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Abstract 

 

Over the last five years deep learning has progressed tremendously in both image 

recognition and natural language processing. Now it is increasingly applied to other data 

rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an 

effective method to generate novel chemical structures in the form of SMILES. However, 

ligands generated by current methods have so far provided relatively low diversity and do 

not fully cover the whole chemical space occupied by known ligands. Here, we propose a 

new method (DrugEx) to discover de novo drug-like molecules. DrugEx is an RNN model 

(generator) trained through a special exploration strategy integrated into reinforcement 

learning. As a case study we applied our method to design ligands against the adenosine 

A2A receptor. From ChEMBL data, a machine learning model (predictor) was created to 

predict whether generated molecules are active or not. Based on this predictor as the reward 

function, the generator was trained by reinforcement learning without any further data. We 

then compared the performance of our method with two previously published methods, 

REINVENT and ORGANIC. We found that candidate molecules our model designed, and 

predicted to be active, had a larger chemical diversity and better covered the chemical space 

of known ligands compared to the state-of-the-art. 

 

Keywords: deep learning; adenosine receptors; cheminformatics; reinforcement learning; 

exploration strategy. 
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3.1. Introduction 

G Protein-Coupled Receptors (GPCRs) are the largest family of cell membrane-bound 

proteins [1], containing about 800 members encoded by approximately 4% of human genes. 

GPCRs are central to a large number of essential biological processes, including cell 

proliferation, cell survival, and cell motility [2]. Currently, GPCRs form the main target of 

approximately 34% of all FDA approved drugs [3]. One of the most extensively studied 

GPCRs is the human adenosine A2A receptor (A2AAR), which has been shown to be a 

promising drug target for Parkinson’s disease, cardiovascular diseases, and inflammatory 

disorders [4]. Multiple crystal structures with different ligands have been resolved [5,6], 

and data on the biological activity of thousands of chemical compounds against the receptor 

was made available in the public ChEMBL database [7]. Considering the amount of data 

available and our in-house expertise we exploited machine learning methods to design 

novel ligands with predicted affinity for the A2AAR. 

 

Over the last years, deep learning (DL) has been at the forefront of great breakthroughs in 

the field of artificial intelligence and its performance even surpassed human abilities for 

image recognition and natural language processing [8]. Since then, deep learning is 

gradually being applied to other data rich fields [9,10]. In drug discovery DL has been used 

to construct quantitative structure-activity relationship (QSAR) models [11] to predict the 

properties of chemical compounds, such as toxicity, partition coefficient, affinity for 

specific targets, etc. [12,13]. Most commonly pre-defined descriptors such as Extended 

Connectivity Fingerprint (ECFP) [14] were used as input to construct fully-connected 

neural networks [15]. More recently studies were published using other methods wherein 

neural networks extract the descriptor from chemical structures automatically and directly, 

such as Mol2Vec [16], DruGAN [17], GraphConv [18], etc. 

 

In addition to these prediction applications, DL can also be used in chemical structure 

generation [13]. Gupta et al. constructed a recurrent neural network (RNN) model to learn 

the syntax of the SMILES notation and generate novel SMILES for molecules 

representation [19]. In addition, Olivecrona et al. combined RNNs and reinforcement 
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learning (RL) to generate SMILES formatted molecules that have required chemical and 

biological properties [20]. RL has been instrumental in the construction of “AlphaGo” 

designed by DeepMind, which defeated one of the best human Go players [21]. Finally, 

similar to generative adversarial networks (GANs) for generating images [22], Benjamin 

et al. exploited the GAN for a sequence generation model [23] to generate molecules with 

multi-objective optimization [24]. 

 

In order to maximize the chance to find interesting hits for a given target, generated drug 

candidates should a) be chemically diverse, b) possess biological activity, and c) contain 

similar physicochemical properties or chemical scaffolds to already known ligands [25]. 

Although several groups have studied the application of DL for generating molecules as 

drug candidates, most current generative models cannot satisfy all of these three conditions 

simultaneously [26]. Considering the variety of the structure and function of GPCRs and 

the huge space of drug candidates, it is impossible to enumerate all possible virtual 

molecules in advance [27]. Here we aimed to discover de novo drug-like molecules against 

A2AAR by our proposed new method DrugEx in which an exploration strategy was 

integrated into a RL model. The integration of this function ensured that our model 

generated candidate molecules similar to known ligands of A2AAR with great diversity and 

predicted affinity for the A2AAR. All python code for this study is freely available at 

http://github.com/XuhanLiu/DrugEx. 

