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About this thesis 

Drug discovery is a time- and resource-consuming process; from original idea to the 

regulatory approval of the finished product tends to take more than 10 years and bring costs 

in excess of $1 billion [1]. In order to decrease the cost and save time in this process, a 

plethora of computational methods have been developed [2,3]. Benefiting from the rapid 

growth of high throughput technologies, modern pharmacology has become a data-rich 

field with high-dimensional biological data accumulated in public databases, e.g. 

compound profiling data, gene expression data, transgenic phenotyping data, proteomics 

data, publications and patent information, etc. [4]. In order to analyze these ‘big data’ [5], 

artificial intelligence (AI) approaches are increasingly exploited in diverse scenarios to 

accelerate drug discovery [6]. 

 

AI is defined as the simulation of human intelligence to make machines think like humans 

and mimic their actions such as learning, reasoning, perception, and problem solving [7]. 

A typical subset of AI is machine learning (ML), which is trained on a large amount of 

(curated) data, and used to make predictions or decisions without being explicitly 

programmed [8]. One of the most popular ML methods are neural networks which consist 

of multiple layers of neurons (input, hidden, and output layers) that are mimics of neural 

activity in the human brain. Recently, neural networks have become extremely ‘deep’ 

because more and more hidden layers are added and organized with different architectures 

[9]. These so-called ‘deep learning’ methods have achieved major breakthroughs in e.g., 

image recognition, natural language processing, decision making, and other data-rich 

domains [10].  

 

With the development of deep learning and rapid advances made in computational 

hardware, AI has further expanded its application scope in drug discovery [11]. In this 

thesis, I will introduce some of my projects about the application of AI in de novo drug 

design for G protein-coupled receptors and discuss its possible role in the future. 
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1.1. AI in drug discovery  

The motivation behind launching a drug discovery project typically is that there is no or in 

some form limited suitable cure available to treat an existing disease or to meet clinical 

needs. The process of drug discovery can be seen as ‘serendipity’, i.e. it is about searching 

the optimal molecules from a huge chemical space (comprised of 1033~1060 ‘drug-like’ 

molecules) [12]. In order to find drug candidates that are efficacious, safe, and meet clinical 

and commercial needs, the whole process of drug discovery includes target identification 

and validation, compound screening, lead optimization, preclinical development and 

finally the selection of drug candidates for clinical trials (Fig. 1.1) [13-15]. In all stages of 

drug discovery and development, AI algorithms are being developed and utilized in many 

aspects, such as understanding disease mechanisms to identify novel targets, providing 

target-disease associations, predicting properties of compounds, lead compound design and 

optimization, developing new biomarkers for prognosis, analyzing biometric and other data 

from wearable patient monitoring devices [14]. 

 

 

Fig. 1.1: Applications of AI in the pipeline of drug discovery and the required data. The information 

in this figure is collected from Ref. [14,15]. 

 

The initial phase of drug discovery starts from developing a hypothesis that the candidate 

drugs will lead to a therapeutic effect in a disease state when a protein or pathway is the 

inhibited or activated. Therefore the first and foremost step in developing a novel drug is 
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target identification and validation. AI approaches are extensively applied in gene-disease 

association modelling. For example, mRNA/protein levels could be examined to determine 

if they are expressed differently in disease and it thus can reflect whether they are correlated 

with the exacerbation or progression of diseases [16]. In addition, data mining and meta-

analysis have resulted in a significant increase in target identification with literature and 

knowledge bases that contain successful and failed trails [17,18].  

 

 
Fig. 1.2: The percentage of human drug targets in major protein families (A) and the 

proportion of small-molecule drugs targeting these families in human (B). The figure is adapted 

from Ref. [19].  

 

After being identified, the role of these targets in a disease is validated using 

physiologically relevant in vitro/vivo models. An important question is how likely it is that 

a (small molecule) drug can be developed for the selected target, i.e. these proteins should 

bind small molecules as potential drugs. Through systems biology analysis druggable 

proteins have also been found in protein-protein interaction networks and these tend to be 

highly connected. For further investigations information on the 3D structure of the targets 

is very useful and can be obtained through X-ray crystallography [20], nuclear magnetic 

resonance spectroscopy [21] or cryogenic electron microscopy [22] technologies. It is 

worth mentioning that AI methods have recently been shown to be key in the prediction of 

3D structure. For example, the DeepMind team exploited deep learning models to develop 



Chapter 1 

 

6 

the AlphaFold algorithm which has dramatically improved the accuracy of protein structure 

prediction [23]. It is now known that certain target classes are more amenable to small 

molecule drug discovery (Fig. 1.2), such as G protein-coupled receptors (GPCR), ion 

channels, kinases, etc. [19]. Despite the ultimate validation of the target in later clinical 

trials, target validation in the early phage is essential to make efforts on the completion of 

promising projects. 

 

After the determination of the target, an appropriate organic small molecule library will be 

screened to search for feasible compounds as “hit compounds” that can be optimized into 

“drug leads” that can inhibit or activate the given target after binding. Besides random/trial-

and-error experimental high throughput screening (HTS) technologies necessitating 

complex laboratory automation, virtual screening has also become a common paradigm to 

discover drug hits [24]. With structural and bioactivity data being accumulated, the 

quantitative relationship between structure and activity (QSAR) can be modelled with ML 

methods to predict the activity of the given molecules rapidly. In order to improve the 

application scope and the accuracy of ligand-based virtual screening, van Westen et al. 

proposed Proteochemometric modelling (PCM), updating classical QSAR models with 

target information, which was able to deal with different protein targets within one model 

[25,26]. In addition, deep learning can increase the performance substantially, when 

predicting the properties and activities of small organic molecules [27]. If the 3D structure 

of a protein target is available, molecular docking is also an effective method for structure-

based virtual screening, which allows for the analysis of the ligand-target interaction by 

minimizing objective functions [28]. In this way it can provide a more mechanistic 

explanation of the interaction between ligand and target. Furthermore, molecular dynamics 

is applied as a computational method to study the dynamic mechanism of the drug-target 

interaction by calculating continuous motions using force fields [29]. 

 

For virtual screening, compound libraries need to be assembled containing small organic 

molecules that obey chemical guidelines such as the Lipinski Rule of Five [30]. The 

molecules in the library can be collected from public databases, such as ChEMBL [31], 
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ZINC [32], PubChem [33], etc.. On the other hand it is also common strategy to de novo 

design drug molecules with computational methods. This direction is my major study and 

I will give a detailed description of AI-based approaches applied in drug de novo design 

and make a comparison between different categories of methods in the next chapter. In 

order to run an experimental assay after virtual compound screening or de novo design, 

these drug leads are required to be synthesized in reality. AI algorithms can also be used to 

predict chemical synthesis routes which is comprised of “reversed” reactions decomposing 

the molecules (retrosynthesis). For example, Segler et al. scored the tree nodes in 

conjunction with deep learning and Monte Carlo tree search (MCTS) to search for the most 

promising synthetic pathways [34]. 

 

The selected drug leads need to be optimized to maintain favorable properties while 

eliminating deficiencies in the lead structure. In other words, drug discovery is a classical 

multi-objective optimization problem. The lead structure can be optimized either by 

changing or adding substituents through rational drug design or modifying the basic 

scaffold via scaffold hopping to avoid patent conflicts. In addition to the efficacy of drug 

leads, safety is a second important aspect to be persecuted. Typically, absorption, 

distribution, metabolism and excretion (ADME) are common metrics to evaluate drug 

safety. The principles of ADME are also important parameters in pharmacokinetics / 

pharmacodynamics (PK/PD) modelling, which is another approach to determine the 

toxicity and the drug dose required for the desired effect [35]. Side effects of drugs are 

often caused by binding to unwanted targets. For example, hERG (human Ether-à-go-go-

Related Gene), a potassium ion channel, has an inclination to bind many drug molecules 

because of its large ligand binding pocket [36]. It may result in long QT syndrome (a 

change to the heart rhythm that can lead to fast chaotic heartbeats) when hERG is inhibited 

by potential drug candidates [37].  

 

In the later stage of drug development, AI-based approaches for biomarker discovery have 

demonstrated to lead to a better understanding of the molecular mechanisms of drug effects 

and to identify the right drug for the right patients [38]. It will be most beneficial to build 
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and validate such AI models on datasets collected in the preclinical stage [39]. After being 

validated using independent datasets, corresponding biomarkers can be applied to stratify 

patients and identify potential indications [14]. In spite of the successful use of AI in early 

drug discovery and development there are a number of key issues that still need to be 

further addressed. Because they lack transparency, ML methods are often called ‘black-

box’ approaches, which sparked criticism from end-users in the clinical adoption [40]. 

Interpretability is indeed a general weakness of ML-based predictive models [41]. One of 

the other key issues is the generalizability, namely that models need to be validated in the 

context of multi-site, multi-institutional datasets to prove the robustness of their predictions 

beyond the original training set. Faced with these challenges in drug discovery, the 

scientific community has nevertheless been making great contributions, including model 

training with parameter optimization approaches [42], interpretation of prediction results 

and deduction of their biological insights [43], and model reproducibility [44]. 

 

1.2. G protein-coupled receptors 

G protein-coupled receptors (GPCRs), containing a characteristic structure of seven trans-

membrane helices, are the largest family of cell-surface receptors. The superfamily consists 

of almost 900 members encoded by approximately 4% of human genes, which are 

classified into five families: rhodopsin, secretin, glutamate, adhesion and frizzled/Taste2 

[45]. When binding signaling molecules from the extracellular environment, such as 

hormones or neurotransmitters, GPCRs will be activated. This activation will cause a 

conformational change and in turn activate the associated G protein by exchanging bound 

GDP for GTP [46]. Subsequently, α subunit of the G protein, bound with GTP, dissociates 

from the β and γ subunits to further regulate intracellular downstream biological pathways 

[46]. GPCRs are important switches to determine on-off states of numerous signaling 

pathways and they are involved in many biological processes, such as cell survival, 

proliferation, motility, etc. [47]. The aberrant activity or expression of certain GPCRs also 

contributes to some severe diseases, such as type II diabetes, Alzheimer’s disease, 

hypertension, and heart failure [48]. In addition, the role of GPCRs in tumor growth, 

progression, and metastasis formation has become more apparent. Therefore, 
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approximately 34% of all FDA approved drugs have a GPCRs as drug target (Fig. 1.2) [48]. 

 

1.3. Adenosine receptors 

Adenosine receptors (ARs) are a class of purinergic G protein-coupled receptors with 

adenosine as the endogenous ligand. Adenosine is an essential component for all of life 

because it is one of the four precursors to nucleic acids and one of its derivatives (i.e. ATP) 

is the "molecular unit of currency" for energy transfer in metabolic processes. In addition, 

adenosine can also form a signaling molecule (i.e. cAMP) to modulate a variety of 

biological pathways which are activated by the adenosine receptors when binding to 

adenosine. There are four subtypes of adenosine receptors namely A1, A2A, A2B and A3 

which are widely distributed in human tissues and have been implicated in many 

physiological and pathological functions [49]. These dysfunctions include lipolysis, 

cardiac rhythm and circulation, immune function, renal blood flow, sleep regulation and 

angiogenesis, as well as inflammatory diseases, neurodegenerative disorders and 

ischemia–reperfusion damage [50].  

 

As promising therapeutic targets ARs have been studied for a long time. First of all, 

adenosine itself can act as an agonist for the treatment of supraventricular tachycardia [51]. 

In addition, caffeine is the most commonly consumed “drug” in the world, but this AR 

antagonist is also used for treating apnoea in premature infants [52]. Interestingly, an 

inverse correlation between caffeine consumption and risk of Parkinson’s disease has been 

demonstrated [53]. However there are some serious challenges when taking ARs as drug 

targets due to their ubiquitous expression and the complexity of adenosine signaling 

throughout the human body. Tissue- and target-specific issues should be carefully taken 

into consideration [50]. Due to the complexity of adenosine signaling, it is crucial to 

understand the disease process when ARs are targeted in different cellular elements and 

disease courses 

 

1.4. Research questions 

The aim of this thesis is to apply AI approaches to increase the efficiency of the drug de 
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novo design process and thereby decrease cost and save time. Faced with the complexity 

of drug discovery and rapid development of AI technologies, I will investigate the 

following research questions which will be addressed in the following chapters:  

1) Can AI support de novo drug design reliably and suggest active molecules for a single 

target as drug candidates? 

2) Can AI be adjusted to polypharmacology to design desired molecules that bind multiple 

targets in order to balance efficacy and safety? 

3) Can we improve the generality of AI models to design active molecules based on user-

provided information such as fragments? 

4) How to make these computational methods easily accessible by users who are not 

experts in computer coding skills? 

 

1.5. Thesis outline 

Up to now, there are numerous computational methods available for de novo drug design. 

In Chapter 2, I give a systematic overview of these methods, including optimization 

methods and deep learning methods. I conclude with describing the advantages and 

disadvantages of these methods and propose some possibilities of their combinations.  

 

In Chapter 3, I introduce the first version of my proposed method, DrugEx, which is a 

deep learning-based model for de novo drug design. In this method, a recurrent neural 

network was implemented to construct the generator. During the training process, the 

generator acted as the agent and the predictor acted as the environment interplay under the 

reinforcement learning framework. Here we add another pre-trained generator as the 

exploration strategy to improve the diversity of generated molecules. To evaluate the 

performance of my proposed method, the A2AAR is taken as an example, and most of the 

generated molecules are presumed to be active and located in the same region of chemical 

space occupied by ligands in the training set.  

 

In Chapter 4, DrugEx was updated to the second version to include polypharmacology. In 

the first version it exclusively dealt with a single objective, while this second version has 
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the ability to deal with multiple objectives. The concept of evolutionary algorithms was 

merged into our method such that crossover and mutation operations were implemented by 

the same deep learning model of the agent to update the exploration strategy. In this chapter, 

three protein targets were chosen for the case study (two adenosine receptors, A1AR and 

A2AAR, and hERG in this study). Scores for all objectives provided by the environment 

constructed by three predictors were used for constructing Pareto ranks of the generated 

molecules with non-dominated sorting and Tanimoto-based crowding distance algorithms. 

The results demonstrate a generation of compounds with a diverse predicted selectivity 

profile toward multiple targets, offering the potential of high efficacy and lower toxicity. 

 

In the first two versions our proposed method can handle multiple objectives, but these 

objectives have to be fixed during the training process. In other words, if the objectives are 

changed, the model has to be retrained. In Chapter 5, DrugEx was updated again for 

scaffold-constrained molecule generation. Here, we use end-to-end deep learning methods 

to implement the new DrugEx model, which has the ability to generate molecules 

containing pharmacological the scaffold containing multiple fragments given by users. We 

also trained the generator into reinforcement learning framework to ensure that the 

generated molecules are most likely active towards A2AAR.  

 

In order to access the abovementioned methods conveniently, we developed a web-based 

online toolkit. In Chapter 6, a detailed description of this toolkit is provided, which 

constitutes a graphic utility interface named GenUI. It contains two main parts: client and 

backend components. In the backend components, we use Docker to make the installation 

automatically without complex configuration. In addition, it contains managers to 

distribute the computational resources and dispatch different tasks from different users in 

the task queue. In the client components, users can easily create their project and schedule 

a variety of tasks automatically, including data collection and preprocessing, QSAR 

modelling, Generator training, novel molecule design and chemical space visualization. 

The generated data for each user is stored in the server, and users can easily download it 

into a local machine.  
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Finally, I will draw general conclusions in Chapter 7. Moreover, I will also put forward 

some key points for future directions and expected trends regarding computational methods 

in de novo drug design. 
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Abstract 

 

Drug discovery is time- and resource-consuming process. To this end, computational 

approaches that are applied in de novo drug design play an important role to improve the 

efficiency and decrease costs to develop novel drugs. Over several decades, a variety of 

methods have been proposed and applied in practice. Traditionally, drug design problems 

are always taken as combinational optimization in discrete chemical space. Hence 

optimization methods were exploited to search for new drug molecules to meet multiple 

objectives. With the accumulation of data and the development of machine learning 

methods, computational drug design methods have gradually shifted to a new paradigm. 

There has been particular interest in the potential application of deep learning methods to 

drug design. In this chapter, we will give a brief description of these two different de novo 

methods, compare their application scopes and discuss their possible development in the 

future.  

 

Keywords: machine learning, cheminformatics, deep learning, drug discovery, 

optimization 
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2.1. Introduction 

Drug discovery is always considered to have a significant “serendipity” component, -- 

researchers need to identify a small fraction of feasible molecules with desired 

physicochemical and biological properties from the vast chemical space, which has been 

estimated to be comprised of 1023~1060 feasible drug-like molecules [1]. This number of 

potential candidate molecules is too large to screen experimentally. Moreover, drug 

molecules have a high promiscuity [3], i.e. each drug-like molecule has six protein targets 

on average, leading to the unexpected toxicity and withdrawal of some FDA approved 

drugs from the market [4]. These problems have contributed to an increase in the average 

cost to over one billion USD for the development of a new drug in a process that takes 

about 13 years to reach the market [5].  

 

 
Fig. 2.1: Schematic overview of the interplay of two methods in computational drug discovery: 

virtual screening and de novo design. The left of the figure shows ways in which a molecule can be 

described for computational methods (see ‘Molecular Representations’). On the right the multi-

objective nature of the problem is shown. Properties are often contrary (orange arrows) and sometimes 

cooperative (blue arrows), but must be optimized simultaneously (see ‘Multiple Objectives’). 

 

To this end, computer-aided drug discovery (CADD) aims to speed up the drug discovery 

process by integrating chemical and biological information about ligands and/or targets [6]. 

CADD is a broad field of research that includes de novo drug design and virtual screening 

methods (Fig. 2.1, center). De novo drug design suggests new molecules as starting points 
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for chemical modifications that result in novel leads. By contrast, virtual screening methods 

try to uncover the hidden relationships between chemical structure and pharmacological 

activity. CADD has always been a combinatorial optimization problem with multi-

objective optimization. Virtual screening methods provide a scoring function that mimics 

bioassays in order to guide the drug design algorithm to converge on the optimal molecule. 

Because it is impossible to enumerate every chemical entity in the chemical universe, 

CADD in practice does not lead to a globally optimal solution, but it narrows down the 

searching scope of chemical space and converges on a local or practical optimum [7].  

 

In the past, machine learning methods, such as random forests, were mainly constructed 

for virtual screening, i.e. given the structure of a chemical compound predict its biological 

activity. With the increased availability of (public) data and development of computer 

sciences (e.g. the introduction of GPU computation), machine learning methods have also 

found their way to the field of de novo drug design. Deep learning (DL) methods in 

particular have attracted increasing attention as a promising approach for drug discovery 

[8]. DL methods are an extension of artificial neural networks that add a variety of multiple 

hidden layers, thus making the network significantly deeper [9]. In 2012, deep 

convolutional neural networks (CNNs) were proposed and became a breakthrough in image 

classification [10]. Subsequently, generative adversarial networks (GANs) were developed 

for image generation and, by 2014, these had significantly improved the quality of 

generated images [11]. Based on these achievements, the DL methods could also provide 

a series of solutions for prediction, generation, and decision-making in other data rich fields 

beyond image recognition and natural language processing [8]. In drug discovery, DL has 

catalyzed an explosion of applications for de novo drug design since Gómez-Bombarelli et 

al. applied variational autoencoders (VAE) to generate SMILES-based chemical 

compounds in 2016 [13].  

 

As traditional optimization algorithms and recent DL methods are quite distinct, it is 

necessary to make a clear comparison between both methods. In the following paragraphs, 

we will give more theoretical details of these two different methods and their application 
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in the field of drug design. We will also discuss the advantages and disadvantages of both 

of them and possible directions of their combination in the future.  

 

2.2. De novo drug design 

Due to the discreteness of chemical space, drug design is intuitively rendered into a 

combinatorial optimization problem. The solution of this drug design problem is searching 

for an optimal combination of building blocks to find the best solution according to the 

required conditions. Based on the difference of the building blocks, drug design algorithms 

can be classified into atom-based and fragment-based methods. The atom-based methods 

are the more intuitive approaches and easily construct a variety of novel structures, but are 

more time-consuming and less able to converge to the best solutions. In contrast, fragment-

based methods reduce the chemical space dramatically by pre-defining the fragment library 

and are consequently faster searching for optimal molecules than atom-based methods, 

although the diversity is lower compared to atom-based methods. However, the drug design 

problem cannot be solved completely, because an increase in fragments leads to a 

combinatorial explosion of chemical space, making an exhaustive search impossible. 

Therefore, more efficient molecular representations need to be developed to suggest novel 

potential drug-like molecules efficiently in addition to, or as an alternative for the known 

atomistic and fragment-based representations.  

 

Usually, drug molecules are organic compounds with physiochemical properties optimal 

for drug-like molecules, such as Lipinski’s rule of 5. Moreover, sufficient on-target affinity 

and avoiding off-target affinity are additional objectives that need to be met.  

 

Drug de novo design can be further classified into structure-based and ligand-based 

methods based on whether 3D structure information is available and included [7,14]. In 

structure-based drug design, the 3D structure of a protein target is required for guiding 

ligand design but prior knowledge of other ligands is unnecessary. The optimal ligands are 

commonly obtained by calculating the binding energy when combining at the protein active 

site to interact with the protein. This compares with ligand-based methods, which do not 
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exploit protein target structure information but require the prior knowledge comprised of 

known ligands of given structures which are used to measure their similarity with generated 

molecules.  

 

2.2.1. Molecular representations 

Chemical compounds are not a random cluster of atoms and functional groups, but rather 

have a definite structure represented by the arrangement of chemical bonds between atoms 

and information on the geometric 3D shape. This information needs to be represented 

computationally for algorithms to be able to predict properties of these molecules (Fig. 2.1). 

Ideally, the full 3D shape geometry is used for construction of a fitness function in 

structure-based optimization methods, such as docking or molecular dynamics [15]. 

However, these 3D approaches always consume more computational resources and time; 

they also require the computational generation of conformers, a process which can be prone 

to error.  

 

To circumvent this requirement 2D approaches are used. As the key to properties of the 

molecules lies in fragments with a specific connection pattern of the atoms, molecules can 

be represented as a bag of fragments which can be perturbated easily for generating new 

molecules (in the form of a binary bit string). This molecular fingerprint can also be used 

as input for virtual screening [16]. A downside to fingerprints is that the connectivity 

information linking the individual fragments is not available. Hence various different 

molecules can be generated with the same combination of fragments. Moreover, while each 

fragment of the molecule can be mapped to one bit in a fingerprint by a hash function, such 

as ECFP [17], the fingerprint is always irreversible. A fingerprint cannot be reconstructed 

into a molecule, so it is impossible to use the molecular fingerprint directly for drug design. 

All in all, there is no single 2D or 3D representation that seems to meet all criteria [18]. 

 

To circumvent the loss of connectivity information, other methods are used. The most 

natural molecular representation is an undirected graph where the atoms and bonds are 

nodes and edges respectively [19]. These graphs can be reversibly converted into a text 
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format using a preset grammar such as simplified molecular-input line-entry specification 

(SMILES). Analogous to natural language processing, SMILES is regarded as a chemical 

language and directly used in deep learning models for molecular generation. However, as 

SMILES follows a fixed grammar, generated texts can easily lead to invalid molecules. To 

solve this problem, some groups attempted to decompose SMILES into a sequence of rules 

from a context free grammar and improved linear molecular representation, such as 

DeepSMILES [20], Randomized SMILES [21], and SELIES [22]. An advanced 

representation is directly storing the graph into multi-dimensional tensors, including type 

of atoms and edges, and connectivity information. This representation can make sure the 

molecular graph can be generated immediately without considering grammar; however, it 

is still computationally expensive.  

 

2.2.2. Multiple objectives 

As specified above, drug design is always a multi-objective problem (MOP) and designed 

compounds need to meet many criteria as drug candidates e.g. efficacy, selectivity, safety, 

permeability, solubility, metabolic stability, synthesizability, etc. (Fig. 2.1) Some of these 

objectives are not independent but contradictory, meaning that if an optimum is achieved 

on one objective it has been at the expense of making a compromise on other objectives. 

Unlike single-objective problems (SOP), where the best solution is on the top of ranking 

sorted by the scalar score of each candidate solution, the ranking of candidates in a MOP 

is more complicated because of conflicting objectives [14]. A straightforward method of 

dealing with this complication is to convert the multiple objectives into a single objective 

by weighted summing of scores for each objective [23]. 

 𝑓(𝑛) =∑𝑤𝑖𝑝𝑖

𝑁

𝑖=1

 

where f(n) is the fitness function and wi is pre-defined by users as the weight of ith objective 

pi. However, it is challenging to determine these weights, because they specify a single 

pattern of compromise for these objectives, which can trap an optimization algorithm and 

lead to unreasonable solutions.  
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Fig. 2.2: Pareto frontier in multi-objective optimization. Take two objectives as an example, non-

dominated solutions form a boundary called Pareto frontier which separates the infeasible solutions in 

the lower left region from dominated solutions in the upper right region. 

 

In order to strike a better balance between each objective, MOP algorithms produce a set 

of solutions representing various compromises among the objectives. The solutions are 

mapped out on a hypersurface in the search space, termed Pareto Front [24]. A solution 

dominates another one if it is equivalent or better in all objectives and better in at least one 

objective compared with all other solutions. Solutions with the most appropriate 

compromise among the individual objectives can be identified through pareto ranking. 

Several pareto ranking algorithms have been developed (e.g. SPEA [25], NSGA [26], SMS-

EMOA [27], etc). However, all of them are computationally expensive for large numbers 

of objectives and data points and lead to non-convergence of the solutions in contradiction 

of the SOP [23]. 

 

2.3. Optimization methods 

In applications of drug design, the most popular searching algorithms are evolutionary 
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algorithms (EAs), particle swarm optimization (PSO), and Simulated annealing (SA) 

(Table 2.1). In the following paragraphs, we will briefly introduce their mathematical 

theories and their application in drug discovery.  

 

2.3.1. Evolutionary algorithms 

EAs are population-based metaheuristic optimization algorithms inspired by biological 

evolution to mimic the genetic operators, such as “reproduction”, “mutation”, and 

“crossover” [44]. In the population, a pair of individuals is randomly selected for each time 

and play the role of parents to “reproduce” the offspring through “mutation” and “crossover” 

for population expansion. The scoring function, also called a fitness function in EAs, 

determines which individual can survive and replace the least-fit individual in the 

population. The surviving individuals in the updated population are selected as the new 

parents for next generation. For each iteration of the evolutionary cycle, the average fitness 

score of individuals in the population will be improved and this cyclic process will continue 

until a termination criterion is reached. Currently, EAs are the most sophisticated algorithm 

used for drug de novo design in practice. 

There are several major algorithmic techniques in use in EAs, examples include genetic 

algorithms, genetic programming, and evolutionary strategies [45]. Genetic algorithms 

(GAs) are one of the most fundamental and widely used EAs. GAs need to encode the 

phenotype (molecular structure) by means of a ‘chromosome’ as the simulation of natural 

selection [46]. For example, Wang et al. developed a software named LigBuilder, in which 

each molecule was decomposed into a series of fragments from the building-block library 

to be used as ‘chromosome’ [28]. The mutation operator was defined to allow only carbon, 

nitrogen, and oxygen atoms of the molecules with the same hybridization state to mutate 

to each other. During the process, fragments were combined to generate a new population 

through randomly selecting a growing site on the seed structure and addition of a fragment 

from the building-block library. Each molecule was represented with its SMILES sequence 

as the ‘chromosome’. Similarly, Douguet et al. defined allowable crossover points and 

mutation rules were generated for breeding valid SMILES as the next generation in their 

method deemed LEA [29]. 
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Table 2.1: Current optimization methods for de novo drug design. 

 

In GAs, there are fixed data structures (despite the linearity of the chromosome) to organize 

the variables which need to be optimized. But if these variables are interdependent through 

Methods Method 

Molecule 

Representation 

Objective Reference 

LigBuilder GA 3D geometry 
Affinity (Thrombin and dihydrofolate reductase) and 

Bioavailability Score 
Wang et al. [28] 

LEA GA SMILES 
Analogs fitness (Retinoid and Salicylic Acid) and 

physico-chemical properties 
Douguet et al. [29] 

ADAPT GA Fragment 
Docking score (cathepsin D, dihydrofolate reductase, 

and HIV-1 reverse transcriptase), RO5 
Pegg et al. [30] 

PEP GA Fragment Force field-based binding energy (Caspase 1, 3 and 8) Budin et al. [31] 

SYNOPSIS GA, SA Reactivity 
Electric dipole moment, affinity 

to binding site (HIV-1 reverse transcriptase) 
Vinkers et al. [32] 

LEA3D GA Fragment 
Molecular Properties, Affinity to binding site 

(thymidine monophosphate kinase) 
Douguet et al. [33] 

GANDI GA Fragment 
2D/3D similarities and force field-based binding 

energy (cyclin-dependent kinase 2) 
Dey et al. [34] 

Molecule 

Commander 

GA Fragment 
Affinity to A1AR, off-target selectivity (A2AAR A2BAR 

A3AR) and ADMET scores 

van der Horst et al. 

[35] 

Molecule 

Evoluator 

GP Tree SMILES 
QSAR functions, docking, experiments, similarity to 

template molecules (Neuramidase inhibitor) 

Lameijer et al. 

[36] 

MEGA GP Graph 
Binding affinity score (Estrogen receptor), similarity 

score and RO5 

Nicolaou et al. 

[37] 

FLUX ES Fragment 
Similarity to template molecules (tyrosine kinase 

inhibitor, Factor Xa inhibitor) 
Fechner et al. [38] 

TOPAS ES Fragment 
2D structural/topological pharmacophore similarity to 

template (thrombin inhibitor) 

Schneider et al. 

[39] 

MOLig SA Fragment 
Force field-based binding energy (RecA), similarity to 

template molecules, oral bioavailability 

Sengupta et al. 

[40] 

CONCERTS SA Fragment 
Force field-based binding energy (FK506 binding 

protein, HIV-1 aspartyl protease) 

Pearlman et al. 

[41] 

SkelGen SA Fragment 
Binding affinity prediction score (DNA gyrase and 

estrogen receptor) 
Dean et al. [42] 

COLIBREE PSO Fragment  Similarity to template molecules (PPAR ligands)  
Hartenfeller et al. 

[43] 
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an explicit relationship, such as procedural or functional representation, genetic 

programming (GP) is a more suitable method to realize the EA principles [47]. In GP, the 

chromosomes are always represented as trees rather than the fixed-length strings of GAs. 

