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ABSTRACT

Smoothed Particle Hydrodynamics (SPH) is a ubiquitous numerical method for solving the fluid equations, and is prized for
its conservation properties, natural adaptivity, and simplicity. We introduce the SpaEntx SPH scheme, which was designed with
three key goals in mind: to work well with sub-grid physics modules that inject energy, be highly computationally efficient (both
in terms of compute and memory), and to be Lagrangian. SPHENIX uses a Density-Energy equation of motion, along with variable
artificial viscosity and conduction, including limiters designed to work with common sub-grid models of galaxy formation. In
particular, we present and test a novel limiter that prevents conduction across shocks, preventing spurious radiative losses in
feedback events. SPHENIX is shown to solve many difficult test problems for traditional SPH, including fluid mixing and vorticity
conservation, and it is shown to produce convergent behaviour in all tests where this is appropriate. Crucially, we use the same
parameters within SpHENIX for the various switches throughout, to demonstrate the performance of the scheme as it would be

used in production simulations.
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1 INTRODUCTION

There have been many approaches to solving the equations of mo-
tion for a collisional fluid in a cosmological context over the years,
from simple first order fixed-grid (Cen 1992) to high-order discon-
tinuous Galerkin schemes solved in an adaptive environment (Guil-
let et al. 2019). Because Smoothed Particle Hydrodynamics (SPH)
strikes the sweet spot between computational cost, stability, and
adaptivity, it has been used throughout the astronomical community
for nearly five decades.

SPH was originally developed by Lucy (1977) and Gingold &
Monaghan (1977), and was used initially to model individual stars,
as this problem was well suited to Lagrangian schemes. Shortly af-
ter, further applications of the method were deployed for the study of
the fragmentation of gas clouds (Wood 1981), and for the formation
of planets (Benz 1988).

The practical use of SPH in a cosmological context began with
Hernquist & Katz (1989), which provided a novel solution to the
large dynamic range of time-steps required to evolve a cosmologi-
cal fluid, and was cemented by the Gadget-2 code (Springel 2005)
that was made public and exploited worldwide to model galaxy for-
mation processes within this context for the first time (e.g. Dolag
et al. 2004; Ettori et al. 2006; Crain et al. 2007). The base SPH
model released in Gadget-2, however, was relatively simple, con-
sisting of a fixed artificial viscosity coefficient and scheme based
on Monaghan (1992). Improved models existed, such as those pre-
sented in Monaghan (1997), but the key that led to the community
rallying around Gadget-2 was both its open source nature and scala-
bility, with Gadget-2 able to run on hundreds or thousands of cores.

The popularity of Gadget-2, and similar codes like GASOLINE
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(Wadsley et al. 2004), along with its relatively simple hydrodynam-
ics model, led to critical works such as Agertz et al. (2007) and
Bauer & Springel (2012) that pointed out flaws in their SPH mod-
elling, relative to mesh-based codes of the time. The SPH commu-
nity as a whole, however, already had solutions to these problems
(see e.g. Price 2008) and many robust solutions were proposed and
integrated into cosmological modelling codes. In He3 & Springel
(2010), the authors experimented with an extension to Gadget-2 us-
ing a Voronoi mesh to reduce errors inherrent in SPH and allow for
better results on fluid mixing problems, eventually giving rise to the
AREPO moving mesh scheme, allowing for significantly improved
accuracy per particle but drastically increasing computational cost
(Springel 2010; Weinberger et al. 2020). In this case, the authors
have steadily increased their computational cost per particle in an
attempt to reduce errors inherrent in their hydrodynamics model as
much as practicable.

Other authors took different directions, with the GASOLINE code
(Wadsley et al. 2004, 2008) choosing to explicitly mix entropies
within the SPH equation of motion to alleviate the problems of arti-
ficial surface tension; the PHANTOM developers (Price 2008, 2012;
Price et al. 2018) advocating for artificial conduction of energy; and
further developments on the Gadget-2 and updated Gadget-3 code
by Hopkins (2013) and Hu et al. (2014) based on the work by Saitoh
& Makino (2013) using an explicit smoothed pressure scheme to en-
sure a consistent pressure field over the contact discontinuities that
artificial surface tension arises from.