 

3.2. Dataset and methods 

3.2.1. Data source 

Drug-like molecules were collected from the ZINC database (version 15) [28]. We 

randomly chose approximately one million SMILES formatted molecules that met the 

following criteria: -2 < logP < 6 and 200 < molecular weight (MW) < 600. The dataset 

(named ZINC hereafter) finally contained 1,018,517 molecules, and was used for SMILES 

syntax learning. Furthermore, we extracted the known ligands for the A2AAR (ChEMBL 

identifier: CHEMBL251) from ChEMBL (version 23) [29]. If multiple measurements for 

the same ligands existed, the average pCHEMBL value (pKi or pIC50 value) was 
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calculated and duplicate items were removed. If the pCHEMBL value < 6.5 or the 

compound was annotated as “Not Active” it was regarded as a negative sample; otherwise, 

it was regarded as a positive sample. In the end this dataset (named as A2AR) contained 

2,420 positive samples and 2,562 negative samples. 

 

3.2.2. Prediction model (QSAR) 

Binary classification through QSAR modelling was used as prediction task. Input data for 

the model were ECFP6 fingerprints with 4096 bits calculated by the RDKit Morgan 

Fingerprint algorithm with a three-bond radius [30]. Hence, each molecule in the dataset 

was transformed into a 4096D vector. Model output value was the probability whether a 

given chemical compound was active based on this vector. Four algorithms were 

benchmarked for model construction, Random Forest (RF), Support Vector Machine 

(SVM), Naïve Bayesian (NB), and Deep Neural Network (DNN). The RF, SVM and NB 

models were implemented through Scikit-Learn [31], and DNN through PyTorch [32]. In 

RF, the number of trees was set as 1000 and split criterion was “gini”. In SVM, a radial 

basis function (RBF) kernel was used and the parameter space of C and γ were set as [2-5, 

215] and [2-15, 25], respectively. In DNN, the architecture contained three hidden layers 

activated by rectified linear unit (ReLU) between input and output layers (activated by 

sigmoid function), the number of neurons were 4096, 8000, 4000, 2000 and 1 for each layer. 

With 100 epochs of training process 20% of hidden neurons were randomly dropped out 

between each layer. The binary cross entropy was used to construct the loss function and 

optimized by Adam [33] with a learning rate of 10-3. The AUC of ROC curves was 

calculated to compare their mutual performance. 

 

3.2.3. Generative model 

Starting from the SMILES format, each molecule in the ZINC dataset was split into a series 

of tokens, standing for different types of atoms and bonds. Then, all tokens existing in this 

dataset were collected to construct the SMILES vocabulary. The final vocabulary contained 

56 tokens (Table S3.1) which were selected and arranged sequentially into valid SMILES 

sequence following the correct grammar.  
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Fig. 3.1: Architecture of recurrent neural networks for training and sampling processes with 

A2AAR antagonist ZM241385 as an example. (A) In the training process of RNNs, each molecule is 

decomposed to a series of tokens and then taken as input. Subsequently, the input and output are 

combined with a start token and an end token, respectively. (B) Beginning with the start token “GO”, 

the model calculates the probability distribution of each token in the vocabulary. For each step, one of 

the available tokens is randomly chosen based on the probability distribution and is again received by 

RNNs as input to calculate the new probability distribution for the next step. This process will end if 

the end token “EOS” is sampled or the number of steps equals 100. 

 

The RNN model constructed for sequence generation contained six layers: one input layer, 

one embedding layer, three recurrent layers and one output layer (Fig. 3.1). After being 

represented by a sequence of tokens, molecules can be received as categorical features by 
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the input layer. In the embedding layer, vocabulary size, and embedding dimension were 

set to 56 and 128, meaning each token could be transformed into a 128d vector. For the 

recurrent layer, gated recurrent unit (GRU) [34] was used as the recurrent cell with 512 

hidden neurons. The output at each position was the probability that determined which 

token in the vocabulary would be chosen to construct the SMILES string. 

 

 

Fig. 3.2: The workflow of deep reinforcement learning. For each loop, it contains several steps: (1) 

a batch of SMILES sequences was sampled by the generator, which had been initialized by a pre-trained 

model; (2) each generated molecule represented by this SMILES format was encoded into a fingerprint; 

(3) a probability score of activity on the A2AAR was assigned to each molecule, calculated by the QSAR 

model which had been trained in advance; (4) all of the generated molecules and their scores were sent 

back for training of the generator with the policy gradient method. 

