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Abstract 

 

Drug discovery is time- and resource-consuming process. To this end, computational 

approaches that are applied in de novo drug design play an important role to improve the 

efficiency and decrease costs to develop novel drugs. Over several decades, a variety of 

methods have been proposed and applied in practice. Traditionally, drug design problems 

are always taken as combinational optimization in discrete chemical space. Hence 

optimization methods were exploited to search for new drug molecules to meet multiple 

objectives. With the accumulation of data and the development of machine learning 

methods, computational drug design methods have gradually shifted to a new paradigm. 

There has been particular interest in the potential application of deep learning methods to 

drug design. In this chapter, we will give a brief description of these two different de novo 

methods, compare their application scopes and discuss their possible development in the 

future.  

 

Keywords: machine learning, cheminformatics, deep learning, drug discovery, 

optimization 
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2.1. Introduction 

Drug discovery is always considered to have a significant “serendipity” component, -- 

researchers need to identify a small fraction of feasible molecules with desired 

physicochemical and biological properties from the vast chemical space, which has been 

estimated to be comprised of 1023~1060 feasible drug-like molecules [1]. This number of 

potential candidate molecules is too large to screen experimentally. Moreover, drug 

molecules have a high promiscuity [3], i.e. each drug-like molecule has six protein targets 

on average, leading to the unexpected toxicity and withdrawal of some FDA approved 

drugs from the market [4]. These problems have contributed to an increase in the average 

cost to over one billion USD for the development of a new drug in a process that takes 

about 13 years to reach the market [5].  

 

 
Fig. 2.1: Schematic overview of the interplay of two methods in computational drug discovery: 

virtual screening and de novo design. The left of the figure shows ways in which a molecule can be 

described for computational methods (see ‘Molecular Representations’). On the right the multi-

objective nature of the problem is shown. Properties are often contrary (orange arrows) and sometimes 

cooperative (blue arrows), but must be optimized simultaneously (see ‘Multiple Objectives’). 

 

To this end, computer-aided drug discovery (CADD) aims to speed up the drug discovery 

process by integrating chemical and biological information about ligands and/or targets [6]. 

CADD is a broad field of research that includes de novo drug design and virtual screening 

methods (Fig. 2.1, center). De novo drug design suggests new molecules as starting points 
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for chemical modifications that result in novel leads. By contrast, virtual screening methods 

try to uncover the hidden relationships between chemical structure and pharmacological 

activity. CADD has always been a combinatorial optimization problem with multi-

objective optimization. Virtual screening methods provide a scoring function that mimics 

bioassays in order to guide the drug design algorithm to converge on the optimal molecule. 

Because it is impossible to enumerate every chemical entity in the chemical universe, 

CADD in practice does not lead to a globally optimal solution, but it narrows down the 

searching scope of chemical space and converges on a local or practical optimum [7].  

 

In the past, machine learning methods, such as random forests, were mainly constructed 

for virtual screening, i.e. given the structure of a chemical compound predict its biological 

activity. With the increased availability of (public) data and development of computer 

sciences (e.g. the introduction of GPU computation), machine learning methods have also 

found their way to the field of de novo drug design. Deep learning (DL) methods in 

particular have attracted increasing attention as a promising approach for drug discovery 

[8]. DL methods are an extension of artificial neural networks that add a variety of multiple 

hidden layers, thus making the network significantly deeper [9]. In 2012, deep 

convolutional neural networks (CNNs) were proposed and became a breakthrough in image 

classification [10]. Subsequently, generative adversarial networks (GANs) were developed 

for image generation and, by 2014, these had significantly improved the quality of 

generated images [11]. Based on these achievements, the DL methods could also provide 

a series of solutions for prediction, generation, and decision-making in other data rich fields 

beyond image recognition and natural language processing [8]. In drug discovery, DL has 

catalyzed an explosion of applications for de novo drug design since Gómez-Bombarelli et 

al. applied variational autoencoders (VAE) to generate SMILES-based chemical 

compounds in 2016 [13].  

 

As traditional optimization algorithms and recent DL methods are quite distinct, it is 

necessary to make a clear comparison between both methods. In the following paragraphs, 

we will give more theoretical details of these two different methods and their application 
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in the field of drug design. We will also discuss the advantages and disadvantages of both 

of them and possible directions of their combination in the future.  

 

2.2. De novo drug design 

Due to the discreteness of chemical space, drug design is intuitively rendered into a 

combinatorial optimization problem. The solution of this drug design problem is searching 

for an optimal combination of building blocks to find the best solution according to the 

required conditions. Based on the difference of the building blocks, drug design algorithms 

can be classified into atom-based and fragment-based methods. The atom-based methods 

are the more intuitive approaches and easily construct a variety of novel structures, but are 

more time-consuming and less able to converge to the best solutions. In contrast, fragment-

based methods reduce the chemical space dramatically by pre-defining the fragment library 

and are consequently faster searching for optimal molecules than atom-based methods, 

although the diversity is lower compared to atom-based methods. However, the drug design 

problem cannot be solved completely, because an increase in fragments leads to a 

combinatorial explosion of chemical space, making an exhaustive search impossible. 

Therefore, more efficient molecular representations need to be developed to suggest novel 

potential drug-like molecules efficiently in addition to, or as an alternative for the known 

atomistic and fragment-based representations.  

 

Usually, drug molecules are organic compounds with physiochemical properties optimal 

for drug-like molecules, such as Lipinski’s rule of 5. Moreover, sufficient on-target affinity 

and avoiding off-target affinity are additional objectives that need to be met.  

 

Drug de novo design can be further classified into structure-based and ligand-based 

methods based on whether 3D structure information is available and included [7,14]. In 

structure-based drug design, the 3D structure of a protein target is required for guiding 

ligand design but prior knowledge of other ligands is unnecessary. The optimal ligands are 

commonly obtained by calculating the binding energy when combining at the protein active 

site to interact with the protein. This compares with ligand-based methods, which do not 
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exploit protein target structure information but require the prior knowledge comprised of 

known ligands of given structures which are used to measure their similarity with generated 

molecules.  

 

2.2.1. Molecular representations 

Chemical compounds are not a random cluster of atoms and functional groups, but rather 

have a definite structure represented by the arrangement of chemical bonds between atoms 

and information on the geometric 3D shape. This information needs to be represented 

computationally for algorithms to be able to predict properties of these molecules (Fig. 2.1). 