And crossover is implemented as recombination of subtrees between two parents, while 

mutation selects and alters a random node or edge of the tree depending on its type. Usage 

of a SMILES representation as a “chromosome” is troublesome for genetic operators, 

because SMILES per se is a grammatic constraint linear string and the random mutation 

and crossover will produce a large number of invalid SMILES. Lameijer et al. solved this 

problem in their software, named ‘Molecule Evoluator’ based on a SMILES representation 

employing a GP [36]. In Molecule Evoluator, TreeSMILES are defined as the tree structure 

being transformed from the SMILES according to its grammar, in which each node and 

edge denoted the atom and bond respectively. Every node or edge has an operator function, 

making mathematical expressions easy to evolve and evaluate.  

 

Evolutionary strategies (ES) are a third EA technique using the concepts of adaptation and 

evolution. In contrast to GAs, selection in ES is based on a fitness ranking rather than 

fitness values, although mutation and selection also play an important role for breeding 

[48]. ES operates on the parent and the result of its mutants. In ES, a number of mutants 

are generated which compete with the parent, wherein the best mutant becomes the parent 

of the next generation. For example, Flux implemented a simplistic (1, λ)-ES without 

adaptive step-size control and defined the crossover and mutation generators on the 

fragment-based “reaction tree” of each pair of parents [38]. Selection was performed only 

among the offspring and the parent died out, which could facilitate escaping local optima 

in the fitness landscape. Another method, TOPAS, used a simple (1, λ)-ES with adaptive 

parameters [39]. During the stochastic search process, there were λ=100 variants generated 

through virtual synthesis for each iteration. The distribution of Tanimoto similarity with 

their parents was controlled by a step-size parameter, which guaranteed that the chemical 

space of the population adapts to the local shape of the fitness landscape. Similarly, only 

one variant with the best fitness score became the parent of the next generation while the 

current parent was discarded.  
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2.3.2. Particle swarm optimization 

PSO solves the optimization problem based on the observation of collective intelligence in 

many natural systems that individuals cooperate with each other to improve not only their 

collective performance but also each individual’s performance on a given task [49]. Similar 

to EAs, PSO also is a population-based method. In PSO a population, known as a swarm, 

contains a series of candidate solutions (called particles). The population needs to be 

initialized to represent the position in the search space, and the individuals should have 

initial velocities. In addition, each particle has its own memory to record the best fitness of 

its past for communication with others. In each iteration, the fitness score of each 

individual’s position is calculated to register the best position. Subsequently the velocity 

of each particle is randomly influenced by two factors: one is the best-known position of a 

particle in its neighborhood and the other is the best position it ever searched in the past. 

Subsequently, the new position of each particle will be calculated based on its updated 

velocity. If each particle can communicate with all the other particles and share the same 

best position from a single particle the swarm will be trapped in a local minimum.  

Therefore, one of the key points is how to define the topology of the swarm to determine 

its neighbors.  

 

The PSO algorithm was frequently used in continuous search spaces. In order to be applied 

in the discrete search space of drug-like molecules, Hartenfeller et al. replaced the concept 

of velocity of each particle with the quality vector and developed COLIBREE for drug 

design [43]. In COLIBREE, each molecule was represented as building blocks and linkers. 

The fitness function is defined as the similarity between reference ligands and generated 

molecules under chemically advanced template search (CATS) descriptors. Each particle 

stores the current search point (a molecule) and a quality vector which represented a 

relative probability for every fragment in the library to be chosen in the next search step 

for constructing the molecule. During the optimization cycle, each particle created a new 

molecule and updated its memory after the fitness was evaluated. The quality vector was 

incremented if the fragment had been part of the molecule stored in the memory of the 
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current particle. In the end, good solutions have a higher probability to be chosen for 

molecule construction in subsequent search steps. 

 

2.3.3. Simulated annealing 

For the purpose of estimating a global optimum of an objective function, Simulated 

Annealing (SA) is based on the cooling and crystallizing behavior of chemical substances. 

This behavior is affected by both the temperature and the thermodynamic free energy. In 

general, SA sets the initial temperature and choses a random point as the initial solution. It 

then works iteratively in steps during which the temperature is progressively decreased 

from an initial value to zero. For each iteration, a new point is randomly selected from the 

points close to the current one as the solution. Subsequently, a probability score is 

calculated based on whether the quality of the new solution is better than the current 

solution or not, and the algorithm decides which solution will be adopted to replace the 

current solution. This probability is affected by the temperature, i.e. the temperature 

controls the balance of exploration/exploitation strategies. If the initial temperature is too 

low or cooling is too fast, the algorithm will not effectively explore the search space. 

Conversely, when the temperature is set too high, the algorithm will take too long to 

converge. The key point of SA is the strategy about how to choose a new solution, which 

has a significant impact on its performance.  

 

Sengupta et al. developed MOLig with the SA algorithm in 2012 [40]. This method 

encoded each molecule into a tree-like representation which was stored as an array of 

positive integers. In this array numbers symbolized a molecular fragment and specified the 

connectivity pattern. For each iteration, there were several perturbation operators being 

defined for generating molecules as a new solution and it would be determined by 

temperature related probability whether this new solution would replace the current one. 

The iteration would terminate once the temperature was reduced to zero. In addition, 

CONCERTS [41] and SkelGen [42] are other structure-based de novo design methods 

based on the SA algorithm.  
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Fig. 2.3: Four basic deep learning architectures commonly used in de novo drug design, including 

recurrent neural networks (A), variational autoencoder (B), generative adversarial networks (C) and 

deep reinforcement learning (D). 

 

2.4. Deep learning algorithms 

The common basic DL architectures used in de novo drug design are recurrent neural 

networks (RNNs), variational autoencoder (VAE), deep reinforcement learning (RL), and 

generative adversarial networks (GANs) (Fig. 2.3). Most studies of DL applications 

combine two or more models to address specific issues. In the following paragraphs, we 

give the details about these architectures, and how these models can be applied in drug 

design. We also list and categorize these methods based on these DL architectures in Table 

2.2.  

 

2.4.1. Recurrent neural networks 

RNNs can process sequential data effectively because the connections between neurons 

form a directed acyclic graph that can be unrolled along the temporal sequences [81]. RNNs 

have shown excellent performance in the field of natural language processing (NLP) such 

as handwriting [82] or speech recognition [83]. RNNs deal with words in text step by step 

and deliver the current hidden information to the next step in the network with the same 

structure simultaneously. By analogy, the direct application of RNNs in drug design takes 
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the linear molecular representations as input [61,60,53]. For example, SMILES are always 

preprocessed by being split into a sequence of tokens x1:n = [x1, …, xn]. The SMILES string 

is then prefixed with a start token x0 as input feature and suffixed with the end token xn+1 

as the output labels. The RNN model πθ parametrized by θ determines the probability 

distribution yi of tokens based on x0:i-1: 

 𝒉𝒊 = 𝒇𝑟(𝒉𝒊−𝟏, 𝒙𝒊−𝟏) 

𝒚𝒊 = 𝒇𝒐(𝒉𝒊) 

here, fr denotes recurrent layers and receives the last hidden states hi-1 and input features 

xi-1 to calculate the current hidden states hi. In order to avert the problem of long-distance 

dependencies caused by gradients vanishing or exploding, many variational versions have 

been proposed, including two common implementations: long short-term memory (LSTM) 

[84] and gated recurrent unit (GRU) [85], which contain a memory cell and some different 

gates to determine forgotten and reserved information. In the end, hi are delivered to output 

layers fo for calculation of output values yi and commonly, the probability of each word in 

the vocabulary is computed by the SoftMax function. For the model training, the maximum 

likelihood estimation (MLE) is always chosen to calculate the loss function: 

 ℒ𝑀𝐿𝐸 =∑∑log 𝝅𝜽(𝒙𝒊|𝒙𝟎:𝒊−𝟏)

𝑛+1

𝑖=1

𝑚

𝑗=1

 

here, m is the total number of samples with sequence length n in the training set. The MLE 

loss function can be optimized with the backpropagation algorithm commonly used for DL 

model training.  

 

The RNN model always serves as one of the basic components in the more complicated 

DL architectures, which will be introduced in the following paragraphs. If used 

independently, RNN models are often beneficial for molecular library generation. For 

example, Segler et al. pre-trained an RNN model on the ChEMBL database containing 1.4 

million molecules and employed ‘transfer learning’, also called ‘fine-tuning’ methods to 

make molecules focused on the chemical space for the 5-HT2A receptor [86]. To improve 

the efficiency of desired molecular generation, Yang et al. proposed a method they termed 

ChemTS by combining an RNN model with Monte Carlo tree search [53]. Subsequently 
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this method was successfully applied and several molecules were synthesized and 

confirmed to be desirable chemical compounds [87]. To balance validity and diversity of 

molecular generation, Gupta et al. modified the SoftMax function as follows: 

𝑃𝑘 =
exp(

𝑦𝑘
𝑇⁄ )

∑ exp(
𝑦𝑘

𝑇⁄ )𝑘

 

by adding a temperature factor T to rescale the probability of each token k in the vocabulary 

[61]. If temperature is increased, the diversity of molecular generation will improve, but 

the validation rate will decrease. Arús‑ Pous et al. studied the performance of an RNN 

model for molecular generation on the GPB-13 dataset and found that it always fails to 

generate complex molecules with many rings and heteroatoms due to the syntax of 

SMILES [88].  

 

Table 2.2: The current DL-based de novo drug design methods  

Methods 
Molecular 

Representations 
Architectures Database Objectives References 

LatentGAN SMILES VAE, GAN 
ChEMBL, 

ExCAPE-DB 

Affinity to EGFR, 

HTR1A and S1PR1 
Oleksii, et al.[50] 

ANTC SMILES 
DNC, GAN, 

RL 
ChemDiv 

Similarity, Diversity, 

QED and presence of 

sp3-rich fragments 

Putin et al.[51] 

 SMILES AAE 
ChEMBL, 

ExCAPE-DB 
Affinity to DRD2 Blaschke et al. [52] 

ChemVAE SMILES VAE QM9, ZINC SAS and QED 
Gómez-Bombarelli et 

al. [13] 

ChemTS SMILES RNN, MCTS ZINC 
logP 

SAS and ring penalty 
Yang et al. [53] 

SSVAE SMILES VAE ZINC Drug-likeness Kang et al. [54] 

  VAE, BO ZINC 
logP, SAS, QED and 

ring penalty 
Griffiths et al. [55] 

 SMILES RNN, TL ChEMBL 
Affinity to PPAR and 

RXR 
Merk et al. [56] 

 SMILES VAE, GTM ChEMBL Affinity to A2aR Sattarov et al. [57] 

ReLeaSE SMILES RL 
ZINC, 

ChEMBL 
Affinity to JAK2 Popova et al. [58] 

 SMILES AAE ZINC 
Affinity to JAK2 and 

JAK3 
Polykovskiy et al. [59] 

 SMILES RNN, TL ChEMBL 

Targeting the 5-HT2A 

receptor, Malaria and 

Golden Staph 

Segler et al. [60] 
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 SMILES RNN ChEMBL 
Affinity to PPARγ, 

TRPM8 and Trypsin 
Gupta et al. [61] 

 SMILES, Inchi RNN, PSO 
ChEMBL, 

SureChEMBL 

logP, SAS, QED and 

Affinity to EGFR and 

BACE1 

Winter et al. [62] 

 SMILES RNN 
ChEMBL, 

GDB-8 
Diversity Bjerrum et al. [63]  

 SMILES VAE ZINC Drug-likeness Lim et al. [64] 

DrugEx SMILES RL, RNN 
ZINC, 

ChEMBL 

Diversity and Affinity 

to A2AAR 
Liu et al. [65] 

REINVENT SMILES RL, RNN ChEMBL Affinity to DRD2 Olivecrona et al. [66] 

MolDQN Atoms/Bonds RL 
ChEMBL, 

ZINC 
logP, SAS and QED Zhou et al. [67] 

ORGAN SMILES 
RNN, RL, 

GAN 

GDB-17, 

ChEMBL 
logP, SAS and QED Guimaraes et al. [68] 

RANC SMILES 
DNC, RL, 

GAN 

ZINC, 

ChemDiv 
Drug-likeness Putin et al. [69] 

SD-VAE SMILES VAE ZINC Validation of Molecule Dai et al. [70] 

GrammarVAE SMILES VAE, BO ZINC Validation of Molecule Kusner et al. [71] 

LigDream 
SMILES,  

3D Geometry 

VAE, CNN, 

RNN 
ZINC, DUDE 

Affinity to A2AAR, 

THRB and KIT 
Skalic et al. [72] 

 3D geometry GCN 
scPDB, 

BMOAD 

Affinity to given 

protein 

Aumentado-

Armstrong [73] 

GraphVAE Graph VAE QM9 Validation of Molecule Simonovsky et al. [74] 

CGVAE Graph VAE 
QM9, ZINC, 

CEPDB 
QED Liu et al. [75] 

GCPN Graph GCN, RL ZINC logP, SAS and QED Yu et al. [76] 

JT-VAE Graph VAE ZINC 
logP, SAS and Ring 

Penalty 
Jin et al. [77] 

MolecularRNN Graph RNN, RL ZINC logP, SAS and QED Popova et al. [78] 

MolGAN Graph 
GAN, RL, 

GCN 
QM9, GDB-17  De Cao et al. 

MOLECULE 

CHEF 
Graph 

VAE, GGNN, 

RNN 
USPTO Synthesizability Bradshaw et al. [79] 

DeepFMPO Fragment RL ChEMBL 
Affinity to DRD2 and 

DRD4 
Ståhl et al. [80] 

 

 

2.4.2. Variational autoencoders 

Variational autoencoders (VAEs) are a frequently used DL method aiming to learn 

representations for dimensionality reduction in an unsupervised manner [89]. The 

architecture of autoencoders consists of an DL-based encoder and decoder. The encoder 
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maps the high-dimensional input data into a latent space with lower dimensional 

representation, whereas the decoder reconstructs these representations in the latent space 

into the original inputs. VAEs are a probabilistic generative model based on a directed 

graph with an autoencoder-like structure, while its mathematical basis, which is derived 

from the theory of variational inference, has little to do with traditional autoencoders [90].  

 

The datapoint z in the latent space can be transformed into input data x by the decoder 

which estimates the likelihood pθ(x|z) with parameters θ. In order to train the model, a 

straightforward approach is maximizing the distribution of input data p(x) which is 

approximated by 𝒑(𝒙) = ∫𝒑𝜽(𝒙|𝒛)𝒑(𝒛)𝒅𝒛[91]. Due to the intractability of this integral, 

the encoder is introduced to learn a posterior qφ(z|x) parameterized by φ; the formula for 

computing p(x) can be rewritten as: 

𝔼𝒒𝝋(𝒛|𝒙)[log𝒑(𝒙)] = 𝐷𝐾𝐿 (𝒒𝝋(𝒛|𝒙)||𝒑𝜽(𝒛|𝒙)) + 𝔼𝒒𝝋(𝒛|𝒙) [log 𝒑𝜽(𝒙, 𝒛) − log 𝒒𝝋(𝒛|𝒙)] 

The first term in the right hand side is Kullback-Leibler (KL) divergence and the second 

term is called the evidence lower bound (ELBO). Because of the non-negativity of the KL 

divergence, the ELBO is a lower bound of the log p(x) and is also rewritten as: 

ℒ(𝜑, 𝜃) = 𝔼𝒒𝝋(𝒛|𝒙)[log𝒑𝜽(𝒙|𝒛)] − 𝐷𝐾𝐿 (𝒒𝝋(𝒛|𝒙)||𝒑(𝒛)) 

In order to obtain maximization of p(x), ELBO can be regarded as an objective function 

and maximized for training both the encoder and decoder simultaneously. Commonly in 

VAEs, p(z) is assumed as a unit normal Gaussian distribution and qφ(z|x) is chosen as a 

factorized Gaussian distribution: 

 𝒑(𝒛) ~ 𝓝(0, 𝐈) 

𝒒𝝋(𝒛|𝒙) ~ 𝓝(𝜇, diag(𝜎
2)) 

and the output of the encoder is shifted to output the value of the mean and the variance for 

the Gaussian distribution. During the training process through backpropagation, the 

reconstruction error of the decoder is reduced by maximizing the first term of ELBO and 

the encoder estimates a more accurate posterior by minimizing the KL divergence with the 

true priori of latent variables.  

 

In 2016, Gómez-Bombarelli et al. proposed ChemVAE which made the molecules and its 
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descriptors reversible, i.e. descriptors can not only be extracted in the continuous latent 

space by the encoder for prediction, but also be restored to the molecules by decoder for 

generation [13]. In addition, VAEs can also be extended for conditional generation to 

design molecules with desired properties [54,64]. However, with a CNN encoder and an 

RNN decoder, the validation rate of SMILES generated by ChemVAE oscillated around 

75%, which was far below the performance of pure RNN models (94%-98%). To address 

this issue, Kusner et al. represented the grammar-based SMILES into parsing tree form 

context-free grammar. They introduced the grammar VAE (GVAE) model which directly 

encodes to and from the parsing tree to ensure the validation of generated SMILES [71]. 

Similarly, Dai et al. also proposed a syntax-directed variational autoencoder (SD-VAE) 

inspired by syntax-directed translation for syntax and semantics check [70]. In addition, 

Bjerrum et al. combined multiple different encoders to improve the diversity of generated 

molecules [63] 

 

2.4.3. Deep reinforcement learning 

Reinforcement learning (RL) is modeled as a Markov decision process for the interplay 

between an agent and an environment [92]. The goal of RL is optimizing the agent to 

maximize the accumulated rewards obtained from the environment by choosing effective 

actions. After the agent takes an action at the current step, the environment will adapt to 

this step by forming a new state. For the agent, a DL model can be employed to mimic the 

value, which predicts expected rewards of each action or each state/action pair, or policy 

function, which directly provides the probability of each action. For the SMILES-based 

drug design problem, an RNN is commonly used to model the policy function after being 

pre-trained with an MLE loss function. At each step i, the action ai is introduction of a 

token from the vocabulary chosen by the policy function based on the current state si, which 

contains all the tokens generated so far si = [a1, ..., ai-1]. The accumulated rewards GT are 

the simple sum of rewards over the total steps T. The aim of RL is to maximize the expected 

accumulated rewards: 

 𝐽(𝜽) =  𝔼[𝑮𝑻|𝒔𝟎, 𝜽] =∑𝝅𝜽(𝒂𝒕|𝒔𝒊) ∙ 𝑅𝒊

𝑇

𝑖=1
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Usually, the end reward RT can be obtained immediately by the environment after the 

generation of SMILES has completed, the intermediate reward for the action at each step 

is estimated by Monte Carlo (MC) search with roll-out policy, 

𝑹𝒊 = 𝑅(𝒔𝒊) = {
   
1

𝑁
∑𝑅(𝒔̂𝑇

𝑛

𝑁

𝑛=1

),   𝒔̂𝑇
𝑛 ∈ 𝑀𝐶(𝒔𝒊), 𝑓𝑜𝑟 𝑡 < 𝑇

   𝑅(𝒔𝑻),                                               𝑓𝑜𝑟 𝑡 = 𝑇

 

Because of the certainty of states after the action taken by the agent, the MC search is 

always removed and Ri is simplified as the end reward RT. The expected accumulated 

rewards have a simple form: 

 𝐽(𝜃) =  𝔼 [𝑮𝑻|𝒔𝟎, 𝜽] = 𝑅𝑇∑𝝅𝜽(𝒂𝒕|𝒔𝒊)

𝑇

𝑖=1

 

With the REINFORCE algorithm [93], parameters θ in the RNN policy function can be 

derived as: 

𝛻𝜃𝐽(𝜽) =∑𝔼𝒂𝒕~𝝅𝜽[𝛻𝜃𝑙𝑜𝑔𝝅𝜽(𝒂𝒕|𝒔𝒊) ∙ 𝑅𝑖]

𝑇

𝑖=1

 

Popova et al. developed a method ReLeaSE in which a stack-augmented RNN model was 

used as the policy function trained with the REINFORCE algorithm. It was shown to work 

effectively for the generation of inhibitors towards Janus protein kinase 2 (JAK2) [58].  

 

In addition to the policy gradient to train the policy function, Zhou et al. proposed another 

method MolDQN based on deep Q-learning to fit the Q-value function rather than the 

policy function [67]. Mathematically, for a policy π, the value of an action a on a state s 

can be defined as: 

𝑄𝝅(𝑠, 𝑎) = 𝔼𝝅 [∑𝑅𝑖

𝑇

𝑖=𝑡

] 

This action-value function calculates the future rewards of taking action a on state s, and 

subsequent actions decided by policy π. The optimal policy is defined as: 

𝜋∗ = argmax𝑎 𝑄𝝅∗(𝑠, 𝑎) 

and a RNN model parameterized by θ is introduced to approximate the value function 

V(𝑠; 𝜃) = max𝑎 𝑄 (𝑠, 𝑎; 𝜃) 

This approximator can be trained by minimizing the loss function of 
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ℒ(𝜃) = [𝑅(𝑠𝑖) + 𝛾V(𝑠𝑖+1, 𝜃) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)]
2 

where γ is the discount factor. By comparing with other policy-based RL methods, Zhou et 

al. argued that deep Q-learning did not need any pre-trained model and performed better 

than the policy gradient methods.  

 

In order to improve the stability of RL training, Olivecrona et al. proposed a method named 

“REINVENT” [66], in which a new loss function was introduced based on the Bayesian 

formula for RL: 

ℒ(𝜃) = [𝑙𝑜𝑔𝑷𝑷𝒓𝒊𝒐𝒓(𝒔𝑻) + 𝜎𝑅(𝒔𝑻) − 𝑙𝑜𝑔𝑷𝑨𝒈𝒆𝒏𝒕(𝒔𝑻)]
2
 

The authors used all molecules in the ChEMBL database to pre-train an RNN model as the 

Priori. With the parameter σ, they integrated the reward R of each SMILES into the loss 

function. The final Agent model was regarded as the Posteriori and trained with the policy 

gradient. Finally, they successfully identified a plethora of active ligands against the 

dopamine D2 receptor (DRD2). 

 

Subsequently, in order to improve the diversity of generated molecules, Liu et al. proposed 

a method DrugEx in which the action was not only determined by the agent policy Gθ, but 

also by a fixed exploration policy Gφ which had an identical network architecture. During 

the training process an “exploring rate” (ε, from 0.0 to 1.0) was defined to control which 

policy would take actions. At each step a random number in [0.0, 1.0] was generated. If the 

value was smaller than ε, the Gφ would determine which token would be chosen, and vice 

versa. This method was successfully applied to the design of ligands towards the adenosine 

A2A receptor. [65]. DrugEx was shown to better explore the chemical space for the A2A 

receptors and produce ligands with similar physicochemical properties to known ligands 

which included complex ring systems that the other methods it was compared to could not 

produce. 

 

2.4.4. Generative adversarial networks 

GAN models were proposed as a great breakthrough method and have been extensively 

applied in image recognition. A GAN contains two neural networks: the generator (G) and 
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the discriminator (D), which contest with each other under game theory [11]. G commits 

to generating fake data to the point of confusing D to mistake them for real samples in the 

training set. The discriminator on the other hand is responsible for distinguishing between 

the generated fake data and the real samples. During the training loop, a batch of fake data 

is generated by G, which is used subsequently for training both G and D accompanied with 

real data. The objective functions were originally defined as two parts for G and D, 

respectively: 

min
𝐺
𝑉(𝐺) = 𝔼𝒙~𝒑𝒛(𝒛)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝒛)))] 

max
𝐷
𝑉(𝐷) = 𝔼𝒙~𝒑𝒅(𝒙)[𝑙𝑜𝑔𝐷(𝒙)] + 𝔼𝒙~𝒑𝒈(𝒙)[𝑙𝑜𝑔 (1 − 𝐷(𝒙)))] 

here, pz(z) is the noise distribution, pd(x) is the data distribution in the training set and pg(x) 

is the data distribution in the generated set. These two objective functions can be joined 

together as a minmax game in which G wants to minimize V while D wants to maximize 

it. In order to provide a strong gradient signal to obtain the global optimality, the objective 

function for D is rewritten as: 

max
𝐷
𝑉(𝐷, 𝐺) = −𝑙𝑜𝑔(4) + 2 ∙ 𝐷𝐽𝑆(𝒑𝒅||𝒑𝒈) 

where DJS (pd || pg) is the Jensen–Shannon divergence defined as follows: 

𝐷𝐽𝑆(𝒑𝒅||𝒑𝒈) =
1

2
𝐷𝐾𝐿 (𝒑𝒅||

𝒑𝒅 + 𝒑𝒈

2
) +

1

2
𝐷𝐾𝐿 (𝒑𝒈||

𝒑𝒅 + 𝒑𝑔

2
) 

here, the DKL is the KL divergence.  

 

To overcome several difficulties of GANs, such as mode collapse or lack of informative 

convergence metrics, the Wasserstein GAN (WGAN) was proposed to ensure faster and 

more stable training [94]. This model replaces the Jenson-Shannon divergence with the 

Earth-Mover distance:  

W(𝑝, 𝑞) = inf
γ∈Π(𝑝,𝑞)

𝔼(𝑥,𝑦)~γ‖𝑥 − 𝑦‖ 

here Π(p, q) denotes the set of all joint distributions γ(x, y) whose marginals are p and q, 

respectively. This distance results in a more reliable gradient signal which does not vanish 

during the training process. Besides the above-mentioned GAN models, there are varying 

forms being proposed which have been collected in the GAN ZOO [95]. 
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For drug design, a GAN model is commonly used. To ensure that the generated molecules 

have similar physio-chemical properties to molecules in the training set, the GAN is 

combined with other neural networks to construct a hybrid DL model, such as the RL model 

and the VAE model. The first application of GANs for drug design was proposed in 2017, 

named ORGAN, in which a GAN model was trained under the RL framework for multi-

objective optimization [68]. ORGAN contained one RNN generator for SMILES 

generation and a CNN discriminator to optimize the chemical space of generated molecules. 

They used linear combination methods to integrate the reward function given by 

discriminator (Rd) and objective function (Rc) into the final rewards (R):  

𝑅(𝒙) = 𝜆𝑅𝑑(𝒙) + (1 − 𝜆)𝑅𝑐(𝒙) 

here λ∈[0, 1] is a weight hyperparameter for balancing these two rewards. ORGAN has 

been demonstrated to dramatically improve the percentage of generated desired druglike 

molecules compared to molecules in the training set based on properties, including 

solubility and synthesizability. In addition, there are some other groups that also exploit the 

GAN model to develop their methods for molecular design, such as MolGAN [96], RANC 

[51], and ATNC [69]. 

 

Another GAN-based hybrid model is a combination with an adversarial autoencoder (AAE) 

by combining multiple VAEs [97]. Instead of minimizing KL divergence to decrease the 

gap between the latent distribution of output by the generator and the prespecified priori 

(e.g. a normal distribution), AAE uses adversarial training by introducing a DL-based 

model as discriminator D to tell the difference between the descriptors mapped by 

generated molecules and molecules in the training set, respectively. The objective function 

of the discriminator is written as:  

max
𝐷
𝑉(𝐷) = 𝔼𝒙~𝒑𝒅(𝒙)[𝑙𝑜𝑔𝐷(𝒙)] + 𝔼𝒙~𝒑𝒈(𝒙)[𝑙𝑜𝑔 (1 − 𝐷(𝒙)))] 

and the loss function for the VAE based generator is revised as: 

ℒ(𝜑, 𝜃) = 𝑉(𝐷) − 𝔼𝒒𝝋(𝒛|𝒙)[log 𝒑𝜽(𝒙|𝒛)] 

Blaschke et al. applied the AAE model for designing active ligands towards the dopamine 

receptor type 2 [52]. In addition, Polykovskiy et al. also successfully applied this model 

for generating several novel inhibitors of Janus kinase 3 (JAK3) [59]. 
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Fig. 2.4: Objective functions for optimization methods (A) and deep learning methods (B). Usually, 

objective functions in optimization methods contain many local minima/maxima, while non-convex 

objective functions (also called loss functions) are deliberately constructed in deep learning methods to 

make sure a local minimum is present to be found by gradient descent algorithms. 

 

2.5. Competition or cooperation? 

Optimization methods and DL methods are different categories for drug design. 

Optimization methods search for the global minimum (or maximum) of the objective 

functions, which are always a non-convex function and have many local optima (Fig. 2.4A). 

In contrast, DL models obtain the optimal parameters with a backpropagation algorithm by 

minimizing the loss function; these are usually constructed as convex functions to ensure 

a unique minimum to be sought by gradient descent algorithms (Fig. 2.4B). Traditionally, 

there were many successful cases in which the expected drug candidates were found 

through optimization methods. But these methods do not share a unified framework and 

users need to define some procedures manually case by case based on their experience. In 

recent years deep learning methods have come to the attention of researchers who have 

shown interest in applying them in drug design. Based on similar basic DL architectures, 

more and more promising methods have been proposed to learn knowledge from the 

training set efficiently and generate novel molecules automatically. By comparison, 

optimization methods are usually population-based, meaning each individual can be 

manipulated directly and conveniently to construct a pareto frontier for multiple objectives. 

Deep learning methods, however, are typically model-based, which can be used anywhere 

and the learned information can be passed on to other models through transfer learning. 
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However, current DL methods are still comparatively poor at handling the multiple 

objectives relevant for drug discovery; weighted summation is a common approach to 

tackle competitive objectives. 

 

Table 2.3: Publicly and freely available data sources related to drug molecules 

Name Descriptions URL 

ChEMBL Curated database of bioactive molecules with drug-like 

properties.  

https://www.ebi.ac.uk/chembl/ 

PubChem Collection of freely accessible chemical information, including 

chemical and physical properties, biological activities, safety 

and toxicity information, patents, etc. 

https://pubchem.ncbi.nlm.nih.gov/ 

DrugBank Bioinformatics and cheminformatics resource that combines 

detailed drug data with comprehensive drug target information 

https://www.drugbank.ca/ 

SureChEMBL database for chemical compounds in patents https://www.surechembl.org 

GDB Combinatorically generated drug-like small molecule library http://gdb.unibe.ch/ 

PDB 3D structure of Macromolecular Structures (including ligands 

binding to active site of targets) 

https://www.rcsb.org/ 

QM9 Small organic molecules subset out of the GDB-17 with 

quantum chemical properties  

http://www.quantum-machine.org/datasets/ 

ExCAPE-DB An integrated chemogenomic dataset collected from publicly 

available databases including structure, target information and 

activity annotations 

https://solr.ideaconsult.net/search/excape/ 

ZINC Curated collection of commercially available chemical 

compounds 

https://zinc15.docking.org/ 

 

The paradigm shift from the optimization methods to machine learning methods is mainly 

caused by the availability of large public databases and breakthroughs made in the field of 

deep learning in image and text generation. When optimization methods dominated the 

field of de novo drug design, there was little public data available as prior knowledge. 

