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About this thesis 

Drug discovery is a time- and resource-consuming process; from original idea to the 

regulatory approval of the finished product tends to take more than 10 years and bring costs 

in excess of $1 billion [1]. In order to decrease the cost and save time in this process, a 

plethora of computational methods have been developed [2,3]. Benefiting from the rapid 

growth of high throughput technologies, modern pharmacology has become a data-rich 

field with high-dimensional biological data accumulated in public databases, e.g. 

compound profiling data, gene expression data, transgenic phenotyping data, proteomics 

data, publications and patent information, etc. [4]. In order to analyze these ‘big data’ [5], 

artificial intelligence (AI) approaches are increasingly exploited in diverse scenarios to 

accelerate drug discovery [6]. 

 

AI is defined as the simulation of human intelligence to make machines think like humans 

and mimic their actions such as learning, reasoning, perception, and problem solving [7]. 

A typical subset of AI is machine learning (ML), which is trained on a large amount of 

(curated) data, and used to make predictions or decisions without being explicitly 

programmed [8]. One of the most popular ML methods are neural networks which consist 

of multiple layers of neurons (input, hidden, and output layers) that are mimics of neural 

activity in the human brain. Recently, neural networks have become extremely ‘deep’ 

because more and more hidden layers are added and organized with different architectures 

[9]. These so-called ‘deep learning’ methods have achieved major breakthroughs in e.g., 

image recognition, natural language processing, decision making, and other data-rich 

domains [10].  

 

With the development of deep learning and rapid advances made in computational 

hardware, AI has further expanded its application scope in drug discovery [11]. In this 

thesis, I will introduce some of my projects about the application of AI in de novo drug 

design for G protein-coupled receptors and discuss its possible role in the future. 
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1.1. AI in drug discovery  

The motivation behind launching a drug discovery project typically is that there is no or in 

some form limited suitable cure available to treat an existing disease or to meet clinical 

needs. The process of drug discovery can be seen as ‘serendipity’, i.e. it is about searching 

the optimal molecules from a huge chemical space (comprised of 1033~1060 ‘drug-like’ 

molecules) [12]. In order to find drug candidates that are efficacious, safe, and meet clinical 

and commercial needs, the whole process of drug discovery includes target identification 

and validation, compound screening, lead optimization, preclinical development and 

finally the selection of drug candidates for clinical trials (Fig. 1.1) [13-15]. In all stages of 

drug discovery and development, AI algorithms are being developed and utilized in many 

aspects, such as understanding disease mechanisms to identify novel targets, providing 

target-disease associations, predicting properties of compounds, lead compound design and 

optimization, developing new biomarkers for prognosis, analyzing biometric and other data 

from wearable patient monitoring devices [14]. 

 

 

Fig. 1.1: Applications of AI in the pipeline of drug discovery and the required data. The information 

in this figure is collected from Ref. [14,15]. 

 

The initial phase of drug discovery starts from developing a hypothesis that the candidate 

drugs will lead to a therapeutic effect in a disease state when a protein or pathway is the 

inhibited or activated. Therefore the first and foremost step in developing a novel drug is 
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target identification and validation. AI approaches are extensively applied in gene-disease 

association modelling. For example, mRNA/protein levels could be examined to determine 

if they are expressed differently in disease and it thus can reflect whether they are correlated 

with the exacerbation or progression of diseases [16]. In addition, data mining and meta-

analysis have resulted in a significant increase in target identification with literature and 

knowledge bases that contain successful and failed trails [17,18].  

 

 
Fig. 1.2: The percentage of human drug targets in major protein families (A) and the 

proportion of small-molecule drugs targeting these families in human (B). The figure is adapted 

from Ref. [19].  