 

During the training process we put the start token at the beginning of a batch of data as 

input and the end token at the end of the same batch of data as output. This ensures that the 

generative network could choose correct tokens based on the sequence it had generated 

(Fig. 3.1A). A negative log likelihood function was used to construct the loss function to 

guarantee that the token in the output sequence had the largest probability to be chosen 

after being trained. In order to optimize the parameters of the model, the Adam algorithm 

[33] was used for optimization of loss function. Here, the learning rate was set at 10-3, batch 

size was 500, and training steps set at 1000 epochs.  
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3.2.4. Reinforcement learning 

SMILES sequence construction under the RL framework can be viewed as a series of 

decision-making processes (Fig. 3.2). At each step, the model determines the optimal token 

from the vocabulary based on the generated sequence in previous steps. However, the pure 

RNN model cannot guarantee that the percentage of desired molecules (i.e. biologically 

active on the A2AAR) being generated is as large as possible. To solve this problem RL is 

an appropriate method because it increases the probability of those molecules with higher 

rewards and avoids generating those molecules with lower rewards. We regarded the 

generator as the policy function and the predictor as the reward function. The generator Gθ 

was updated by employing a policy gradient on the basis of the expected end reward 

received from the predictor Q. The objective function could be designated as generating a 

sequence from the start state to maximize the expected end reward [23]. 

𝐽(𝜃) = 𝐸[𝑅(𝑦1:𝑇)|𝜃] =∑𝐺𝜃(𝑦𝑡|𝑦1:𝑡−1) ∙ (𝑄(𝑦1:𝑇) − 𝛽)

𝑇

𝑡=1

 

Here R is the reward for a complete sequence which is given by the prediction model Q; 

the generative model Gθ can be regarded as policy function to determine the probability of 

each token from the vocabulary to be chosen. The parameter β was the baseline of the 

reward, meaning that if the reward score was not larger than the baseline, the model would 

take it as a minus score or punishment. The goal of the generative model is to construct a 

sequence which can obtain the highest score judged by the predictor. 

 

3.2.5. Exploration strategy 

In order to improve the diversity of generated molecules, the token selection was not only 

determined by the generator constructed by the RNN model as described above, but also 

by a second fixed pre-trained RNN model (Fig. 3.3). The RNN requiring training is deemed 

the 'exploitation network' (Gθ) and the fixed RNN (not requiring training) is deemed the 

'exploration network' (Gφ). Both had an identical network architecture. We define 

“exploring rate” (ε) in [0.0, 1.0] to determine which fraction of steps was determined by 

the exploration network. During the training process, each SMILES sequence was 

generated through the collaboration of these two RNNs. At each step a random number in 

[0.0, 1.0] was generated. If the value was smaller than ε, the Gφ would determine which 
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token to be chosen, and vice versa. After the training process was finished, we removed Gφ 

and only Gθ was left as the final model of DrugEx for molecule generation. 

 

 

Fig. 3.3: Molecule generation with the assistance of the exploration strategy during the training 

process. For each step of token selection, a random variable was generated between 0 and 1. If the value 

is larger than a pre-set threshold (exploring rate, ε), the probability distribution is determined by the 

current generator (exploitation network, Gθ). Otherwise, it was determined by the exploration network 

(Gφ). 

 

3.2.6. Molecular diversity 

The Tanimoto-similarity was used for measuring the similarity of molecules. Given two 

compounds a and b and their ECFP6 fingerprints ma and mb, the Tanimoto-similarity is 

defined as:  

𝑇𝑠(𝑎, 𝑏) =
|𝑚𝑎 ∩ 𝑚𝑏|

|𝑚𝑎 ∪ 𝑚𝑏|
 

where | ma ∩ mb | represents the number of common fingerprint bits, and | ma ∪ mb | donates 
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the total number of fingerprint bits. The Tanimoto-distance is defined as: 

𝑇𝑑(𝑎, 𝑏) = 1 − 𝑇𝑠(𝑎, 𝑏) 

Similar to Benhenda [26], the diversity I of a set of molecules A (with size of |A|) is defined 

as the average of the Tanimoto-distance of molecules of every pair of molecules: 

𝐼(𝐴) =
1

|𝐴|2
∑ 𝑇𝑑(𝑎, 𝑏)

(𝑎,𝑏)∈𝐴×𝐴

 

In a given set of molecules, the less similar each two molecules are, the larger the value of 

its diversity will be.  

 

3.3. Results and discussion 

3.3.1. Performance of predictors 

All molecules in the A2AR dataset were used for training the QSAR models, after being 

transformed into ECFP6 fingerprints. We then tested the performance of these different 

algorithms with five-fold cross validation of which the ROC curves are shown in Fig. 3.4. 

