample ← [] 

token ← ‘GO’ 

h ← INIT_STATES () 

mutate ← RANDOM_FLOAT (0, 1) 

ratio ← RANDOM_FLOAT (0, 1) 

For step ← 1 to max_lenth: 

        probA, hA ← GA (t, hA) 

        probC, hC ← GC (t, hC) 

        probM, hC ← GM (t, hM) 

        If ε > mutate Then 

prob ← probM 

        Else 

   prob ← probA * ratio + probM * ratio 

token ← DISTRIBUTION_BASED_SAMPLING (prob, vocab) 

        insert token to sample 

        If token == ‘EOS’ Then 

            Insert sample to samples 

            Break 

 End 

End 

Return samples 
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Table S4.3: Comparison of validity, desirability, uniqueness and substructures distributions of 

SMILES generated by DrugEx v2 with different ε in the multi-target and target-specific cases by 

using PF and WS rewarding schemes, respectively.  

For the validity, desirability and uniqueness, the largest data is bold, while for the distribution of substructures, 

the bold data are labeled as the most closed to the values in the LIGAND set. 

  

Case Reward 

Scheme 

Dataset 

/ ε 

Validity Desirability Uniqueness Diversity Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

Multi-

Target 

Case 

 

LIGAND 100.00% 14.63% 100.00% 0.67 21.30% 35.44% 79.24% 

PF 

10-2 99.39% 71.37% 90.47% 0.72 12.39% 34.69% 82.05% 

10-3 99.57% 80.81% 88.96% 0.71 13.97% 32.01% 80.26% 

10-4 99.72% 83.86% 87.19% 0.71 12.45% 30.58% 84.04% 

0 99.47% 73.76% 84.41% 0.70 13.35% 35.71% 81.89% 

WS 

10-2 99.54% 87.56% 93.08% 0.60 9.66% 28.83% 92.19% 

10-3 99.80% 97.45% 93.44% 0.49 3.63% 21.06% 96.18% 

10-4 99.79% 98.15% 93.56% 0.53 2.89% 24.95% 91.46% 

0 99.78% 98.00% 90.19% 0.49 5.02% 16.45% 96.77% 

Target-

Specific 

Case 

 LIGAND 100.00% 12.40% 100.00% 0.66 28.27% 50.61% 71.84% 

PF 

10-2 99.48% 88.76% 91.98% 0.77 18.31% 47.50% 68.95% 

10-3 99.53% 89.49% 87.32% 0.72 23.73% 56.23% 67.40% 

10-4 99.55% 91.84% 88.31% 0.74 26.86% 39.68% 74.36% 

0 99.54% 91.47% 88.94% 0.75 22.95% 43.08% 71.50% 

WS 

10-2 99.16% 86.45% 93.97% 0.42 42.84% 97.26% 72.45% 

10-3 99.62% 97.86% 95.89% 0.31 60.81% 98.56% 51.87% 

10-4 99.67% 96.82% 94.56% 0.34 55.14% 93.69% 45.40% 

0 99.33% 96.28% 92.60% 0.35 42.86% 98.34% 63.47% 
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Table S4.4: Results of the Goal-Directed tasks for our proposed method DrugEx v2 and other baseline 

models on GuacaMol Benchmark.  

GucacaMol platform contains 20 tasks with different requirements, including smilarity, physicochemical 

properties, isomerism, scaffold matching, etc.. The results for baseline models were cited from ref [41]. The 

bold data are shown as the best result for each task achieved by different methods. 

Benchmark Best of 

Dataset 

SMILES 

GA 

Graph 

MCTS 

Graph GA SMILES 

LSTM 

DrugEx v2 

Celecoxib rediscovery 0.505 0.732 0.355 1 1 1 

Troglitazone rediscovery 0.419 0.515 0.311 1 1 1 

Thiothixene rediscovery 0.456 0.598 0.311 1 1 1 

Aripiprazole similarity 0.595 0.834 0.38 1 1 1 

Albuterol similarity 0.719 0.907 0.749 1 1 1 

Mestranol similarity 0.629 0.79 0.402 1 1 1 

C11H24 0.684 0.829 0.41 0.971 0.993 0.993 

C9H10N2O2PF2Cl 0.747 0.889 0.631 0.982 0.879 1 

Median molecules 1 0.334 0.334 0.225 0.406 0.438 0.418 

Median molecules 2 0.351 0.38 0.17 0.432 0.422 0.435 

Osimertinib MPO 0.839 0.886 0.784 0.953 0.907 0.967 

Fexofenadine MPO 0.817 0.931 0.695 0.998 0.959 0.942 

Ranolazine MPO 0.792 0.881 0.616 0.92 0.855 0.909 

Perindopril MPO 0.575 0.661 0.385 0.792 0.808 0.812 

Amlodipine MPO 0.696 0.722 0.533 0.894 0.894 0.898 

Sitagliptin MPO 0.509 0.689 0.458 0.891 0.545 0.517 

Zaleplon MPO 0.547 0.413 0.488 0.754 0.669 0.693 

Valsartan SMARTS 0.259 0.552 0.04 0.99 0.978 0.978 

Scaffold Hop 0.933 0.97 0.59 1 0.996 0.989 

Deco Hop 0.738 0.885 0.478 1 0.998 0.986 

Total 12.144 14.398 9.011 17.983 17.341 17.537 
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Fig. S4.1: the distribution of SA score and QED score of desired ligand in the LIGAND set and 

molecules generated by DrugEx v2 with different ε in the multi-target case (A-D) and target-specific 

case (E-H) by using PR (A, B, E and F) and WS (C, D, G and H) rewarding schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