Optimization methods focused on the objective functions, which were summarized based 

on a limited number of ligands, and the data wasonly used to provide the initial states or 

form the rules as constraints for molecule generation. In the age of big data public online 

databases (Table 2.3) such as ChEMBL [98,99], PubChem [100], ZINC [101], DrugBank 

[102,103], provide massive amounts of training data. Machine learning methods are now 

commonly used to extract useful information from this “big data” of drugs. Despite the 

current popularity of DL methods, it is worth noting that some researchers have questioned 

the performance of DL and benchmarked the performance between DL and other 
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optimization methods. For example, Yoshikawa et al. employed a grammatical evolution 

to develop a SMILES-based drug design algorithm, called ChemGE, which generated 

molecules with high binding affinity. They compared their method with three other DL 

methods, including CVAE, GVAE and ChemTS. They found that with eight hours compute 

time, their method performed better than, or was comparable to DL methods. Similarly, 

Jensen proposed a graph-based GA approach for drug design which was shown to perform 

better than a SMILES-based RNN, the ChemTS, CVAE and GVAE with much lower 

computational cost.  

 

Despite the differences in their mode of operation, some groups have tried to combine these 

two classes of methods for drug design. For example, an end-to-end model can map each 

molecule from discrete chemical space into a continuous latent space, i.e. the chemical 

structure can be converted into a numerical vector by the encoder. Such continuous 

representations are convenient for use in optimization and the resulting optima are 

subsequentially reconstructed into the expected molecules by the decoder. For example, 

Sattarov et al. applied a generative topographic mapping (GTM) technique, the 

probabilistic counterpart of self-organizing maps based on Bayesian learning, in the 

continuous space constructed by a VAE model [57]. GTM was convenient for visualization 

of the latent space in which target zones can be used for generating novel molecular 

structures by sampling. They succeeded in generating focused libraries of potential ligands 

toward the adenosine A2a Receptor. In addition, Winter et al. constructed another end-to-

end deep learning framework to construct a continuous space and exploited a PSO 

algorithm on this latent space. They were able to successfully generate ligands with a 

predicted high affinity to both EGFR and BACE1 [62]. 

 

2.6. Conclusion and perspective 

In this review, we give a brief description of algorithms used in drug de novo design, 

divided in optimization methods on one hand and DL methods on the other hand. 

Traditionally, the drug design problem was always addressed as a combinatorial 

optimization problem. Hence optimization methods were dominant in drug design. With 
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the rise of DL, more and more researchers shifted their interests from optimization 

algorithms to DL-based methods. The application of deep learning in drug de novo design 

caused a revolutionary pattern shift in drug discovery. However, DL methods have still a 

long way to go and traditional optimization algorithms still provide inspiration to improve 

the capability of drug de novo design. Currently, it is hard to say which kind of methods 

are dominant for all cases of drug design. Users should select methods based on their own 

conditions in practice. We also expect more sophisticated AI algorithms being proposed in 

the future to accelerate drug discovery 
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Abstract 

 

Over the last five years deep learning has progressed tremendously in both image 

recognition and natural language processing. Now it is increasingly applied to other data 

rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an 

effective method to generate novel chemical structures in the form of SMILES. However, 

ligands generated by current methods have so far provided relatively low diversity and do 

not fully cover the whole chemical space occupied by known ligands. Here, we propose a 

new method (DrugEx) to discover de novo drug-like molecules. DrugEx is an RNN model 

(generator) trained through a special exploration strategy integrated into reinforcement 

learning. As a case study we applied our method to design ligands against the adenosine 

A2A receptor. From ChEMBL data, a machine learning model (predictor) was created to 

predict whether generated molecules are active or not. Based on this predictor as the reward 

function, the generator was trained by reinforcement learning without any further data. We 

then compared the performance of our method with two previously published methods, 

REINVENT and ORGANIC. We found that candidate molecules our model designed, and 

predicted to be active, had a larger chemical diversity and better covered the chemical space 

of known ligands compared to the state-of-the-art. 

 

Keywords: deep learning; adenosine receptors; cheminformatics; reinforcement learning; 

exploration strategy. 
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3.1. Introduction 

G Protein-Coupled Receptors (GPCRs) are the largest family of cell membrane-bound 

proteins [1], containing about 800 members encoded by approximately 4% of human genes. 

GPCRs are central to a large number of essential biological processes, including cell 

proliferation, cell survival, and cell motility [2]. Currently, GPCRs form the main target of 

approximately 34% of all FDA approved drugs [3]. One of the most extensively studied 

GPCRs is the human adenosine A2A receptor (A2AAR), which has been shown to be a 

promising drug target for Parkinson’s disease, cardiovascular diseases, and inflammatory 

disorders [4]. Multiple crystal structures with different ligands have been resolved [5,6], 

and data on the biological activity of thousands of chemical compounds against the receptor 

was made available in the public ChEMBL database [7]. Considering the amount of data 

available and our in-house expertise we exploited machine learning methods to design 

novel ligands with predicted affinity for the A2AAR. 

 

Over the last years, deep learning (DL) has been at the forefront of great breakthroughs in 

the field of artificial intelligence and its performance even surpassed human abilities for 

image recognition and natural language processing [8]. Since then, deep learning is 

gradually being applied to other data rich fields [9,10]. In drug discovery DL has been used 

to construct quantitative structure-activity relationship (QSAR) models [11] to predict the 

properties of chemical compounds, such as toxicity, partition coefficient, affinity for 

specific targets, etc. [12,13]. Most commonly pre-defined descriptors such as Extended 

Connectivity Fingerprint (ECFP) [14] were used as input to construct fully-connected 

neural networks [15]. More recently studies were published using other methods wherein 

neural networks extract the descriptor from chemical structures automatically and directly, 

such as Mol2Vec [16], DruGAN [17], GraphConv [18], etc. 

 

In addition to these prediction applications, DL can also be used in chemical structure 

generation [13]. Gupta et al. constructed a recurrent neural network (RNN) model to learn 

the syntax of the SMILES notation and generate novel SMILES for molecules 

representation [19]. In addition, Olivecrona et al. combined RNNs and reinforcement 
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learning (RL) to generate SMILES formatted molecules that have required chemical and 

biological properties [20]. RL has been instrumental in the construction of “AlphaGo” 

designed by DeepMind, which defeated one of the best human Go players [21]. Finally, 

similar to generative adversarial networks (GANs) for generating images [22], Benjamin 

et al. exploited the GAN for a sequence generation model [23] to generate molecules with 

multi-objective optimization [24]. 

 

In order to maximize the chance to find interesting hits for a given target, generated drug 

candidates should a) be chemically diverse, b) possess biological activity, and c) contain 

similar physicochemical properties or chemical scaffolds to already known ligands [25]. 

Although several groups have studied the application of DL for generating molecules as 

drug candidates, most current generative models cannot satisfy all of these three conditions 

simultaneously [26]. Considering the variety of the structure and function of GPCRs and 

the huge space of drug candidates, it is impossible to enumerate all possible virtual 

molecules in advance [27]. Here we aimed to discover de novo drug-like molecules against 

A2AAR by our proposed new method DrugEx in which an exploration strategy was 

integrated into a RL model. The integration of this function ensured that our model 

generated candidate molecules similar to known ligands of A2AAR with great diversity and 

predicted affinity for the A2AAR. All python code for this study is freely available at 

http://github.com/XuhanLiu/DrugEx. 

 

3.2. Dataset and methods 

3.2.1. Data source 

Drug-like molecules were collected from the ZINC database (version 15) [28]. We 

randomly chose approximately one million SMILES formatted molecules that met the 

following criteria: -2 < logP < 6 and 200 < molecular weight (MW) < 600. The dataset 

(named ZINC hereafter) finally contained 1,018,517 molecules, and was used for SMILES 

syntax learning. Furthermore, we extracted the known ligands for the A2AAR (ChEMBL 

identifier: CHEMBL251) from ChEMBL (version 23) [29]. If multiple measurements for 

the same ligands existed, the average pCHEMBL value (pKi or pIC50 value) was 
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calculated and duplicate items were removed. If the pCHEMBL value < 6.5 or the 

compound was annotated as “Not Active” it was regarded as a negative sample; otherwise, 

it was regarded as a positive sample. In the end this dataset (named as A2AR) contained 

2,420 positive samples and 2,562 negative samples. 

 

3.2.2. Prediction model (QSAR) 

Binary classification through QSAR modelling was used as prediction task. Input data for 

the model were ECFP6 fingerprints with 4096 bits calculated by the RDKit Morgan 

Fingerprint algorithm with a three-bond radius [30]. Hence, each molecule in the dataset 

was transformed into a 4096D vector. Model output value was the probability whether a 

given chemical compound was active based on this vector. Four algorithms were 

benchmarked for model construction, Random Forest (RF), Support Vector Machine 

(SVM), Naïve Bayesian (NB), and Deep Neural Network (DNN). The RF, SVM and NB 

models were implemented through Scikit-Learn [31], and DNN through PyTorch [32]. In 

RF, the number of trees was set as 1000 and split criterion was “gini”. In SVM, a radial 

basis function (RBF) kernel was used and the parameter space of C and γ were set as [2-5, 

215] and [2-15, 25], respectively. In DNN, the architecture contained three hidden layers 

activated by rectified linear unit (ReLU) between input and output layers (activated by 

sigmoid function), the number of neurons were 4096, 8000, 4000, 2000 and 1 for each layer. 

With 100 epochs of training process 20% of hidden neurons were randomly dropped out 

between each layer. The binary cross entropy was used to construct the loss function and 

optimized by Adam [33] with a learning rate of 10-3. The AUC of ROC curves was 

calculated to compare their mutual performance. 

 

3.2.3. Generative model 

Starting from the SMILES format, each molecule in the ZINC dataset was split into a series 

of tokens, standing for different types of atoms and bonds. Then, all tokens existing in this 

dataset were collected to construct the SMILES vocabulary. The final vocabulary contained 

56 tokens (Table S3.1) which were selected and arranged sequentially into valid SMILES 

sequence following the correct grammar.  
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Fig. 3.1: Architecture of recurrent neural networks for training and sampling processes with 

A2AAR antagonist ZM241385 as an example. (A) In the training process of RNNs, each molecule is 

decomposed to a series of tokens and then taken as input. Subsequently, the input and output are 

combined with a start token and an end token, respectively. (B) Beginning with the start token “GO”, 

the model calculates the probability distribution of each token in the vocabulary. For each step, one of 

the available tokens is randomly chosen based on the probability distribution and is again received by 

RNNs as input to calculate the new probability distribution for the next step. This process will end if 

the end token “EOS” is sampled or the number of steps equals 100. 

 

The RNN model constructed for sequence generation contained six layers: one input layer, 

one embedding layer, three recurrent layers and one output layer (Fig. 3.1). After being 

represented by a sequence of tokens, molecules can be received as categorical features by 
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the input layer. In the embedding layer, vocabulary size, and embedding dimension were 

set to 56 and 128, meaning each token could be transformed into a 128d vector. For the 

recurrent layer, gated recurrent unit (GRU) [34] was used as the recurrent cell with 512 

hidden neurons. The output at each position was the probability that determined which 

token in the vocabulary would be chosen to construct the SMILES string. 

 

 

Fig. 3.2: The workflow of deep reinforcement learning. For each loop, it contains several steps: (1) 

a batch of SMILES sequences was sampled by the generator, which had been initialized by a pre-trained 

model; (2) each generated molecule represented by this SMILES format was encoded into a fingerprint; 

(3) a probability score of activity on the A2AAR was assigned to each molecule, calculated by the QSAR 

model which had been trained in advance; (4) all of the generated molecules and their scores were sent 

back for training of the generator with the policy gradient method. 

 

During the training process we put the start token at the beginning of a batch of data as 

input and the end token at the end of the same batch of data as output. This ensures that the 

generative network could choose correct tokens based on the sequence it had generated 

(Fig. 3.1A). A negative log likelihood function was used to construct the loss function to 

guarantee that the token in the output sequence had the largest probability to be chosen 

after being trained. In order to optimize the parameters of the model, the Adam algorithm 

[33] was used for optimization of loss function. Here, the learning rate was set at 10-3, batch 

size was 500, and training steps set at 1000 epochs.  
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3.2.4. Reinforcement learning 

SMILES sequence construction under the RL framework can be viewed as a series of 

decision-making processes (Fig. 3.2). At each step, the model determines the optimal token 

from the vocabulary based on the generated sequence in previous steps. However, the pure 

RNN model cannot guarantee that the percentage of desired molecules (i.e. biologically 

active on the A2AAR) being generated is as large as possible. To solve this problem RL is 

an appropriate method because it increases the probability of those molecules with higher 

rewards and avoids generating those molecules with lower rewards. We regarded the 

generator as the policy function and the predictor as the reward function. The generator Gθ 

was updated by employing a policy gradient on the basis of the expected end reward 

received from the predictor Q. The objective function could be designated as generating a 

sequence from the start state to maximize the expected end reward [23]. 

𝐽(𝜃) = 𝐸[𝑅(𝑦1:𝑇)|𝜃] =∑𝐺𝜃(𝑦𝑡|𝑦1:𝑡−1) ∙ (𝑄(𝑦1:𝑇) − 𝛽)

𝑇

𝑡=1

 

Here R is the reward for a complete sequence which is given by the prediction model Q; 

the generative model Gθ can be regarded as policy function to determine the probability of 

each token from the vocabulary to be chosen. The parameter β was the baseline of the 

reward, meaning that if the reward score was not larger than the baseline, the model would 

take it as a minus score or punishment. The goal of the generative model is to construct a 

sequence which can obtain the highest score judged by the predictor. 

 

3.2.5. Exploration strategy 

In order to improve the diversity of generated molecules, the token selection was not only 

determined by the generator constructed by the RNN model as described above, but also 

by a second fixed pre-trained RNN model (Fig. 3.3). The RNN requiring training is deemed 

the 'exploitation network' (Gθ) and the fixed RNN (not requiring training) is deemed the 

'exploration network' (Gφ). Both had an identical network architecture. We define 

“exploring rate” (ε) in [0.0, 1.0] to determine which fraction of steps was determined by 

the exploration network. During the training process, each SMILES sequence was 

generated through the collaboration of these two RNNs. At each step a random number in 

[0.0, 1.0] was generated. If the value was smaller than ε, the Gφ would determine which 
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token to be chosen, and vice versa. After the training process was finished, we removed Gφ 

and only Gθ was left as the final model of DrugEx for molecule generation. 

 

 

Fig. 3.3: Molecule generation with the assistance of the exploration strategy during the training 

process. For each step of token selection, a random variable was generated between 0 and 1. If the value 

is larger than a pre-set threshold (exploring rate, ε), the probability distribution is determined by the 

current generator (exploitation network, Gθ). Otherwise, it was determined by the exploration network 

(Gφ). 

 

3.2.6. Molecular diversity 

The Tanimoto-similarity was used for measuring the similarity of molecules. Given two 

compounds a and b and their ECFP6 fingerprints ma and mb, the Tanimoto-similarity is 

defined as:  

𝑇𝑠(𝑎, 𝑏) =
|𝑚𝑎 ∩ 𝑚𝑏|

|𝑚𝑎 ∪ 𝑚𝑏|
 

where | ma ∩ mb | represents the number of common fingerprint bits, and | ma ∪ mb | donates 
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the total number of fingerprint bits. The Tanimoto-distance is defined as: 

𝑇𝑑(𝑎, 𝑏) = 1 − 𝑇𝑠(𝑎, 𝑏) 

Similar to Benhenda [26], the diversity I of a set of molecules A (with size of |A|) is defined 

as the average of the Tanimoto-distance of molecules of every pair of molecules: 

𝐼(𝐴) =
1

|𝐴|2
∑ 𝑇𝑑(𝑎, 𝑏)

(𝑎,𝑏)∈𝐴×𝐴

 

In a given set of molecules, the less similar each two molecules are, the larger the value of 

its diversity will be.  

 

3.3. Results and discussion 

3.3.1. Performance of predictors 

All molecules in the A2AR dataset were used for training the QSAR models, after being 

transformed into ECFP6 fingerprints. We then tested the performance of these different 

algorithms with five-fold cross validation of which the ROC curves are shown in Fig. 3.4. 

The RF model achieved the highest value of AUC, MCC, Sensitivity, and Accuracy, despite 

its Specificity being slightly lower than DNN. Hence this model was chosen as our 

predictor whose output would be regarded as the reward for the generator in RL. In our 

previous study [15], the performance of DNN was better than RF on the chemical space of 

the whole ChEMBL database. A possible reason for this difference can be that the size of 

the A2AR dataset and chemical diversity was much smaller than ChEMBL as a whole. This 

has a negative influence on DNN which had more parameters to be optimized than RF. 

Selecting the predictor was a critical step in this study, as this model would be used to 

determine whether the following generated molecules were active or inactive. 

 

3.3.2. SMILES syntax learning 

For the training of RNNs all molecules in the ZINC dataset were used as training set after 

being decomposed into the tokens which belonged to our vocabulary set. Here, we defined 

that a SMILES sequence was valid if it could be parsed by RDKit. During the training 

process, the percentage of valid SMILES sequence through 1,000 times sampling was 

calculated and was then recorded with the value of the loss function at each epoch (Fig. 
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3.5A). After about 300 epochs, the loss function had converged, indicating the model was 

trained well.  

 

 
Fig. 3.4: Performance of five different machine learning models based on five-fold cross validation in 

A2AR dataset with different metrics, including AUC of ROC curve (A), MCC, Sensitivity, Specificity and 

Accuracy values (B). Except for specificity RF achieved highest scores among these models based on such 

measurements. 

 

Subsequently, we sampled 10,000 SMILES sequences based on this well-trained model 

and found that 93.88% of these sequences were grammatically correct SMILES. We then 

compared some properties of these generated molecules with those in the training set, 

including number of hydrogen bond donors/acceptors, rotatable bonds, and different kind 

of ring systems (Fig. 3.6A). The distribution of these properties in the generated molecules 

highly resembles the molecules in the ZINC dataset. The logP ~ MW plot (Fig. 3.7A) shows 

that most generated molecules were drug-like molecules and cover the vast majority of the 

square space occupied by the ZINC dataset. Besides these eight properties, we also 

calculated 11 other physicochemical properties (including topological polar surface area, 

molar refractivity, the fraction of sp3 hybridized carbon atoms and number of amide bonds, 

bridgehead atoms, heteroatoms, heavy atoms, spiroatoms, rings, saturated rings, valence 

electrons) to form 19D physicochemical descriptors (PhysChem). In addition, principal 

component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were 

employed for dimension reduction and chemical space visualization with the PhysChem 
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and ECFP6 of these molecules, respectively. We found that generated molecules covered 

almost the whole region occupied by molecules in the ZINC dataset (Fig. 3.7 B and C) 

although the number of these generated molecules was less than 1% of the number of 

molecules in the ZINC dataset.  

 

 
Fig. 3.5: The value of loss function and percentage of valid SMILES sequence during the pre-trained 

process on ZINC dataset (B) and fine-tuned process on A2AR dataset (B). The model was well pre-trained 

after 300 epochs and these two values converged to 0.19 and 93.88%, respectively. The performance of the 

fine-tuned model converged after 400 epochs with the two values reaching 0.09 and 0.99, respectively. 

 

Subsequently we used the A2AR dataset to fine-tune this pre-trained model with 1,000 

epochs (Fig. 3.5B). After sampling another 10,000 times, we performed the same 

comparison with the A2AR dataset with respect to the properties mentioned above (Fig. 

3.6B) and investigated the chemical space represented by logP ~ MW (Fig. 3.7D), first two 

components of PCA (Fig. 3.7E) and t-SNE (Fig. 3.7F), yielding results similar to the model 

without fine-tuning but then focused on the A2AR chemical space. These results prove that 

RNN is an appropriate method to learn the SMILES grammar and to construct molecules 

similar to the ligands in the training set, which has also been shown in other work [35,19]. 

 

3.3.3. Conditional SMILES generation 

The RNN model trained on the ZINC dataset was used as an initial state for the policy 

gradient in RL. After the training process of RL converged, 10,000 SMILES sequences 
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were generated for performance evaluation. However, after removal of duplicates in these 

sequences, only less than 10 unique molecules were left which were similar to compounds 

in the A2AR dataset. When checking the log file of the training process, we noticed that 

these duplicated sequences were frequently sampled at each epoch and its duplication rate 

increased gradually. In order to decrease the bias caused by these molecules with high 

frequency, we removed all duplicated sequences sampled at each epoch for training with 

the policy gradient. We found that almost all of the molecules generated according to this 

procedure were located outside of the drug-like region with regard to logP ~ MW plot 

(Figure S1). This problem might be caused by the bias of the predictor. ECFP is a 

substructure-based fingerprint, implying that as long as the molecule contains some critical 

substructures, it will be prone to be predicted as active. That was the reason why generated 

SMILES sequences contained a large number of repetitive motifs. Several research groups 

have made improvements to guarantee that the final model has ability to generate drug-like 

candidate molecules [24,20]. In the next section, we will describe our proposed method, 

“DrugEx” by integrating an exploration strategy to solve this problem and compare it to 

existing methods.  

 

 

Fig. 3.6: Comparison of the properties of generated molecules by the pre-trained (A) and fine-

tuned models (B) and molecules in ZINC dataset (A) and A2AR dataset (B), respectively. These 

properties included the number of acceptor/donor of hydrogen bonds, rotatable bonds, aliphatic rings, 

aromatic rings, and heterocycles. 
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Fig. 3.7: The chemical space of generated molecules by pre-trained models with ZINC dataset (A-

C) and fine-tuned model with A2AR dataset (D-F). The chemical space was represented by either 

logP ~ MW (A, D) and first two components in PCA on PhysChem descriptors (C, E) and t-SNE on 

ECFP6 fingerprints (D, F).  

 

3.3.4. Exploration strategy 

During the training process, the generated sequence is determined by both the Gθ and the 

Gφ where ε determines how many contributions the Gφ made. The Gφ and Gθ were both 

initialized by the pre-trained RNN model on the ZINC dataset. The Gφ was fixed and only 

parameters in the Gθ were updated. In order to optimize parameters, the parameter space 

was designated [0.01, 0.1] and [0.0, 0.1] for ε and β, respectively. After the model 

converged at 200 epochs (Fig. 3.8A), the performance of these models was evaluated 

subsequently based on 10,000 sampled sequences. Firstly, it was found that the number of 

duplicate SMILES notations was reduced dramatically and almost all SMILES notations 

represented drug-like molecules (Fig. 3.9A, 10D). Table 3.1 shows that when ε was 

increased, the model generated fewer active ligands for A2AAR but the diversity of 

generated molecules (represented as unique desired SMILES) increased significantly. It 

was also observed that with higher ε, the distribution of different kinds of ring systems in 

the generated desired molecules became more similar to the known active ligands in the 
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A2AR dataset (Fig. 3.9A). In order to further investigate the effect of ε, we also tested a 

range of different values as [0.01, 0.05, 0.10, 0.15, 0.20, 0.25] and the results are shown in 

Figure S2. The Gφ can hence help the model produce more molecules similar to known 

active ligands of the given target but not identical to them. At higher ε, the baseline can 

help the model improve the average score and generate more desired molecules. However, 

this effect was not significant at lower values of ε. It is worth noticing in this study that if 

the baseline was larger than 0.1, the training process of the generative model did not 

converge.  

 

Table 3.1: Comparison of the performance of the different methods 

 DrugEx (Pre-trained) 
 

DrugEx (Fine-tuned) REINVENT ORGANIC 
Pre-

trained 

Fine-

tuned 

ε 0.01 0.01  0.1 0.1  0.01 0.01 0.1 0.1 -- -- -- -- 

β 0.0 0.1 0.0 0.1  0.0 0.1 0.0 0.1 -- -- -- -- 

Valid 

SMILES 
98.3% 98.9% 95.9% 98.8% 

 
99.1% 99.0% 98.2% 97.5% 98.8% 99.8% 93.9% 96.2% 

Desired 

SMILES 
97.5% 98.0% 74.6% 80.9% 

 
98.3% 98.5% 94.4% 94.5% 98.2% 99.8% 0.7% 47.9% 

Unique 

SMILES 
96.5% 96.3% 73.0% 80.0% 

 
96.5% 96.6% 84.8% 86.0% 95.8% 94.8% 0.7% 22.7% 

Diversity 0.74 0.75 0.80 0.80  0.75 0.74 0.80 0.80 0.75 0.67 0.83 0.82 

The pre-trained network, fine-tuned network, REINVENT, ORGANIC and DrugEx with different Gφ (shown 

in the parentheses), ε and β were compared. 

 

Subsequently, the fine-tuned network was used as Gφ to be involved in our proposed 

training method of RL. After the training process converged at 200 epochs (Fig. 3.8B), 

10,000 SMILES were generated. Compared to the pre-trained network, there were more 

unique molecules generated (Table 4.1), most of which were drug-like compounds (Fig. 

3.9B and 10A). However, with appropriate ε the fine-tuned network helped the model 

generate more valid desired SMILES than with the pre-trained network. At the same time 

the duplication rate was also increased and there were more repetitive molecules being 

generated. A possible reason is that the percentage of active ligands was higher in the A2AR 
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dataset than in the ZINC dataset, while the size of A2AR dataset was much smaller than 

ZINC dataset, causing a higher number of duplicated samples generated by the fine-tuned 

model. In addition, a PCA showed that the fine-tuned network was more effective than the 

pre-trained network as Gφ, as it helped the model in generating molecules with larger 

diversity and higher similarity to the known active ligands (Fig. 3.9 and 10). These results 

prove that the exploration strategy is an effective way to assist the model training for 

generating molecules with similar chemical and biological properties to existing molecules 

in a specific part of chemical space. 

 

 
Fig. 3.8: The average score of generated SMILES sequences during the training processes of deep 

reinforcement learning with different ε, β and Gφ. The pre-trained model on ZINC dataset (A) and the fine-

tuned model on A2AR set (B) were used as Gφ. After 200 epochs, the average scores for all training processes 

converged and all of these models were well trained.  

 

3.3.5. Comparison with other methods 

Several papers on SMILES generation using deep learning have been published. 

Olivecrona et al. proposed a method named “REINVENT” [20], in which a new loss 

function was introduced based on the Bayesian formula for RL, 

𝐿(𝜃) = [𝑙𝑜𝑔𝑃𝑃𝑟𝑖𝑜𝑟(𝑦1:𝑇) + 𝜎𝑅(𝑦1:𝑇) − 𝑙𝑜𝑔𝑃𝐴𝑔𝑒𝑛𝑡(𝑦1:𝑇)]
2
 

 

The authors used all molecules in the ChEMBL database to pre-train an RNN model as the 

Priori. With the parameter σ, they integrated the reward R of each SMILES into the loss 
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function. The final Agent model was regarded as the Posteriori and trained with the policy 

gradient. Finally, they successfully identified a large number of active ligands against the 

dopamine D2 receptor (DRD2).  

 

 

Fig. 3.9: Comparison of the properties of generated molecules by RL models with different ε, β and Gφ. 

The pre-trained model on ZINC dataset (A) and the fine-tuned model on A2AR dataset (B) were used as Gφ. 

These properties included the number of hydrogen bond donors/acceptors, rotatable bonds, aliphatic rings, 

aromatic rings, and heterocycles. 

 

Likewise, Benjamin et al. proposed another method named “ORGANIC” [24] by 

combining a GAN model for sequence generation and a prediction model to form a 

comprehensive reward function for RL.  

𝑅(𝑦1:𝑡) = 𝜆𝑅𝑑(𝑦1:𝑇) + (1 − 𝜆)𝑅𝑐(𝑦1:𝑇) 
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Here, the reward is represented as the weighted sum of two parts determined by parameter 

λ: 1) the reward Rc was provided by the prediction model, and 2) the reward Rd was 

calculated by discriminator neural network D, which was trained with generator 

simultaneously by minimizing the following loss function: 

𝐿(𝜃) = ∑ (𝑙𝑜𝑔𝐷(𝑦1:𝑇))

𝑦∈𝑅𝑒𝑎𝑙

+ ∑ (𝑙𝑜𝑔 (1 − 𝐷(𝑦1:𝑇)))

𝑦∈𝐹𝑎𝑘𝑒

 

With the policy gradient optimization, the final model generated many different desired 

molecules which were predicted as active ligand against a given target and were similar to 

the chemical compounds in the ligands dataset. In the following section DrugEx and its 

performance is compared with these two methods. 

 

The code of REINVENT and ORGANIC was downloaded from GitHub and executed with 

default parameters (σ = 60 in REINVENT and λ = 0.5 in ORGANIC). The prior network 

of REINVENT and generator network of ORGANIC were initialized with the pre-trained 

model, and the agent network of REINVENT was started from the fine-tuned model. The 

RF-based predictor with ECFP6 was exploited as reward function for both methods 

identical to our own implementation. After these models were trained, 10,000 SMILES 

sequences were generated for performance comparison with each other (Table 4.1). Our 

method generated molecules that had the larger diversity at ε = 0.1. While DrugEx did not 

outperform REINVENT based on the percentage of unique desired SMILES, this value 

was improved dramatically and closely resembled that of REINVENT when ε was set to 

0.01. In addition, although most of the molecules generated by these methods were drug-

like molecules (Fig. 3.10A-D), through PCA on PhysChem descriptors (Fig. 3.10E-H) and 

t-SNE on ECFP6 fingerprints (Figrue 10I-L), we found that molecules generated by our 

method covered the whole region of chemical space occupied by known active ligands. 

Conversely, molecules generated by both REINVENT and ORGANIC only covered a 

small fraction of the desired chemical space and were mostly centered in Rule-of-5 

compliant chemical space even though the chemical space for the A2AR transcends this 

region of space. Moreover, we also used a k-means algorithm to cluster the active ligands 
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in the A2AR dataset and generated molecules into 20 groups with the ECFP6 fingerprints 

of the full compound structure, Murcko scaffold and topological Murcko scaffold. The 

results indicated that the generated molecules by DrugEx covered all of the clusters that 

contain active ligands in the A2AR dataset, but some of these clusters cannot be covered by 

REINVENT and ORGANIC (Figure S3). The distribution of the molecules in each cluster 

generated by DrugEx was closer to active ligands in the A2AR dataset than REINVENT 

and ORGANIC. 

 

Previous work on the binding mechanism between the A2AAR and its ligands identified a 

number of critical substructures that play an important role to improve binding affinity [36]. 

For example, the oxygen in the furan ring of ZM241385 and related ligands can form a 

hydrogen bond with residue N253, the purine ring acts as hydrogen bond donor to N253 

and forms π-π interaction with F168 [6]. However, molecules containing such a furan ring 

tend to be blocking the receptor (antagonists) rather than activating it (agonists). Hence, 

while the furan ring is common in the set of known A2AR ligands, its presence might not 

always be favorable for generated ligands. Moreover, in general fused rings have been 

shown to be important in the chemical structure of drugs [37]. Therefore, we compared the 

percentage of molecules containing furan rings, fused rings, and benzene rings. Only 0.20% 

of the desired molecules generated by REINVENT contained a fused ring (Table 4.2) while 

they were present in 79.09% of active ligands in the A2AR set. Similarly, ORGANIC only 

generated a very low percentage of molecules containing a fused ring system (0.02%).  