Ideally, the full 3D shape geometry is used for construction of a fitness function in 

structure-based optimization methods, such as docking or molecular dynamics [15]. 

However, these 3D approaches always consume more computational resources and time; 

they also require the computational generation of conformers, a process which can be prone 

to error.  

 

To circumvent this requirement 2D approaches are used. As the key to properties of the 

molecules lies in fragments with a specific connection pattern of the atoms, molecules can 

be represented as a bag of fragments which can be perturbated easily for generating new 

molecules (in the form of a binary bit string). This molecular fingerprint can also be used 

as input for virtual screening [16]. A downside to fingerprints is that the connectivity 

information linking the individual fragments is not available. Hence various different 

molecules can be generated with the same combination of fragments. Moreover, while each 

fragment of the molecule can be mapped to one bit in a fingerprint by a hash function, such 

as ECFP [17], the fingerprint is always irreversible. A fingerprint cannot be reconstructed 

into a molecule, so it is impossible to use the molecular fingerprint directly for drug design. 

All in all, there is no single 2D or 3D representation that seems to meet all criteria [18]. 

 

To circumvent the loss of connectivity information, other methods are used. The most 

natural molecular representation is an undirected graph where the atoms and bonds are 

nodes and edges respectively [19]. These graphs can be reversibly converted into a text 



Computational approaches for de novo drug design 

 

23 

format using a preset grammar such as simplified molecular-input line-entry specification 

(SMILES). Analogous to natural language processing, SMILES is regarded as a chemical 

language and directly used in deep learning models for molecular generation. However, as 

SMILES follows a fixed grammar, generated texts can easily lead to invalid molecules. To 

solve this problem, some groups attempted to decompose SMILES into a sequence of rules 

from a context free grammar and improved linear molecular representation, such as 

DeepSMILES [20], Randomized SMILES [21], and SELIES [22]. An advanced 

representation is directly storing the graph into multi-dimensional tensors, including type 

of atoms and edges, and connectivity information. This representation can make sure the 

molecular graph can be generated immediately without considering grammar; however, it 

is still computationally expensive.  

 

2.2.2. Multiple objectives 

As specified above, drug design is always a multi-objective problem (MOP) and designed 

compounds need to meet many criteria as drug candidates e.g. efficacy, selectivity, safety, 

permeability, solubility, metabolic stability, synthesizability, etc. (Fig. 2.1) Some of these 

objectives are not independent but contradictory, meaning that if an optimum is achieved 

on one objective it has been at the expense of making a compromise on other objectives. 

Unlike single-objective problems (SOP), where the best solution is on the top of ranking 

sorted by the scalar score of each candidate solution, the ranking of candidates in a MOP 

is more complicated because of conflicting objectives [14]. A straightforward method of 

dealing with this complication is to convert the multiple objectives into a single objective 

by weighted summing of scores for each objective [23]. 

 𝑓(𝑛) =∑𝑤𝑖𝑝𝑖

𝑁

𝑖=1

 

where f(n) is the fitness function and wi is pre-defined by users as the weight of ith objective 

pi. However, it is challenging to determine these weights, because they specify a single 

pattern of compromise for these objectives, which can trap an optimization algorithm and 

lead to unreasonable solutions.  
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Fig. 2.2: Pareto frontier in multi-objective optimization. Take two objectives as an example, non-

dominated solutions form a boundary called Pareto frontier which separates the infeasible solutions in 

the lower left region from dominated solutions in the upper right region. 

 

In order to strike a better balance between each objective, MOP algorithms produce a set 

of solutions representing various compromises among the objectives. The solutions are 

mapped out on a hypersurface in the search space, termed Pareto Front [24]. A solution 

dominates another one if it is equivalent or better in all objectives and better in at least one 

objective compared with all other solutions. Solutions with the most appropriate 

compromise among the individual objectives can be identified through pareto ranking. 

Several pareto ranking algorithms have been developed (e.g. SPEA [25], NSGA [26], SMS-

EMOA [27], etc). However, all of them are computationally expensive for large numbers 

of objectives and data points and lead to non-convergence of the solutions in contradiction 

of the SOP [23]. 

 

2.3. Optimization methods 

In applications of drug design, the most popular searching algorithms are evolutionary 
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algorithms (EAs), particle swarm optimization (PSO), and Simulated annealing (SA) 

(Table 2.1). In the following paragraphs, we will briefly introduce their mathematical 

theories and their application in drug discovery.  

 

2.3.1. Evolutionary algorithms 

EAs are population-based metaheuristic optimization algorithms inspired by biological 

evolution to mimic the genetic operators, such as “reproduction”, “mutation”, and 

“crossover” [44]. In the population, a pair of individuals is randomly selected for each time 

and play the role of parents to “reproduce” the offspring through “mutation” and “crossover” 

for population expansion. The scoring function, also called a fitness function in EAs, 

determines which individual can survive and replace the least-fit individual in the 

population. The surviving individuals in the updated population are selected as the new 

parents for next generation. For each iteration of the evolutionary cycle, the average fitness 

score of individuals in the population will be improved and this cyclic process will continue 

until a termination criterion is reached. Currently, EAs are the most sophisticated algorithm 

used for drug de novo design in practice. 

There are several major algorithmic techniques in use in EAs, examples include genetic 

algorithms, genetic programming, and evolutionary strategies [45]. Genetic algorithms 

(GAs) are one of the most fundamental and widely used EAs. GAs need to encode the 

phenotype (molecular structure) by means of a ‘chromosome’ as the simulation of natural 

selection [46]. For example, Wang et al. developed a software named LigBuilder, in which 

each molecule was decomposed into a series of fragments from the building-block library 

to be used as ‘chromosome’ [28]. The mutation operator was defined to allow only carbon, 

nitrogen, and oxygen atoms of the molecules with the same hybridization state to mutate 

to each other. During the process, fragments were combined to generate a new population 

through randomly selecting a growing site on the seed structure and addition of a fragment 

from the building-block library. Each molecule was represented with its SMILES sequence 

as the ‘chromosome’. Similarly, Douguet et al. defined allowable crossover points and 

mutation rules were generated for breeding valid SMILES as the next generation in their 

method deemed LEA [29]. 
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Table 2.1: Current optimization methods for de novo drug design. 