The RF model achieved the highest value of AUC, MCC, Sensitivity, and Accuracy, despite 

its Specificity being slightly lower than DNN. Hence this model was chosen as our 

predictor whose output would be regarded as the reward for the generator in RL. In our 

previous study [15], the performance of DNN was better than RF on the chemical space of 

the whole ChEMBL database. A possible reason for this difference can be that the size of 

the A2AR dataset and chemical diversity was much smaller than ChEMBL as a whole. This 

has a negative influence on DNN which had more parameters to be optimized than RF. 

Selecting the predictor was a critical step in this study, as this model would be used to 

determine whether the following generated molecules were active or inactive. 

 

3.3.2. SMILES syntax learning 

For the training of RNNs all molecules in the ZINC dataset were used as training set after 

being decomposed into the tokens which belonged to our vocabulary set. Here, we defined 

that a SMILES sequence was valid if it could be parsed by RDKit. During the training 

process, the percentage of valid SMILES sequence through 1,000 times sampling was 

calculated and was then recorded with the value of the loss function at each epoch (Fig. 
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3.5A). After about 300 epochs, the loss function had converged, indicating the model was 

trained well.  

 

 
Fig. 3.4: Performance of five different machine learning models based on five-fold cross validation in 

A2AR dataset with different metrics, including AUC of ROC curve (A), MCC, Sensitivity, Specificity and 

Accuracy values (B). Except for specificity RF achieved highest scores among these models based on such 

measurements. 

 

Subsequently, we sampled 10,000 SMILES sequences based on this well-trained model 

and found that 93.88% of these sequences were grammatically correct SMILES. We then 

compared some properties of these generated molecules with those in the training set, 

including number of hydrogen bond donors/acceptors, rotatable bonds, and different kind 

of ring systems (Fig. 3.6A). The distribution of these properties in the generated molecules 

highly resembles the molecules in the ZINC dataset. The logP ~ MW plot (Fig. 3.7A) shows 

that most generated molecules were drug-like molecules and cover the vast majority of the 

square space occupied by the ZINC dataset. Besides these eight properties, we also 

calculated 11 other physicochemical properties (including topological polar surface area, 

molar refractivity, the fraction of sp3 hybridized carbon atoms and number of amide bonds, 

bridgehead atoms, heteroatoms, heavy atoms, spiroatoms, rings, saturated rings, valence 

electrons) to form 19D physicochemical descriptors (PhysChem). In addition, principal 

component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were 

employed for dimension reduction and chemical space visualization with the PhysChem 
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and ECFP6 of these molecules, respectively. We found that generated molecules covered 

almost the whole region occupied by molecules in the ZINC dataset (Fig. 3.7 B and C) 

although the number of these generated molecules was less than 1% of the number of 

molecules in the ZINC dataset.  

 

 
Fig. 3.5: The value of loss function and percentage of valid SMILES sequence during the pre-trained 

process on ZINC dataset (B) and fine-tuned process on A2AR dataset (B). The model was well pre-trained 

after 300 epochs and these two values converged to 0.19 and 93.88%, respectively. The performance of the 

fine-tuned model converged after 400 epochs with the two values reaching 0.09 and 0.99, respectively. 

 

Subsequently we used the A2AR dataset to fine-tune this pre-trained model with 1,000 

epochs (Fig. 3.5B). After sampling another 10,000 times, we performed the same 

comparison with the A2AR dataset with respect to the properties mentioned above (Fig. 

3.6B) and investigated the chemical space represented by logP ~ MW (Fig. 3.7D), first two 

components of PCA (Fig. 3.7E) and t-SNE (Fig. 3.7F), yielding results similar to the model 

without fine-tuning but then focused on the A2AR chemical space. These results prove that 

RNN is an appropriate method to learn the SMILES grammar and to construct molecules 

similar to the ligands in the training set, which has also been shown in other work [35,19]. 

 

3.3.3. Conditional SMILES generation 

The RNN model trained on the ZINC dataset was used as an initial state for the policy 

gradient in RL. After the training process of RL converged, 10,000 SMILES sequences 
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were generated for performance evaluation. However, after removal of duplicates in these 

sequences, only less than 10 unique molecules were left which were similar to compounds 

in the A2AR dataset. When checking the log file of the training process, we noticed that 

these duplicated sequences were frequently sampled at each epoch and its duplication rate 

increased gradually. In order to decrease the bias caused by these molecules with high 

frequency, we removed all duplicated sequences sampled at each epoch for training with 

the policy gradient. We found that almost all of the molecules generated according to this 

procedure were located outside of the drug-like region with regard to logP ~ MW plot 

(Figure S1). This problem might be caused by the bias of the predictor. ECFP is a 

substructure-based fingerprint, implying that as long as the molecule contains some critical 

substructures, it will be prone to be predicted as active. That was the reason why generated 

SMILES sequences contained a large number of repetitive motifs. Several research groups 

have made improvements to guarantee that the final model has ability to generate drug-like 

candidate molecules [24,20]. In the next section, we will describe our proposed method, 

“DrugEx” by integrating an exploration strategy to solve this problem and compare it to 

existing methods.  