Simultaneously, there was work to reduce the fundamental nu-
merical errors present in SPH taking place by (Cullen & Dehnen
2010; Dehnen & Aly 2012; Read et al. 2010; Read & Hayfield 2012)
through the use of improved choices for the SPH kernel, which up
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until this point was assumed to have little effect on results from SPH
simulations. These improved kernels typically have larger ‘wings’,
encompassing more neighbours and providing more accurate recon-
structions for smoothed quantities. These more accurate reconstruc-
tions are particularly important for the construction of accurate gra-
dients, which enter into ‘switches’ that control the strength of the
artificial viscosity and conduction terms.

The rise of more complex SPH models occurred alongside a sig-
nificant jump in the complexity of the corresponding galaxy forma-
tion models; such an increase in complexity was required as resolu-
tions increased over time, meaning more physics could be modelled
directly. Many astrophysical processes take place on scales smaller
than what can be resolved in simulations and are included in these
so-called galaxy formation ‘sub-grid’ models. These processes in-
clude radiative cooling, which has progressed from a simple one pa-
rameter model to element and even ionisation state dependent rates
(see e.g. Wiersma et al. 2009; Ploeckinger & Schaye 2020); star for-
mation (see e.g. Cen & Ostriker 1992; Schaye & Dalla Vecchia 2008,
and references therein); and stellar feedback to model supernovae
and element outflows (see e.g. Navarro & White 1993; Springel &
Hernquist 2003; Dalla Vecchia & Schaye 2008, 2012, and references
therein). The coupling of these processes to hydrodynamics is com-
plex and often overlooked; careful treatment of conservation laws
and quirks of the chosen variables used to represent the fluid can
frequently hide errors in plain sight (Borrow et al. 2020).

The development of the Swirr code (Schaller et al. 2016) led to a
re-implementation of the sub-grid model used for the EAGLE simu-
lation (Schaye et al. 2015), and a chance to re-consider the ANARCHY
SPH scheme that was used in the original (Gadget-3 based) code
(Schaller et al. 2015). The findings in Oppenheimer et al. (2018)
(their Appendix D) and Borrow et al. (2020) meant that a switch
away from the original Pressure-Entropy scheme to one based on
a smoothed density field was preferred, along with the key design
goals outlined below. This work describes the Spuenix!' scheme
and demonstrates its performance on many hydrodynamics tests.
We note here that SpHENIX does not give the best performance-per-
particle (in both absolute values of L1 norm (see §5.1 for our def-
inition of the L1 norm) compared to the analytical solution, and in
terms of convergence speed) compared to other schemes. The mov-
ing mesh AREPO (Springel 2010), finite-volume GIZMO (Hopkins
2015), and corrected scheme presented in Rosswog (2020a) will pro-
duce improved results. SPHENIX however lies in the very low-cost
(memory and computation) per particle sweet-spot that traditional
SPH schemes occupy, whilst maximising performance with some
novel limiters for artificial conduction and viscosity.

The remainder of this paper is organised as follows: in §2 we de-
scribe the Swirt cosmological simulation code and the time-stepping
algorithms present within it. In §3 we describe SPHENIX in its entirety.
In §4 we describe the artificial conduction limiter used for energetic
feedback schemes. Finally, in §5 we show how SpHENIX performs on
various hydrodynamics problems.

I Note that, similar to the popular Gizmo schemes, SPHENIX is not an
acronym.