 

In GAs, there are fixed data structures (despite the linearity of the chromosome) to organize 

the variables which need to be optimized. But if these variables are interdependent through 

Methods Method 

Molecule 

Representation 

Objective Reference 

LigBuilder GA 3D geometry 
Affinity (Thrombin and dihydrofolate reductase) and 

Bioavailability Score 
Wang et al. [28] 

LEA GA SMILES 
Analogs fitness (Retinoid and Salicylic Acid) and 

physico-chemical properties 
Douguet et al. [29] 

ADAPT GA Fragment 
Docking score (cathepsin D, dihydrofolate reductase, 

and HIV-1 reverse transcriptase), RO5 
Pegg et al. [30] 

PEP GA Fragment Force field-based binding energy (Caspase 1, 3 and 8) Budin et al. [31] 

SYNOPSIS GA, SA Reactivity 
Electric dipole moment, affinity 

to binding site (HIV-1 reverse transcriptase) 
Vinkers et al. [32] 

LEA3D GA Fragment 
Molecular Properties, Affinity to binding site 

(thymidine monophosphate kinase) 
Douguet et al. [33] 

GANDI GA Fragment 
2D/3D similarities and force field-based binding 

energy (cyclin-dependent kinase 2) 
Dey et al. [34] 

Molecule 

Commander 

GA Fragment 
Affinity to A1AR, off-target selectivity (A2AAR A2BAR 

A3AR) and ADMET scores 

van der Horst et al. 

[35] 

Molecule 

Evoluator 

GP Tree SMILES 
QSAR functions, docking, experiments, similarity to 

template molecules (Neuramidase inhibitor) 

Lameijer et al. 

[36] 

MEGA GP Graph 
Binding affinity score (Estrogen receptor), similarity 

score and RO5 

Nicolaou et al. 

[37] 

FLUX ES Fragment 
Similarity to template molecules (tyrosine kinase 

inhibitor, Factor Xa inhibitor) 
Fechner et al. [38] 

TOPAS ES Fragment 
2D structural/topological pharmacophore similarity to 

template (thrombin inhibitor) 

Schneider et al. 

[39] 

MOLig SA Fragment 
Force field-based binding energy (RecA), similarity to 

template molecules, oral bioavailability 

Sengupta et al. 

[40] 

CONCERTS SA Fragment 
Force field-based binding energy (FK506 binding 

protein, HIV-1 aspartyl protease) 

Pearlman et al. 

[41] 

SkelGen SA Fragment 
Binding affinity prediction score (DNA gyrase and 

estrogen receptor) 
Dean et al. [42] 

COLIBREE PSO Fragment  Similarity to template molecules (PPAR ligands)  
Hartenfeller et al. 

[43] 
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an explicit relationship, such as procedural or functional representation, genetic 

programming (GP) is a more suitable method to realize the EA principles [47]. In GP, the 

chromosomes are always represented as trees rather than the fixed-length strings of GAs. 

And crossover is implemented as recombination of subtrees between two parents, while 

mutation selects and alters a random node or edge of the tree depending on its type. Usage 

of a SMILES representation as a “chromosome” is troublesome for genetic operators, 

because SMILES per se is a grammatic constraint linear string and the random mutation 

and crossover will produce a large number of invalid SMILES. Lameijer et al. solved this 

problem in their software, named ‘Molecule Evoluator’ based on a SMILES representation 

employing a GP [36]. In Molecule Evoluator, TreeSMILES are defined as the tree structure 

being transformed from the SMILES according to its grammar, in which each node and 

edge denoted the atom and bond respectively. Every node or edge has an operator function, 

making mathematical expressions easy to evolve and evaluate.  

 

Evolutionary strategies (ES) are a third EA technique using the concepts of adaptation and 

evolution. In contrast to GAs, selection in ES is based on a fitness ranking rather than 

fitness values, although mutation and selection also play an important role for breeding 

[48]. ES operates on the parent and the result of its mutants. In ES, a number of mutants 

are generated which compete with the parent, wherein the best mutant becomes the parent 

of the next generation. For example, Flux implemented a simplistic (1, λ)-ES without 

adaptive step-size control and defined the crossover and mutation generators on the 

fragment-based “reaction tree” of each pair of parents [38]. Selection was performed only 

among the offspring and the parent died out, which could facilitate escaping local optima 

in the fitness landscape. Another method, TOPAS, used a simple (1, λ)-ES with adaptive 

parameters [39]. During the stochastic search process, there were λ=100 variants generated 

through virtual synthesis for each iteration. The distribution of Tanimoto similarity with 

their parents was controlled by a step-size parameter, which guaranteed that the chemical 

space of the population adapts to the local shape of the fitness landscape. Similarly, only 

one variant with the best fitness score became the parent of the next generation while the 

current parent was discarded.  
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2.3.2. Particle swarm optimization 

PSO solves the optimization problem based on the observation of collective intelligence in 

many natural systems that individuals cooperate with each other to improve not only their 

collective performance but also each individual’s performance on a given task [49]. Similar 

to EAs, PSO also is a population-based method. In PSO a population, known as a swarm, 

contains a series of candidate solutions (called particles). The population needs to be 

initialized to represent the position in the search space, and the individuals should have 

initial velocities. In addition, each particle has its own memory to record the best fitness of 

its past for communication with others. In each iteration, the fitness score of each 

individual’s position is calculated to register the best position. Subsequently the velocity 

of each particle is randomly influenced by two factors: one is the best-known position of a 

particle in its neighborhood and the other is the best position it ever searched in the past. 

Subsequently, the new position of each particle will be calculated based on its updated 

velocity. If each particle can communicate with all the other particles and share the same 

best position from a single particle the swarm will be trapped in a local minimum.  

Therefore, one of the key points is how to define the topology of the swarm to determine 

its neighbors.  

 

The PSO algorithm was frequently used in continuous search spaces. In order to be applied 

in the discrete search space of drug-like molecules, Hartenfeller et al. replaced the concept 

of velocity of each particle with the quality vector and developed COLIBREE for drug 

design [43]. In COLIBREE, each molecule was represented as building blocks and linkers. 