 

With the pre-trained network as Gφ, DrugEx produced 9.12% of molecules containing 

fused rings, while the fine-tuned network improved the percentage of molecules containing 

fused rings up to 60.69%. Moreover, 95.26% and 99.96% of molecules generated by 

REINVENT and ORGANIC contained a furan ring, respectively, while this percentage was 

only 40.29% for known active ligands. In DrugEx, 82.32% of molecules contained a furan 

ring under the pre-trained network as Gφ, similar to the other two methods. However, when 

the fine-tuned network was used this rate decreased substantially to 66.35%.  
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Fig. 3.10: Comparison of the chemical space of active ligands in the A2AR set and generated molecules 

by REINVENT, ORGANIC and DrugEx with different Gφ (shown in parentheses). Chemical Space was 

represented by logP ~ MW (A, D, G and J) and first two components in PCA on PhysChem descriptors (B, 

E, H and K) and t-SNE on ECFP6 fingerprints (C, F, I and L). 

 

REINVENT and ORGANIC have been reported to generate various molecules containing 

different fused ring structures against DRD2 [24,20]. One possible reason they were not 
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able to do so here might lie in the bias of A2AR dataset. In table 4.2, we noticed that there 

were more active ligands containing a furan ring than inactive ligands (four fold difference). 

This led to both methods only generating molecules containing a furan ring which were 

prone to be predicted as active. However, both methods neglected to construct more 

complicated fused rings which is a decisive difference between active and inactive ligands 

in A2AR dataset. These results indicate that DrugEx is more robust to overcome the bias of 

the training set to generate more similar compounds to known A2AAR ligands (tuned for 

the target chemical space) and less generic SMILES sequences. Hence, we consider these 

molecules more appropriate drug candidates against A2AAR than the molecules produced 

by REINVENT and ORGANIC. As an example, 24 candidate molecules generated by 

DrugEx were selected and are shown in Fig. 3.11 ordered by the probability score and 

Tanimoto-distance to the A2AR dataset. 

 

Table 4.2: Comparison of the percentage of important substructures contained in the molecules 

generated by the methods.  

 Fused Ring Furan Ring Benzene Ring 

DrugEx (Pre-trained) 9.12% 82.32% 61.48% 

DrugEx (Fine-tuned) 60.69% 66.35% 65.62% 

REINVENT 0.20% 95.26% 61.98% 

ORGANIC 0.02% 99.96% 39.45% 

Pre-trained 24.22% 4.51% 63.31% 

Fine-tuned 76.33% 23.82% 72.85% 

ZINC 26.66% 3.86% 63.97% 

A2AR 
Active 79.09%  40.29% 75.33%  

Inactive 76.73% 9.33% 70.88% 

The table compares DrugEx with pre-trained and fine-tuned model as different Gφ (in the parentheses), 

REINVENT, ORGANIC, Pre-trained model, Fine-tuned model and the molecules in ZINC and A2AR dataset. 

 

In REINVENT, the pre-trained model acted as a “priori” in the Bayesian formula to ensure 

that the generated SMILES are drug-like molecules. The final model was trained by 

improving the probability of desired generated SMILES while maintaining the probability 

of undesired generated SMILES similar to the pre-trained model. In DrugEx the pre-trained 
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model was only used for initialization and did not directly affect the training process and 

performance evaluation. The mechanism of DrugEx appears quite similar to a genetic 

algorithm (GA) previously developed in our group for de novo drug design [38]. The 

exploration strategy can be regarded as “random mutation” in a GA context for sequence 

generation. Instead of changing the token selection directly, this manipulation just changed 

the probability distribution of each token in the vocabulary. Furthermore, although 

“crossover” manipulation was not implemented here, such mutations can still help the 

model search the unfamiliar chemical space in which the molecules do not have a high 

probability to be sampled. In contrast to ORGANIC, there was no need to construct another 

neural network specifically to measure the similarity between generated and real molecules, 

saving valuable time and resources required to train and select appropriate parameters. 

Despite the inevitable introduction of some duplicates the molecules generated by DrugEx 

can be regarded as reasonable drug candidates for A2AAR. 

 

 
Fig. 3.11: 24 Candidate molecules were selected from 10,000 SMILES sequences generated by DrugEx. 

These molecules were ordered by the probability score given by the predictor and Tanimoto-distance to A2AR 

dataset. 
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3.4. Conclusion and future prospect 

In this study a new method is proposed to improve the performance of deep reinforcement 

learning to generate SMILES based ligands for targets of interest. Applied to the A2AAR, 

generated molecules had high diversity combined with chemical and predicted biological 

properties similar to known active compounds. Previous work has shown that RL cannot 

guarantee the model to generate molecules distributed over chemical space comparable to 

ligands of a target of interest. To solve this problem, another pre-trained RNN model was 

included as exploration strategy to force the model to enlarge the chemical space of the 

generated molecules during the training process of RL. Compared with other DL-based 

methods, DrugEx generated molecules with larger diversity and higher similarity to known 

active ligands, albeit at the expense of more inactive or duplicated molecules. 

 

In future work, the aim is to update DrugEx with multi-objective optimization. As a given 

drug (candidate) likely binds some other targets (i.e. off-target efficacy) which can cause 

side-effects [39]. Incorporating multiple objectives in SMILES generation will allows the 

search for ways to eliminate potential off-target affinity. 
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Table S3.1: All tokens in vocabulary for SMILES sequence construction with RNN model.  

Atoms Bonds Controls 

Common  

Atoms 

Aromatic 

Atoms 
-- Rings Branchs On-Off 

B 

C 

F 

I 

Cl 

N 

O 

P 

Br 

S 

 

[B-] 

[BH-] 

[C+] 

[C-] 

[CH-] 

[CH] 

[C] 

[N+] 

[NH+] 

[N] 

[O-] 

[O] 

[P+] 

[PH] 

[Br+] 

[S+] 

[SH] 

[SiH3] 

[SiH] 

[Si] 

[Sn] 

[cH-] 

[n+] 

[nH] 

[s+] 

c 

n 

o 

p 

s 

 

 

- 

= 

# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

( 

) 

 

GO 

EOS 

Considering that there are no drug-like molecules containing more than 10 rings, we omitted the token “0” 

and “%” for the construction of more than 10 rings. In addition, we ignored the isomerism of molecules and 

ionic bond, therefore we removed the “@”, ‘\’, ‘/’, ‘.’ and all metal ion.  
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Figure S3.1: The chemical space of generated molecules by pre-trained models, traditional reinforced 

model and active ligands in the A2AR set. The chemical space was represented as logP ~ MW. The 

generated molecules by pre-trained model covered the greater part of space of known active ligands, while 

the molecules generated by reinforced model were distributed in a distinct region, which cannot be regarded 

drug-like although the compounds were predicted as active ligands. 
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TableS3.2: The performance of DrugEx with different Gφ (pre-trained and fine-tuned model) and 

hyperparameters (including ε and β). These performance included the percentage of valid SMILES (A), 

desired SMILES (B) and unique desired SMIIES (C) and diversity (D).  

  



DrugEx v1 

 

79 

 

Figure S3.3: The percentage of molecules in 20 groups clustered by k-means algorithm on ECFP6 

fingerprints of generated molecules with full compound (A), Murcko scaffold (B) and topological 

Murcko scaffold (C). These molecules included active ligands in A2AR dataset and molecules generated 

by REINVENT, ORGANIC and DrugEx with different Gφ (shown in the parentheses) 
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Abstract 

In polypharmacology, ideal drugs are required to bind to multiple specific targets to 

enhance efficacy or to reduce resistance formation. Although deep learning has achieved a 

breakthrough in de novo drug design, most of its applications only focus on a single drug 

target to generate drug-like active molecules in spite of the reality that drug molecules often 

interact with more than one target which can have desired (polypharmacology) or 

undesired (toxicity) effects. In a previous study we proposed a new method named DrugEx 

that integrates an exploration strategy into RNN-based reinforcement learning to improve 

the diversity of the generated molecules. Here, we extended our DrugEx algorithm with 

multi-objective optimization to generate drug molecules towards more than one specific 

target (two adenosine receptors, A1AR and A2AAR, and the potassium ion channel hERG 

in this study). In our model, we applied an RNN as the agent and machine learning 

predictors as the environment, both of which were pre-trained in advance and then 

interplayed under the reinforcement learning framework. The concept of evolutionary 

algorithms was merged into our method such that crossover and mutation operations were 

implemented by the same deep learning model as the agent. During the training loop, the 

agent generates a batch of SMILES-based molecules. Subsequently scores for all 

objectives provided by the environment are used to construct Pareto ranks of the generated 

molecules with non-dominated sorting and Tanimoto-based crowding distance algorithms. 

Here, we adopted GPU acceleration to speed up the process of Pareto optimization. The 

final reward of each molecule is calculated based on the Pareto ranking with the ranking 

selection algorithm. The agent is trained under the guidance of the reward to make sure it 

can generate more desired molecules after convergence of the training process. All in all 

we demonstrate generation of compounds with a diverse predicted selectivity profile 

towards multiple targets, offering the potential of high efficacy and low toxicity. 

 

Keywords: deep learning; adenosine receptors; cheminformatics; reinforcement learning; 

multi-objective optimization; exploration strategy. 
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4.1. Introduction 

The ‘one drug, one target, one disease’ paradigm, which has dominated the field of drug 

discovery for many years, has made great contributions to drug development and the 

understanding of their molecular mechanisms of action [1]. However, this strategy is 

encountering problems due to the intrinsic promiscuity of drug molecules, i.e. recent 

studies showed that one drug molecule could interact with six protein targets on average 

[2]. Side effects of drugs caused by binding to unexpected off-targets are one of the main 

reasons of clinical failure of drug candidates and even withdrawal of FDA-approved novel 

drugs [3,4]. Up to now, more than 500 drugs have been withdrawn from the market due to 

fatal toxicity [5]. Yet, disease often results from the perturbation of biological systems by 

multiple genetic and/or environmental factors, thus complex diseases are more likely to 

require treatment through modulating multiple targets simultaneously. Therefore, it is 

crucial to shift the drug discovery paradigm to “polypharmacology” for many complex 

diseases [6,7]. 

 

In polypharmacology, ideal drugs are required to bind to multiple specific targets to 

enhance efficacy or to reduce resistance formation (in which case multiple targets can be 

multiple mutants of a single target) [8]. It has been shown that partial inhibition of a small 

number of targets can be more efficient than the complete inhibition of a single target, 

especially for complex and multifactorial diseases [6,9]. In parallel, common structural and 

functional similarity of proteins results in drugs binding to off-targets. Hence we also 

demand drugs to have a high target selectivity to avoid binding to unwanted target proteins. 

For example, the adenosine receptors (ARs) are a class of rhodopsin-like G protein-coupled 

receptors (GPCRs) having adenosine as the endogenous ligand. Adenosine and ARs are 

ubiquitously distributed throughout the human tissues, and their interactions trigger a wide 

spectrum of physiological and pathological functions. There are four subtypes of ARs, 

including A1, A2A, A2B and A3, each of which has a unique pharmacological profile, tissue 

distribution, and effector coupling [10,11]. The complexity of adenosine signaling and the 

widespread distribution of ARs have always given rise to challenges in developing target-

specific drugs [12]. In addition to the similarity of the pharmacophores of some generic 
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proteins (e.g. the human Ether-à-go-go-Related Gene, hERG) should also be taken into 

consideration as they can be sensitive to binding exogenous ligands and cause side effects. 

hERG is the alpha subunit of a potassium ion channel [13] and has an inclination to interact 

with drug molecules because of its larger inner vestibule as the ligand binding pocket [14]. 

When hERG is inhibited this may cause long QT syndrome [15]. 

 

In addition to visual recognition, natural language processing and decision making, deep 

learning has been increasingly applied in drug discovery [16]. It does not only perform well 

in prediction models for virtual screening, but is also used to construct generative models 

for drug de novo design and/or drug optimization [17]. For example, our group 

implemented a fully-connected deep neural network (DNN) to construct a 

proteochemometric model (PCM) with all high quality ChEMBL data [18] for prediction 

of ligand bioactivity [19]. Its performance was shown to be better than other shallow 

machine learning methods. Moreover, we also developed a generative model with recurrent 

neural networks (RNNs), named DrugEx for SMILES-based de novo drug design [20]. It 

was shown that the generated molecules had large diversity and were similar to known 

ligands to some extent to make sure that reliable and diverse drug candidates can be 

designed.  

 

Since the first version of DrugEx (v1) demonstrated effectiveness for designing novel 

A2AAR ligands, we began to extend this method for drug design toward multiple targets. 

In this study, we updated DrugEx to the second version (v2) through merging crossover 

and mutation operations, which were derived from evolutionary algorithms, into the 

reinforcement learning (RL) framework. We also used Pareto ranking for multi-objective 

selection. In order to evaluate the performance of our additions we tested our method into 

both multi-target and target-specific cases. For the multi-target case, desired molecules 

should have a high affinity towards both A1AR and A2AAR. In the target-specific case, on 

the other hand, we required molecules to have only high affinity towards the A2AAR but a 

low affinity to the A1AR. In order to decrease toxicity and adverse events, molecules were 

additionally obliged to have a low affinity for hERG in both cases. It is worth noting that 
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generated molecules should also be chemically diverse and have similar physico-chemical 

properties to known ligands. All python code for this study is freely available at 

http://github.com/XuhanLiu/DrugEx. 

 

4.2. Materials and methods 

4.2.1. Data source 

Drug like molecules represented as SMILES format were downloaded from the ChEMBL 

database (version 26). After data preprocessing, including recombining charges, removing 

metals and small fragments, we collected 1.7 million molecules and named it the ChEMBL 

set, used for SMILES syntax learning. This data preprocessing step was implemented in 

RDKit [21]. Furthermore, 25,731 ligands were extracted from the ChEMBL database to 

construct the LIGAND set, which had bioactivity measurements towards the human A1AR, 

A2AAR, and hERG. The LIGAND set was used to construct prediction models for each 

target and fine-tuning the generative models. The number of ligands and bioactivities for 

these three targets in the LIGAND set is represented in Table 4.1. Duplicate items were 

removed and if multiple measurements for the same ligands existed, the average pChEMBL 

value (pX, including pKi, pKd, pIC50, or pEC50) was calculated. To judge if a molecule 

is active or not, we defined the threshold of bioactivity as pX = 6.5. If the pX < 6.5, the 

compound was predicted as undesired (low affinity to the given target); otherwise, it was 

regarded as desired (having high affinity) [19]. 

 

4.2.2. Prediction model 

In order to predict the pX for each generated molecule for a given target, regression QSAR 

models were constructed with different machine learning algorithms. To increase the 

chemical diversity available for the QSAR model we included lower quality data without 

pChEMBL value, i.e. molecules that were labeled as “Not Active” or without a defined pX 

value. For these data points we defined a pX value of 3.99 (slightly smaller than 4.0) to 

eliminate the imbalance of the dataset and guarantee the model being able to predict the 

negative samples. During the training process, sample weights for low quality data were 

set as 0.1, while the data with exact pX were set as 1.0. This allowed us to particularly 
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incorporate the chemical diversity, while avoiding degradation of model quality. 

Descriptors used as input were ECFP6 fingerprints [22] with 2048 bits (2048 dimensions, 

or 2048D) calculated by the RDKit Morgan Fingerprint algorithm (using a three-bond 

radius). Moreover, the following 19D physico-chemical descriptors were used: molecular 

weight, logP, number of H bond acceptors and donors, number of rotatable bonds, number 

of amide bonds, number of bridge head atoms, number of hetero atoms, number of spiro 

atoms, number of heavy atoms, the fraction of SP3 hybridized carbon atoms, number of 

aliphatic rings, number of saturated rings, number of total rings, number of aromatic rings, 

number of heterocycles, number of valence electrons, polar surface area and Wildman-

Crippen MR value. Hence, each molecule in the dataset was transformed into a 2067D 

vector. Before being input into the model, the value of input vectors were normalized to 

the range of [0, 1] by the MinMax method. Model output value is the probability whether 

a given chemical compound was active based on this vector. 

 

Table 4.1: The number of ligands and bioactivities for each of the human protein targets A1AR, 

A2AAR and hERG in the LIGAND set. 

 A1AR A2AAR hERG 

Total Ligands 7,700 8,406 16,733 

Bioactivities 13,100 12,129 22,156 

Active Ligands 

(pX >= 6.5) 
1,990 2,511 924 

Inactive Ligands 

(pX < 6.5) 
1,859 1,709 6,438 

Inactive Ligands 

(No pX) 
1,764 1,993 1,275 

Other Ligands 2,087 4,704 8,906 

 

Four algorithms were benchmarked for QSAR model construction, Random Forest (RF), 

Support Vector Machine (SVM), Partial Least Squares regression (PLS), and Multi-task 

Deep Neural Network (MT-DNN). RF, SVM and PLS models were implemented through 

Scikit-Learn [23], and the MT-DNN model through PyTorch [24]. In the RF, the number 

of trees was set as 1000 and split criterion was “gini”. In the SVM, a radial basis function 
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(RBF) kernel was used and the parameter space of C and γ were set as [2-5, 215] and [2-15, 

25], respectively. In the MT-DNN, the architecture contained three hidden layers activated 

by a rectified linear unit (ReLU) between input and output layers, and the number of 

neurons were 2048, 4000, 2000, 1000 and 3 in these subsequent layers. The training process 

consisted of 100 epochs with 20% of hidden neurons randomly dropped out between each 

layer. The mean squared error was used to construct the loss function and was optimized 

by the Adam algorithm [25] with a learning rate of 10-3. 

 

4.2.3. Generative model 

As in DrugEx v1, we organized the vocabulary for the SMILES construction. Each 

SMILES-format molecule in the ChEMBL and LIGAND sets was split into a series of 

tokens. Then all tokens existing in this dataset were collected to construct the SMILES 

vocabulary. The final vocabulary contained 84 tokens (Table S4.1) which were selected 

and arranged sequentially into valid SMILES sequences through correct grammar.  

 

The RNN model constructed for sequence generation contained six layers: one input layer, 

one embedding layer, three recurrent layers and one output layer. After being represented 

by a sequence of tokens, molecules can be received as categorical features by the input 

layer. In the embedding layer, vocabulary size, and embedding dimension were set to 84 

and 128, meaning each token could be transformed into a 128 dimensional vector. For a 

recurrent layer, the long-short term memory (LSTM) was used as recurrent cell with 512 

hidden neurons instead of the gated recurrent unit (GRU) [26] which was employed only 

in DrugEx v1. The output at each position was the probability that determined which token 

in the vocabulary would be chosen to grow the SMILES string. 

 

During the training process we put a start token (GO) at the beginning of a batch of data as 

input and an end token (END) at the end of the same batch of data as output. This ensures 

that our generative network could choose correct tokens each time based on the sequence 

it had generated previously. A negative log likelihood function was used to construct the 

loss function to guarantee that the token in the output sequence had the largest probability 
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to be chosen after being trained. In order to optimize the parameters of the model, the Adam 

algorithm [25] was used for the optimization of the loss function. Here, the learning rate 

was set at 10-3, the batch size was 512, and training steps were set to 1000 epochs. 

 

 

Fig. 4.1: The workflow of the training process of our deep learning-based molecule generator 

DrugEx2 utilizing reinforcement learning. After the generator has been pre-trained/fine-tuned, (1) a 

batch of SMILES are generated by sampling tokens step by step based on the probability calculated by 

the generator; (2) These valid SMILES are parsed to be molecules and encoded into descriptors to get 

the predicted pXs with well-trained predictors; (3) The predicted pXs are transformed into a single value 

as the reward for each molecule based on Pareto optimization; (4) These SMILES sequences and their 

rewards are sent back to the generator for training with policy gradient methods. These four steps 

constitute the training loop of reinforcement learning. 

 

4.2.4. Reinforcement learning 

SMILES sequence construction under the RL framework can be viewed as a series of 

decision-making steps (Fig. 4.1). The generator (G) and the predictors (Q) are regarded as 

the policy and reward function, respectively. In this study we used multi-objective 

optimization (MOO), and each objective was a requirement to be achieved maximally for 

each scenario, albeit with differences in desirability. Our aim was defined by the following 

problem statement: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅1, 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅2, … , 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑛 

Here, n equals the number of objectives (n = 3 in this study), and Ri, the score for each 

objective i, was calculated as follows: 
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𝑅𝑖 = { 

𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝑖), 𝑖𝑓 ℎ𝑖𝑔ℎ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

 1 − 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝑖), 𝑖𝑓 𝑙𝑜𝑤 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

0, 𝑖𝑓 𝑆𝑀𝐼𝐿𝐸𝑆 𝑖𝑛𝑣𝑎𝑙𝑖𝑑

 

here the pXi (the range from 3.0 to 10.0) was the prediction score given by each predictor 

for the ith target, which was normalized to the interval [0, 1] as the reward score. If having 

no or low affinity for a target was required (off-target) this score would be subtracted from 

1 (inverting it). For the multi-target case, the objective function is: 

{ 

𝑅𝐴1 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴1)               

 𝑅𝐴2𝐴 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴2𝐴)            

 𝑅ℎ𝐸𝑅𝐺 = 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋ℎ𝐸𝑅𝐺)

 

while the objective function for the target-specific case, is: 

{ 

𝑅𝐴1 = 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴1)       

 𝑅𝐴2𝐴 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝐴2𝐴)            

 𝑅ℎ𝐸𝑅𝐺 = 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋ℎ𝐸𝑅𝐺)

 

In order to evaluate the performance of the generators, three coefficients are calculated 

with the generated molecules, including validity, desirability, and uniqueness which are 

defined as: 

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 

where Ntotal is the total number of molecules, Nvalid is the number of the molecules parsed 

by the valid SMILES sequences, Nunique is the number of molecules which are different 

from others in the dataset, and Ndesired is the number of desired molecules. Here, we 

determine whether generated molecules are desired based on the reward Ri if all of them 

are larger than the threshold (0.5 by default when pX = 6.5). In addition, we calculated the 

SA score (from 1 to 10) for each molecule to measure the synthesizability of which larger 

value means more difficult to be synthesized [27]. And we also computed the QED (from 

0 to 1) score to evaluate the drug-likeness of which larger value means more drug-like for 

each molecule [28]. The calculation of both SA and QED scores were implemented by 

RDKit. 
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To orchestrate and combine these different objectives, we compared two different reward 

schemes: the Pareto front (PF) scheme and the weighted sum (WS) scheme. These were 

defined as follows: 

(a) Weighted sum (WS) scheme: the weight for each function is not fixed but dynamic, 

and depends on the desired ratio for each objective, which is defined as: 

r𝑖 =
𝑁𝑖
𝑠

𝑁𝑖
𝑙  

here for objective i the N
s 

i  and N
l 

i  are the number of generated molecules which have a 

score smaller or larger than the threshold. Moreover, the weight is normalized ratio defined 

as: 

𝑤𝑖 =
𝑟𝑖

∑ 𝑟𝑘
𝑀
𝑘=1

 

and the final reward R* was calculated by 

𝑅∗ =∑𝑤𝑖𝑅𝑖

𝑛

𝑖=1

 ,  

(b) Pareto front (PF) scheme: operates on the desirability score, which is defined as 

D𝑖 = {
 1, 𝑖𝑓 𝑅𝑖 > 𝑡𝑖

 
𝑅𝑖
𝑡𝑖
⁄ , 𝑖𝑓 𝑅𝑖 ≤ 𝑡𝑖

 

where ti is the threshold of the ith objective, and we set all of objectives had the same 

threshold as 0.5 as stated in the methods. Given two solutions m1 and m2 with their scores 

(x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 if and only if:   

∀ j ∈ {1,… , n}: 𝑥𝑗  ≥ 𝑦𝑗  𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 

otherwise, m1 and m2 are non-dominated with each other. After the dominance between all 

pair of solutions being determined, the non-dominated scoring algorithm [29] is exploited 

to obtain different layers of Pareto frontiers which consist of a set of solutions. The 

solutions in the top layer are dominated by the other solutions in the lower layer [30]. In 

order to speed up the non-dominated sorting algorithm, we employed PyTorch to 

implement this procedure with GPU acceleration. After obtaining the frontiers ranking 

from dominated solutions to dominant solutions, the molecules were ranked based on the 

average of Tanimoto-distance instead of crowding distance with other molecules in the 
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same frontier, and molecules with larger distances were ranked on the top. The final reward 

R* is defined as: 

R𝑖
∗ =

{
 

  0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 
𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
, 𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 

here the parameter k is the index of the solution in the Pareto rank, and rewards of undesired 

and desired solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively.  

 

During the generation process, for each step, G determines the probability of each token 

from the vocabulary to be chosen based on the generated sequence in previous steps. Its 

parameters are updated by employing a policy gradient based on the expected end reward 

received from the predictor. The objective function is designated as follows: 

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

 

By maximizing this function, the parameters 𝜃 in G can be optimized to ensure that G can 

construct desired SMILES sequences which can obtain the highest reward scores judged 

by all the Qs. 

 

4.2.5. Algorithm extrapolation 

Evolutionary algorithms (EAs) are common methods used in drug discovery [31]. For 

example, Molecule Evoluator is one of EAs, with mutation and crossover operations based 

on SMILES representation [32] for drug de novo design. In addition, some groups also 

proposed other variations of EAs [33], e.g., estimation of distribution algorithm (EDA) 

which is a model-based method and replaces the mutation and crossover operations with 

probability distribution estimation and sampling of new individuals (Fig. 4.2) [34]. Similar 

to EDA, DrugEx is a model-based method too, in which the deep learning model was 

employed to estimate the probability distribution of sequential decision making. However, 

we used a DL method to define model-based mutation and crossover operations. Moreover, 

we employed an RL method to replace the sample selection step for the update of model 

or population in EDA or EA, respectively. 
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Fig. 4.2: Flowchart comparison of evolutionary algorithm (A), estimation of distribution 

algorithm (B) and our proposed method (C).  

 

4.2.6. Exploration strategy 

In our previous study, we had implemented the exploration strategy through importing a 

fixed exploration net to enlarge the diversity of the generated molecules during the training 

loops. In this study, we continued to extend the methods of this exploration strategy, which 

resemble the crossover and mutation operations from evolutionary algorithms (EAs). Here, 

besides the agent net (GA), we also defined exploration strategy with two other DL models: 

crossover net (GC) and mutation net (GM), which have the same RNN architecture (Fig. 

4.3). The pseudo code of the exploration strategy is described in Table S4.2. Before the 

training process, GM was initialized by the pre-trained model while GA and GC were started 

from the fine-tuned model. The GM was the basic strategy employed in the previous version 

and its parameters were fixed and not updated during the whole training process. The GC 

implemented in this work was an extended strategy whose parameters were updated 

iteratively based on the GA. During the training process, each SMILES sequence was 

generated through combining these three RNNs: for each step, a random number from 0 to 

1 is generated. If it is larger than the mutation rate (ε), the probability for token sampling 

is controlled by the combination of GA and GC, otherwise, it is determined by GM. For each 

training loop, only the parameters in GA were updated instantly based on the gradient of the 

RL objective function. An iteration was defined as the period of epochs after the desirability 

score of molecules generated by GA did not increase. Subsequently the parameters of GC 

were updated with GA directly and the training process continued for the next iteration. The 
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training process would continue till the percentage of desired molecules in the current 

iteration was not better than in the previous iterations. 

 

 
Fig. 4.3: The mechanism of updated exploration strategy, including agent net GA, mutation net GM 

(red) and crossover net GC (blue). In the training loop, GM is fixed, Gc is updated iteratively and GA is 

trained at each epoch. For each position, a random number from 0 to 1 is generated. If it is larger than 

the mutation rate (ε), the probability for token sampling is controlled by the combination of GA and GC, 

otherwise, it is determined by GM.  

 

4.2.7. Molecular diversity 

To measure molecular diversity, we adopted the metric proposed by Solow and Polasky in 

1994 to estimate the diversity of a biological population in an eco-system [35]. It has been 

shown to be an effective method to measure the diversity of drug molecules [36]. The 

formula to calculate diversity was redefined to normalize the range of values from [1, m] 

to (0, m] as follows: 

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆 

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s and 
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F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for the distance 

function of each pair of molecule provided as follows: 

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗  

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance with 

ECFP6 fingerprints as follows: 

𝑑𝑖𝑗 = 𝑑(𝑠𝑖, 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 ,  

where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the number 

of union fingerprint bits.  

 

4.3. Results and discussion 

4.3.1. Performance of predictors 

All molecules in the LIGAND set were used for training the QSAR models, after being 

transformed into predefined descriptors (2048D ECFP6 fingerprints and 19D 

physicochemical properties). We then tested the performance of these different algorithms 

with five-fold cross validation and an independent test of which the performances are 

shown in Fig. 4.4A-B. Here, the dataset was randomly split into five folds in the cross 

validation, while a temporal split with a cut-off at the year of 2015 was used for the 

independent test. In the cross validation test, the MT-DNN model achieved the highest 

value for R2 and the lowest RMSE value for A1AR and A2AAR, but the RF model had the 

best performance for hERG based on R2 and RMSE. However, for the independent test the 

RF model reached the highest R2 and lowest RMSE across the board, although it was worse 

than the performance in the cross-validation test. A detailed performance overview of the 

RF model is shown in Fig. 4.4C-E. Because the generative model might create a large 

number of novel molecules, which would not be similar to the molecules in the training set, 

we took the robustness of the predictor into consideration. In this situation the temporal 

split has been shown to be more robust [19,37]. Hence the RF algorithm was chosen for 

constructing our environment which provides the final reward to guide the training of the 

generator in RL. 
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Fig. 4.4: Performance comparison of different machine learning regression models. In these two 

histograms (A-B), the results were obtained based on five-fold cross validation (A) and independent test 

(B) for the three targets. The R2 and RMSE scores were used for evaluating the performance of different 

machine learning models including DNN, KNN, PLS, SVM RF and MT-DNN. In the scatter plots (C-

E), each point stands for one molecule with its real pX (x-axis) and the predicted pX (y-axis) by the RF 

model which was chosen as the final predictors for A1AR (C), A2AAR (D) and hERG (E) based on five-

fold cross validation (blue) and independent test (orange).  

 

4.3.2. Model optimization 

As in our previous work in DrugEx v1, we firstly pre-trained and fine-tuned the generator 

with the ChEMBL and LIGAND set, respectively. When testing the different types of RNNs, 
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we analyzed the performance of the pre-trained model with 10,000 SMILES generated, and 

found that LSTM generated more valid SMILES (97.5%) than GRU (93.1%) which had 

been adopted in our previous work. Moreover, for the fine-tuning process, we split the 

LIGAND set into two subsets: training set and validation set; the validation set was not 

involved in parameters updating but it was essential to avoid model overfitting and to 

improve uniqueness of generated molecules. Subsequently 10,000 SMILES were sampled 

for performance evaluation. We found that the percentage valid SMILES was 97.9% for 

LSTM, larger than GRU with 95.7% valid SMILES, a slight improvement compared to the 

pre-trained model. In the end, we employed the LSTM-based pre-trained/fine-tuned 

models for the following investigation.  