 

After being identified, the role of these targets in a disease is validated using 

physiologically relevant in vitro/vivo models. An important question is how likely it is that 

a (small molecule) drug can be developed for the selected target, i.e. these proteins should 

bind small molecules as potential drugs. Through systems biology analysis druggable 

proteins have also been found in protein-protein interaction networks and these tend to be 

highly connected. For further investigations information on the 3D structure of the targets 

is very useful and can be obtained through X-ray crystallography [20], nuclear magnetic 

resonance spectroscopy [21] or cryogenic electron microscopy [22] technologies. It is 

worth mentioning that AI methods have recently been shown to be key in the prediction of 

3D structure. For example, the DeepMind team exploited deep learning models to develop 
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the AlphaFold algorithm which has dramatically improved the accuracy of protein structure 

prediction [23]. It is now known that certain target classes are more amenable to small 

molecule drug discovery (Fig. 1.2), such as G protein-coupled receptors (GPCR), ion 

channels, kinases, etc. [19]. Despite the ultimate validation of the target in later clinical 

trials, target validation in the early phage is essential to make efforts on the completion of 

promising projects. 

 

After the determination of the target, an appropriate organic small molecule library will be 

screened to search for feasible compounds as “hit compounds” that can be optimized into 

“drug leads” that can inhibit or activate the given target after binding. Besides random/trial-

and-error experimental high throughput screening (HTS) technologies necessitating 

complex laboratory automation, virtual screening has also become a common paradigm to 

discover drug hits [24]. With structural and bioactivity data being accumulated, the 

quantitative relationship between structure and activity (QSAR) can be modelled with ML 

methods to predict the activity of the given molecules rapidly. In order to improve the 

application scope and the accuracy of ligand-based virtual screening, van Westen et al. 

proposed Proteochemometric modelling (PCM), updating classical QSAR models with 

target information, which was able to deal with different protein targets within one model 

[25,26]. In addition, deep learning can increase the performance substantially, when 

predicting the properties and activities of small organic molecules [27]. If the 3D structure 

of a protein target is available, molecular docking is also an effective method for structure-

based virtual screening, which allows for the analysis of the ligand-target interaction by 

minimizing objective functions [28]. In this way it can provide a more mechanistic 

explanation of the interaction between ligand and target. Furthermore, molecular dynamics 

is applied as a computational method to study the dynamic mechanism of the drug-target 

interaction by calculating continuous motions using force fields [29]. 

 

For virtual screening, compound libraries need to be assembled containing small organic 

molecules that obey chemical guidelines such as the Lipinski Rule of Five [30]. The 

molecules in the library can be collected from public databases, such as ChEMBL [31], 
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ZINC [32], PubChem [33], etc.. On the other hand it is also common strategy to de novo 

design drug molecules with computational methods. This direction is my major study and 

I will give a detailed description of AI-based approaches applied in drug de novo design 

and make a comparison between different categories of methods in the next chapter. In 

order to run an experimental assay after virtual compound screening or de novo design, 

these drug leads are required to be synthesized in reality. AI algorithms can also be used to 

predict chemical synthesis routes which is comprised of “reversed” reactions decomposing 

the molecules (retrosynthesis). For example, Segler et al. scored the tree nodes in 

conjunction with deep learning and Monte Carlo tree search (MCTS) to search for the most 

promising synthetic pathways [34]. 

 

The selected drug leads need to be optimized to maintain favorable properties while 

eliminating deficiencies in the lead structure. In other words, drug discovery is a classical 

multi-objective optimization problem. The lead structure can be optimized either by 

changing or adding substituents through rational drug design or modifying the basic 

scaffold via scaffold hopping to avoid patent conflicts. In addition to the efficacy of drug 

leads, safety is a second important aspect to be persecuted. Typically, absorption, 

distribution, metabolism and excretion (ADME) are common metrics to evaluate drug 

safety. The principles of ADME are also important parameters in pharmacokinetics / 

pharmacodynamics (PK/PD) modelling, which is another approach to determine the 

toxicity and the drug dose required for the desired effect [35]. Side effects of drugs are 

often caused by binding to unwanted targets. For example, hERG (human Ether-à-go-go-

Related Gene), a potassium ion channel, has an inclination to bind many drug molecules 

because of its large ligand binding pocket [36]. It may result in long QT syndrome (a 

change to the heart rhythm that can lead to fast chaotic heartbeats) when hERG is inhibited 

by potential drug candidates [37].  