The fitness function is defined as the similarity between reference ligands and generated 

molecules under chemically advanced template search (CATS) descriptors. Each particle 

stores the current search point (a molecule) and a quality vector which represented a 

relative probability for every fragment in the library to be chosen in the next search step 

for constructing the molecule. During the optimization cycle, each particle created a new 

molecule and updated its memory after the fitness was evaluated. The quality vector was 

incremented if the fragment had been part of the molecule stored in the memory of the 
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current particle. In the end, good solutions have a higher probability to be chosen for 

molecule construction in subsequent search steps. 

 

2.3.3. Simulated annealing 

For the purpose of estimating a global optimum of an objective function, Simulated 

Annealing (SA) is based on the cooling and crystallizing behavior of chemical substances. 

This behavior is affected by both the temperature and the thermodynamic free energy. In 

general, SA sets the initial temperature and choses a random point as the initial solution. It 

then works iteratively in steps during which the temperature is progressively decreased 

from an initial value to zero. For each iteration, a new point is randomly selected from the 

points close to the current one as the solution. Subsequently, a probability score is 

calculated based on whether the quality of the new solution is better than the current 

solution or not, and the algorithm decides which solution will be adopted to replace the 

current solution. This probability is affected by the temperature, i.e. the temperature 

controls the balance of exploration/exploitation strategies. If the initial temperature is too 

low or cooling is too fast, the algorithm will not effectively explore the search space. 

Conversely, when the temperature is set too high, the algorithm will take too long to 

converge. The key point of SA is the strategy about how to choose a new solution, which 

has a significant impact on its performance.  

 

Sengupta et al. developed MOLig with the SA algorithm in 2012 [40]. This method 

encoded each molecule into a tree-like representation which was stored as an array of 

positive integers. In this array numbers symbolized a molecular fragment and specified the 

connectivity pattern. For each iteration, there were several perturbation operators being 

defined for generating molecules as a new solution and it would be determined by 

temperature related probability whether this new solution would replace the current one. 

The iteration would terminate once the temperature was reduced to zero. In addition, 

CONCERTS [41] and SkelGen [42] are other structure-based de novo design methods 

based on the SA algorithm.  
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Fig. 2.3: Four basic deep learning architectures commonly used in de novo drug design, including 

recurrent neural networks (A), variational autoencoder (B), generative adversarial networks (C) and 

deep reinforcement learning (D). 

 

2.4. Deep learning algorithms 

The common basic DL architectures used in de novo drug design are recurrent neural 

networks (RNNs), variational autoencoder (VAE), deep reinforcement learning (RL), and 

generative adversarial networks (GANs) (Fig. 2.3). Most studies of DL applications 

combine two or more models to address specific issues. In the following paragraphs, we 

give the details about these architectures, and how these models can be applied in drug 

design. We also list and categorize these methods based on these DL architectures in Table 

2.2.  

 

2.4.1. Recurrent neural networks 

RNNs can process sequential data effectively because the connections between neurons 

form a directed acyclic graph that can be unrolled along the temporal sequences [81]. RNNs 

have shown excellent performance in the field of natural language processing (NLP) such 

as handwriting [82] or speech recognition [83]. RNNs deal with words in text step by step 

and deliver the current hidden information to the next step in the network with the same 

structure simultaneously. By analogy, the direct application of RNNs in drug design takes 
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the linear molecular representations as input [61,60,53]. For example, SMILES are always 

preprocessed by being split into a sequence of tokens x1:n = [x1, …, xn]. The SMILES string 

is then prefixed with a start token x0 as input feature and suffixed with the end token xn+1 

as the output labels. The RNN model πθ parametrized by θ determines the probability 

distribution yi of tokens based on x0:i-1: 

 𝒉𝒊 = 𝒇𝑟(𝒉𝒊−𝟏, 𝒙𝒊−𝟏) 

𝒚𝒊 = 𝒇𝒐(𝒉𝒊) 

here, fr denotes recurrent layers and receives the last hidden states hi-1 and input features 

xi-1 to calculate the current hidden states hi. In order to avert the problem of long-distance 

dependencies caused by gradients vanishing or exploding, many variational versions have 

been proposed, including two common implementations: long short-term memory (LSTM) 

[84] and gated recurrent unit (GRU) [85], which contain a memory cell and some different 

gates to determine forgotten and reserved information. In the end, hi are delivered to output 

layers fo for calculation of output values yi and commonly, the probability of each word in 

the vocabulary is computed by the SoftMax function. For the model training, the maximum 

likelihood estimation (MLE) is always chosen to calculate the loss function: 

 ℒ𝑀𝐿𝐸 =∑∑log 𝝅𝜽(𝒙𝒊|𝒙𝟎:𝒊−𝟏)

𝑛+1

𝑖=1

𝑚

𝑗=1

 

here, m is the total number of samples with sequence length n in the training set. The MLE 

loss function can be optimized with the backpropagation algorithm commonly used for DL 

model training.  

 

The RNN model always serves as one of the basic components in the more complicated 

DL architectures, which will be introduced in the following paragraphs. If used 

independently, RNN models are often beneficial for molecular library generation. For 

example, Segler et al. pre-trained an RNN model on the ChEMBL database containing 1.4 

million molecules and employed ‘transfer learning’, also called ‘fine-tuning’ methods to 

make molecules focused on the chemical space for the 5-HT2A receptor [86]. To improve 

the efficiency of desired molecular generation, Yang et al. proposed a method they termed 

ChemTS by combining an RNN model with Monte Carlo tree search [53]. Subsequently 
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this method was successfully applied and several molecules were synthesized and 

confirmed to be desirable chemical compounds [87]. To balance validity and diversity of 

molecular generation, Gupta et al. modified the SoftMax function as follows: 

𝑃𝑘 =
exp(

𝑦𝑘
𝑇⁄ )

∑ exp(
𝑦𝑘

𝑇⁄ )𝑘

 

by adding a temperature factor T to rescale the probability of each token k in the vocabulary 

[61]. If temperature is increased, the diversity of molecular generation will improve, but 

the validation rate will decrease. Arús‑ Pous et al. studied the performance of an RNN 

model for molecular generation on the GPB-13 dataset and found that it always fails to 

generate complex molecules with many rings and heteroatoms due to the syntax of 

SMILES [88].  