 

 

Fig. 3.6: Comparison of the properties of generated molecules by the pre-trained (A) and fine-

tuned models (B) and molecules in ZINC dataset (A) and A2AR dataset (B), respectively. These 

properties included the number of acceptor/donor of hydrogen bonds, rotatable bonds, aliphatic rings, 

aromatic rings, and heterocycles. 
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Fig. 3.7: The chemical space of generated molecules by pre-trained models with ZINC dataset (A-

C) and fine-tuned model with A2AR dataset (D-F). The chemical space was represented by either 

logP ~ MW (A, D) and first two components in PCA on PhysChem descriptors (C, E) and t-SNE on 

ECFP6 fingerprints (D, F).  

 

3.3.4. Exploration strategy 

During the training process, the generated sequence is determined by both the Gθ and the 

Gφ where ε determines how many contributions the Gφ made. The Gφ and Gθ were both 

initialized by the pre-trained RNN model on the ZINC dataset. The Gφ was fixed and only 

parameters in the Gθ were updated. In order to optimize parameters, the parameter space 

was designated [0.01, 0.1] and [0.0, 0.1] for ε and β, respectively. After the model 

converged at 200 epochs (Fig. 3.8A), the performance of these models was evaluated 

subsequently based on 10,000 sampled sequences. Firstly, it was found that the number of 

duplicate SMILES notations was reduced dramatically and almost all SMILES notations 

represented drug-like molecules (Fig. 3.9A, 10D). Table 3.1 shows that when ε was 

increased, the model generated fewer active ligands for A2AAR but the diversity of 

generated molecules (represented as unique desired SMILES) increased significantly. It 

was also observed that with higher ε, the distribution of different kinds of ring systems in 

the generated desired molecules became more similar to the known active ligands in the 
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A2AR dataset (Fig. 3.9A). In order to further investigate the effect of ε, we also tested a 

range of different values as [0.01, 0.05, 0.10, 0.15, 0.20, 0.25] and the results are shown in 

Figure S2. The Gφ can hence help the model produce more molecules similar to known 

active ligands of the given target but not identical to them. At higher ε, the baseline can 

help the model improve the average score and generate more desired molecules. However, 

this effect was not significant at lower values of ε. It is worth noticing in this study that if 

the baseline was larger than 0.1, the training process of the generative model did not 

converge.  

 

Table 3.1: Comparison of the performance of the different methods 

 DrugEx (Pre-trained) 
 

DrugEx (Fine-tuned) REINVENT ORGANIC 
Pre-

trained 

Fine-

tuned 

ε 0.01 0.01  0.1 0.1  0.01 0.01 0.1 0.1 -- -- -- -- 

β 0.0 0.1 0.0 0.1  0.0 0.1 0.0 0.1 -- -- -- -- 

Valid 

SMILES 
98.3% 98.9% 95.9% 98.8% 

 
99.1% 99.0% 98.2% 97.5% 98.8% 99.8% 93.9% 96.2% 

Desired 

SMILES 
97.5% 98.0% 74.6% 80.9% 

 
98.3% 98.5% 94.4% 94.5% 98.2% 99.8% 0.7% 47.9% 

Unique 

SMILES 
96.5% 96.3% 73.0% 80.0% 

 
96.5% 96.6% 84.8% 86.0% 95.8% 94.8% 0.7% 22.7% 

Diversity 0.74 0.75 0.80 0.80  0.75 0.74 0.80 0.80 0.75 0.67 0.83 0.82 

The pre-trained network, fine-tuned network, REINVENT, ORGANIC and DrugEx with different Gφ (shown 

in the parentheses), ε and β were compared. 

 

Subsequently, the fine-tuned network was used as Gφ to be involved in our proposed 

training method of RL. After the training process converged at 200 epochs (Fig. 3.8B), 

10,000 SMILES were generated. Compared to the pre-trained network, there were more 

unique molecules generated (Table 4.1), most of which were drug-like compounds (Fig. 