 

We employed the models for two cases (multi-target and target-specific) of multi-objective 

drug design towards three protein targets. During the training loop of DrugEx v2, the 

parameter of ε was set to different values: 10-2, 10-3, 10-4 and we also tested it without 

mutation net, i.e. the value of ε was set to 0. Generators were trained by using a policy 

gradient with two different rewarding schemes. After the training process converged, 

10,000 SMILES were generated for each model for performance evaluation. The 

percentage of valid, desired, unique desired SMILES and the diversity were calculated 

(Table 4.2). Furthermore, we also compared the chemical space of these generated 

molecules with known ligands in the LIGAND set. Here, we employed the first two 

components of t-SNE on the ECFP6 descriptors of these molecules to visualize the 

chemical space.  

 

4.3.3. Performance comparisons 

We compared the performance of DrugEx v2 with DrugEx v1 and two other DL-based de 

novo drug design methods: REINVENT [38] and ORGANIC [39]. In order to make a fair 

benchmark, we trained these four methods with the same environments to provide the 

unified predicted bioactivity scores for each of the generated molecules. It should be 

mentioned that these methods are all SMILES-based RNNs generators but trained under 

different RL frameworks. Therefore, these generators were constructed with the same RNN 



DrugEx v2 

 

97 

structures of and initialized with the same pre-trained/fine-tuned models. We also tested 

REINVENT 2.0 [40] but found the training loop did not converge in the PF scheme. We 

speculate this is due to the number of desired molecules generated by the initial state of the 

model being too small, not containing enough information. Moreover, addition of a scaffold 

filter is repetitive when integrated into thePF scheme because it is similar to the similarity-

based crowding distance algorithm in the PF scheme. Finally, a scaffold filter is a hard 

condition, because it directly penalizes the score of similar molecules to 0 while the PF 

scheme decreased the similar molecules. Hence we have not shown these results here. 

 

In the WS scheme we did not choose fixed weights for objectives but dynamic values which 

can be adjusted automatically during the training process. The reason for this is that if the 

fixed weights should be optimized as the hyperparameters, which would be more time 

consuming. Moreover, the distribution of scores for each objective was not comparable. If 

the affinity score was required to be higher, few of the molecules generated by the model 

with the initial state were satisfactory, but if a lower affinity score was required, most of 

the generated molecules by the pre-trained/fine-tuned model met this need without further 

training of RL. Therefore, weights were set as dynamic parameters and determined by the 

ratio between desired and undesired molecules generated by the model at the current 

training step. This approach ensures that the objectives with lower scores would get more 

importance than others during the training loop to balance the different objectives and 

generate more desired molecules.  

 

The performance of the model with different ε is shown in Table S4.3. A higher ε generates 

molecules with larger diversity but low desirability compared to a lower ε in both multi-

target and target-specific cases. In addition, an appropriate ε guarantees the model 

generates molecules which have a more similar distribution of important substructures with 

the desired ligands in the LIGAND set (Fig. S4.1). With the WS scheme, the model 

generates molecules with a high desirability, but the diversity is lower than the desired 

ligands in the training set. On the contrary, the PF scheme helped the model generate 

molecules with a larger diversity than the ligands in the training set, but the desirability 
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was not as high as in the WS rewarding scheme. Moreover, the generated molecules in the 

PF scheme have more similar distribution of substructures to the LIGAND set than in the 

WS scheme.  

 

Table 4.2: Comparison of the performance of the different methods in the multi-target case.  

Rewarding 

Scheme 
Dataset Validity Desirability Uniqueness Diversity 

Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

 LIGAND 100.00% 12.40% 100.00% 0.66 21.30% 35.44% 79.24% 

PF 

DrugEx v1 98.28% 43.27% 88.96% 0.71 17.37% 41.05% 80.95% 

DrugEx v2 99.57% 80.81% 87.29% 0.7 13.97% 32.01% 80.26% 

ORGANIC 98.84% 66.01% 82.67% 0.65 17.27% 56.38% 68.87% 

REINVENT 99.54% 57.43% 98.84% 0.77 0.64% 40.38% 92.05% 

WS 

DrugEx v1 97.76% 38.44% 93.44% 0.71 10.76% 36.42% 86.99% 

DrugEx v2 99.80% 97.45% 89.08% 0.49 3.63% 21.06% 96.18% 

ORGANIC 99.08% 61.10% 77.65% 0.68 9.08% 70.99% 83.91% 

REINVENT 99.54% 70.98% 99.11% 0.71 0.04% 23.23% 96.28% 

Shown are validity, desirability, uniqueness, and substructure distributions of SMILES generated by 

four different methods in the multi-target case with PF and WS rewarding schemes. For the validity, 

desirability and uniqueness, the highest values are bold, while for the distribution of substructures, the 

bold data are labeled as the most closed to the values in the LIGAND set. 

 

In the multi-target case, these four methods with different rewarding schemes show similar 

performance, i.e. the WS scheme can help models improve the desirability while the PF 

scheme assists models to achieve better diversity and distribution of substructures (Table 

4.2). Here, REINVENT with the PF scheme achieved the largest diversity, whereas DrugEx 

v1 had the most similar substructure distribution to the molecules in the LIGAND set, and 

DrugEx v2 achieved the best desirability with both PR and WS schemes compared to the 

three other algorithms. The diversity and distribution of substructures were also most 

similar to the best results. In addition, in the target-specific case results were similar to the 

multi-target case, (Table 4.3), and for the distribution of purine and furan rings, DrugEx v2 

surpassed v1 to be most similar to the LIGAND set. When investigating the SA and QED 

scores, we observed that the PF scheme helped all of generated molecules being more drug-

like because of higher QED scores than the WS scheme in both multi-target case (Fig. 

4.5A-D) and target-specific case (Fig. 4.5E-H). In comparison of these methods, the 

molecules generated by REINVENT were supposedly easier to be synthesized and more 
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drug-like than others, but the molecules of DrugEx v1 had more similar distributions with 

the molecules in the LIGAND set.  

 

Table 4.3: Comparison of the performance of the different methods in the target-specific case.  

Rewarding 

Scheme 
Dataset Validity Desirability Uniqueness Diversity 

Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

 LIGAND 100.00% 14.63% 100.00% 0.67 28.27% 50.61% 71.84% 

PF 

DrugEx v1 98.07% 48.42% 87.32% 0.73 29.65% 61.61% 70.99% 

DrugEx v2 99.53% 89.49% 90.55% 0.73 23.73% 56.23% 67.40% 

ORGANIC 98.29% 86.98% 80.30% 0.64 10.60% 89.27% 65.28% 

REINVENT 99.59% 70.66% 99.33% 0.79 3.85% 33.82% 92.53% 

WS 

DrugEx v1 97.61% 44.96% 95.89% 0.68 78.92% 80.21% 68.02% 

DrugEx v2 99.62% 97.86% 90.54% 0.31 19.58% 98.56% 51.87% 

ORGANIC 98.97% 88.14% 84.13% 0.49 9.68%% 96.66% 71.48% 

REINVENT 99.55% 81.27% 98.87% 0.34 25.13% 97.52% 74.61% 

Shown are validity, desirability, uniqueness, and substructure distributions of SMILES generated by 

four different methods in the target-specific case with PF and WS rewarding schemes. For the validity, 

desirability and uniqueness, the highest values are bold, while for the distribution of substructures, the 

bold data are labeled as the most closed to the values in the LIGAND set. 

 

 

Fig. 4.5: the distribution of SA score and QED score of desired ligands in the LIGAND set and of 

molecules generated by four different methods with PR (A, B, E and F) and WS (C, D, G and H) 

rewarding schemes in the multi-target case (A-D) and target-specific case (E-H). The molecules 

from the LIGAND set were shown as color of orange, and the molecules generated by DrugEx v1, v2, 

ORGANIC and REINVENT were represented with colors of blue, green, red, and purple, respectively. 

Overall DrugEx v1 and v2 are better able to emulate the observed distributions in the training set 

compared to ORGANIC and REINVENT. 
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Fig. 4.6: Comparison of the chemical space of the LIGAND set and generated molecules. Shown 

are all known ligands (orange) and desired molecules (black). Moreover shown are generated molecules 

by DrugEx v1 (A, E, I, M, blue), v2 (B, F, J, N, red), ORGANIC (C, G, K, O, green) and REINVENT (D, 

H, L, P, purple). Distinction can be made between the multi-target case (A-H) and target specific case 

(I-P). Additionally the distinction can be made between PF scheme based scoring (A-D and I-L) and 

WS scheme based scoring (E-H and M-P). Chemical space is represented by the first two components 

in t-SNE with ECFP6 descriptors of molecules. Similar to our previous work it can be seen that DrugEx 

better covers the whole chemical space of the input data. In particular in the multi-target case with a 

Pareto optimization based scoring function (E-H) the improved coverage in all sections, including 

isolated active ligands, becomes clear.   

 

With respect to chemical space, we employed t-SNE with the ECFP6 descriptors of all 

molecules for both multi-target (Fig. 4.6A-H) and target-specific cases (Fig. 4.6I-P). In the 
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multi-target case, most of the desired ligands in the LIGAND set were distributed in the 

margin and PF scheme could guide all of the generators to better cover chemical space than 

WS scheme. In the target-specific case, the desired ligands in the LIGAND set were 

distributed more dispersed in both of the margin and the center regions. For both of these 

two cases, only part of the region occupied by desired ligands in the LIGAND set were 

overlapped with REINVENT and ORGANIC, but almost all of it is covered by DrugEx v1 

and v2. Especially, in contrast to WS scheme DrugEx v2 had a significant improvement of 

chemical space coverage with PF scheme. Hence in this case, the PF scheme could not 

guide all generators better in the target-specific case regarding coverage compared to WS 

scheme except for DrugEx v2. A possible reason is that the molecules generated by DrugEx 

v1 and v2 offer a more similar distribution of substructures to desired ligands in the 

LIGAND set than REINVENT and ORGANIC.  

 

As an example, 16 possible antagonists (without ribose moiety and molecular weight < 500) 

generated by DrugEx v2 with PF scheme were selected as candidates for both multi-target 

cases and target specific case, respectively. These molecules were ordered by the selectivity 

which was calculated as the difference of pXs between two different protein targets. In the 

multi-target cases (Fig. 4.7A), because the desired ligands prefer A1AR and A2AAR to 

hERG, the row and column is the selectivity of A2AAR and A1AR against hERG, 

respectively, while the generated molecules are required to bind only A2AAR rather than 

A1AR and hERG in the target-specific case (Fig. 4.7B), selectivity of A2AAR against A1AR 

and hERG were represented as the row and column, respectively.  

 

In order to prove the effectiveness of our proposed method, we tested it with 20 goal-

directed molecule generation tasks on the GuacaMol benchmark platform [41]. These tasks 

contain different requirements, including similarity, physicochemical properties, 

isomerism, scaffold matching, etc. The detailed description of these tasks is provided in ref 

[41] and our results are shown in Table S4.4. We pre-trained our model with the dataset 

provided by the GuacaMol platform, in which all molecules from the ChEMBL database 

are included and similar molecules to the target ligands in the tasks were removed. Then 

we choose the top 1024 molecules in the training set to fine-tune our model for each task, 
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before reinforcement learning was started. Our method scores the best in 12 out of 20 tasks 

compared with the baseline models provided by the GuacaMol platform, leading to an 

overall second place. Moreover, the performance between the LSTM benchmark method 

and our methods were similar in these tasks, possibly because they have similar 

architectures of neural networks. All in all, this benchmark demonstrated that our proposed 

method has improved generality for drug de novo design tasks. It is worth being mentioned 

that our method is not effective enough yet for some tasks with contradictory objectives in 

the narrow chemical space. The main reason is that our method emphasizes to obtain a 

large number of feasible molecules to occupy the diverse chemical space rather than a small 

number of optimal molecules to achieve the highest score. For example, in the Sitagliptin 

MPO task, the aim is finding molecules which are dissimilar to sitagliptin but have a similar 

molecular formula to sitagliptin, and our method was not as good as Graph GA, which is a 

graph-based genetic algorithm.  

 

4.4. Conclusion and future prospect 

In this work, we proposed a Pareto-based multi-objective learning algorithm for drug de 

novo design towards multiple targets based on different requirements of affinity scores for 

multiple targets. We transferred the concept of an evolutionary algorithm (including 

mutation and crossover operations) into RL to update DrugEx for multi-objective 

optimization. In addition, Pareto ranking algorithms were also integrated into our model to 

handle the contradictory objectives common in drug discovery and enlarge the chemical 

diversity. In order to prove effectiveness, we tested the performance of DrugEx v2 in both 

multi-target and target-specific cases. We found that a large percentage of generated 

SMILES were valid and desired molecules without many duplications. Moreover, 

generated molecules were also similar to known ligands and covered almost every corner 

of the chemical space that known ligands occupy, which could not be repeated by tested 

competing methods. In addition to our work here other methods to improve the diversity 

of generated molecules were proposed such as REINVENT 2.0 [40]. In addition, some 

other teams also trained the new deep learning model (e.g. BERT, Transformer, GPT2) with 

a larger dataset and achieved better results [42,43]. In future work, we will continue to 
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update DrugEx with these new deep learning models to deal with different molecular 

representations, such as graphs or fragments [31]. We will also integrate more objectives 

(e.g. stability, synthesizability), especially when these objectives are contradictory, such 

that the model allows user-defined weights for each objective to generate more reliable 

candidate ligands and better steer the generative process.  

 

 

 

Fig. 4.7: Some candidate molecules were selected from molecules generated by DrugEx v2 with 

the PF scheme for both multi-target case and target-specific case. In multi-target case (A), these 

molecules were ordered by the selectivity of A1AR and A2AAR against hERG as x-axis and y-axis, 

respectively. In target-specific case (B), these molecules were ordered by the selectivity of A2AAR 

against A1AR and hERG as x and y-axis, respectively. For each cell, the structure at the left is the 

generated molecule labeled with its similarity to the most similar ligands in the LIGAND set, located at 

the right and labeled with their ChEMBL ID. 
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Table S4.1: All tokens in vocabulary for SMILES sequence construction with RNN model.  

Atoms Bonds Controls 

Common Atoms Aromatic Atoms -- Rings Branchs On-Off 

B [As+] [CH-] [N] [SH2] [b-] [se+] - 1 ( GO 

C [As] [CH2] [O+] [SH] [c+] [se] = 2 ) EOS 

F [B-] [CH] [O-] [Se+] [c-] [te+] # 3 

  

I [BH-] [I+] [OH+] [SeH] [cH-] [te] 

 

4 

  

L [BH2-] [IH2] [O] [Se] [n+] b 

 

5 

  

N [BH3-] [N+] [P+] [SiH2] [n-] c   6 

  

O [B] [N-] [PH] [SiH] [nH+] n   7 

  

P [C+] [NH+] [S+] [Si] [nH] o   8 

  

R [C-] [NH-] [S-] [Te] [o+] p   9 

  

S  [NH2+] [SH+] 

 

[s+] s   

   

Considering that the sterochemical information of molecules and ionic bonds were ignored, we removed the 

“@”, “\”, “/”, “.”.
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Table S4.2: The pseudo code of exploration strategy in DrugEx v2 

Algorithm explore: 

 Input:  

GA: Agent net, GC: Crossover net, GM: Mutation net,  

ε: mutation rate, size: number of generated molecules 

vocab: vocabulary of tokens which is consisted of SMILES sequence. 

Output:  

  samples: a list of generated SMILES sequences 

 

samples ← [] 

For i ← 1 to size: 

sample ← [] 

token ← ‘GO’ 

h ← INIT_STATES () 

mutate ← RANDOM_FLOAT (0, 1) 

ratio ← RANDOM_FLOAT (0, 1) 

For step ← 1 to max_lenth: 

        probA, hA ← GA (t, hA) 

        probC, hC ← GC (t, hC) 

        probM, hC ← GM (t, hM) 

        If ε > mutate Then 

prob ← probM 

        Else 

   prob ← probA * ratio + probM * ratio 

token ← DISTRIBUTION_BASED_SAMPLING (prob, vocab) 

        insert token to sample 

        If token == ‘EOS’ Then 

            Insert sample to samples 

            Break 

 End 

End 

Return samples 
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Table S4.3: Comparison of validity, desirability, uniqueness and substructures distributions of 

SMILES generated by DrugEx v2 with different ε in the multi-target and target-specific cases by 

using PF and WS rewarding schemes, respectively.  

For the validity, desirability and uniqueness, the largest data is bold, while for the distribution of substructures, 

the bold data are labeled as the most closed to the values in the LIGAND set. 

  

Case Reward 

Scheme 

Dataset 

/ ε 

Validity Desirability Uniqueness Diversity Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

Multi-

Target 

Case 

 

LIGAND 100.00% 14.63% 100.00% 0.67 21.30% 35.44% 79.24% 

PF 

10-2 99.39% 71.37% 90.47% 0.72 12.39% 34.69% 82.05% 

10-3 99.57% 80.81% 88.96% 0.71 13.97% 32.01% 80.26% 

10-4 99.72% 83.86% 87.19% 0.71 12.45% 30.58% 84.04% 

0 99.47% 73.76% 84.41% 0.70 13.35% 35.71% 81.89% 

WS 

10-2 99.54% 87.56% 93.08% 0.60 9.66% 28.83% 92.19% 

10-3 99.80% 97.45% 93.44% 0.49 3.63% 21.06% 96.18% 

10-4 99.79% 98.15% 93.56% 0.53 2.89% 24.95% 91.46% 

0 99.78% 98.00% 90.19% 0.49 5.02% 16.45% 96.77% 

Target-

Specific 

Case 

 LIGAND 100.00% 12.40% 100.00% 0.66 28.27% 50.61% 71.84% 

PF 

10-2 99.48% 88.76% 91.98% 0.77 18.31% 47.50% 68.95% 

10-3 99.53% 89.49% 87.32% 0.72 23.73% 56.23% 67.40% 

10-4 99.55% 91.84% 88.31% 0.74 26.86% 39.68% 74.36% 

0 99.54% 91.47% 88.94% 0.75 22.95% 43.08% 71.50% 

WS 

10-2 99.16% 86.45% 93.97% 0.42 42.84% 97.26% 72.45% 

10-3 99.62% 97.86% 95.89% 0.31 60.81% 98.56% 51.87% 

10-4 99.67% 96.82% 94.56% 0.34 55.14% 93.69% 45.40% 

0 99.33% 96.28% 92.60% 0.35 42.86% 98.34% 63.47% 
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Table S4.4: Results of the Goal-Directed tasks for our proposed method DrugEx v2 and other baseline 

models on GuacaMol Benchmark.  

GucacaMol platform contains 20 tasks with different requirements, including smilarity, physicochemical 

properties, isomerism, scaffold matching, etc.. The results for baseline models were cited from ref [41]. The 

bold data are shown as the best result for each task achieved by different methods. 

Benchmark Best of 

Dataset 

SMILES 

GA 

Graph 

MCTS 

Graph GA SMILES 

LSTM 

DrugEx v2 

Celecoxib rediscovery 0.505 0.732 0.355 1 1 1 

Troglitazone rediscovery 0.419 0.515 0.311 1 1 1 

Thiothixene rediscovery 0.456 0.598 0.311 1 1 1 

Aripiprazole similarity 0.595 0.834 0.38 1 1 1 

Albuterol similarity 0.719 0.907 0.749 1 1 1 

Mestranol similarity 0.629 0.79 0.402 1 1 1 

C11H24 0.684 0.829 0.41 0.971 0.993 0.993 

C9H10N2O2PF2Cl 0.747 0.889 0.631 0.982 0.879 1 

Median molecules 1 0.334 0.334 0.225 0.406 0.438 0.418 

Median molecules 2 0.351 0.38 0.17 0.432 0.422 0.435 

Osimertinib MPO 0.839 0.886 0.784 0.953 0.907 0.967 

Fexofenadine MPO 0.817 0.931 0.695 0.998 0.959 0.942 

Ranolazine MPO 0.792 0.881 0.616 0.92 0.855 0.909 

Perindopril MPO 0.575 0.661 0.385 0.792 0.808 0.812 

Amlodipine MPO 0.696 0.722 0.533 0.894 0.894 0.898 

Sitagliptin MPO 0.509 0.689 0.458 0.891 0.545 0.517 

Zaleplon MPO 0.547 0.413 0.488 0.754 0.669 0.693 

Valsartan SMARTS 0.259 0.552 0.04 0.99 0.978 0.978 

Scaffold Hop 0.933 0.97 0.59 1 0.996 0.989 

Deco Hop 0.738 0.885 0.478 1 0.998 0.986 

Total 12.144 14.398 9.011 17.983 17.341 17.537 
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Fig. S4.1: the distribution of SA score and QED score of desired ligand in the LIGAND set and 

molecules generated by DrugEx v2 with different ε in the multi-target case (A-D) and target-specific 

case (E-H) by using PR (A, B, E and F) and WS (C, D, G and H) rewarding schemes. 
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Abstract 
 

Due to the large drug-like chemical space available to search for feasible drug-like 

molecules, rational drug design often starts from the specific scaffold to which side 

chains/substituents are added or modified. With the rapid growth of the application of deep 

learning in drug discovery, a variety of effective approaches have been developed for de 

novo drug design. In previous work, we proposed a method named DrugEx, which can be 

applied in polypharmacology based on multi-objective deep reinforcement learning. 

However, the previous version is trained under fixed objectives similar to other known 

methods and does not allow users to input any prior information. In order to improve the 

general applicability, we updated DrugEx to design drug molecules based on the scaffold 

which can contain multiple fragments provided by users. In this work, the Transformer 

model was employed to generate the structure of molecules. The Transformer is a multi-

head self-attention deep learning model containing an encoder for receiving scaffolds as 

input and a decoder generating molecules as output. In order to deal with the graph 

representation of molecules, we proposed a novel positional encoding for each atom and 

bond based on an adjacency matrix to extend the architecture of the Transformer. Each 

molecule was generated by growing and connecting procedures for the fragments in the 

given scaffold that were unified into one model. Moreover, we trained this generator under 

a reinforcement learning framework to increase the number of desired ligands. As a proof 

of concept, our proposed method was applied to design ligands for the adenosine A2A 

receptor (A2AAR) and compared it with SMILES-based methods. The results demonstrated 

its effectiveness in that 100% of generated molecules are valid and most of them had high 

predicted affinity value towards A2AAR with given scaffold.  

 

Keywords: deep learning, reinforcement learning, policy gradient, drug design, 

Transformer, multi-objective optimization 
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5.1. Introduction 

Due to the large drug-like chemical space (i.e. estimated at 1033 - 1060 organic molecules) 

[1], it is impossible to screen every corner of it to discover optimal drug candidates, 

although high-throughput screening (HTS) technology has been improved significantly in 

recent years [2]. Commonly, the specific scaffolds derived from endogenous substances are 

taken as a starting point to design analogs after side chains/substituents are added or 

modified [3]. These fragments are used as ‘building blocks’ to develop proper drug leads 

with combinatorial chemistry such as growing, linking and merging [4]. After a promising 

drug lead has been discovered, it is further optimized by modifying side chains to improve 

potency and selectivity which in turn can improve safety and tolerability [5]. 

 

The adenosine receptors (ARs) belong to a class of rhodopsin-like GPCRs including four 

subtypes (A1, A2A, A2B and A3). Each of them has a unique pharmacological profile, tissue 

distribution, and effector coupling [6,7]. ARs are ubiquitously distributed throughout the 

human tissues, and involved in many biological processes and diseases [8]. Because 

adenosine is the endogenous agonist of ARs, a number of known ligands of the ARs are 

adenosine analogs and have a common scaffold. Examples include purines, xanthines, 

triazines, pyrimidines, and the inclusion of a ribose moiety [9]. In scaffold-based rational 

drug design, it is generally accepted that a chemical space consisting of 109 diverse 

molecules can be sampled with only 103 fragments [10]. 

 

Based on rapid developments in the last decade, deep learning has achieved a breakthrough 

in visual recognition, natural language processing, and other data-rich fields [11]. In drug 

discovery, deep learning methods have also been extensively used for drug de novo design 

[12]. For distribution-directed issues, Gomez-Bombarelli et al. implemented variational 

autoencoders (VAE) to map molecules into a latent space where each point can also be 

decoded into unique molecules inversely [13]. They used recurrent neural networks (RNNs) 

to successfully learn SMILES (simplified molecular-input line-entry system) grammar and 

construct a distribution of molecular libraries [14]. For goal-directed issues, Sanchez-

Lengeling et al. combined reinforcement learning and generative adversarial networks 
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(GANs) to develop an approach named ORGANIC to design active compounds toward 

given targets [15]. Olivecrona et al. proposed the REINVENT algorithm which updated the 

reinforcement learning with a Bayesian approach and combined RNNs to generate 

SMILES-based desired molecules [16,17]. Moreover, Lim et al. proposed a method for 

scaffold-based molecular design with a graph generative model [18]. Li et al. also used 

deep learning to develop a tool named DeepScaffold for this issue [19]. Arús‑Pous et al. 

employed RNNs to develop a SMILES-based scaffold decorator for de novo drug design 

[20]. Yang et al. used the Transformer model [21] to develop a tool named SyntaLinker for 

automatic fragment linking [22].  

 

In previous studies, we investigated the performance of RNNs and proposed a method 

named DrugEx by integrating reinforcement learning to balance distribution-directed and 

goal-directed tasks [23]. Furthermore, we updated it with multi-objective reinforcement 

learning and applied it in polypharmacology [24]. However, the well-trained model cannot 

receive any input data from users and only reflect the distribution of the desired molecules 

with fixed conditions. If the objectives are changed, the model needs to be trained again. 

In this work, we compared different end-to-end deep learning methods and updated the 

DrugEx model to allow users to provide prior information, such as fragments that should 

occur in the generated molecules. Based on the extensive experience in our group with the 

A2AAR, we continue to take this target as an example to evaluate the performance of our 

proposed methods. In the following context, we will discuss the case of scaffold-

constrained drug design, i.e. the model takes the scaffolds containing multiple fragments 

as input to generate desired molecules which also can be predicted to be active to A2AAR. 

All python code for this study is freely available at http://github.com/XuhanLiu/DrugEx.  

 

5.2. Materials and methods 

5.2.1. Data source 

Chemical compounds were downloaded from ChEMBL using a SMILES notation (version 

27) [25]. After data preprocessing implemented by RDKit, which included neutralizing 

charges, removing metals and small fragments , ~1.7 million molecules remained for model 
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pre-training. These data were reused from the work about DrugEx v2 (ChEMBL set) [24]. 

In addition, 10,828 ligands and bioactivity data were extracted from ChEMBL to construct 

the LIGAND set containing structures and activities from bioassays towards four human 

adenosine receptors. The LIGAND set was used for fine-tuning the generative model. 

Molecules with annotated A2AAR activity were used to train a prediction model. If multiple 

measurements for the same ligands existed, the average pChEMBL value (pX, including 

pKi, pKd, pIC50 or pEC50) was calculated and duplicate items were removed. In order to 

judge if the molecule is desired or not, the threshold of affinity was defined as pX = 6.5 to 

predict if the compound was active (>= 6.5) or inactive (< 6.5).  

 

 

Fig. 5.1: scaffold-molecule pair dataset construction. (A) Each molecule in the dataset is decomposed 

hierarchically into a series of fragments with the BRICS algorithm. (B) Subsequently data pairs between 

input and output are created. Combinations of leaf fragments form the scaffold as input, the whole 

molecule becomes the output. Each token in SMILES sequences is separated by different colors. (C) 

After conversion to the adjacency matrix, each molecule was represented as a graph matrix. The graph 

matrix contains five rows, standing for the atom, bond, previous and current positions and fragment 

index. The columns are composed with three parts to store the information of scaffolds, growing section 

and linking section. (D) All of tokens are collected to construct the vocabularies for SMILES-based and 

graph-based generators, respectively. (E) An example of the input and output matrices for the SMILES 

representation of scaffolds and molecules  

 

Furthermore, the dataset was constructed with an input-output pair for each data point. 

Each molecule was decomposed into a batch of fragments with BRICS methods [26] in 

RDKit (Fig. 5.1A). If the molecule contained more than four leaf fragments, the smaller 
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fragments were ignored and a maximum of four larger fragments were reserved to be 

randomly combined at one time. Here, the scaffold was defined as the combination of 

different fragments which can be either continuously (linked) or discretely (separated). 

Their SMILES sequences were joined with ‘.’ as input data which were paired with the full 

SMILES of molecules. The resulting fragments-molecule pair forms the output data (Fig. 

5.1B). After completion of constructing the data pairs, the set was split into a training set 

and test set with the ratio 9:1 based on the input scaffolds. The resulting ChEMBL set 

contained 10,418,681 and 1,083,271 pairs for training and test set, respectively. The 

LIGAND set contained 61,413 pairs in the training set and 7,525 pairs in the test set.  

 

5.2.2. Molecular representations 

In this study we tested two different molecular representations: SMILES and graph. For 

SMILES representations each scaffold-molecule pair was transformed into two SMILES 

sequences which were then split into different tokens to denote atoms, bonds, or other 

tokens for grammar control (e.g. parentheses or numbers). All of these tokens were put 

together to form a vocabulary which recorded the index of each token (Fig. 1D). Here, we 

used the same conversion procedure and vocabulary as in DrugEx v2. In addition, we put 

a start token (GO) at the beginning of a batch of data as input and an end token (END) at 

the end of the same batch of data as output. After sequence padding with a blank token at 

empty positions, each SMILES sequence was rewritten as a series of token indices with a 

fixed length. Subsequently all of these sequences for both scaffolds and molecules were 

concatenated to construct the input and output matrix (Fig. 1E).  

 

For the graph representation each molecule was represented as a five-row matrix, in which 

the first two rows stand for the index of the atom and bond types, respectively. The third 

and fourth rows represent the position of previous and current atoms connected by a bond 

(Fig. 1C). The columns of this matrix contain three sections to store scaffolds, growing 

parts, and linking parts. The scaffold section began with a start token in the first row and 

the last row was labelled the index of each scaffold starting from one. The fragments in the 

given scaffold for each molecule are put in the beginning of the matrix, followed by the 

growing part for the scaffold, and the last part is the connection bond between these 
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growing fragments with single bonds. For the growing part and linking sections, the last 

row was always zero and these two sections were separated by the column of end token. It 

is worth noticing that the last row was not directly involved in the training process. The 

vocabulary for graph representation was different from the SMILES format and it contains 

38 atom types (Table S5.1) and four bond types (single, double, triple bonds and none). If 

the atom is the first occurrence in a given scaffold the type of the bond will be empty 

(indexed as 0 with token ‘*’). In addition, if the atom at the current position has been 

recorded in the matrix, the type of the atom will be empty. In order to grasp more details 

of the graph representation, we also provided the pseudocode for encoding (Table S5.2) 

and decoding (Table S5.3). 