 

Table 2.2: The current DL-based de novo drug design methods  

Methods 
Molecular 

Representations 
Architectures Database Objectives References 

LatentGAN SMILES VAE, GAN 
ChEMBL, 

ExCAPE-DB 

Affinity to EGFR, 

HTR1A and S1PR1 
Oleksii, et al.[50] 

ANTC SMILES 
DNC, GAN, 

RL 
ChemDiv 

Similarity, Diversity, 

QED and presence of 

sp3-rich fragments 

Putin et al.[51] 

 SMILES AAE 
ChEMBL, 

ExCAPE-DB 
Affinity to DRD2 Blaschke et al. [52] 

ChemVAE SMILES VAE QM9, ZINC SAS and QED 
Gómez-Bombarelli et 

al. [13] 

ChemTS SMILES RNN, MCTS ZINC 
logP 

SAS and ring penalty 
Yang et al. [53] 

SSVAE SMILES VAE ZINC Drug-likeness Kang et al. [54] 

  VAE, BO ZINC 
logP, SAS, QED and 

ring penalty 
Griffiths et al. [55] 

 SMILES RNN, TL ChEMBL 
Affinity to PPAR and 

RXR 
Merk et al. [56] 

 SMILES VAE, GTM ChEMBL Affinity to A2aR Sattarov et al. [57] 

ReLeaSE SMILES RL 
ZINC, 

ChEMBL 
Affinity to JAK2 Popova et al. [58] 

 SMILES AAE ZINC 
Affinity to JAK2 and 

JAK3 
Polykovskiy et al. [59] 

 SMILES RNN, TL ChEMBL 

Targeting the 5-HT2A 

receptor, Malaria and 

Golden Staph 

Segler et al. [60] 
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 SMILES RNN ChEMBL 
Affinity to PPARγ, 

TRPM8 and Trypsin 
Gupta et al. [61] 

 SMILES, Inchi RNN, PSO 
ChEMBL, 

SureChEMBL 

logP, SAS, QED and 

Affinity to EGFR and 

BACE1 

Winter et al. [62] 

 SMILES RNN 
ChEMBL, 

GDB-8 
Diversity Bjerrum et al. [63]  

 SMILES VAE ZINC Drug-likeness Lim et al. [64] 

DrugEx SMILES RL, RNN 
ZINC, 

ChEMBL 

Diversity and Affinity 

to A2AAR 
Liu et al. [65] 

REINVENT SMILES RL, RNN ChEMBL Affinity to DRD2 Olivecrona et al. [66] 

MolDQN Atoms/Bonds RL 
ChEMBL, 

ZINC 
logP, SAS and QED Zhou et al. [67] 

ORGAN SMILES 
RNN, RL, 

GAN 

GDB-17, 

ChEMBL 
logP, SAS and QED Guimaraes et al. [68] 

RANC SMILES 
DNC, RL, 

GAN 

ZINC, 

ChemDiv 
Drug-likeness Putin et al. [69] 

SD-VAE SMILES VAE ZINC Validation of Molecule Dai et al. [70] 

GrammarVAE SMILES VAE, BO ZINC Validation of Molecule Kusner et al. [71] 

LigDream 
SMILES,  

3D Geometry 

VAE, CNN, 

RNN 
ZINC, DUDE 

Affinity to A2AAR, 

THRB and KIT 
Skalic et al. [72] 

 3D geometry GCN 
scPDB, 

BMOAD 

Affinity to given 

protein 

Aumentado-

Armstrong [73] 

GraphVAE Graph VAE QM9 Validation of Molecule Simonovsky et al. [74] 

CGVAE Graph VAE 
QM9, ZINC, 

CEPDB 
QED Liu et al. [75] 

GCPN Graph GCN, RL ZINC logP, SAS and QED Yu et al. [76] 

JT-VAE Graph VAE ZINC 
logP, SAS and Ring 

Penalty 
Jin et al. [77] 

MolecularRNN Graph RNN, RL ZINC logP, SAS and QED Popova et al. [78] 

MolGAN Graph 
GAN, RL, 

GCN 
QM9, GDB-17  De Cao et al. 

MOLECULE 

CHEF 
Graph 

VAE, GGNN, 

RNN 
USPTO Synthesizability Bradshaw et al. [79] 

DeepFMPO Fragment RL ChEMBL 
Affinity to DRD2 and 

DRD4 
Ståhl et al. [80] 

 

 

2.4.2. Variational autoencoders 

Variational autoencoders (VAEs) are a frequently used DL method aiming to learn 

representations for dimensionality reduction in an unsupervised manner [89]. The 

architecture of autoencoders consists of an DL-based encoder and decoder. The encoder 
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maps the high-dimensional input data into a latent space with lower dimensional 

representation, whereas the decoder reconstructs these representations in the latent space 

into the original inputs. VAEs are a probabilistic generative model based on a directed 

graph with an autoencoder-like structure, while its mathematical basis, which is derived 

from the theory of variational inference, has little to do with traditional autoencoders [90].  

 

The datapoint z in the latent space can be transformed into input data x by the decoder 

which estimates the likelihood pθ(x|z) with parameters θ. In order to train the model, a 

straightforward approach is maximizing the distribution of input data p(x) which is 

approximated by 𝒑(𝒙) = ∫𝒑𝜽(𝒙|𝒛)𝒑(𝒛)𝒅𝒛[91]. Due to the intractability of this integral, 

the encoder is introduced to learn a posterior qφ(z|x) parameterized by φ; the formula for 

computing p(x) can be rewritten as: 

𝔼𝒒𝝋(𝒛|𝒙)[log𝒑(𝒙)] = 𝐷𝐾𝐿 (𝒒𝝋(𝒛|𝒙)||𝒑𝜽(𝒛|𝒙)) + 𝔼𝒒𝝋(𝒛|𝒙) [log 𝒑𝜽(𝒙, 𝒛) − log 𝒒𝝋(𝒛|𝒙)] 

The first term in the right hand side is Kullback-Leibler (KL) divergence and the second 

term is called the evidence lower bound (ELBO). Because of the non-negativity of the KL 

divergence, the ELBO is a lower bound of the log p(x) and is also rewritten as: 

ℒ(𝜑, 𝜃) = 𝔼𝒒𝝋(𝒛|𝒙)[log𝒑𝜽(𝒙|𝒛)] − 𝐷𝐾𝐿 (𝒒𝝋(𝒛|𝒙)||𝒑(𝒛)) 

In order to obtain maximization of p(x), ELBO can be regarded as an objective function 

and maximized for training both the encoder and decoder simultaneously. Commonly in 

VAEs, p(z) is assumed as a unit normal Gaussian distribution and qφ(z|x) is chosen as a 

factorized Gaussian distribution: 

 𝒑(𝒛) ~ 𝓝(0, 𝐈) 

𝒒𝝋(𝒛|𝒙) ~ 𝓝(𝜇, diag(𝜎
2)) 

and the output of the encoder is shifted to output the value of the mean and the variance for 

the Gaussian distribution. During the training process through backpropagation, the 

reconstruction error of the decoder is reduced by maximizing the first term of ELBO and 

the encoder estimates a more accurate posterior by minimizing the KL divergence with the 

true priori of latent variables.  