3.9B and 10A). However, with appropriate ε the fine-tuned network helped the model 

generate more valid desired SMILES than with the pre-trained network. At the same time 

the duplication rate was also increased and there were more repetitive molecules being 

generated. A possible reason is that the percentage of active ligands was higher in the A2AR 
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dataset than in the ZINC dataset, while the size of A2AR dataset was much smaller than 

ZINC dataset, causing a higher number of duplicated samples generated by the fine-tuned 

model. In addition, a PCA showed that the fine-tuned network was more effective than the 

pre-trained network as Gφ, as it helped the model in generating molecules with larger 

diversity and higher similarity to the known active ligands (Fig. 3.9 and 10). These results 

prove that the exploration strategy is an effective way to assist the model training for 

generating molecules with similar chemical and biological properties to existing molecules 

in a specific part of chemical space. 

 

 
Fig. 3.8: The average score of generated SMILES sequences during the training processes of deep 

reinforcement learning with different ε, β and Gφ. The pre-trained model on ZINC dataset (A) and the fine-

tuned model on A2AR set (B) were used as Gφ. After 200 epochs, the average scores for all training processes 

converged and all of these models were well trained.  

 

3.3.5. Comparison with other methods 

Several papers on SMILES generation using deep learning have been published. 

Olivecrona et al. proposed a method named “REINVENT” [20], in which a new loss 

function was introduced based on the Bayesian formula for RL, 

𝐿(𝜃) = [𝑙𝑜𝑔𝑃𝑃𝑟𝑖𝑜𝑟(𝑦1:𝑇) + 𝜎𝑅(𝑦1:𝑇) − 𝑙𝑜𝑔𝑃𝐴𝑔𝑒𝑛𝑡(𝑦1:𝑇)]
2
 

 

The authors used all molecules in the ChEMBL database to pre-train an RNN model as the 

Priori. With the parameter σ, they integrated the reward R of each SMILES into the loss 
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function. The final Agent model was regarded as the Posteriori and trained with the policy 

gradient. Finally, they successfully identified a large number of active ligands against the 

dopamine D2 receptor (DRD2).  

 

 

Fig. 3.9: Comparison of the properties of generated molecules by RL models with different ε, β and Gφ. 

The pre-trained model on ZINC dataset (A) and the fine-tuned model on A2AR dataset (B) were used as Gφ. 

These properties included the number of hydrogen bond donors/acceptors, rotatable bonds, aliphatic rings, 

aromatic rings, and heterocycles. 

 

Likewise, Benjamin et al. proposed another method named “ORGANIC” [24] by 

combining a GAN model for sequence generation and a prediction model to form a 

comprehensive reward function for RL.  

𝑅(𝑦1:𝑡) = 𝜆𝑅𝑑(𝑦1:𝑇) + (1 − 𝜆)𝑅𝑐(𝑦1:𝑇) 
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Here, the reward is represented as the weighted sum of two parts determined by parameter 

λ: 1) the reward Rc was provided by the prediction model, and 2) the reward Rd was 

calculated by discriminator neural network D, which was trained with generator 

simultaneously by minimizing the following loss function: 

𝐿(𝜃) = ∑ (𝑙𝑜𝑔𝐷(𝑦1:𝑇))

𝑦∈𝑅𝑒𝑎𝑙

+ ∑ (𝑙𝑜𝑔 (1 − 𝐷(𝑦1:𝑇)))

𝑦∈𝐹𝑎𝑘𝑒

 

With the policy gradient optimization, the final model generated many different desired 

molecules which were predicted as active ligand against a given target and were similar to 

the chemical compounds in the ligands dataset. In the following section DrugEx and its 

performance is compared with these two methods. 

 

The code of REINVENT and ORGANIC was downloaded from GitHub and executed with 

default parameters (σ = 60 in REINVENT and λ = 0.5 in ORGANIC). The prior network 

of REINVENT and generator network of ORGANIC were initialized with the pre-trained 

model, and the agent network of REINVENT was started from the fine-tuned model. The 

RF-based predictor with ECFP6 was exploited as reward function for both methods 

identical to our own implementation. After these models were trained, 10,000 SMILES 

sequences were generated for performance comparison with each other (Table 4.1). Our 

method generated molecules that had the larger diversity at ε = 0.1. While DrugEx did not 

outperform REINVENT based on the percentage of unique desired SMILES, this value 

was improved dramatically and closely resembled that of REINVENT when ε was set to 

0.01. In addition, although most of the molecules generated by these methods were drug-

like molecules (Fig. 3.10A-D), through PCA on PhysChem descriptors (Fig. 3.10E-H) and 

t-SNE on ECFP6 fingerprints (Figrue 10I-L), we found that molecules generated by our 

method covered the whole region of chemical space occupied by known active ligands. 