 

5.2.3. End-to-end deep learning 

In this work, we compared three different sequential end-to-end DL architectures to deal 

with different molecular representations of either graph or SMILES (Fig. 5.2). These 

methods included: (A) Graph Transformer, (B) LSTM-based encoder-decoder model 

(LSTM-BASE), (C) LSTM-based encoder-decoder model with attention mechanisms 

(LSTM+ATTN) and (D) Sequential Transformer model. All of these DL models were 

constructed with PyTorch [27]. 

 

For SMILES representation three different models were constructed as follows (Fig. 5.2, 

right). The encoder and decoder in the LSTM-BASE model (Fig. 5.2B) had the same 

architectures, containing one embedding layer, three recurrent layers and one output layers 

(as we did for DrugEx v2) [24]. The number of neurons in the embedding and hidden layers 

were 128 and 512, respectively. The hidden states of the recurrent layer in the encoder are 

directly sent to the decoder as the initial states. On the basis of LSTM-BASE model, an 

attention layer was added between the encoder and decoder to form the LSTM+ATTN 

model (Fig. 5.2C). The attention layer calculates the weight for each position of the input 

sequence to determine which position the decoder needs to focus on during the decoding 

process. For each step, the weighted sums of the output calculated by the encoder are 

combined with the output of the embedding layer in the decoder to form the input for the 
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recurrent layers. The output of the recurrent layers is dealt with by the output layer to 

generate the probability distribution of tokens in the vocabulary in both of these two models.  

 

 

 

Fig. 5.2: Architectures of four different end-to-end deep learning models: (A) The Graph 

Transformer; (B) The LSTM-based encoder-decoder model (LSTM-BASE); (C) The LSTM-based 

encoder-decoder model with attention mechanisms (LSTM+ATTN); (D) The sequential Transformer 

model. The Graph Transformer accepts a graph representation as input and SMILES sequences are taken 

as input for the other three models. 

 

The sequential Transformer has a distinct architecture compared to the LSTM+ATTN 

model although it also exploits an attention mechanism. For the embedding layers “position 

encodings” are added into the typical embedding structure as the first layer of the encoder 

and decoder. This ensures that the model no longer needs to encode the input sequence 

token by token but can process all tokens in parallel. For the position embedding, sine and 

cosine functions are used to define its formula as follows: 

𝑃𝐸(𝑝,2𝑖) = sin(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄ ) 

𝑃𝐸(𝑝,2𝑖+1) = cos(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄ ) 

where PE(p, i) is the ith dimension of the position encoding at position p. It has the same 

dimension dm = 512 as the typical embedding vectors so that the two can be summed.  

 

In addition, self-attention is used in the hidden layers to cope with long-range dependencies. 
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For each hidden layer in the encoder, it employs a residual connection around a multi-head 

self-attention sublayer and feed-forward sublayer followed by layer normalization. Besides 

these two sublayers in the decoder a third sublayer with multi-head attention is inserted to 

capture the information from output of the encoder.  

 

This self-attention mechanism is defined as the scaled dot-product attention with three 

vectors: queries (Q), keys (K) and values (V), of which the dimensions are dq, dk, dv, 

respectively. The output matrix is computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊺

√𝑑𝑘
)𝑉 

Instead of a single attention function, the Transformer adopts multi-head attention to 

combine information from different representations at different positions which is defined 

as: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 

where h is the number of heads. For each head, the attention values were calculated by 

different and learned linear projections with Q, K and V as follows:  

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

where WO, WQ, WK and WV are metrics of learned weights and we set h = 8 as the number 

of heads and dk = dv = 64 in this work.  

 

For the graph representation of molecules, we updated the sequential Transformer structure 

to propose a Graph Transformer (Fig. 5.2A). Similar to the sequential Transformer the 

Graph Transformer also requires the encodings of both word and position as the input. For 

the input word, the atom and bond cannot be processed simultaneously; therefore we 

combined the index of atom and bond together and defined it as follows: 

𝐼 = 𝐼𝑎𝑡𝑜𝑚 × 4 + 𝐼𝑏𝑜𝑛𝑑 

meaning the index of the input word (I) calculating word vectors are calculated from atom 

index (Iatom) multiplied by four (the total number of bond types defined) and add the bond 

index (Ibond). Similarly, the position of each step cannot be used to calculate the position 

encoding directly. Faced with more complex data structure than sequential data, 
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Dosovitskiy et al. proposed a new positional encoding scheme to define the position for 

each patch in image data for image recognition [28]. Inspired by their work the position 

encoding at each step was defined as: 

𝑃 = 𝑃𝑐𝑢𝑟𝑟 × 𝐿𝑚𝑎𝑥 + 𝑃𝑝𝑟𝑒𝑣 

here the input position (P) for calculating the position encoding was the current position 

(Pcurr) multiplied by the max length (Lmax) and adding the previous position (Pprev), which 

was then processed with the same positional encoding method as with the sequential 

Transformer. For the decoder, the hidden vector from the transformer was taken as the 

starting point to be decoded by a GRU-based recurrent layer; and the probability of atom, 

bond, previous and current position was decoded one by one sequentially.  

 

When graph-based molecules are generated, the chemical valence rule is checked in every 

step. The invalid values of atom and bond types will be masked and an incorrect previous 

and current position will be removed ensuring the validity of all generated molecules. It is 

worth noticing that before being encoded, each molecule will be kekulized, meaning that 

the aromatic rings will be inferred to transform into either single or double bonds. The 

reason for this is that aromatic bonds interfere with the calculation of the valence value for 

each atom.  

 

During the training process of SMILES-based models, the negative log likelihood function 

was used to construct the loss function to guarantee that the token in the output sequence 

had the largest probability to be chosen. In comparison, the loss function used by the Graph 

Transformer model also contains four parts for atom, bond, previous and current sites. And 

the sum of these negative log probability values is minimized to optimize the parameters 

in the model. For this, the Adam algorithm was used for the optimization of the loss 

function. Here, the learning rate was set at 10-4, the batch size was 256, and training steps 

were set to 20 epochs for pre-training and 1,000 epochs for fine-tuning.  

 

5.2.4. Multi-objective optimization 

In order to combine multiple objectives we exploited a Pareto-based ranking algorithm 
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with GPU acceleration as mentioned in DrugEx v2 [24]. Given two solutions m1 and m2 

with their scores (x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 if 

and only if: 

∀ j ∈ {1,… , n}: 𝑥𝑗  ≥ 𝑦𝑗  𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 

otherwise, m1 and m2 are non-dominated with each other. After the dominance between all 

pair of solutions being determined, the non-dominated scoring algorithm is exploited to 

obtain a rank of Pareto frontiers which consist of a set of solutions. After obtaining frontiers 

between dominant solutions molecules were ranked based on the average Tanimoto-

distance with other molecules instead of crowding distance in the same frontier. 

Subsequently molecules with smaller distances were ranked on the top. The final reward 

R* is defined as: 

𝑅∗ =

{
 

  0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 
𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
,                   𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 

here k is the index of the solution in the Pareto rank and rewards of undesired and desired 

solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively.  

 

In this work, we took two objectives into consideration: 1) QED score [29] as implemented 

by RDKit (from 0 to 1) to evaluate the drug-likeness of each molecule (a larger value means 

more drug-like) ; 2) an affinity score towards A2AAR which was implemented by a random 

forest regression model with Scikit-Learn [30] like in DrugEx v2. The input descriptors 

consisted of 2048D ECFP6 fingerprints and 19D physico-chemical descriptors 

(PhysChem). PhysChem included: molecular weight, logP, number of H bond acceptors 

and donors, number of rotatable bonds, number of amide bonds, number of bridge head 

atoms, number of hetero atoms, number of spiro atoms, number of heavy atoms, the 

fraction of SP3 hybridized carbon atoms, number of aliphatic rings, number of saturated 

rings, number of total rings, number of aromatic rings, number of heterocycles, number of 

valence electrons, polar surface area, and Wildman-Crippen MR value. Again it was 

determined if generated molecules are desired based on the Affinity score (larger than the 

threshold = 6.5). In addition, the SA score was also exploited to evaluate the 

synthesizability of generated molecules, which is also calculated by RDKit [31].  
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5.2.5. Reinforcement learning  

In this work we constructed a reinforcement learning framework based on the interplay 

between the Graph Transformer (agent) and the two scoring functions (environment). A 

policy gradient method was implemented to train the reinforcement learning model, the 

objective function is designated as follows: 

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

 

here for each step t during the generation process, the generator (G) determines the 

probability of each token (yt) from the vocabulary to be chosen based on the generated 

sequence in previous steps (y1:t-1). In the sequence-based models yt can only be a token in 

the vocabulary to construct SMILES while it can be different type of atoms or bonds or the 

previous or current position in the graph-based model. The parameters in is objective 

function are updated by employing a policy gradient based on the expected end reward (R*) 

received from the predictor. By maximizing this function the parameter 𝜃 in the generator 

can be optimized to ensure that the generator designs desired molecules which obtain a 

high reward score. 

 

In order to improve the diversity and reliability of generated molecules, we implemented 

our exploration strategy for molecule generation during the training loops. In the training 

loop our generator is trained to produce the chemical space as defined by the target of 

interest. In this strategy there are two networks with the same architectures, an exploitation 

net (Gθ) and an exploration net (Gφ). Gφ did not need to be trained and its parameters were 

always fixed and it is based on the general drug-like chemical space for diverse targets 

obtained from ChEMBL. The parameters in Gθ on the other hand were updated for each 

epoch based on the policy gradient. Again an exploring rate (ε) was defined with a range 

of [0.0, 1.0] to determine the percentage of scaffolds being randomly selected as input by 

Gφ to generate molecules. Conversely Gθ generated molecules with other input scaffolds. 

After the training process was finished Gφ was removed and only Gθ was left as the final 

model for molecule generation. 



DrugEx v3 

 

125 

 

5.2.6. Performance evaluation 

In order to evaluate the performance of the generators, four coefficients were calculated 

from the population of generated molecules (validity, accuracy, desirability, and uniqueness) 

which are defined as: 

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Accuracy =
𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑁𝑡𝑜𝑡𝑎𝑙

 

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 

here Ntotal is the total number of molecules, Nvalid is the number of molecules parsed as valid 

SMILES sequences, Naccurate is the number of molecules that contained given scaffolds, 

Ndesired is the number of desired molecules that reach all required objectives, and Nunique is 

the number of molecules which are different from others in the dataset .  

 

To measure molecular diversity, we adopted the Solow Polasky measurement as in DrugEx 

v2 [24]. This approach was proposed by Solow and Polasky in 1994 to estimate the 

diversity of a biological population in an eco-system [32]. The formula to calculate 

diversity was redefined to normalize the range of values from [1, m] to (0, m] as follows: 

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆 

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s and 

F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for the distance 

function of each pair of molecule provided as follows: 

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗  

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance with 

ECFP6 fingerprints as follows: 

𝑑𝑖𝑗 = 𝑑(𝑠𝑖 , 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 ,  
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where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the number 

of union fingerprint bits.  

 

  
Fig 5.3: Analysis of some properties of fragments in the ChEMBL set and three LIGAND subsets. 

(A) Violin plot for the distribution of the number of fragments per molecules; (B) Distribution of 

molecular weight of these fragments; (C) Distribution of the similarity of the fragments measured by 

the Tanimoto-similarity with ECFP4 fingerprints; (D) Venn diagram for the intersection of the fragments 

existing in the three subsets of the LIGAND set.  

 

5.3. Results and discussion 

5.3.1. Fragmentation of molecule 

As stated we decomposed each molecule into a series of fragments with the BRICS 

algorithm to construct scaffold-molecule pairs. Within BRICS each organic compound can 
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be split into retrosynthetically interesting chemical substructures with a compiled elaborate 

set of rules. For the ChEMBL and LIGAND sets, we respectively obtained 194,782 and 

2,223 fragments. We further split the LIGAND set into three parts: active ligands 

(LIGAND+, 2,638), inactive ligands (LIGAND-, 2710) and undetermined ligands (LIGAND0, 

5480) based on the pX of bioactivity for A2AAR. The number of fragments in these four 

datasets have a similar distribution and there are approximately five fragments on average 

for each molecule with a 95% confidence between [0, 11] (Fig. 5.3A).  

 

In the LIGAND set the three subsets have a similar molecular weight distribution of the 

fragments (Fig. 5.3B) while the average is 164.3Da, smaller than in the ChEMBL set 

(247.3Da). In order to check the similarity of these fragments we used the Tanimoto 

similarity calculation with ECFP4 fingerprints between each pair of fragments in the same 

dataset. We found that most of them were smaller than 0.5 indicating that they are dissimilar 

to each other (Fig. 5.3C). Especially, the fragments in the LIGAND+ set have the largest 

diversity. Moreover, the distribution of different fragments in these three subsets of the 

LIGAND set are shown in Fig. 5.3D. The molecules in these three subsets have their unique 

fragments and share some common substructures. 

 

5.3.2. Pre-training & fine-tuning 

After finishing the dataset construction, four models were pre-trained on the ChEMBL set 

and fine-tuned on the LIGAND set. Here, these models were benchmarked on a server with 

four GTX1080Ti GPUs. After the training process converged each fragment in the test set 

was presented as input for 10 times to generate molecules. The performance is shown in 

Table 5.1. The training of Transformer models was faster but consumed more 

computational resources than LSTM-based methods. In addition, Transformer methods 

outperformed LSTM-based methods using SMILES. Although the three SMILES-based 

models improved after being fine-tuned they were still outperformed by the Graph 

Transformer because of the advantages of the graph representation. To further check the 

accuracy of generated molecules we also compared the chemical space between the 

generated molecules and the compounds in the training set with three different 
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representations 1) MW ~ logP; 2) PCA with 19D PhysChem descriptors; 3) tSNE with 

2048D ECFP6 fingerprints (Fig. 5.4). The region occupied by molecules generated by the 

Graph Transformer overlapped completely with the compounds in both the ChEMBL and 

LIGAND sets.  

 

Table 5.1: The performance of four different generators for pre-training and fine-tuning processes. 

Methods 
Pre-trained Model Fine-tuned Model 

Time Memory 
Validity Accuracy Validity Accuracy 

Graph 

Transformer 
100% 99.3% 100% 99.2% 453.8 s 14.5 GB 

Sequential 

Transformer 
96.7% 72.0% 99.3% 95.7% 832.3 s 31.7 GB 

LSTM-BASE 93.9% 44.1% 98.7% 91.8% 834.6 s  5.5 GB 

LSTM+ATTN 89.7% 52.2% 96.4% 90.2% 1212.5 s 15.9 GB 

 

The graph representation for molecules has more advantages over the SMILES 

representation when dealing with fragment-based molecule design: 1) Invariance in the 

local scale: During the process of molecule generation multiple fragment in the given 

scaffold can be put into any position in the output matrix without changing the order of 

atoms and bonds in that fragment. 2) Extendibility in the global scale: When the 

fragments in the scaffold are growing or being linked, they can be flexibly appended in the 

end column of the graph matrix while the original data structure does not need changing. 

3) Free of grammar: Unlike in SMILES sequences there is no explicit grammar to 

constrain the generation of molecules, such as the parentheses for branches and the 

numbers for rings in SMILES; 4) Accessibility of chemical rules: For each added atom or 

bond the algorithm can detect if the valence of atoms is valid or not and mask invalid atoms 

or bonds in the vocabulary to guarantee the whole generated matrix can be successfully 

parsed into a molecule. With these advantages the Graph Transformer generates molecules 

faster while using less memory.  
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Fig. 5.4: The chemical space of generated molecules by the Graph Transformer pre-trained on the 

ChEMBL set (A, C and E) and being fine-tuned on the LIGAND set (B, D and F). Chemical space was 

represented by either logP ~ MW (A, B) and first two components in PCA on PhysChem descriptors (C, 

D) and t-SNE on ECFP6 fingerprints (E, F). 
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Fig. 5.5: the distribution of QED score (A, C) and SA score (B, D) of desired ligands in the LIGAND 

set and of molecules generated by four different generators. 

 

However, after examining the QED scores and SA scores, we found that although the 

distribution of QED scores was similar to each other, the synthesizability of the molecules 

generated by the Graph Transformer were no better than the SMILES-based generators, 

especially when fine-tuning on the LIGAND set (Fig. 5.5). The possible reason is that the 

molecules generated by the Graph Transformer contains some uncommon rings when the 

model dealt with long-distance dependencies. In addition, because of more complicated 

data structure and more parameters in the model, the synthesizability performance of Graph 

Transformer was not considered high enough when being trained on the small dataset (e.g. 

the LIGAND set). It is also worth noticing that there still was a small fraction of generated 
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molecules that did not contain the given scaffolds. This is caused by the kekulization 

problem. For example, a scaffold ‘CCC’ can be grown into ‘C1=C(C)C=CC=C1’. After 

being sanitized, it can be transformed into ‘c1c(C)cccc1’. In this process one single bond 

in the scaffold is changed to an aromatic bond, which causes the mismatch between the 

scaffold and the molecule. Currently our algorithm cannot solve this problem because if 

the aromatic bond is taken into consideration, the valence of aromatic atoms is difficult to 

be calculated accurately. This would lead to the generation of invalid molecules. Therefore, 

there is no aromatic bond provided in the vocabulary and all of the aromatic rings are 

inferred automatically through the molecule sanitization method in RDKit.  

 

5.3.3. Policy gradient 

Because the Graph Transformer generates molecules accurately and fast it was chosen as 

the agent in the RL framework. Two objectives were tested in the training process of this 

work. The first one was affinity towards A2AAR, which is predicted by the random forest-

based regression model from DrugEx v2; the second one was the QED score calculated 

with RDKit to measure how similar the generated molecule is to known approved drugs. 

With the policy gradient method as the reinforcement learning framework two cases were 

tested. On the one hand, predicted affinity for A2AAR was considered without the QED 

score. On the other hand, both objectives were used to optimize the model with Pareto 

ranking. In the first case 86.1% of the generated molecules were predicted active, while the 

percentage of predicted active molecules in the second case was 74.6%. Although the 

generator generated more active ligands without the QED score constraint most of them 

are not drug-like as they always have a molecular weight larger than 500Da. However, 

when we checked the chemical space represented by tSNE with ECFP6 fingerprints the 

overlap region between generated molecules and ligands in the training set was not 

complete implying that they fall out of the applicability domain of the regression model.  

 

In the version of v2, we provided an exploration strategy which simulated the idea of 

evolutionary algorithms such as crossover and mutation manipulations [24]. However, 

when coupled to the Graph Transformer there were some difficulties and we had to give up 

this strategy. Firstly, the mutation strategy did not improve with different mutation rates. A 
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possible reason is that before being generated part the molecule was fixed with a given 

scaffold, counteracting the effect of mutation caused by the mutation net. Secondly, the 

crossover strategy is computationally very expensive in this context. This strategy needs 

the convergence of model training and iteratively updates the parameters in the agent. With 

multiple iterations, it takes a long period of time beyond the computational resources we 

can currently access. As a result, we updated the exploration strategy as mentioned in the 

Methods section with six different exploration rates: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].  

 

 

Table 5.2: the performance of the Graph Transformer with different exploration rates in the RL 

framework.  

Changes to the exploration rate do not influence accuracy and have a low effect on diversity. However 

desirability (finding active ligands) and uniqueness can be influenced significantly. Empirically 

determining an optimal value for a given chemical space is recommended. 

 

After training of the models, the scaffolds in the test set were input 10 times to generate 

molecules. The results for accuracy, desirability, uniqueness, and diversity with different 

exploration rates are shown in Table 5.2. With a low ε the model generates more desired 

molecules, but the uniqueness of the generated molecules can be improved. At ε = 0.3 the 

model generated the highest percentage of unique desired molecules (56.8%). Diversity 

was always larger than 0.84 and the model achieved the largest value (0.88) with ε = 0.0 or 

ε = 0.2. The chemical space represented by tSNE with ECFP6 fingerprints confirms that 

our exploration strategy produces a set of generated molecules completely covering the 

region occupied by the LIGAND set (Fig. 5.6).  

 

ε Accuracy Desirability Uniqueness Diversity 

0.0 99.7% 74.6% 60.7% 0.879 

0.1 99.7% 66.8% 75.0% 0.842 

0.2 99.8% 61.6% 80.2% 0.879 

0.3 99.7% 56.8% 89.8% 0.874 

0.4 99.7% 54.8% 88.8% 0.859 

0.5 99.7% 46.8% 88.5% 0.875 
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Fig. 5.6: The chemical space of generated molecules by the Graph Transformer trained with different 

exploration rates in the RL framework. The chemical space was represented by t-SNE on ECFP6 

fingerprints. 
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5.3.4. Generated molecules 

In the chemical space for antagonists of A2AAR, furan, triazine, aminotriazole, and purine 

derivatives such as xanthine and azapurine are common fragments. The Graph Transformer 

model produced active ligands for A2AAR (inferred from the predictors) with different 

combinations of these fragments as the scaffolds. Taking these molecules generated by the 

Graph Transformer as an example, we filtered out the molecules with potentially reactive 

groups (such as aldehydes) and uncommon ring systems and listed 30 desired molecules as 

putative A2AAR ligands/antagonists (Fig. 5.7). For each scaffold, five molecules were 

selected and assigned in the same row. These molecules are considered a valid starting 

point for further considerations and work (e.g. molecular docking or simulation). 

 

 

Fig. 5.7: Sample of generated molecules with the Graph Transformer with different scaffolds. 

These scaffolds include: furan, triazine, aminotriazole, xanthine and azapurine. The generated molecules 

based on the same scaffolds are aligned in the same row.  
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5.4. Conclusion and Future Perspective 

In this study, DrugEx was updated with the ability to design novel molecules based on the 

scaffolds containing multiple fragments as input. In this version (v3), a new positional 

encoding scheme for atoms and bonds was proposed to make the Transformer model deal 

with a molecular graph representation. With one model multiple fragments in the scaffold 

can be grown at the same time and connected to generate a new molecule. In addition, 

chemical rules on valence are enforced at each step of the process of molecule generation 

to ensure that all generated molecules are valid. This is impossible for SMILES-based 

generation, as SMILES-based molecules are constrained by grammar that allows a 2D 

topology to be represented in a sequential way. With multi-objective reinforcement learning 

the model generates drug-like ligands, in our case for the A2AAR target.  

 

In future work, the Graph Transformer will be extended to include other information as 

input to design drugs conditionally. For example, proteochemometric modelling (PCM) 

can take information for both ligands and targets as input to predict the affinity of their 

interactions, which allows promiscuous (useful for e.g., viral mutants) or selective (useful 

for e.g., kinase inhibitors) properties [33]. The Transformer can then be used to construct 

inverse PCM models which take the protein information as input (e.g. sequences, structures 

or descriptors) to design active ligands for a given protein target without known ligands. 

Moreover, the Transformer can also be used for lead optimization. For instance, the input 

can be a “hit” already, generating “optimized” ligands, or a “lead” with side effects to 

produce ligands with a better ADME/tox profile.  
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Table S5.1: Atoms in vocabulary for graph-based molecule generation.  

Symbol Valence Charge Number Word 

O 2 0 8 2O 

O+ 3 1 8 3O+ 

O- 1 -1 8 1O- 

C 4 0 6 4C 

C+ 3 1 6 3C+ 

C- 3 -1 6 3C- 

N 3 0 7 3N 

N+ 4 1 7 4N+ 

N- 2 -1 7 2N- 

Cl 1 0 17 1Cl 

S 2 0 16 2S 

S 6 0 16 6S 

S 4 0 16 4S 

S+ 3 1 16 3S+ 

S+ 5 1 16 5S+ 

S- 1 -1 16 1S- 

F 1 0 9 1F 

I 1 0 53 1I 

I 5 0 53 5I 

I+ 2 1 53 2I+ 

Br 1 0 35 1Br 

P 5 0 15 5P 

P 3 0 15 3P 

P+ 4 1 15 4P+ 

Se 2 0 34 2Se 

Se 6 0 34 6Se 

Se 4 0 34 4Se 

Se+ 3 1 34 3Se+ 

Si 4 0 14 4Si 

B 3 0 5 3B 

B- 4 -1 5 4B- 

As 5 0 33 5As 

As 3 0 33 3As 

As+ 4 1 33 4As+ 

Te 2 0 52 2Te 

Te 4 0 52 4Te 

Te+ 3 1 52 3Te+ 

* 0 0 0 * 

The column of ‘Symbol’ is the symbol of the atom and its charge; the column of ‘Valence’ is the value 

of valence of the state of each chemical element; the ‘Number’ column stands for the index of each 

element in the periodic table, the last row is the unique word for each state of these elements, a 

combination of its valence and symbol. 
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Table S5.2: The pseudo code for encoding the graph representation of molecules in DrugEx v3 

Algorithm encoding: 

 Input:  

mol: structure of the kekulized molecule 

subs: structure of the scaffolds 

vocab: vocabulary of tokens which is consisted of graph matrix 

Output:  

  matrix: the n x 5 matrix to represents the molecular graph. 

 

# Ensure the atom of the subs are put at the start in the molecule 

mol ← RANK_ATOM_BY_SUB(mol, subs)  

sub_atoms ← GET_ATOMS (subs) 

sub_bonds ← GET_BONDS (subs) 

mol_atoms ← GET_ATOMS (mol) 

frag, grow, link ← [('GO', 0, 0, 0, 1)], [], [(0, 0, 0, 0, 0)] 

For atom in mol_atoms: 

    # The bonds which connect to the atom having the index before this atom 

bonds ← GET_LEFT_BONDS (mol, atom) 

For bond in bonds: 

    tk_bond ← GET_TOKEN (vocab, bond) 

    other ← GET_OTHER_ATOM(mol, atom, bond) 

    If IS_FIRST (bonds, bond): 

        tk_atom ← GET_TOKEN (vocab, atom) 

    Else: 

        tk_atom ← GET_TOKEN (vocab, None) 

 

    # The index of the scaffold in which the current atom locates 

# Its value starts from 1. If it is not in the scaffold, it will be 0 

    scf ← GET_FRAG_ID (subs, atom) 

    column ← (tk_atom, tk_bond, GET_INDEX (other), GET_INDEX (atom), scf) 

If other in sub_atoms and atom in sub_atoms and bond not in sub_bonds: 

        Insert column to link 

    Else if bond in sub_bonds: 

        Insert column to frag 

    Else: 

        Insert column to grow 

 End 

End 

Insert ('EOS', 0, 0, 0, 0) to grow 

matrix ← CONCATENATE_BY_COLUMN (frag, grow, link) 

Return matrix 
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Table S5.3: The pseudo code for decoding the graph representation of molecules in DrugEx v3 

Algorithm decoding: 

 Input:  

        matrix: the n x 5 matrix to represents the molecular graph 

vocab: vocabulary of tokens which is consisted of graph matrix 

Output:  

mol: structure of the kekulized molecule 

subs: structure of the scaffolds 

 

mol ← new MOL () 

subs ← new SUB () 

For atom, bond, prev, curr, scf in matrix: 

    If atom == 'EOS' or atom == 'GO':  

continue 

    If atom != '*': 

        a ← new Atom (GET_ATOM_SYMBOL(vocab, atom)) 

        SET_FORMAL_CHARGE (a, GET_CHARGE(vocab, atom)) 

        ADD_ATOM (mol, a) 

        If scf != 0: ADD_ATOM (subs, a) 

    If bond != 0: 

        b ← new Bond (bond) 

        ADD_BOND(mol, b) 

    If frag != 0:  

ADD_BOND (subs, b) 

End 

 

# automatically determine the aromatic rings 

mol ← SANITIZE (mol) 

subs ← SANITIZE (subs) 

Return mol, subs 
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Abstract 

 
Many contemporary cheminformatics methods, including computer-aided de novo drug 

design, hold promise to significantly accelerate and reduce the cost of drug discovery. 

Thanks to this attractive outlook, the field has thrived and in the past few years has seen an 

especially significant growth, mainly due to the emergence of novel methods based on deep 

neural networks. This growth is also apparent in the development of novel de novo drug 

design methods with many new generative algorithms now available. However, widespread 

adoption of new generative techniques in the fields like medicinal chemistry or chemical 

biology is still lagging behind the most recent developments. Upon taking a closer look, 

this fact is not surprising since in order to successfully integrate the most recent de novo 

drug design methods in existing processes and pipelines, a close collaboration between 

diverse groups of experimental and theoretical scientists needs to be established. Therefore, 

to accelerate the adoption of both modern and traditional de novo molecular generators, we 

developed GenUI (Generator User Interface), a software platform that makes it possible to 

integrate molecular generators within a feature-rich graphical user interface that is easy to 

use by experts of diverse backgrounds. GenUI is implemented as a web service and its 

interfaces offer access to cheminformatics tools for data preprocessing, model building, 

molecule generation, and interactive chemical space visualization. Moreover, the platform 

is easy to extend with customizable frontend React.js components and backend Python 

extensions. GenUI is open source and a recently developed de novo molecular generator, 

DrugEx, was integrated as a proof of principle. In this work, we present the architecture 

and implementation details of GenUI and discuss how it can facilitate collaboration in the 

disparate communities interested in de novo molecular generation and computer-aided drug 

discovery. 

 

Keywords: graphical user interface, de novo drug design, molecule generation, deep 

learning, web application 
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6.1. Introduction 

Due to significant technological advances in the past decades, the body of knowledge on 

the effects and roles of small molecules in living organisms has grown tremendously [1, 2]. 

At present, we assume the number of entries across all databases to be in the range of 

hundreds of millions or billions (108-109) [3-5] and a large portion of this data has also 

accumulated in public databases such as ChEMBL [6, 7] or PubChem BioAssay [1]. 

However, the size of contemporary databases is still rather small when compared to some 

estimates of the theoretical size of the drug-like chemical space, which may contain up to 

1033 unique structures according to a recent study [8]. However, it should be noted that 

numerous studies in the past reported numbers both bigger and smaller depending on the 

definition used [8-11]. In addition, considering that only 1-2 measured biological activities 

per compound are available [12], the characterization of known compounds also needs to 

be expanded.  

 

For a long time, de novo drug design algorithms for systematic and rational exploration of 

chemical space [13-15] and quantitative structure-activity relationship (QSAR) modeling 

[16] have been considered promising and useful cheminformatics tools to efficiently 

broaden our horizons with less experimental costs and without the need to exhaustively 

evaluate as many as 1033 possible drug-like compounds to find the few of interest. The 

relevance of QSAR modeling and de novo compound design for drug discovery has been 

discussed many times [13-21], but these approaches can be just as useful in other research 

areas [16]. In chemical biology, new tool compounds and chemical probes can be 

discovered with these methods as well [22]. 