MNRAS 000, 000-000 (0000)

2 THE Swirr SIMULATION CODE

The Swirr? simulation code (Schaller et al. 2016, 2018) is a hybrid
parallel SPH and gravity code, designed to run across multiple com-
pute nodes using MPI, but to utilise threads on each node (rather than
the traditional method of using one MPI rank per core). This, along
with its task-based parallelism approach, asynchronous communica-
tion scheme, and work-splitting domain decomposition system allow
for excellent strong- and weak-scaling characteristics (Borrow et al.
2018).

SwirFT is also designed to be hugely modular, with hydrodynam-
ics schemes, gravity schemes, and sub-grid models able to be easily
swapped out. SWIFT can be configured to use a replica of the Gadget-
2 hydrodynamics scheme (Springel & Hernquist 2002), a simplified
version of the base PHANTOM scheme (Price et al. 2018), the MFM
and MFV schemes described in Hopkins (2015), SpHENIX, or a host
of other schemes. It can also be configured to use multiple different
galaxy formation sub-grid models, including a very basic scheme
(constant A cooling, no star formation), the EAGLE sub-grid model
(Schaye et al. 2015), a ‘Quick Lyman-o" model, the GEAR sub-grid
model (Revaz & Jablonka 2012), and some further evolutions in-
cluding cooling tables from Ploeckinger & Schaye (2020). The grav-
ity solver is interchangeable but the one used here, and throughout
all Swirr simulations, uses the Fast Multipole Method (Greengard
& Rokhlin 1987) with an adaptive opening angle, similar to Dehnen
(2014).

2.1 Time integration

Swirt uses a velocity-verlet scheme to integrate particles through
time. This takes their acceleration (@) from the equation of mo-
tion and time-step (Af) and integrates their position forward in time
through a Kick-Drift-Kick scheme as follows:

v(l+ ?)—v(l)+ 2a(l), (@)
At

F(t+Ar) = ?(l)+\7(t+ ?)Al, 2)

V(t+Ar) = 17(1+ %)+ %tﬁ(HAz), 3)

where the first and last equations, updating the velocity, are referred
to as the ‘kick’, and the central equation is known as the ‘drift’. The
careful observer will note that the ‘drift’ can be split into as many
pieces as required allowing for accurate interpolation of the particle
position in-between kick steps. This is important in cosmological
galaxy formation simulations, where the dynamic range is large. In
this case, particles are evolved with their own, particle-carried time-
step, given by

2vkh;
At; = Cop, K21 “)

Vsig,i

dependent on the Courant—Friedrichs—Lewy (Ccpp Courant et al.
1928) constant, the kernel-dependent relationship between cut-off
and smoothing length y, particle-carried smoothing length £;, and
signal velocity vy, ; (see Equation 30). The discussion of the full

2 For the interested reader, the implementation of the SpHENIX scheme was
developed fully in the open and is available in the Swirr repository at
http://swiftsim.com (Schaller et al. 2018), including all of the tests and
examples shown below. We use version 0.9.0 of the Swirt code for the tests
in this work.
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time-stepping algorithm is out of the scope of this work, but see
Hernquist & Katz (1989) and Borrow et al. (2019) for more infor-
mation.

2.1.1 Time-step Limiter

As the time-step of the particles is particle-carried, there may be
certain parts of the domain that contain interacting particles with
vastly different time-steps (this is particularly promoted by particles
with varied temperatures within a given kernel). Having these parti-
cles interact is problematic for a number of reasons, and as such we
include the time-step limiter described in Durier & Dalla Vecchia
(2012) in all problems solved below. Swirt chooses to limit neigh-
bouring particles to have a maximal time-step difference of a factor
of 4.

3 SPHENIX

The SpHENIX scheme was designed to replace the ANARCHY scheme
used in the original EAGLE simulations for use in the SwiFt simu-
lation code. This scheme had three major design goals:

e Be a Lagrangian SPH scheme, as this has many advantages and
is compatible with the EAGLE subgrid model.

e Work well with the EAGLE subgrid physics, namely instanta-
neous energy injection and subgrid cooling.

o Be highly computationally and memory efficient.