Conversely, molecules generated by both REINVENT and ORGANIC only covered a 

small fraction of the desired chemical space and were mostly centered in Rule-of-5 

compliant chemical space even though the chemical space for the A2AR transcends this 

region of space. Moreover, we also used a k-means algorithm to cluster the active ligands 
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in the A2AR dataset and generated molecules into 20 groups with the ECFP6 fingerprints 

of the full compound structure, Murcko scaffold and topological Murcko scaffold. The 

results indicated that the generated molecules by DrugEx covered all of the clusters that 

contain active ligands in the A2AR dataset, but some of these clusters cannot be covered by 

REINVENT and ORGANIC (Figure S3). The distribution of the molecules in each cluster 

generated by DrugEx was closer to active ligands in the A2AR dataset than REINVENT 

and ORGANIC. 

 

Previous work on the binding mechanism between the A2AAR and its ligands identified a 

number of critical substructures that play an important role to improve binding affinity [36]. 

For example, the oxygen in the furan ring of ZM241385 and related ligands can form a 

hydrogen bond with residue N253, the purine ring acts as hydrogen bond donor to N253 

and forms π-π interaction with F168 [6]. However, molecules containing such a furan ring 

tend to be blocking the receptor (antagonists) rather than activating it (agonists). Hence, 

while the furan ring is common in the set of known A2AR ligands, its presence might not 

always be favorable for generated ligands. Moreover, in general fused rings have been 

shown to be important in the chemical structure of drugs [37]. Therefore, we compared the 

percentage of molecules containing furan rings, fused rings, and benzene rings. Only 0.20% 

of the desired molecules generated by REINVENT contained a fused ring (Table 4.2) while 

they were present in 79.09% of active ligands in the A2AR set. Similarly, ORGANIC only 

generated a very low percentage of molecules containing a fused ring system (0.02%).  

 

With the pre-trained network as Gφ, DrugEx produced 9.12% of molecules containing 

fused rings, while the fine-tuned network improved the percentage of molecules containing 

fused rings up to 60.69%. Moreover, 95.26% and 99.96% of molecules generated by 

REINVENT and ORGANIC contained a furan ring, respectively, while this percentage was 

only 40.29% for known active ligands. In DrugEx, 82.32% of molecules contained a furan 

ring under the pre-trained network as Gφ, similar to the other two methods. However, when 

the fine-tuned network was used this rate decreased substantially to 66.35%.  
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Fig. 3.10: Comparison of the chemical space of active ligands in the A2AR set and generated molecules 

by REINVENT, ORGANIC and DrugEx with different Gφ (shown in parentheses). Chemical Space was 

represented by logP ~ MW (A, D, G and J) and first two components in PCA on PhysChem descriptors (B, 

E, H and K) and t-SNE on ECFP6 fingerprints (C, F, I and L). 

 

REINVENT and ORGANIC have been reported to generate various molecules containing 

different fused ring structures against DRD2 [24,20]. One possible reason they were not 
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able to do so here might lie in the bias of A2AR dataset. In table 4.2, we noticed that there 

were more active ligands containing a furan ring than inactive ligands (four fold difference). 

This led to both methods only generating molecules containing a furan ring which were 

prone to be predicted as active. However, both methods neglected to construct more 

complicated fused rings which is a decisive difference between active and inactive ligands 

in A2AR dataset. These results indicate that DrugEx is more robust to overcome the bias of 

the training set to generate more similar compounds to known A2AAR ligands (tuned for 

the target chemical space) and less generic SMILES sequences. Hence, we consider these 

molecules more appropriate drug candidates against A2AAR than the molecules produced 

by REINVENT and ORGANIC. As an example, 24 candidate molecules generated by 

DrugEx were selected and are shown in Fig. 3.11 ordered by the probability score and 

Tanimoto-distance to the A2AR dataset. 

 

Table 4.2: Comparison of the percentage of important substructures contained in the molecules 

generated by the methods.  

 Fused Ring Furan Ring Benzene Ring 

DrugEx (Pre-trained) 9.12% 82.32% 61.48% 

DrugEx (Fine-tuned) 60.69% 66.35% 65.62% 

REINVENT 0.20% 95.26% 61.98% 

ORGANIC 0.02% 99.96% 39.45% 

Pre-trained 24.22% 4.51% 63.31% 

Fine-tuned 76.33% 23.82% 72.85% 

ZINC 26.66% 3.86% 63.97% 

A2AR 
Active 79.09%  40.29% 75.33%  

Inactive 76.73% 9.33% 70.88% 

The table compares DrugEx with pre-trained and fine-tuned model as different Gφ (in the parentheses), 

REINVENT, ORGANIC, Pre-trained model, Fine-tuned model and the molecules in ZINC and A2AR dataset. 