 

Thanks to the rapid growth of bioactivity databases and widespread utilization of graphical 

processing units (GPUs) the efforts to develop powerful data-driven approaches for de novo 

compound generation and QSAR modeling based on deep neural networks (DNNs) has 

grown substantially (Fig. 6.1) [19]. The most attractive feature of DNNs for de novo drug 

design is their ability to probabilistically generate compound structures [13, 23]. DNNs are 

able to take non-trivial structure-activity patterns into account, thereby increasing the 
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potential for scaffold hopping and the diversity of designed molecules [24, 25]. A number 

of generators based on DNNs was developed recently demonstrating the ability of various 

network architectures to generate compounds of given properties [13, 23, 26-29]. However, 

it should also be noted that the field of de novo drug design and molecular generation also 

has a long history of evolutionary heuristic methods with genetic algorithms on the 

forefront [20]. These traditional methods are still being investigated and developed [30-35] 

and it is yet to be established how they compare to the novel DNN-based approaches [13]. 

 

 

Figure 6.1: Schematic view of a typical cheminformatics workflow involving a DNN. First, a data 

set of compound structures and their measured activities on the desired target molecule (most often a 

protein) is compiled and encoded to suitable representation. Second, the encoded data is used as input 

of the neural network in forward mapping. A large number of architectures can be used with recurrent 

neural networks (RNNs) and convolutional neural networks (CNNs) as the most popular examples. 

Finally, the neural network is trained by back-propagating the error of a suitable loss function to adjust 

the activations inside the network so that the loss is minimized. Depending on the architecture, the 

network is trained either as a bioactivity predictor (e.g. a QSAR model) or as a molecular generator. 

Although de novo molecular design algorithms have been in development for multiple 

decades [36] and experimentally validated active compounds have been proposed [18, 37-

45], these success stories are still far away from the envisaged performance of the ‘robot 

scientist’ [46-48]. Successful development of a completely automated and sufficiently 

accurate and efficient closed loop process has been elusive, but significant advances have 
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been made nonetheless [45]. However, even with encouraging results suggesting that full 

automation of the drug discovery process might be possible [18, 45, 49-52], human insight 

and manual labor are still necessary to further refine and evaluate the compounds generated 

by de novo drug design algorithms. In particular, human intervention is of utmost 

importance in the process of compound scoring whereby best candidates are prioritized for 

synthesis and experimental validation [18, 51]. In this instance, the contributions of 

artificial intelligence (AI) are significant and AI algorithms can work independently to 

some extent, but expert knowledge is still important to interpret and refine such results and 

the creation of comprehensive graphical user interfaces (GUIs) and interoperable software 

packages can facilitate more direct involvement of experts from various fields. 

 

Though many in silico compound generation and optimization tools are available for free 

[53], it is still an exception that these approaches are routinely used since the vast majority 

of methods described in the literature serve only as a proof of concept and can rarely be 

considered production-ready software. In particular, they lack a proper GUI through which 

non-experts could easily access the algorithms and analyze their inputs and outputs in 

a convenient way. While there are many notable exceptions [33, 35, 54-58], the 

implemented GUIs are often simplistic and intended to be used only with one particular 

method. In addition, many molecular generators would also benefit from a comprehensive 

and easy to use application programming interface (API) that would enable easier 

integration with existing computational tools and infrastructures. Recently an open 

source tool called Flame was presented that offers many of the aforementioned features in 

the field of predictive QSAR modeling [59]. Such integrated frameworks from the realm 

of de novo compound generation are much rarer, however. To the best of our knowledge, 

BRADSHAW [60] and Chemistry42 [61] are the only two that were disclosed in literature 

recently and they unfortunately have not been made available as open source, which limits 

their use by the scientific community. On the other hand, it should be noted that there has 

been effort to develop open and interactive databases of generated structures as evidenced 

by the most recent example, cheML.io [62], which allows open access to the generated 

structures, but does not support “on-the-fly” generation. We argue that the lack of easy to 
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use and auditable information systems for de novo drug design is a factor leading to some 

level of disconnection between medicinal and computational chemists [63], which can 

stand in the way of effective utilization of many promising de novo drug design tools. 

 

Therefore, in this work we present the development of GenUI, a cheminformatics software 

framework that provides a GUI and APIs for easy use of molecular generators by human 

experts as well as their integration with existing drug discovery pipelines and other 

automated processes. The GenUI framework integrates solutions for import, generation, 

storage and retrieval of compounds, visualization of the created molecular data sets and 

basic utilities for QSAR modeling. Therefore, it is also suitable for many basic 

cheminformatics tasks (i.e. visualization of chemical data sets or simple QSAR modeling).  

 

All GenUI features can be easily accessed through the web-based GUI or the REST API 

(Representational State Transfer API) to ensure that both human users and automated 

processes can interact with the application with ease. Integration of new molecular 

generators and other features is facilitated by a documented Python API while quick GUI 

customization is possible with an extensive library of components implemented with the 

React.js JavaScript library. To demonstrate the features of the GenUI framework, our 

recently published molecular generator DrugEx [64] was integrated within the GenUI 

ecosystem. The source code of the GenUI platform is distributed under the MIT open-

source license [65-67] and several Docker [68-70] images are also available online for 

quick deployment [71]. 

 

6.2. Software architecture 

User interaction with GenUI happens through the frontend web client which issues REST 

API calls to the backend, which comprises five services (Fig. 6.1). However, advanced 

users may also implement clients and automated processes that use the REST API directly.  

 

The five backend services form the core parts of GenUI and can be described as follows: 
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1. “Projects” service handles user account management, authorization, and workflows. 

It is used to log users in and organize their work into projects. 

2. “Compounds” service manages the compound database including deposition, 

standardization, and retrieval of molecules and the associated data (i.e. bioactivities, 

physicochemical properties, or chemical identifiers). 

3. “QSAR Models” service facilitates the training and use of QSAR models. They can 

be used to predict biological activities of the generated compounds, but they are 

also integral to training of many molecular generators. 

4. “Generators” service is responsible for the integration of de novo molecular 

generators. It is meant to be used to set up and train generative algorithms whether 

they are based on traditional approaches or deep learning. 

5. “Maps” service enables the creation of 2D chemical space visualizations and 

integration of dimensionality reduction algorithms. 

In the following sections, the design and implementation of each part of the GenUI 

platform will be described in more detail. 

 

 

Fig. 6.1 Schematic depiction of the GenUI platform architecture. On the frontend (A), users interact 

with the web-based GUI to access the backend server REST API services (B). All actions and data 

exchange are facilitated through REST API calls so that any automated process can also interact with 

GenUI. The backend application comprises five REST API services each of which has access to the 

data storage and task queue subsystems. The services can issue computationally intensive and long-

running asynchronous tasks to backend workers to ensure sufficient responsiveness and scalability. In 
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the current implementation, tasks can be submitted to two queues: (1) the default CPU queue, which 

handles all tasks by default, or (2) the GPU queue, intended for tasks that can be accelerated by the use 

of GPUs. 

 

6.3. Frontend 

6.3.1. Graphical user interface (GUI) 

The GUI is implemented as a JavaScript application built on top of the React.js [72] web 

framework. The majority of graphical components is provided by the Vibe Dashboard 

open-source project [73], but the original collection of Vibe components was considerably 

expanded with custom components to fetch, send, and display data exchanged with the 

GenUI backend. In addition, frameworks Plotly.js [74], Charts.js [75] and ChemSpace.js 

[76] are used to provide helpful interactive figures. 

 

 

Fig. 6.2: A screenshot showing part of the GenUI web GUI. The GUI is in a state where the “A2A 

Receptor” project is already open and the navigation menu on the left can be used to access its data. The 

GUI consists of three main parts: a) navigation menu, b) card grid and c) action menu. The navigation 

menu is used to browse data associated with various GenUI services (“Projects” in this case). If a link 

is clicked in the navigation menu, the data of the selected service is displayed as a grid of interactive 

cards. Each card allows the users to manage particular data items (a project in this case). The action 

menu in the top right is also updated depending on the service selected in the navigation menu and 

performs actions not related to a particular data item. In this case, the action menu was used to bring up 

the project creation form represented by the card in the bottom left of the card grid.  

 



GenUI 

 

151 

The GUI reflects the structure of the GenUI backend services (Fig. 6.1 and Fig. 6.2). Each 

backend service (“Projects”, “Compounds”, “QSAR Models”, “Generators”, and “Maps”) 

is represented as a separate item in the navigation menu on the left side of the interface 

(Fig. 6.2a). Upon clicking a menu item, the corresponding page opens rendering a grid of 

cards (Fig. 6.2b) that displays the objects corresponding to the selected backend service. 

Various actions related to the particular service can be performed from the action menu in 

the top right of the interface (Fig. 6.2c). 

 

6.3.2. Projects 

The “Projects” interface serves as a simple way to organize user workflows. For example, 

a project can encapsulate a workflow for the generation of novel ligands for one protein 

target (Fig. 6.2). Each project contains imported compounds, QSAR models, molecular 

generators and chemical space maps. The number of projects per user is not limited and 

they can be deleted or created as needed. 

 

6.3.3. Compounds 

Each project may contain any number of compound sets (Fig. 6.3). Each set of compounds 

can have a different purpose in the project and come from a different source. Therefore, the 

contents of each card on the card grid depend on the type of compound set the card 

represents. Compounds can be generated by generators, but also imported from SDF files, 

CSV files or obtained directly from the ChEMBL database [6, 7]. New import filters can 

be easily added by extending the Python backend and customizing the components of the 

React API accordingly (see Python API and JavaScript API). For each compound in the 

compound set the interface can display its 2D representation (Fig. 6.3), molecular 

identifiers (i.e. SMILES, InChI, and InChIKey), reported and predicted activities (Fig. 6.3) 

and physicochemical properties (i.e. molecular weight, number of heavy atoms, number of 

aromatic rings, hydrogen bond donors, hydrogen bond acceptors, logP and topological 

polar surface area). 

 

6.3.4. QSAR models 

All QSAR models trained or imported in the given project are available from the “QSAR 
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Models” page (Fig. 6.5, Fig. 6.6). Each QSAR model is represented by a card with several 

tabs. The “Info” tab contains model metadata, as well as a serialized model file to download 

(Fig. 6.5). The “Performance” tab lists various performance measures of the QSAR model 

obtained by cross-validation or on an independent hold out test set (Fig. 6.6). The validation 

procedure can be adjusted by the user during model creation (Fig. 6.5). Making predictions 

with the model is possible under the “Predictions” tab. Each QSAR model can be used to 

make predictions for any compound set listed on the “Compounds” page and the calculated 

predictions will then become visible in that interface as well (Fig. 6.4). 

 

 

Fig. 6.3: A screenshot showing part of the “Compounds” GUI. Users can import data sets from 

various sources. A card representing an already imported data set from the ChEMBL database [7] is 

shown. The position and size of each displayed card can be modified by either dragging the card 

(reposition) or adjusting the bottom right corner (size change). The card shown is currently expanded 

over two rows of the card grid (Fig. 6.3b) in order to accommodate the displayed data better. The 

“Activities” tab in the compound overview shows summary of the biological activity data associated 

with the compound. The activities are grouped by type and aside from experimentally determined 

activities the interface also displays activity predictions of available QSAR models. For example, in the 

view shown the “Active Probability” activity type is used to denote the output probability from a 

classification QSAR model. Each activity value also contains information about its origin (the “Source” 

column) so that it can be tracked back to its source. 

 

New QSAR models are submitted for training with a creation card (Fig. 6.5) that helps 

users choose model hyperparameters and a suitable training strategy (i.e. the characteristics 
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of the independent hold out validation set, the number of cross-validation folds or the 

choice of validation metrics). The “Info” tab of a trained model contains important 

metadata as well as a hyperlink to export the model and save it as a reusable Python object. 

This import/export feature enables users to archive and share their work, enhancing the 

reusability and reproducibility of the developed models [77]. The “Performance” tab can 

be used to observe model performance data according to the chosen validation scheme (Fig. 

6.6). This information is different depending on the chosen model type (regression vs. 

classification, Fig. 6.6a vs. Fig. 6.6b) and the parameters used (i.e. the choice of validation 

metrics). Additional performance measures and machine learning algorithms can be 

integrated with the backend Python API. Creation of such extensions does not even require 

editing of the GUI for many standard algorithms (see Python API). 

 

 

Fig. 6.4: A screenshot showing part of the “QSAR Models” GUI. The card on the left side of the 

screen shows how training data is chosen for a new model while the card on the right shows metadata 

about an already trained model. 

 

6.3.5. Generators 

Under the “Generators” menu item, the users find a list of individual generators 

implemented in the GenUI framework (Fig. 6.7). Currently, only the DrugEx generator [64] 

is available, but other generators can be added by extending the Python backend (see 
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Python API) and customizing the existing React components (see JavaScript API). It is 

likely that some generators will have specific requirements on the GUI elements used on 

the page and, thus, the GUI is organized so that each new generator is integrated as a 

completely new page accessed from the navigation menu on the left. Many of the graphical 

elements used in the DrugEx extension (i.e. the model creation form, Fig. 6.7a) are simply 

customized elements from the library of GenUI graphical components. In fact, the GUI for 

DrugEx is based on the same React components as the “QSAR Models” view. 

 

 

Fig. 6.5: Performance evaluation view for (a) regression and (b) classification QSAR model. In (a) 

the mean-squared error (MSE) and the coefficient of determination (R2) are used as validation metrics. 

In (b) the performance is measured on a holdout independent validation test set with the Matthews 

correlation coefficient (MCC) and the area under the receiver operating characteristic (ROC) curve 

(AUC). The ROC curve itself is also displayed above the metrics.  

 

The DrugEx method consists of two networks, an exploitation network and an exploration 

network, that are trained together [78]. The exploration network is used to fine-tune the 

exploitation network, which is then trained under the reinforcement learning framework to 

optimize the agent that generates the desired compounds. Therefore, the interface of 

DrugEx was divided into two parts: 1) for training DrugEx exploration networks (Fig. 6.7) 

and 2) for training DrugEx agents (not shown). In this case, the graphical elements needed 

for the two types of networks are very similar and are just placed as two card grids under 
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each other. The only custom React components made for this interface are the figures used 

to track real time model performance (Fig. 6.7b). All other components come from the 

original GenUI React library (see JavaScript API) and are simply configured to use data 

from the DrugEx extension REST API endpoints. 

 

 

Fig. 6.6: A screenshot showing part of the “DrugEx” GUI with a model creation card with (a) 

DrugEx training parameters and (b) performance overview of a trained DrugEx network. In (a) 

the fields to define the compound set for the process of fine-tuning the exploitation (‘parent’) recurrent 

neural network trained on the ZINC data set [63] are shown. In addition, the form provides fields to set 

the number of learning epochs, training batch size, frequency of performance monitoring and size of the 

validation set. In (b) the “Performance” tab tracks model performance. It shows values of the loss 

function on the training set and validation set (top) and the SMILES error rate (bottom) at each specified 

step of the training process. The performance view is updated according to the chosen monitoring 

frequency in real time as the model is being trained. Each model also has the “Info” tab which holds the 

same information as for QSAR models. 

 

Like QSAR models, DrugEx networks can also be serialized and saved as files. For 

example, a cheminformatics researcher can build a DrugEx model outside of the GenUI 

ecosystem (i.e. using the scripts published with the original paper [64]) and provide the 

created model files to another researcher who can import and use the model from the GenUI 

web-based GUI. Therefore, it is easy to share work and accommodate various groups of 

users in this way. 

 



Chapter 6 

 

156 

 

Fig. 6.7: The “Creator” interface of GenUI “Maps” page. On the left a form to create a new t-SNE 

[78] mapping of two sets of compounds using Morgan fingerprints is shown while information about 

an existing map can be seen on the right. 

 

 

Fig. 6.8: A screenshot showing the “Explorer” part of the “Maps” GUI. The interactive plot on the left 

side of the screen is provided by the ChemSpace.js library [76]. Each point in this visualization 

corresponds to one molecule. In this particular configuration, the shapes and colors of the points indicate 

the compound set to which the compounds belong to. The color scheme of points can be changed with 

the menu in the top left corner of the plot. It is possible to color points by biological activities, 

physicochemical properties and other data associated with the compounds. The same can also be done 

with the size of the points. The points drawn in the map are interactive and hovering over a point shows 

a box with information about the compound inside and on the right side of the map.  
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6.3.6. Maps 

Interactive visualization of chemical space is available under the “Maps” menu item. The 

menu separates the creation of the chemical space visualization, the “Creator” page (Fig. 

6.7), and its exploration, the “Explorer” page (Fig. 6.8). 

 

The “Creator” page is implemented as a grid of cards each of which represents an 

embedding of chemical compounds in 2D space (Fig. 6.8). Implicitly, the GenUI platform 

enables t-SNE [79] embedding (provided by openTSNE [80]). However, new projection 

methods can be easily added to the backend through the GenUI Python API with no need 

to modify the GUI (see Python API) [81]. 

 

 

Fig. 6.9: View of the “Selected List” tab of the “Explorer” page. The tab shows the selected 

molecules in the map as a list which is the same as the one used in the “Compounds” view (Fig. 6.4). 

For easier navigation, the compounds are also grouped by the compound set they belong to and the view 

for each set can be accessed by switching tabs above the displayed list (only one compound set, 

CHEMBL251, is present in this case). 

 

The purpose of the “Explorer” page (Fig. 6.9) is to interactively visualize chemical space 

embedding prepared in the “Creator”. In the created visualization, users can explore 

compound bioactivities, physicochemical properties, and other measurements for various 

representations and parts of chemical space. Thanks to ChemSpace.js [76] up to 5 

dimensions can be shown in the map at the same time with various visualization methods: 
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X and Y coordinates, point color, point size and point shape. The map can be zoomed in by 

drawing a rectangle over a group of points. Such points form a selection and their detailed 

information is displayed under the “Selected List” (Fig. 6.10) and “Selected Activities” 

tabs (Fig. 6.11). 

 

 

Fig. 6.10: View of the “Selection Activities” tab of the “Explorer” page. In this view, violin plots 

representing distributions of activities in the set of selected compounds are displayed. Each violin plot 

corresponds to one compound set and one activity type. The violin plots are also interactive and hovering 

over points updates the compound structure and its physicochemical properties are displayed on the 

right. 

 

6.3.7. JavaScript API 

Two main considerations in the development of GenUI are reusability and extensibility. 

Therefore, the frontend GUI comprises a large library of over 50 React components that 

are encapsulated in a standalone package (Fig. 6.12A). The package is organized into 

subpackages that follow the structure and hierarchy of design elements in the GenUI 

interface. In the following sections, we use the two most important groups of the React API 

components as case studies to illustrate how the frontend GUI can be extended. The 

presented components are “Model Components”, used to add new trainable models, and 

“REST API Components”, used to fetch and send data between the frontend and the GenUI 

REST API. 
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Fig. 6.11: Organization of the GenUI frontend (A) and backend (B) packages. The frontend React 

library (A) contains customized styles, utility functions and the React components used in the GenUI 

web client. The React components are further divided into groups related to the structure of the GenUI 

interface. Schematic depiction of the GenUI backend Python code. The backend (B) is structured as a 

standard Django project (designated by its settings package and the urls and wsgi modules). The GenUI 

code itself is divided into a number of root packages that are further divided into subpackages. The 

extensions subpackage is specific to GenUI and is used to automatically discover and configure 

extension modules. GenUI extensions and packages typically define the genuisetup module, which is 

used to configure the extension when the Django project is run. 

 

6.3.8. Model components 

Much of the functionality of the GenUI platform is based on trained models. The “QSAR 

Models”, “DrugEx” and “Maps” pages all borrow from the same library of reusable GenUI 

React components (Fig. 6.11A). At the core of the “models” component library (Fig. 6.11A) 

is the ModelsPage component (Fig. 6.12). ModelsPage manages the layout and data 

displayed in model cards. When the users select to build a new model, the ModelsPage 

component is also responsible to show a card with the model creation form. The 

information that the ModelsPage displays can be customized through various React 

properties (Fig. 6.12) that represent either data (data properties) or other components 

(component properties). Such an encapsulation approach and top-down data flow is one of 

the main strengths of the React framework. This design is very robust since it fosters 

appropriate separation of concerns by their encapsulation inside more and more specialized 

components. This makes the code easy to reuse and maintain. 
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Fig. 6.12: A simplified illustration of the high-level components in the GenUI React API for 

rendering model cards. The main ModelsPage component has two kinds of attributes (called 

“properties” in React): (a) data properties and (b) component properties. The values of data properties 

are used to display model data while the values of component properties are used as child components 

and injected into the GUI at appropriate places. If no component property is specified, default 

components are used as children instead (i.e. ModelCard and NewModelCard). The child components 

can accept data and component properties as well from their parent (i.e ModelsPage). This creates a 

hierarchy of reusable components that can be easily assembled and configured to accommodate the 

different needs of each model view in a standardized and consistent manner. 

 

6.3.9. REST API components 

Because the GUI often needs to fetch data from the backend server, several React 

components were defined for that purpose. In order to use them, one just needs to provide 

the required REST API URLs as React component properties. For example, the 

ComponentWithResources component configured with the ‘/maps/algorithms/’ URL will 

get all available embedding methods as JSON (JavaScript Object Notation) and converts 

the result to a JavaScript object. Many components can also periodically update the fetched 

data, which is useful for tracking information in real time. For paginated data there is also 

the ApiResourcePaginator component that only fetches a new page if a given event is fired 

(i.e. user presses a button). This makes it convenient to create GUIs for larger data sets. In 

addition, user credentials are also handled automatically. 

 

Many more specialized components are also available to fetch specific information. For 
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example, the TaskAwareComponent tracks URLs associated with background 

asynchronous tasks and it regularly passes information about completed, running, or failed 

tasks to its child components. However, other specialized components exist that 

automatically fetch and format pictures of molecules, bioactivities, physicochemical 

properties or create, update and delete objects in the UI and the server [66]. 

 

6.4. Backend 

The backend services are the core of the GenUI platform and the GenUI Python API 

provides a convenient way to write backend extensions (i.e. add new molecular generators, 

compound import filters, QSAR modeling algorithms, and dimensionality reduction 

methods for chemical space maps). All five backend services (Fig. 6.2) are implemented 

with the Django web framework [82] and Django REST Framework [83]. For data storage, 

a freely available Docker [70] image developed by Informatics Matters Ltd. [84] is used. 

The Docker image contains an instance of the PostgreSQL database system with integrated 

database cartridge from the RDKit cheminformatics framework [85]. The integration of 

RDKit with the Django web framework is handled with the Django RDKit library [86]. All 

compounds imported in the database are automatically standardized with the current 

version of the ChEMBL structure curation pipeline [87].  

 

Because the backend services also handle processing of long-running and computationally 

intensive tasks, the framework uses Celery distributed task queue [88] with Redis as a 

message broker [89] to dispatch them to workers. Celery workers are processes running in 

the background that consume tasks from the task queue and process them asynchronously. 

Workers can either run on the same machine as the backend services or they can be 

distributed over an infrastructure of computers (see Deployment). 

 

6.4.1. Python API 

Django is a web framework that utilizes the Model View Template (MVT) design pattern 

to handle web requests and draw web pages. MVT is similar to the well-known Model 

View Controller (MVC) design pattern, but without a dedicated controller that determines 
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what view needs to be called in response to a request. In MVT, the framework itself plays 

the role of the controller and makes sure that the correct view is called upon receiving a 

web request. In Django, the view is represented by a Python function or a method that 

returns various data types based on the nature of the request. The view can also take 

advantage of the Django templating engine to dynamically generate HTML pages. In both 

MVC and MVT, the model plays a role of a data access layer. The model represents the 

tables in the database and facilitates search and other data operations. GenUI does not use 

the Django templating engine, but rather handles all requests via REST API endpoints that 

manipulate data in JSON. This makes the frontend React application completely decoupled 

from the backend and also enables other clients to access the GenUI data in a convenient 

way by design (Fig. 6.1).  

 

The GenUI backend codebase [67] follows the standard structure of any Django project 

and is divided into multiple Python packages that each encapsulate smaller self-contained 

parts (Fig. 6.12B). In GenUI, any package that resides in the root directory is referred to as 

the root package. Root packages facilitate many of the REST API endpoints (Fig. 6.2), but 

they also contain reusable classes that are intended to be built upon by extensions (see 

Generic Views and Viewsets, for example). In the following sections, some important 

features of the backend Python API are briefly highlighted. However, a much more detailed 

description with code examples is available on the documentation page of the project [81]. 

 

6.4.2. Extensions 

Django is known for its strong focus on modularity and extensibility and GenUI tries to 

follow in its footsteps and support a flexible system of pluggable applications. Each of the 

GenUI root packages contains a Python package called extensions (Fig. 6.11B). The 

extensions package can contain any number of Django applications or Python modules, 

which ensures that the extending components of the GenUI framework are well-organized 

and loosely coupled.  

 

Provided that GenUI extensions are structured a certain way they can take advantage of 
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automatic configuration and integration (see Automatic Code Discovery). Before the 

Django project is deployed, GenUI applications and extensions are detected and configured 

with the genuisetup command, which makes sure that the associated REST API endpoints 

are exposed under the correct URLs. The genuisetup command is executed with the 

manage.py script (a utility script provided by the Django library). 

 

6.4.3. Automatic code discovery 

The root packages of the GenUI backend library define many abstract and generic base 

classes to implement and reuse in extensions. These classes either implement the REST 

API or define code to be run on the worker nodes inside Celery tasks. Automatic code 

discovery uses several introspection functions and methods to find the derived classes of 

the base classes found in the root packages. By default, this is done when the genuisetup 

command is executed (see Extensions).  

 

For example, if the derived class defines a new machine learning algorithm to be used in 

QSAR modelling, automatic code discovery utilities make sure that the new algorithm 

appears as a choice in the QSAR modelling REST API and that proper parameter values 

are collected via the endpoint to create the model. Moreover, all changes also get 

automatically propagated to the web-based GUI because it uses the REST API to obtain 

algorithm choices for the model creation form. Thus, no JavaScript code has to be written 

to integrate a new machine learning algorithm. These concepts are also used when adding 

molecular generators, dimensionality reduction methods, or molecular descriptors. 

 

6.4.4. Generic views and viewsets 

When developing REST API services with the Django REST Framework [83], a common 

practice is to use generic views and sets of views (called viewsets). In Django applications, 

views are functions or classes that handle incoming HTTP requests. Viewsets are classes 

defined by the Django REST Framework that bring functionality of several views (such as 

creation, update or deletion of objects) into one single class. Generic views and viewsets 

are classes that usually do not stand on their own, but are designed to be further extended 
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and customized. 

 

The GenUI Python library embraces this philosophy and many REST API endpoints are 

encapsulated in generic views or viewsets. This ensures that the functionality can be reused 

and that no code needs to be written twice, as stated by the well-known DRY (“Don’t 

Repeat Yourself”) principle [90]. An example of such a generic approach is the 

ModelViewSet class that handles the endpoints for retrieval and training of machine 

learning models. This viewset is used by the qsar and maps applications, but also by the 

DrugEx extension. All these applications depend on some form of a machine learning 

model so they can take advantage of this interface, which automatically checks the validity 

of user inputs and sends model training jobs to the task queue. 

 

6.4.5. Asynchronous tasks 

Many of the GenUI backend services take advantage of asynchronous tasks which are 

functions executed in the background without blocking the main application. Moreover, 

tasks do not even have to be executed on the same machine as the caller of the task, which 

allows for a great deal of flexibility and scalability (see Deployment).  

 

The Celery task queue [88] makes creating asynchronous tasks as easy as defining a Python 

function [91]. In addition, some GenUI views already define their own tasks and no explicit 

task definition is needed in the derived views of the extensions. For example, the 

compounds root package defines a generic viewset that can be used to create and manage 

compound sets. The import and creation of compounds belonging to a new compound set 

is handled by implementing a separate initializer class, which is passed to the appropriate 

generic viewset class [81]. The initialization of a compound set can take a long time or may 

fail and, thus, should be executed asynchronously. Therefore, the viewset of the compounds 

application automatically executes the methods of the initializer class asynchronously with 

the help of an available Celery worker.  
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6.4.6. Integration of new features with the two APIs 

While a few examples of integrating new features to the GenUI platform have already been 

given for both Python and JavaScript, in this section a brief overview of all extensible 

features of the GenUI platform will be given. The vast majority of the features implemented 

in the reference platform presented in this work is realized through the extension system 

introduced earlier (see Extension). Extensions can use a wide selection of cheminformatics 

and data analysis tools each with their own level of complexity. Therefore, in this section 

we discuss the ease/difficulty of implementing the most common extensions and outline 

the problems the developers will face when developing each type of extension on both 

frontend and backend. All of the extensible use cases discussed here are also described in 

the project documentation with code examples [81]. 

 

6.4.7. Compounds import 

Importing sets of compounds from various sources may require different approaches and 

as a result different kinds of interfaces. Therefore, the GenUI platform was designed with 

more flexibility in mind in this case. However, it also means that more configuration is 

needed from the developer. Extending the GenUI backend is accomplished by creating an 

extension application that defines the REST API URLs of the extension as well as views 

that will serve the defined URLs. GenUI provides a generic viewset class that can be 

derived from to make this process a matter of a few lines of code. The initializer class that 

handles the import itself also needs to be implemented by the developer of the extension, 

but an already prepared initializer base class is available in GenUI as well. Among other 

things, this base class also handles molecule standardization and clean up which ensures 

unified representation of chemical structures across data sets. In the frontend API, there is 

a selection of React components that can be used to build cards representing imported 

compound sets. The cards need very little configuration and automatically include 

metadata and the list of compounds in the compound set. 

 

6.4.8. QSAR models 

The backend model integration API is designed to provide easy and fast integration of 
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simple machine learning algorithms even without the need to manually modify the frontend 

GUI. Adding a QSAR model can be as simple as adding a single class to the extension. 

The responsibility of this class is to use a machine learning algorithm to train and serialize 

a model upon receiving training data and predict unknown data from the deserialized model 

when requested. This class is also annotated with metadata about the model to be displayed 

in the frontend GUI. Therefore, in the simplest cases no URLs or customized GUI 

components need to be defined. The GenUI framework itself also performs cross-

validation and independent set validation and data preprocessing. However, in many cases 

customized behavior, novel descriptor or validation metrics implementations might be 

necessary and in that case the developer may be required to define new URLs, views and 

modeling strategies. However, also in this case the GenUI platforms attempts to make this 

process easier by providing generic viewsets and loosely coupled base class 

implementations that the developers can take advantage of. In addition, the interface to 

define molecular descriptors and validation metrics is designed with reusability in mind 

and also exposes the implemented features to other QSAR algorithms if needed. 