 

In the later stage of drug development, AI-based approaches for biomarker discovery have 

demonstrated to lead to a better understanding of the molecular mechanisms of drug effects 

and to identify the right drug for the right patients [38]. It will be most beneficial to build 
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and validate such AI models on datasets collected in the preclinical stage [39]. After being 

validated using independent datasets, corresponding biomarkers can be applied to stratify 

patients and identify potential indications [14]. In spite of the successful use of AI in early 

drug discovery and development there are a number of key issues that still need to be 

further addressed. Because they lack transparency, ML methods are often called ‘black-

box’ approaches, which sparked criticism from end-users in the clinical adoption [40]. 

Interpretability is indeed a general weakness of ML-based predictive models [41]. One of 

the other key issues is the generalizability, namely that models need to be validated in the 

context of multi-site, multi-institutional datasets to prove the robustness of their predictions 

beyond the original training set. Faced with these challenges in drug discovery, the 

scientific community has nevertheless been making great contributions, including model 

training with parameter optimization approaches [42], interpretation of prediction results 

and deduction of their biological insights [43], and model reproducibility [44]. 

 

1.2. G protein-coupled receptors 

G protein-coupled receptors (GPCRs), containing a characteristic structure of seven trans-

membrane helices, are the largest family of cell-surface receptors. The superfamily consists 

of almost 900 members encoded by approximately 4% of human genes, which are 

classified into five families: rhodopsin, secretin, glutamate, adhesion and frizzled/Taste2 

[45]. When binding signaling molecules from the extracellular environment, such as 

hormones or neurotransmitters, GPCRs will be activated. This activation will cause a 

conformational change and in turn activate the associated G protein by exchanging bound 

GDP for GTP [46]. Subsequently, α subunit of the G protein, bound with GTP, dissociates 

from the β and γ subunits to further regulate intracellular downstream biological pathways 

[46]. GPCRs are important switches to determine on-off states of numerous signaling 

pathways and they are involved in many biological processes, such as cell survival, 

proliferation, motility, etc. [47]. The aberrant activity or expression of certain GPCRs also 

contributes to some severe diseases, such as type II diabetes, Alzheimer’s disease, 

hypertension, and heart failure [48]. In addition, the role of GPCRs in tumor growth, 

progression, and metastasis formation has become more apparent. Therefore, 
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approximately 34% of all FDA approved drugs have a GPCRs as drug target (Fig. 1.2) [48]. 

 

1.3. Adenosine receptors 

Adenosine receptors (ARs) are a class of purinergic G protein-coupled receptors with 

adenosine as the endogenous ligand. Adenosine is an essential component for all of life 

because it is one of the four precursors to nucleic acids and one of its derivatives (i.e. ATP) 

is the "molecular unit of currency" for energy transfer in metabolic processes. In addition, 

adenosine can also form a signaling molecule (i.e. cAMP) to modulate a variety of 

biological pathways which are activated by the adenosine receptors when binding to 

adenosine. There are four subtypes of adenosine receptors namely A1, A2A, A2B and A3 

which are widely distributed in human tissues and have been implicated in many 

physiological and pathological functions [49]. These dysfunctions include lipolysis, 

cardiac rhythm and circulation, immune function, renal blood flow, sleep regulation and 

angiogenesis, as well as inflammatory diseases, neurodegenerative disorders and 

ischemia–reperfusion damage [50].  

 

As promising therapeutic targets ARs have been studied for a long time. First of all, 

adenosine itself can act as an agonist for the treatment of supraventricular tachycardia [51]. 