 

In REINVENT, the pre-trained model acted as a “priori” in the Bayesian formula to ensure 

that the generated SMILES are drug-like molecules. The final model was trained by 

improving the probability of desired generated SMILES while maintaining the probability 

of undesired generated SMILES similar to the pre-trained model. In DrugEx the pre-trained 
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model was only used for initialization and did not directly affect the training process and 

performance evaluation. The mechanism of DrugEx appears quite similar to a genetic 

algorithm (GA) previously developed in our group for de novo drug design [38]. The 

exploration strategy can be regarded as “random mutation” in a GA context for sequence 

generation. Instead of changing the token selection directly, this manipulation just changed 

the probability distribution of each token in the vocabulary. Furthermore, although 

“crossover” manipulation was not implemented here, such mutations can still help the 

model search the unfamiliar chemical space in which the molecules do not have a high 

probability to be sampled. In contrast to ORGANIC, there was no need to construct another 

neural network specifically to measure the similarity between generated and real molecules, 

saving valuable time and resources required to train and select appropriate parameters. 

Despite the inevitable introduction of some duplicates the molecules generated by DrugEx 

can be regarded as reasonable drug candidates for A2AAR. 

 

 
Fig. 3.11: 24 Candidate molecules were selected from 10,000 SMILES sequences generated by DrugEx. 

These molecules were ordered by the probability score given by the predictor and Tanimoto-distance to A2AR 

dataset. 
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3.4. Conclusion and future prospect 

In this study a new method is proposed to improve the performance of deep reinforcement 

learning to generate SMILES based ligands for targets of interest. Applied to the A2AAR, 

generated molecules had high diversity combined with chemical and predicted biological 

properties similar to known active compounds. Previous work has shown that RL cannot 

guarantee the model to generate molecules distributed over chemical space comparable to 

ligands of a target of interest. To solve this problem, another pre-trained RNN model was 

included as exploration strategy to force the model to enlarge the chemical space of the 

generated molecules during the training process of RL. Compared with other DL-based 

methods, DrugEx generated molecules with larger diversity and higher similarity to known 

active ligands, albeit at the expense of more inactive or duplicated molecules. 

 

In future work, the aim is to update DrugEx with multi-objective optimization. As a given 

drug (candidate) likely binds some other targets (i.e. off-target efficacy) which can cause 

side-effects [39]. Incorporating multiple objectives in SMILES generation will allows the 

search for ways to eliminate potential off-target affinity. 
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Table S3.1: All tokens in vocabulary for SMILES sequence construction with RNN model.  

Atoms Bonds Controls 

Common  

Atoms 

Aromatic 

Atoms 
-- Rings Branchs On-Off 

B 

C 

F 

I 

Cl 

N 

O 

P 

Br 

S 

 

[B-] 

[BH-] 

[C+] 

[C-] 

[CH-] 

[CH] 

[C] 

[N+] 

[NH+] 

[N] 

[O-] 

[O] 

[P+] 

[PH] 

[Br+] 

[S+] 

[SH] 

[SiH3] 

[SiH] 

[Si] 

[Sn] 

[cH-] 

[n+] 

[nH] 

[s+] 

c 

n 

o 

p 

s 

 

 

- 

= 

# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

( 

) 

 

GO 

EOS 

Considering that there are no drug-like molecules containing more than 10 rings, we omitted the token “0” 

and “%” for the construction of more than 10 rings. In addition, we ignored the isomerism of molecules and 

ionic bond, therefore we removed the “@”, ‘\’, ‘/’, ‘.’ and all metal ion.  
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Figure S3.1: The chemical space of generated molecules by pre-trained models, traditional reinforced 

model and active ligands in the A2AR set. The chemical space was represented as logP ~ MW. The 

generated molecules by pre-trained model covered the greater part of space of known active ligands, while 

the molecules generated by reinforced model were distributed in a distinct region, which cannot be regarded 

drug-like although the compounds were predicted as active ligands. 
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TableS3.2: The performance of DrugEx with different Gφ (pre-trained and fine-tuned model) and 

hyperparameters (including ε and β). These performance included the percentage of valid SMILES (A), 

desired SMILES (B) and unique desired SMIIES (C) and diversity (D).  
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Figure S3.3: The percentage of molecules in 20 groups clustered by k-means algorithm on ECFP6 

fingerprints of generated molecules with full compound (A), Murcko scaffold (B) and topological 

Murcko scaffold (C). These molecules included active ligands in A2AR dataset and molecules generated 

by REINVENT, ORGANIC and DrugEx with different Gφ (shown in the parentheses) 
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