 

In 2016, Gómez-Bombarelli et al. proposed ChemVAE which made the molecules and its 
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descriptors reversible, i.e. descriptors can not only be extracted in the continuous latent 

space by the encoder for prediction, but also be restored to the molecules by decoder for 

generation [13]. In addition, VAEs can also be extended for conditional generation to 

design molecules with desired properties [54,64]. However, with a CNN encoder and an 

RNN decoder, the validation rate of SMILES generated by ChemVAE oscillated around 

75%, which was far below the performance of pure RNN models (94%-98%). To address 

this issue, Kusner et al. represented the grammar-based SMILES into parsing tree form 

context-free grammar. They introduced the grammar VAE (GVAE) model which directly 

encodes to and from the parsing tree to ensure the validation of generated SMILES [71]. 

Similarly, Dai et al. also proposed a syntax-directed variational autoencoder (SD-VAE) 

inspired by syntax-directed translation for syntax and semantics check [70]. In addition, 

Bjerrum et al. combined multiple different encoders to improve the diversity of generated 

molecules [63] 

 

2.4.3. Deep reinforcement learning 

Reinforcement learning (RL) is modeled as a Markov decision process for the interplay 

between an agent and an environment [92]. The goal of RL is optimizing the agent to 

maximize the accumulated rewards obtained from the environment by choosing effective 

actions. After the agent takes an action at the current step, the environment will adapt to 

this step by forming a new state. For the agent, a DL model can be employed to mimic the 

value, which predicts expected rewards of each action or each state/action pair, or policy 

function, which directly provides the probability of each action. For the SMILES-based 

drug design problem, an RNN is commonly used to model the policy function after being 

pre-trained with an MLE loss function. At each step i, the action ai is introduction of a 

token from the vocabulary chosen by the policy function based on the current state si, which 

contains all the tokens generated so far si = [a1, ..., ai-1]. The accumulated rewards GT are 

the simple sum of rewards over the total steps T. The aim of RL is to maximize the expected 

accumulated rewards: 

 𝐽(𝜽) =  𝔼[𝑮𝑻|𝒔𝟎, 𝜽] =∑𝝅𝜽(𝒂𝒕|𝒔𝒊) ∙ 𝑅𝒊

𝑇

𝑖=1
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Usually, the end reward RT can be obtained immediately by the environment after the 

generation of SMILES has completed, the intermediate reward for the action at each step 

is estimated by Monte Carlo (MC) search with roll-out policy, 

𝑹𝒊 = 𝑅(𝒔𝒊) = {
   
1

𝑁
∑𝑅(�̂�𝑇

𝑛

𝑁

𝑛=1

),   �̂�𝑇
𝑛 ∈ 𝑀𝐶(𝒔𝒊), 𝑓𝑜𝑟 𝑡 < 𝑇

   𝑅(𝒔𝑻),                                               𝑓𝑜𝑟 𝑡 = 𝑇

 

Because of the certainty of states after the action taken by the agent, the MC search is 

always removed and Ri is simplified as the end reward RT. The expected accumulated 

rewards have a simple form: 

 𝐽(𝜃) =  𝔼 [𝑮𝑻|𝒔𝟎, 𝜽] = 𝑅𝑇∑𝝅𝜽(𝒂𝒕|𝒔𝒊)

𝑇

𝑖=1

 

With the REINFORCE algorithm [93], parameters θ in the RNN policy function can be 

derived as: 

𝛻𝜃𝐽(𝜽) =∑𝔼𝒂𝒕~𝝅𝜽[𝛻𝜃𝑙𝑜𝑔𝝅𝜽(𝒂𝒕|𝒔𝒊) ∙ 𝑅𝑖]

𝑇

𝑖=1

 

Popova et al. developed a method ReLeaSE in which a stack-augmented RNN model was 

used as the policy function trained with the REINFORCE algorithm. It was shown to work 

effectively for the generation of inhibitors towards Janus protein kinase 2 (JAK2) [58].  

 

In addition to the policy gradient to train the policy function, Zhou et al. proposed another 

method MolDQN based on deep Q-learning to fit the Q-value function rather than the 

policy function [67]. Mathematically, for a policy π, the value of an action a on a state s 

can be defined as: 

𝑄𝝅(𝑠, 𝑎) = 𝔼𝝅 [∑𝑅𝑖

𝑇

𝑖=𝑡

] 

This action-value function calculates the future rewards of taking action a on state s, and 

subsequent actions decided by policy π. The optimal policy is defined as: 

𝜋∗ = argmax𝑎 𝑄𝝅∗(𝑠, 𝑎) 

and a RNN model parameterized by θ is introduced to approximate the value function 

V(𝑠; 𝜃) = max𝑎 𝑄 (𝑠, 𝑎; 𝜃) 

This approximator can be trained by minimizing the loss function of 
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ℒ(𝜃) = [𝑅(𝑠𝑖) + 𝛾V(𝑠𝑖+1, 𝜃) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)]
2 

where γ is the discount factor. By comparing with other policy-based RL methods, Zhou et 

al. argued that deep Q-learning did not need any pre-trained model and performed better 

than the policy gradient methods.  