 

6.4.9. Molecular generators 

Molecular generators can be of various types and even those based purely on DNNs are 

often of different architectures and take advantage of diverse software frameworks. GenUI 

is designed in a fashion that is agnostic to the type of algorithm used and it leaves 

preprocessing of the training data (if any) and the generation of output solely on the 

developer of the extension. GenUI only defines the means to communicate data between 

the framework and the generator code. This also means that integration of a molecular 

generator requires more customization the extent of which largely depends on the type of 

the generative algorithm used. The GenUI model integration API that is used for 

integration of QSAR models can also be used for integration of molecular generators based 

on DNNs and is used by the DrugEx extension. Therefore, integrating contemporary 

approaches that are mostly based on DNNs should be easier thanks to the possibility to 

follow the example of DrugEx as a proof of concept. Generators may also have different 

requirements on the information displayed in the GUI and, thus, it is expected that the GUI 
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will be customized as well. However, if the generator takes advantage of the GenUI model 

integration API, this process is significantly simplified. 

 

6.4.10. Chemical space maps 

The dimensionality reduction methods used to create the chemical space maps shown in 

the GenUI interface are handled through the GenUI model integration API as well. 

Therefore, integration of these approaches is handled similarly to QSAR models and, thus, 

it comes with the same set of requirements and assumptions. Implementing a simple 

dimensionality reduction method will likely not require any steps beyond the definition of 

the one class that contains the implementing code and algorithm metadata. 

 

6.5. Deployment 

Since the GenUI platform consists of several components with many dependencies and 

spans multiple programming languages, it can be tedious to set up the whole project on a 

new system. Docker makes deployment of larger projects like this easier by encapsulating 

different parts of the deployment environment inside Docker images [68-70]. Docker 

images are simply downloaded and deployed on the target system without the need to 

install any other tools beside Docker. GenUI uses many official Docker images available 

on the Docker image sharing platform Docker Hub [92]. The PostgreSQL database with 

built-in RDKit cartridge [84], Redis [93] and the NGINX web server [94, 95] are all 

obtained by this standard channel. In addition, we defined the following images to support 

the deployment of the GenUI platform itself [71]: 

1. genui-main: Used to deploy both the frontend web application and the backend 

services. 

2. genui-worker: Deploys a basic Celery worker without GPU support. 

3. genui-gpuworker: Deploys a Celery worker with GPU support. It is the same as 

the genui-worker, but it has the NVIDIA CUDA Toolkit already installed. 

The tools to build these images are freely available [70]. Therefore, developers can create 

images for extended versions of the GenUI that fit the needs of their organizations. In 

addition, the separation of the main application (genui-main) from workers also allows 
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distributed deployment over multiple machines, which opens up the possibility to create a 

scalable architecture that can quickly accommodate teams of varying sizes. 

 

6.6. Future directions 

Although the GenUI framework already implements much of the functionality needed to 

successfully integrate most molecular generators, there are still many aspects of the 

framework that can be improved. For instance, it would be beneficial if more sources of 

molecular structures and bioactivity information are integrated in the platform besides 

ChEMBL (i.e PubChem [95], ZINC [96], DrugBank [97], BindingDB [98] or Probes and 

Drugs [99]). Currently, GenUI also lacks features to perform effective similarity and 

substructure searches, which we see as a crucial next step to improve the appeal of the 

platform to medicinal chemists. The current version of GenUI would also benefit from 

extending the sets of descriptors, QSAR machine learning algorithms and chemical space 

projections since the performance of different methods can vary across data sets. Finally, 

the question of synthesizability of the generated structures should also be addressed and 

a system for predicting chemical reactions and retrosynthetic pathways could also be very 

useful to medicinal chemists if integrated in the GUI (i.e. by facilitating connection to a 

service such as the IBM RXN [100] or PostEra Manifold [101]). 

 

Even though it is hard to determine the requirements of every project where molecular 

generators might be applied, many of the aforementioned features and improvements can 

be readily implemented with the GenUI React components (see JavaScript API) and the 

Python API (see Pyton API). In fact, the already presented extensions and the DrugEx 

interface are useful case studies that can be used as templates for integration of many other 

cheminformatics tools and de novo molecular generators. Therefore, we see GenUI as 

a flexible and scalable framework that can be used by organizations to quickly integrate 

tools and data the way it suits their needs the most. However, we would also like GenUI to 

become a new useful way to share the progress in the development of novel de novo drug 

design methods and other cheminformatics approaches in the public domain. 
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6.7. Conclusions 

We implemented a full stack solution for integration of de novo molecular generation 

techniques in a multidisciplinary work environment. The proposed GenUI software 

platform provides a GUI designed to be easily understood by experts outside the 

cheminformatics domain, but it also offers a feature-rich REST API for programmatic 

access and straightforward integration with automated processes. The presented solution 

also provides extensive Python and JavaScript extension APIs for easy integration of new 

molecular generators and other cheminformatics tools. We envision that the field of 

molecular generation will likely expand in the future and that an open source software 

platform such as this one is a crucial step towards more widespread adoption of novel 

algorithms in drug discovery and related research. We also believe that GenUI can facilitate 

more engagement between different groups of users and inspire new directions in the field 

of de novo drug design. 
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images can also be built with the available Docker files and scripts (archived at 

https://doi.org/10.5281/zenodo.4813625). The reference web application uses the 

following versions of the GenUI software: 

 0.0.0-alpha.1 for the frontend React application (archived at 
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Availability and Requirements 

 Project Name: GenUI 

 Project Home Page: https://github.com/martin-sicho/genui  

 Operating system(s): Linux 

 Programming language: Python, JavaScript 

 Other requirements: Docker 20.10.7 or higher 

 License: MIT License 
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Having provided a review about computational approaches for de novo drug design and 

four research projects in the previous chapters, I am well versed in cutting-edge AI 

technologies, especially deep learning, applied in different scenarios of de novo drug design. 

In the following paragraphs, I will draw conclusions of this thesis and give a future outlook 

to illustrate its appropriateness in drug discovery and to bring forward other promising 

scopes for its application. 

 

7.1. Conclusions 

Drug discovery is a time- and resource-consuming process. To this end, computational 

approaches that are applied in de novo drug design play an important role to improve the 

efficiency and decrease the costs to develop novel drugs. Over several decades, a variety 

of methods have been proposed and applied in practice [1]. Traditionally, drug design 

problems are always taken as the combinational optimization in discrete chemical space, 

such as evolutionary algorithms [2,3], heuristic search algorithms [4], simulated annealing 

algorithms [5], etc.. Hence optimization methods were exploited to search for new drug 

molecules that meet multiple objectives. With the accumulation of data and the 

development of machine learning methods, computational drug design methods have 

gradually shifted to a new paradigm. There has been particular interest in the potential 

application of deep learning methods to drug design [6]. In Chapter 2, we gave a brief 

description of these two different de novo methods, compared their application scopes and 

discussed their possible development in the future. 

 

Over the last ten years deep learning has progressed tremendously in both image 

recognition, natural language processing and other data rich fields [7]. In drug discovery, 

recurrent neural networks (RNNs) have been shown to be an effective method to generate 

novel chemical structures in the form of SMILES [8]. However, ligands generated by 

current methods have so far provided relatively low diversity and do not fully cover the 

whole chemical space occupied by known ligands. In Chapter 3, we therefore propose a 

new method (DrugEx) to discover de novo drug-like molecules. DrugEx is an RNN model 

(generator) trained through a special exploration strategy integrated into reinforcement 
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learning. As a case study we applied our method to design ligands for the adenosine A2A 

receptor. From ChEMBL data, a machine learning model (predictor) was created to predict 

whether generated molecules are active or not. Based on this predictor as the reward 

function, the generator was trained by reinforcement learning without any further data. We 

then compared the performance of our method with two previously published methods, 

REINVENT [9] and ORGANIC [10]. We found that the candidate molecules our model 

designed and predicted to be active, had a larger chemical diversity and better covered the 

chemical space of known ligands compared to the state-of-the-art (SOTA). 

 

Although deep learning has led to breakthroughs in drug discovery, most of its applications 

only focus on a single drug target to generate drug-like active molecules. This is in spite of 

the reality that drug molecules often interact with more than one target which can have 

desired (polypharmacology) or undesired (toxicity) effects. In polypharmacology ideal 

drugs are required to bind to multiple specific targets to enhance efficacy or to reduce the 

development of resistance [11]. In Chapter 4, we extended our DrugEx algorithm with 

multi-objective optimization to generate drug molecules towards multiple targets or one 

specific target while avoiding off-targets (the two adenosine receptors, A1AR and A2AAR, 

and the potassium ion channel hERG). In our model, we applied an RNN as the agent and 

machine learning predictors as the environment, both of which were pre-trained in advance 

and then interplayed under the reinforcement learning framework. The concept of 

evolutionary algorithms was merged into our method such that crossover and mutation 

operations were implemented by the same deep learning model as the agent. During the 

training loop, the agent generates a batch of SMILES-based molecules. Subsequently 

scores for all objectives provided by the environment are used for constructing Pareto ranks 

of the generated molecules with non-dominated sorting and Tanimoto-based crowding 

distance algorithms. Here, we adopted GPU acceleration to speed up the process of Pareto 

optimization. The final reward of each molecule is calculated based on the Pareto ranking 

with the ranking selection algorithm [12]. The agent is trained under the guidance of the 

reward to make sure it can generate more desired molecules after convergence of the 

training process. All in all we demonstrated the generation of compounds with a diverse 
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predicted selectivity profile toward multiple targets, offering the potential of high efficacy 

and lower toxicity. 

 

Due to the huge chemical space in which feasible drug-like molecules are searched for, 

rational drug design always starts from specific molecular scaffolds as the core to which 

side chains are added or modified. With the rapid growth of deep learning methods and 

their application in drug discovery, a variety of approaches has been developed for de novo 

drug design. However, earlier versions of DrugEx are trained under fixed objectives and 

do not allow users to input any prior information, like most goal-directed methods. In order 

to improve its generality, DrugEx was updated to design drug molecules based on multiple 

scaffolds given by users. In Chapter 5 we extended the transformer model [13], which is 

a multi-head self-attention deep learning model containing an encoder and a decoder, to 

deal with each molecule as a graph. The encoder of the graph transformer receives the input 

graph of the scaffolds containing multiple fragments and its decoder outputs the graph-

based molecule containing given scaffolds. Each molecule was generated by growing and 

connecting procedures for the fragments in given scaffolds that were unified into one model. 

Moreover, we trained this generator under the reinforcement learning framework to 

increase the number of active ligands. As proof our proposed method was applied to design 

adenosine A2A receptor ligands which were compared with SMILES-based methods. The 

results demonstrated its effectiveness as most of the generated molecules contained the 

given scaffolds and had a high virtual affinity towards the adenosine A2A receptor.  

 

Despite the rapid growth of AI techniques in drug discovery, widespread adoption of new 

de novo drug design approaches in the fields of medicinal chemistry and chemical biology 

is still lagging behind the most recent developments. It is urgently needed to establish a 

close collaboration between diverse teams of experimental and theoretical scientists. To 

accelerate the adoption of both modern and traditional de novo molecular generators, we 

developed GenUI (Generator User Interface), a software platform that makes it possible to 

integrate molecular generators within a feature-rich graphical user interface that is easy to 

use by experts of varying backgrounds. GenUI is implemented as a web service and its 
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interfaces offer access to cheminformatics tools for data preprocessing, model building, 

molecule generation, and interactive chemical space visualization. Moreover, the platform 

is easy to extend with customizable frontend React.js components and backend Python 

extensions. GenUI is open source which has integrated DrugEx as a proof of principle. In 

Chapter 6, we presented the architecture and implementation details of GenUI and discuss 

how it can facilitate collaboration in the disparate communities interested in de novo 

molecular generation and computer-aided drug discovery. 

 

7.2. Further perspectives 

With the four projects mentioned above we catch a glimpse of the overwhelming power of 

AI in drug de novo design. However, it is impossible to make a thorough investigation of 

its capability in every scope of drug discovery with only four years study. In my view, there 

are still a plethora of promising issues about the development and application of AI to 

design chemical compounds that attract researchers’ interest and are worth addressing. 

 

7.2.1. New AI technologies 

Deep learning is the most attractive branch in AI and it is still growing rapidly. First 

convolutional neural networks and recurrent neural networks achieved a breakthrough in 

image recognition and natural language processing [7]. Consequently the transformer 

model was proposed based on a self-attention mechanism in 2017 and achieved SOTA 

performance in language processing [13]. Subsequently, a large number of variants have 

been developed. For example, BERT, which is the encoder part of the transformer and is 

pre-trained with large amounts of data, improved the performance of sequence data 

prediction dramatically [14]. This led to more and more researchers employing it to 

construct predictive models for biological and chemical data [15,16]. In addition, GPT-3, 

which is also derived from the transformer model, achieved SOTA performance in many 

sequence generation tasks [17]. Moreover, transformer-based methods can also deal with 

graph data [18], allowing it to be applied to graph-based molecular design. Therefore they 

are promising algorithms to be used in drug design. 
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With respect to the huge number of parameters in the complicated architectures of deep 

learning, there are also many new methods to effectively train these models. For example, 

when dealing with image generation, generative adversarial networks [10] and variational 

autoencoders [19] are commonly used to train the model to generate the most similar 

samples. When introducing different computational methods in drug design in Chapter 2, 

we discussed the possibility of the combination of deep learning methods and optimization 

methods. Afterwards, we proposed a new kind of training method through simulating the 

idea of evolutionary algorithms in Chapter 4. Moreover, there are many studies about the 

application of evolutionary algorithms [20] or Bayesian optimization [21] to update the 

parameters in deep learning models. With the architecture of deep learning becoming more 

and more complex, it is worth discussing about how to effectively train models to avoid 

the issues of the local minimum and overfitting. 

 

7.2.2. Different constraint conditions 

Besides the objectives mentioned in the previous chapters, such as affinity for adenosine 

receptors and the drug-likeness score, the ideal drug molecule also needs to meet more 

objectives in reality. In addition to the affinity for one or more given targets, it also needs 

to have qualified ADME (absorption, distribution, metabolism, and excretion) properties 

[22] and low toxicity. More specifically, some of these requirements can be conflicting and 

cannot be satisfied simultaneously. Therefore, an important issue is to orchestrate the many 

objectives for effective drug design. However, most of current studies just simply transform 

the multi-objectives into a single objective with the weighted sum of these scores in order 

to guide the training of deep learning models. Actually, there are plenty of multi-objective 

optimization methods [12] being developed as mentioned in Chapter 2. These methods 

are worth exploring their integration with deep learning models. 

 

Another important property of generated drug molecules is their synthesizability. However, 

the most current SMILES-based and Graph-based models cannot directly guarantee that 

the generated molecules can be synthesized [23]. Therefore, it is critical to predict the 

synthesizability of these generated molecules, which determines if they could be 
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experimentally tested in practice. For example, some researchers combined deep 

reinforcement learning and Monto Carlo tree search to put forward to methods to predict 

retrosynthesis score [24,25] for given molecules and provide the feasible synthetic schemes 

[26]. Moreover, some other groups directly generate molecule base on reaction, in which 

each molecule in the training set are decomposed as a reaction tree [27]. And the aim of 

the model is choosing the reaction from the library step by step. In the end, the molecule 

construct with the whole reaction tree is generated.  

 

In Chapter 3 & 4, all of the model conditions were fixed. This allowed the model to be 

trained well, but it cannot interact with users by receiving continued and updated 

information. If the conditions are changed, the model has to be trained again, which is an 

inconvenient and time-consuming process. In order to improve the generality of the model 

we proposed a new method in Chapter 5 in which an end-to-end model received scaffold 

information from users. General speaking, it can also take other information as input to 

design bioactive molecules conditionally. For example, it can be used for lead optimization, 

i.e. the input can be an inactive or toxic ligand, and the output should be a similar ligand 

but active or safe, respectively. Moreover, now that proteochemometric modelling (PCM) 

has been proposed for many years to take the information of both drug and target 

information as input and predict their affinity [28], it can also be used to construct inverse 

PCM models, which take protein information as input to design its active ligands [29]. 

Considering that the full sequence length of some proteins is too large to be dealt with by 

current deep learning models, protein descriptors can also be used as input information.  

 

7.2.3. Designing various kind of molecules 

In this thesis, we only focus on the generation of small organic molecules, but there are 

other biological/chemical molecules to be designed. For example, natural products have 

always been the effective components of traditional Chinese medicine, but their physico-

chemical properties are distinct from classical drug molecules. For instance unlike small 

synthetic molecules most of the natural products do not adhere to the Rule of 5 [30]. 

Compared with classical drug molecules, natural products also have different advantages 
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as drug candidates. Natural products have been optimized by long-term natural evolution 

to have particular bioactivities, including the regulation of endogenous defense 

mechanisms through the interaction with other organisms, which is the possible reason for 

its key role in therapeutic areas especially for infectious diseases and cancer [31]. Moreover, 

their use in traditional medicine may provide insights regarding efficacy and safety, 

covering a wider area of chemical space compared with small organic molecules [32]. Now 

that there are several AI methods for the retrosynthesis of organic molecules [26], they also 

provide a valuable direction to exploit these methods in the synthesis pathway prediction 

of natural products.  

 

Besides small organic molecules, peptides and proteins are important macromolecules for 

medicine. For example, some antimicrobial peptides can be used as drugs to inhibit the 

growth of a variety of microbes. The data representation of a peptide is a sequence of amino 

acid residues, which is feasible to be designed with deep learning models [33]. Moreover, 

there are variable domains in Fab regions of antibodies which determine specificity and 

efficacy to recognize the antigen. This part of the antibody also needs to be designed and 

can be generated by AI methods [34]. 

 

7.3. Final notes 

The main thrust of this thesis is a comprehensive study about the application of AI 

technologies in de novo drug design. An integrative Python-based toolkit named DrugEx 

was developed to facilitate the accessibility of our methods to other researchers. In order 

to decrease the threshold for experimental researchers who are not familiar with computer 

coding, this tool was also used as the engine integrated into a web-based graphic toolkit 

named GenUI which has powerful capabilities of interactions with users and developers. 

These two software packages are my main contributions to the scientific community. 

Generally speaking, the highlight of this thesis is sufficiently embodied on the cover page. 

Faced with the huge chemical space of drug-like molecules (unveiling of the capsule at the 

bottom), AI is an effective approach to rapidly narrow down the search scope. AI itself is 

a mimic of the human brain running in silico (the logo in the center). The chip located in 
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the center of the brain consists of a variety of different electronic components. Seven 

tandem diodes resemble the protein structure of a GPCR which has seven transmembrane 

domains. Its intracellular domain with the G protein (a total of four subunits represented 

by four gears) forms a virtual document which recodes with digits if the GPCR is activated 

or not. The component in the lower right side is like a magnifying glass that is identifying 

the active ligands after exploring the huge chemical space with this virtual lab. I hope the 

readers could be beneficial from this thesis to have broad and deep understanding of the 

role that AI methods play in drug discovery. 
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Summary 

 

Over several decades, a variety of computational methods for drug discovery have been 

proposed and applied in practice. Traditionally, drug design is always taken as an effort of 

combinational optimization in discrete chemical space. Hence, optimization methods were 

exploited to search for new drug molecules to meet multiple objectives. With the 

accumulation of data and the development of machine learning methods, computational 

drug design methods have gradually shifted to a new paradigm. Especially, deep learning 

methods have attracted particular interest in drug design. In chapter 2, I give a brief 

description of two different de novo methods, compare their application scopes and discuss 

their possible development in the future. 

 

In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective 

method to generate novel chemical structures in the form of SMILES. However, ligands 

generated by current methods have so far provided relatively low diversity. In Chapter 3, 

a new method (DrugEx) was proposed to design de novo drug-like molecules. DrugEx is 

also an RNN model (generator) trained through a special exploration strategy integrated 

into reinforcement learning. As a case study we applied our method to design ligands 

against the adenosine A2A receptor (A2AAR). Through comparing the performance with 

other methods, it was proven that candidate molecules designed by DrugEx had a larger 

chemical diversity, and better covered the chemical space of known ligands compared to 

the state-of-the-art. 

 

In order to address the issue of polypharmacology, the DrugEx algorithm was updated with 

multi-objective optimization to generate drug molecules towards more than one specific 

target. The concept of evolutionary algorithms was merged into DrugEx. During the 

training loop, scores for all objectives provided by the environment are used to construct 

Pareto ranks of the generated molecules with GPU-accelerated non-dominated sorting and 

Tanimoto-based crowding distance algorithms. In Chapter 4, the results of its application 

demonstrated the generation of compounds with a diverse predicted selectivity profile 
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toward multiple targets, offering the potential of high efficacy and lower toxicity. 

 

As the chemical space to search for feasible drug-like molecules is immense, rational drug 

design tends to start from known scaffolds as the pharmaceutical core to be optimized, e.g., 

add or modify substituents. In order to improve its generality, DrugEx was further updated 

to have the capability of designing molecules based on given scaffolds consisting of 

multiple fragments. In Chapter 5, we extended the architecture of Transformer to deal with 

each molecule as a graph. The encoder of the graph Transformer receives the input graph 

of scaffolds containing multiple fragments and its decoder outputs the graph-based 

molecule containing the given scaffolds. We trained this generator under the reinforcement 

learning framework to increase the number of active ligands. As a proof, our proposed 

methods compared with SMILES-based methods to design A2AAR ligands. The results 

demonstrated its effectiveness in that 100% valid molecules are generated and most of them 

had predicted high affinity towards A2AAR with given scaffolds.  

 

Up to now, widespread adoption of new de novo drug design techniques in the field of drug 

discovery is still lagging behind the most recent developments. In order to establish a close 

collaboration between diverse groups of experimental and theoretical scientists, GenUI 

was developed as a visualizion software platform that makes it possible to integrate 

molecular generators within a feature-rich graphical user interface. GenUI is an open-

source web service and DrugEx was integrated as a proof of principle. In Chapter 6 the 

details of GenUI are presented to show how it facilitates collaboration in the disparate 

communities interested in computer-aided drug discovery.  

 

In Chapter 7, I draw conclusions about my contributions to the development of 

computational drug design and provided my perspective on how AI can be further applied 

in drug discovery. With these studies I made to a comprehensive investigation of the 

application of cutting-edge AI methods to design de novo drug molecules for biological 

targets. These studies highlight the overwhelming power of AI methods in drug discovery. 



 

 

195 

Samenvatting 

 

In de afgelopen decennia is een verscheidenheid aan computationele methoden voor het 

ontdekken van geneesmiddelen ontwikkeld en in de praktijk toegepast. 

Optimalisatiemethoden worden gebruikt om moleculen te zoeken die op meerdere 

biologische doelen effect hebben. Met de accumulatie van gegevens en de ontwikkeling 

van methoden voor machinaal leren, zijn computationele methoden voor het ontwerpen 

van geneesmiddelen geleidelijk verschoven naar een nieuw paradigma. Vooral deep 

learning methoden zijn interessant geworden voor het ontwerpen van geneesmiddelen. In 

hoofdstuk 2 geef ik een korte beschrijving van twee verschillende de novo methoden, 

vergelijk ik hun toepassingsgebieden en bespreek ik hun mogelijke ontwikkeling in de 

toekomst.  

 

Bij het ontdekken van geneesmiddelen is aangetoond dat terugkerende neurale netwerken 

(RNNs) een effectieve methode zijn om nieuwe chemische structuren in de vorm van 

SMILES te genereren. Liganden die met de huidige methoden zijn gegenereerd, hebben tot 

nu toe echter een relatief lage diversiteit opgeleverd. In Hoofdstuk 3 wordt een nieuwe 

methode (DrugEx) voorgesteld om de novo moleculen te ontwerpen die lijken op 

medicijnen. DrugEx is ook een RNN-model (generator) dat is getraind via een speciale 

verkenningsstrategie die is geïntegreerd in ‘reinforcement learning’. Om te bewijzen dat 

onze methode werkt hebben we liganden ontworpen voor de A2A-receptor (A2AAR). Door 

de prestaties te vergelijken met andere gelijkwaardige methoden, werd bewezen dat 

kandidaat-moleculen ontworpen door DrugEx een grotere chemische diversiteit hadden en 

beter de chemische ruimte van bekende liganden bedekten dan de andere methoden.  

 

Om het probleem van polyfarmacologie aan te pakken, is het DrugEx-algoritme bijgewerkt 

met multi-objectieve optimalisatie om moleculen te genereren voor meer dan één specifiek 

doelwit. Het concept van evolutionaire algoritmen werd samengevoegd met DrugEx. 

Tijdens de training van het model worden scores voor alle doelstellingen van de omgeving 

gebruikt om Pareto-rangen van de gegenereerde moleculen te construeren. Dit wordt 
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gedaan met GPU-versnelde niet-gedomineerde sortering en op Tanimoto gebaseerde 

algoritmen voor crowding-afstand. In Hoofdstuk 4 laten de resultaten moleculen met een 

divers voorspeld selectiviteitsprofiel naar meerdere doelwitten zien. Deze moleculen 

hebben een potentieel hoge werkzaamheid en lage toxiciteit. 

 

Omdat het aantal potentieel geschikte moleculen met geneesmiddel-achtige kenmerken 

enorm is, start rationeel medicijn ontwerp vaak vanuit een al bekende farmaceutische 

structuur (‘scaffold’). Vervolgens worden dan bijvoorbeeld substituenten toegevoegd of 

vervangen. Om de algemeenheid te verbeteren, werd DrugEx verder geüpdatet om de optie 

te bieden moleculen te baseren op meerdere ingegeven scaffolds. In Hoofdstuk 5 breidden 

we de architectuur van Transformer uit om moleculen als een netwerk te representeren. De 

codeerder van de netwerk Transformer ontvangt het inputnetwerk van meerdere scaffolds 

en de decodeerder produceert het molecuul als netwerk dat de gegeven scaffolds bevat. We 

trainden de generator met het ‘reinforcement learning’ model om het aantal actieve 

liganden te vergrootten. Ter bewijs hebben wij onze voorgestelde methoden vergeleken 

met op SMILES gebaseerde methoden om A2AAR liganden te ontwerpen. De resultaten 

lieten een hoge effectiviteit zien. Er werden namelijk 100% valide moleculen gegenereerd 

en de meesten hiervan hadden hoge voorspelde affiniteit voor de A2AAR met de gegeven 

scaffolds. 

Op dit moment is er nog geen sprake van een brede adoptie van nieuwe de novo drug design 

technieken voor de ontwikkeling van geneesmiddelen. Om een betere samenwerking 

tussen experimentele en theoretische wetenschappers op te zetten is GenUI ontwikkeld. 

GenUI is een open-source web service dat dient als visualisatieplatform voor moleculaire 

generatoren, met daarnaast veel verschillende functies in de grafische interface. Als bewijs 

van principe is DrugEx geïntegreerd in GenUI. Hoofdstuk 6 laat de details zien omtrent 

GenUI en hoe deze software gebruikt kan worden om samenwerkingen te bevorderen 

tussen groepen die geïnteresseerd zijn in computer-geasissteerde 

geneesmiddelenontwikkeling.   

 

In hoofdstuk 7 trek ik conclusies over mijn bijdragen aan de ontwikkeling van het veld van 
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computationele geneesmiddelenontwikkeling en deel ik mijn kijk op toekomstige 

toepassingen van AI in geneesmiddelenonderzoek. Met deze studies heb ik bijgedragen 

aan een uitgebreid onderzoek naar de toepassing van de meest moderne AI methodes om 

de novo medicijnmoleculen te ontwerpen voor biologische doelen. Deze studies laten de 

enorme kracht zien van het gebruik van AI methodes in geneesmiddelenontwikkeling. 
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中文总结 

 

近些年来，已经有多种多样的用于药物发现的计算方法被提出并在实践中应用。传

统上，药物设计总是被视为离散的化学空间中的优化组合问题，即利用优化方法来

寻找能满足多个目标新药分子。随着数据的积累和机器学习方法的发展，药物设计

中的计算方法逐渐发展出了一种新的范式，即深度学习方法大量应用于药物设计之

中。 在第二章中，我写了一篇综述来简要描述了两种不同种类方法，比较了它们的

应用范围，并讨论了它们未来可能的发展。 

 

在药物发现中，循环神经网络 (RNN) 已被证明是一种以 SMILES 形式生成新化学

结构的有效方法。然而，迄今为止的方法产生的化合提供的多样性相对较低。在第

三章中，我提出了一种设计新药物分子的新方法 (DrugEx)。 DrugEx 也是一个 RNN

模型（生成器），在强化学习中通过的特殊的探索策略进行训练。作为案例研究，我

们应用该方法来设计针对腺苷 A2A 受体 (A2AAR) 的配体。通过与其他方法的性能

比较证明， DrugEx 设计的候选分子具有更大的化学多样性，并且与现有的方法相

比，能更好地覆盖了已知化合物的化学空间。 

 

为了解决多靶点药理学问题，DrugEx 算法更新为多目标优化，以生成针对多个特

定目标的药物分子。在该方法中，进化算法的概念被整合到 DrugEx 中。在训练步

骤中，预测器提供的所有目标的分数，并用于构建生成分子的 Pareto 排序。在这里，

我们通过 GPU 加速来改进“非支配排序”（non-dominant sorting) 和基于 Tanimoto 

的“拥挤距离” (cowding distance) 算法。在第四章中，其应用结果证明了生成的化

合物对多个目标具有不同的预测选择性，具有高效和低毒性的潜力。 

 

由于寻找可行的类药物分子的化学空间是巨大的，合理的药物设计往往从已知的骨

架作为要优化的药物核心开始，例如添加或修改取侧链基团。为了提高其通用性，

DrugEx 进一步更新，使其具有基于给定的包含多个分子片段的骨架来设计分子的

能力。在第五章中，我们扩展了 Transformer 的架构，将每个分子作为图结构处理。

在基于图的 Transformer 中，编码器接收包含多个片段的骨架作为输入，其解码器

输出包含基于给定骨架的图结构的分子。另外，我们也在强化学习框架下训练这个
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生成器，以增加活性配体的数量。我们将提出的方法与基于 SMILES 的方法通过设

计 A2AAR 配体来比较其性能。结果证明，其生成的分子 100% 为效分子，并且其

中绝大多数包含给定的骨架，并被预测为具有 A2AAR 高亲和力。 

 

到目前为止，在药物发现领域广泛采用的药物设计技术仍然落后于最近的发展。为

了在不同的实验和计算科学家群体之间建立密切合作，GenUI 被开发为一个可视化

软件平台，可以在功能丰富的图形用户界面中集成分子生成器。 GenUI 是一个开

源网络服务，并且 DrugEx 被作为案例而整合在其中。在第六章中，我们详细地描

述了 GenUI 各种细节，并用以展示如何促进对计算机辅助药物研发感兴趣的不同社

区之间的协作。 

 

在第七章中，我对关于我对计算药物设计发展的贡献进行总结，并提供对人工智能

如何进一步应用于药物研发的看法。通过这些研究，我对如何应用最新的人工智能 

方法来为生物靶点设计新药分子做出了综合的研究。这些研究突出了人工智能方法

在药物发现中的未来可能的决定性力量。 
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