The last requirement precludes the use of any Riemann solvers in so-
called Gizmo-like schemes (although these do not necessarily give
improved results for astrophysical problem sets, see Borrow et al.
2019). The second requirement also means that the use of a pressure-
based scheme (such as ANARcHY) is not optimal, see Borrow et al.
(2020) for more details.

The SpHenix scheme is based on so-called ‘Traditional” Density-
Energy SPH. This means that it uses the smoothed mass density,

PR = Y mW(T =3, h() 5)
J

where here j are indices describing particles in the system, i(¥) is the
smoothing length evaluated at position ¥, and W(r,h) is the kernel
function.

In the examples below, the Quartic Spline (M5) kernel,

(3-a) -5(3-a) +10(4-a)" a<}
wp={(3=4) =3(G-4) 2543 ©)

(3-4 $<q<3

0 qZ%

with W(r,h) = kn,w(r/h)/h", np the number of dimensions, and
k3 = (7/478x) for three dimensions, is used. The SpHeENIX scheme
has also been tested with other kernels, notably the Cubic and Quin-
tic Spline (M4, M6) and the Wendland (C2, C4, C6) kernels (Wend-
land 1995). The choice of kernel does not qualitatively affect the
results in any of the tests in this work (see Dehnen & Aly 2012, for
significantly more information on kernels). The smoothing length &
is determined by satisfying

AR = ZWlx Bl h(D) = ( (7)

h(ﬁ) '

with 7 setting the resolution scale. The precise choice for 7 generally
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does not qualitatively change results; here we choose n = 1.2 due to
this value allowing for a very low Ey error (see Read et al. 2010;
Dehnen & Aly 2012)3, which is a force error originating from par-
ticle disorder within a single kernel. In Swirt, these equations are
solved numerically to a relative accuracy of 1074,

The smoothed mass density, along with a particle-carried internal
energy per unit mass u, is used to determine the pressure at a particle
position through the equation of state

(y = Duipi, ®)
with y the ratio of specific heats, taken to be 5/3 throughout unless
specified. This pressure enters the first law of thermodynamics,

ou; P 3Vl

—i = ©)
aGily, — mi 8

P(X;)=P;=

with §; a state vector containing both ¥; and h; as independent vari-
ables, A; the entropy of particle i (i.e. this equation only applies to
dissipationless dynamics), and V; = m;/p; describing the volume rep-
resented by particle i. This constraint, along with the one on the
smoothing length, allows for an equation of motion to be extracted
from a Lagrangian (see e.g. the derivations in Springel & Hernquist
2002; Hopkins 2013),

—=-Z ﬁ, L

D lyw,+ Ly wy
P J
where Wy, = W(|%, — %4l (%)), V4 = 8/0%,, and f,;, a dimension-
less factor encapsulating the non-uniformity of the smoothing length
field

=1 1

my \nphy Oh

; 10)

A
nDﬁi ahi

an

and is generally of order unity. There is also an associated equation
of motion for internal energy,

P
== > mifi= Vi Vi, (12)
j Pi

with ¥;; = ¥; — . Note that other differences between vector quanti-
ties are defined in a similar way, including for the separation of two
particles ¥j; = X; — X;.

3.1 Artificial Viscosity

These equations, due to the constraint of constant entropy introduced
in the beginning, lead to naturally dissipationless solutions; they can-
not capture shocks. Shock capturing in SPH is generally performed
using ‘artificial viscosity’.