 

In order to improve the stability of RL training, Olivecrona et al. proposed a method named 

“REINVENT” [66], in which a new loss function was introduced based on the Bayesian 

formula for RL: 

ℒ(𝜃) = [𝑙𝑜𝑔𝑷𝑷𝒓𝒊𝒐𝒓(𝒔𝑻) + 𝜎𝑅(𝒔𝑻) − 𝑙𝑜𝑔𝑷𝑨𝒈𝒆𝒏𝒕(𝒔𝑻)]
2
 

The authors used all molecules in the ChEMBL database to pre-train an RNN model as the 

Priori. With the parameter σ, they integrated the reward R of each SMILES into the loss 

function. The final Agent model was regarded as the Posteriori and trained with the policy 

gradient. Finally, they successfully identified a plethora of active ligands against the 

dopamine D2 receptor (DRD2). 

 

Subsequently, in order to improve the diversity of generated molecules, Liu et al. proposed 

a method DrugEx in which the action was not only determined by the agent policy Gθ, but 

also by a fixed exploration policy Gφ which had an identical network architecture. During 

the training process an “exploring rate” (ε, from 0.0 to 1.0) was defined to control which 

policy would take actions. At each step a random number in [0.0, 1.0] was generated. If the 

value was smaller than ε, the Gφ would determine which token would be chosen, and vice 

versa. This method was successfully applied to the design of ligands towards the adenosine 

A2A receptor. [65]. DrugEx was shown to better explore the chemical space for the A2A 

receptors and produce ligands with similar physicochemical properties to known ligands 

which included complex ring systems that the other methods it was compared to could not 

produce. 

 

2.4.4. Generative adversarial networks 

GAN models were proposed as a great breakthrough method and have been extensively 

applied in image recognition. A GAN contains two neural networks: the generator (G) and 
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the discriminator (D), which contest with each other under game theory [11]. G commits 

to generating fake data to the point of confusing D to mistake them for real samples in the 

training set. The discriminator on the other hand is responsible for distinguishing between 

the generated fake data and the real samples. During the training loop, a batch of fake data 

is generated by G, which is used subsequently for training both G and D accompanied with 

real data. The objective functions were originally defined as two parts for G and D, 

respectively: 

min
𝐺
𝑉(𝐺) = 𝔼𝒙~𝒑𝒛(𝒛)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝒛)))] 

max
𝐷
𝑉(𝐷) = 𝔼𝒙~𝒑𝒅(𝒙)[𝑙𝑜𝑔𝐷(𝒙)] + 𝔼𝒙~𝒑𝒈(𝒙)[𝑙𝑜𝑔 (1 − 𝐷(𝒙)))] 

here, pz(z) is the noise distribution, pd(x) is the data distribution in the training set and pg(x) 

is the data distribution in the generated set. These two objective functions can be joined 

together as a minmax game in which G wants to minimize V while D wants to maximize 

it. In order to provide a strong gradient signal to obtain the global optimality, the objective 

function for D is rewritten as: 

max
𝐷
𝑉(𝐷, 𝐺) = −𝑙𝑜𝑔(4) + 2 ∙ 𝐷𝐽𝑆(𝒑𝒅||𝒑𝒈) 

where DJS (pd || pg) is the Jensen–Shannon divergence defined as follows: 

𝐷𝐽𝑆(𝒑𝒅||𝒑𝒈) =
1

2
𝐷𝐾𝐿 (𝒑𝒅||

𝒑𝒅 + 𝒑𝒈

2
) +

1

2
𝐷𝐾𝐿 (𝒑𝒈||

𝒑𝒅 + 𝒑𝑔

2
) 

here, the DKL is the KL divergence.  

 

To overcome several difficulties of GANs, such as mode collapse or lack of informative 

convergence metrics, the Wasserstein GAN (WGAN) was proposed to ensure faster and 

more stable training [94]. This model replaces the Jenson-Shannon divergence with the 

Earth-Mover distance:  

W(𝑝, 𝑞) = inf
γ∈Π(𝑝,𝑞)

𝔼(𝑥,𝑦)~γ‖𝑥 − 𝑦‖ 

here Π(p, q) denotes the set of all joint distributions γ(x, y) whose marginals are p and q, 

respectively. This distance results in a more reliable gradient signal which does not vanish 

during the training process. Besides the above-mentioned GAN models, there are varying 

forms being proposed which have been collected in the GAN ZOO [95]. 
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For drug design, a GAN model is commonly used. To ensure that the generated molecules 

have similar physio-chemical properties to molecules in the training set, the GAN is 

combined with other neural networks to construct a hybrid DL model, such as the RL model 

and the VAE model. The first application of GANs for drug design was proposed in 2017, 

named ORGAN, in which a GAN model was trained under the RL framework for multi-

objective optimization [68]. ORGAN contained one RNN generator for SMILES 

generation and a CNN discriminator to optimize the chemical space of generated molecules. 

They used linear combination methods to integrate the reward function given by 

discriminator (Rd) and objective function (Rc) into the final rewards (R):  

𝑅(𝒙) = 𝜆𝑅𝑑(𝒙) + (1 − 𝜆)𝑅𝑐(𝒙) 

here λ∈[0, 1] is a weight hyperparameter for balancing these two rewards. ORGAN has 

been demonstrated to dramatically improve the percentage of generated desired druglike 

molecules compared to molecules in the training set based on properties, including 

solubility and synthesizability. In addition, there are some other groups that also exploit the 

GAN model to develop their methods for molecular design, such as MolGAN [96], RANC 

[51], and ATNC [69]. 

 

Another GAN-based hybrid model is a combination with an adversarial autoencoder (AAE) 

by combining multiple VAEs [97]. Instead of minimizing KL divergence to decrease the 

gap between the latent distribution of output by the generator and the prespecified priori 

(e.g. a normal distribution), AAE uses adversarial training by introducing a DL-based 

model as discriminator D to tell the difference between the descriptors mapped by 

generated molecules and molecules in the training set, respectively. The objective function 

of the discriminator is written as:  

max
𝐷
𝑉(𝐷) = 𝔼𝒙~𝒑𝒅(𝒙)[𝑙𝑜𝑔𝐷(𝒙)] + 𝔼𝒙~𝒑𝒈(𝒙)[𝑙𝑜𝑔 (1 − 𝐷(𝒙)))] 

and the loss function for the VAE based generator is revised as: 

ℒ(𝜑, 𝜃) = 𝑉(𝐷) − 𝔼𝒒𝝋(𝒛|𝒙)[log 𝒑𝜽(𝒙|𝒛)] 

Blaschke et al. applied the AAE model for designing active ligands towards the dopamine 

receptor type 2 [52]. In addition, Polykovskiy et al. also successfully applied this model 

for generating several novel inhibitors of Janus kinase 3 (JAK3) [59]. 
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Fig. 2.4: Objective functions for optimization methods (A) and deep learning methods (B). Usually, 

objective functions in optimization methods contain many local minima/maxima, while non-convex 

objective functions (also called loss functions) are deliberately constructed in deep learning methods to 

make sure a local minimum is present to be found by gradient descent algorithms. 