In addition, caffeine is the most commonly consumed “drug” in the world, but this AR 

antagonist is also used for treating apnoea in premature infants [52]. Interestingly, an 

inverse correlation between caffeine consumption and risk of Parkinson’s disease has been 

demonstrated [53]. However there are some serious challenges when taking ARs as drug 

targets due to their ubiquitous expression and the complexity of adenosine signaling 

throughout the human body. Tissue- and target-specific issues should be carefully taken 

into consideration [50]. Due to the complexity of adenosine signaling, it is crucial to 

understand the disease process when ARs are targeted in different cellular elements and 

disease courses 

 

1.4. Research questions 

The aim of this thesis is to apply AI approaches to increase the efficiency of the drug de 
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novo design process and thereby decrease cost and save time. Faced with the complexity 

of drug discovery and rapid development of AI technologies, I will investigate the 

following research questions which will be addressed in the following chapters:  

1) Can AI support de novo drug design reliably and suggest active molecules for a single 

target as drug candidates? 

2) Can AI be adjusted to polypharmacology to design desired molecules that bind multiple 

targets in order to balance efficacy and safety? 

3) Can we improve the generality of AI models to design active molecules based on user-

provided information such as fragments? 

4) How to make these computational methods easily accessible by users who are not 

experts in computer coding skills? 

 

1.5. Thesis outline 

Up to now, there are numerous computational methods available for de novo drug design. 

In Chapter 2, I give a systematic overview of these methods, including optimization 

methods and deep learning methods. I conclude with describing the advantages and 

disadvantages of these methods and propose some possibilities of their combinations.  

 

In Chapter 3, I introduce the first version of my proposed method, DrugEx, which is a 

deep learning-based model for de novo drug design. In this method, a recurrent neural 

network was implemented to construct the generator. During the training process, the 

generator acted as the agent and the predictor acted as the environment interplay under the 

reinforcement learning framework. Here we add another pre-trained generator as the 

exploration strategy to improve the diversity of generated molecules. To evaluate the 

performance of my proposed method, the A2AAR is taken as an example, and most of the 

generated molecules are presumed to be active and located in the same region of chemical 

space occupied by ligands in the training set.  

 

In Chapter 4, DrugEx was updated to the second version to include polypharmacology. In 

the first version it exclusively dealt with a single objective, while this second version has 
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the ability to deal with multiple objectives. The concept of evolutionary algorithms was 

merged into our method such that crossover and mutation operations were implemented by 

the same deep learning model of the agent to update the exploration strategy. In this chapter, 

three protein targets were chosen for the case study (two adenosine receptors, A1AR and 

A2AAR, and hERG in this study). Scores for all objectives provided by the environment 

constructed by three predictors were used for constructing Pareto ranks of the generated 

molecules with non-dominated sorting and Tanimoto-based crowding distance algorithms. 

The results demonstrate a generation of compounds with a diverse predicted selectivity 

profile toward multiple targets, offering the potential of high efficacy and lower toxicity. 

 

In the first two versions our proposed method can handle multiple objectives, but these 

objectives have to be fixed during the training process. In other words, if the objectives are 

changed, the model has to be retrained. In Chapter 5, DrugEx was updated again for 

scaffold-constrained molecule generation. Here, we use end-to-end deep learning methods 

to implement the new DrugEx model, which has the ability to generate molecules 

containing pharmacological the scaffold containing multiple fragments given by users. We 

also trained the generator into reinforcement learning framework to ensure that the 

generated molecules are most likely active towards A2AAR.  

 

In order to access the abovementioned methods conveniently, we developed a web-based 

online toolkit. In Chapter 6, a detailed description of this toolkit is provided, which 

constitutes a graphic utility interface named GenUI. It contains two main parts: client and 

backend components. In the backend components, we use Docker to make the installation 

automatically without complex configuration. In addition, it contains managers to 

distribute the computational resources and dispatch different tasks from different users in 

the task queue. In the client components, users can easily create their project and schedule 

a variety of tasks automatically, including data collection and preprocessing, QSAR 

modelling, Generator training, novel molecule design and chemical space visualization. 

The generated data for each user is stored in the server, and users can easily download it 

into a local machine.  
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Finally, I will draw general conclusions in Chapter 7. Moreover, I will also put forward 

some key points for future directions and expected trends regarding computational methods 

in de novo drug design. 
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