The artificial viscosity implemented in SPHENIX is a simplified and
modified extension to the Cullen & Dehnen (2010) ‘inviscid SPH’
scheme. This adds the following terms to the equation of motion (see
Monaghan 1992, and references within),

dv;
d_tl = —ij{ij [ﬁjViWij+fjiVjoi], 13)
J
and to the associated equation of motion for the internal energy,
du; 1 o
d_tl =-3 ijgijvij'[ﬁjviWij"'fjiVjoi], (14)
J

where £;; controls the strength of the viscous interaction. Note here

3 This corresponds to 48 weighted neighbours for a cubic spline kernel.
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that the internal energy equation of motion is explicitly symmetrised,
which was not the case for the SPH equation of motion for internal
energy (Eqn. 12). In this case, that means that there are terms from
both the ij and ji interactions in Equation 14, whereas in Equation
12 there is only a term from the ij interaction. This choice was due to
the symmetric version of this equation performing significantly bet-
ter in the test examples below, likely due to multiple time-stepping
errors within regions where the viscous interaction is the strongest.

There are many choices available for ¢;;, with the case used here
being

Vsig,ij
Sij=—avlij———0r» (15)
itpj
where
vij')?if =2 =2
S Vii- %<0
pij=q Wl (16)
Vij-%j=0

is a basic particle-by-particle converging flow limiter (meaning that
the viscosity term vanishes when V-V > 0), and

Vsig,ij = Ci +Cj—BvHijs (17)

is the signal velocity between particles i and j, with Sy = 3 a dimen-
sionless constant, and with ¢; the soundspeed of particle i defined
through the equation of state as

ci = \/§= V& = Dyu;. (18)

Finally, the dimensionless viscosity coefficient @y (Monaghan &
Gingold 1983) is frequently taken to be a constant of order unity. In
SpHENIX, this becomes an interaction-dependent constant (see Mor-
ris & Monaghan 1997; Cullen & Dehnen 2010, for similar schemes),
with ay = ay,;;, dependent on two particle-carried o values as fol-
lows:

1
ayij = Z(aV,HraV,j)(BﬁBj% (19)

where

_ V- ¥il

AV T+ [V X F] + 1074 /by
is the Balsara (1989) switch for particle i, which allows for the de-
activation of viscosity in shear flows, where there is a high value of
V - ¥, but the associated shear viscosity is unnecessary. This, in par-
ticular, affects rotating shear flows such as galaxy disks, where the
scheme used to determine @y, described below will return a value
close to the maximum.

The equation for ay; is solved independently for each particle
over the course of the simulation. Note that ay; is never drifted,
and is only ever updated at the ‘kick’ steps. The source term in the
equation for ay;, designed to activate the artificial viscosity within
shocking regions, is the shock indicator

(20)

i

ey

G- —h?max(V-¥,0) V-7;<0
o V>0

where here the time differential of the local velocity divergence field

V- 9i(t+ A =V -Vi(t)
At
with V- ¥; the local velocity divergence field and At the time-step as-

sociated with particle i. The primary variable in the shock indicator
S; of V-V is high in pre-shock regions, with the secondary condition

V. ¥t +Ar) = (22)
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for the flow being converging (V- ¥ < 0) helpful to avoid false de-
tections as the Balsara (1989) switch is used independently from the
equation that evolves ay; (this choice is notably different from most
other schemes that use B; directly in the shock indicator ;). This
choice allows for improved shock capturing in shearing flows (e.g.
feedback events occurring within a galaxy disk). In these cases, the
Balsara (1989) switch (which is instantaneously evaluated) rapidly
becomes close to 1.0, and the already high value of ay; allows for
a strong viscous reaction from the fluid. The shock indicator is then
transformed into an optimal value for the viscosity coeflicient as
S, 23)

AVloc,i = XVmax >

248,
with a maximum value of @ymax = 2.0 for ayjec. The value of ay;
is then updated as follows:

@V ]oc,i @y < Qyloc,i
ay; = (Yw*'flv.loc,/% (24)
a0 Vi > @Voc,i
Vi

1+

where ty; = yxlyvhi/c; with yk the ‘kernel gamma’ a kernel de-
pendent quantity relating the smoothing length and compact support
(yk =2.018932 for the quartic spline in 3D, Dehnen & Aly 2012)
and {y a constant taking a value of 0.05. The final value of ay; is
checked against a minimum, however the default value of this min-
imum is zero and the evolution strategy used above guarantees that
ay; is strictly positive and that the decay is stable regardless of time-
step.