 

2.5. Competition or cooperation? 

Optimization methods and DL methods are different categories for drug design. 

Optimization methods search for the global minimum (or maximum) of the objective 

functions, which are always a non-convex function and have many local optima (Fig. 2.4A). 

In contrast, DL models obtain the optimal parameters with a backpropagation algorithm by 

minimizing the loss function; these are usually constructed as convex functions to ensure 

a unique minimum to be sought by gradient descent algorithms (Fig. 2.4B). Traditionally, 

there were many successful cases in which the expected drug candidates were found 

through optimization methods. But these methods do not share a unified framework and 

users need to define some procedures manually case by case based on their experience. In 

recent years deep learning methods have come to the attention of researchers who have 

shown interest in applying them in drug design. Based on similar basic DL architectures, 

more and more promising methods have been proposed to learn knowledge from the 

training set efficiently and generate novel molecules automatically. By comparison, 

optimization methods are usually population-based, meaning each individual can be 

manipulated directly and conveniently to construct a pareto frontier for multiple objectives. 

Deep learning methods, however, are typically model-based, which can be used anywhere 

and the learned information can be passed on to other models through transfer learning. 
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However, current DL methods are still comparatively poor at handling the multiple 

objectives relevant for drug discovery; weighted summation is a common approach to 

tackle competitive objectives. 

 

Table 2.3: Publicly and freely available data sources related to drug molecules 

Name Descriptions URL 

ChEMBL Curated database of bioactive molecules with drug-like 

properties.  

https://www.ebi.ac.uk/chembl/ 

PubChem Collection of freely accessible chemical information, including 

chemical and physical properties, biological activities, safety 

and toxicity information, patents, etc. 

https://pubchem.ncbi.nlm.nih.gov/ 

DrugBank Bioinformatics and cheminformatics resource that combines 

detailed drug data with comprehensive drug target information 

https://www.drugbank.ca/ 

SureChEMBL database for chemical compounds in patents https://www.surechembl.org 

GDB Combinatorically generated drug-like small molecule library http://gdb.unibe.ch/ 

PDB 3D structure of Macromolecular Structures (including ligands 

binding to active site of targets) 

https://www.rcsb.org/ 

QM9 Small organic molecules subset out of the GDB-17 with 

quantum chemical properties  

http://www.quantum-machine.org/datasets/ 

ExCAPE-DB An integrated chemogenomic dataset collected from publicly 

available databases including structure, target information and 

activity annotations 

https://solr.ideaconsult.net/search/excape/ 

ZINC Curated collection of commercially available chemical 

compounds 

https://zinc15.docking.org/ 

 

The paradigm shift from the optimization methods to machine learning methods is mainly 

caused by the availability of large public databases and breakthroughs made in the field of 

deep learning in image and text generation. When optimization methods dominated the 

field of de novo drug design, there was little public data available as prior knowledge. 

Optimization methods focused on the objective functions, which were summarized based 

on a limited number of ligands, and the data wasonly used to provide the initial states or 

form the rules as constraints for molecule generation. In the age of big data public online 

databases (Table 2.3) such as ChEMBL [98,99], PubChem [100], ZINC [101], DrugBank 

[102,103], provide massive amounts of training data. Machine learning methods are now 

commonly used to extract useful information from this “big data” of drugs. Despite the 

current popularity of DL methods, it is worth noting that some researchers have questioned 

the performance of DL and benchmarked the performance between DL and other 
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optimization methods. For example, Yoshikawa et al. employed a grammatical evolution 

to develop a SMILES-based drug design algorithm, called ChemGE, which generated 

molecules with high binding affinity. They compared their method with three other DL 

methods, including CVAE, GVAE and ChemTS. They found that with eight hours compute 

time, their method performed better than, or was comparable to DL methods. Similarly, 

Jensen proposed a graph-based GA approach for drug design which was shown to perform 

better than a SMILES-based RNN, the ChemTS, CVAE and GVAE with much lower 

computational cost.  

 

Despite the differences in their mode of operation, some groups have tried to combine these 

two classes of methods for drug design. For example, an end-to-end model can map each 

molecule from discrete chemical space into a continuous latent space, i.e. the chemical 

structure can be converted into a numerical vector by the encoder. Such continuous 

representations are convenient for use in optimization and the resulting optima are 

subsequentially reconstructed into the expected molecules by the decoder. For example, 

Sattarov et al. applied a generative topographic mapping (GTM) technique, the 

probabilistic counterpart of self-organizing maps based on Bayesian learning, in the 

continuous space constructed by a VAE model [57]. GTM was convenient for visualization 

of the latent space in which target zones can be used for generating novel molecular 

structures by sampling. They succeeded in generating focused libraries of potential ligands 

toward the adenosine A2a Receptor. In addition, Winter et al. constructed another end-to-

end deep learning framework to construct a continuous space and exploited a PSO 

algorithm on this latent space. They were able to successfully generate ligands with a 

predicted high affinity to both EGFR and BACE1 [62]. 

 

2.6. Conclusion and perspective 

In this review, we give a brief description of algorithms used in drug de novo design, 

divided in optimization methods on one hand and DL methods on the other hand. 

Traditionally, the drug design problem was always addressed as a combinatorial 

optimization problem. Hence optimization methods were dominant in drug design. With 
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the rise of DL, more and more researchers shifted their interests from optimization 

algorithms to DL-based methods. The application of deep learning in drug de novo design 

caused a revolutionary pattern shift in drug discovery. However, DL methods have still a 

long way to go and traditional optimization algorithms still provide inspiration to improve 

the capability of drug de novo design. Currently, it is hard to say which kind of methods 

are dominant for all cases of drug design. Users should select methods based on their own 

conditions in practice. We also expect more sophisticated AI algorithms being proposed in 

the future to accelerate drug discovery 
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