3.2 Artificial Conduction

Attempting to resolve sharp discontinuities in non-smoothed vari-
ables in SPH leads to errors. This can be seen above, with strong
velocity discontinuities (shocks) not being correctly handled and re-
quiring an extra term in the equation of motion (artificial viscosity)
to be captured. A similar issue arises when attempting to resolve
strong discontinuities in internal energy (temperature). To resolve
this, we introduce an artificial energy conduction scheme similar to
the one presented by Price (2008). This adds an extra term to the
equation of motion for internal energy,

. VW, VWi
% = Zj:mj‘VD,ij(ui —uj)?if(fij% + fii ]ﬁ : '“)

J

(25)

with 7;; the unit vector between particles i and j, and where

) @p.j Wij%ijl |, IPi—Pjl 26)
Dij = S —|.
Yoz Pj+p;

This conductivity speed is the average of two commonly used ve-
locities, with the former velocity-dependent term taken from Wads-
ley et al. (2008), and the latter pressure-dependent term taken from
Price (2008). These are usually used separately for cases that aim to
capture entropy mixing in shear flows and contact discontinuities re-
spectively (where initially there is a strong discontinuity in pressure
that is removed by the artificial conduction scheme), but we combine
them here as both cases are relevant in galaxy formation simulations
and use this same velocity throughout our testing, a notable differ-
ence with other works using conduction schemes (e.g. Price et al.
2018). The interaction-dependent conductivity coefficient,

Piapi+Pjap,;

) 27
P,‘+Pj ( )

ap,ij =



is pressure-weighted to enable the higher pressure particle to lead
the conduction interaction, a notable departure from other thermal
conduction schemes in use today. This is critical when it comes to
correctly applying the conduction limiter during feedback events,
described below. The individual particle-carried ap; are ensured to
only be active in cases where there is a strong discontinuity in inter-
nal energy. This is determined by using the following discontinuity
indicator,
2,
Ki = Boyihi—, (8)
\/u_i
where fp is a fixed dimensionless constant taking a value of 1. The
discontinuity indicator enters the time differential for the individual
conduction coeflicients as a source term,

dap, @D min — @D,
=K;+
dt TD,i

; (29)

with 7p; = ykhi/Vsig,i» @p,min = 0 the minimal allowed value of the
artificial conduction coefficient, and with the individual particle sig-
nal velocity,

Vsig,i = m;lx(vsig,i ) (30)

controlling the decay rate. V2u is used as the indicator for a dis-
continuity, as opposed to Vu, as it allows for (physical, well rep-
resented within SPH) linear gradients in internal energy to be main-
tained without activating artificial conduction. This is then integrated
during ‘kick’ steps using

da'D,,-

dt
The final stage of evolution for the individual conduction coefficients
is to limit them based on the local viscosity of the fluid. This is
necessary because thermal feedback events explicitly create extreme
discontinuities within the internal energy field that lead to shocks
(see §4 for the motivation leading to this choice). The limit is applied
using the maximal value of viscous alpha among the neighbours of
a given particle,

a/D,,‘(t+At) :afD,,-(t)+ At. (31)

QVmax,i = Hl?X((Zv, i) (32)

with the limiter being applied using the maximally allowed value of
the conduction coefficient,

@V,max,i
@D,max,i = ¥D,max (1 - —)7 (33)
@V max
with @p max = 1 a constant, and
ap,i ap,i < &D,max
ap,= (34)
@pmax @D,i > ¥D,max-

This limiter allows for a more rapid increase in conduction coeffi-
cient, and a higher maximum, than would usually be viable in simu-
lations with strong thermal feedback implementations. In ANARCHY,
another scheme employing artificial conduction, the rate at which
the artificial conduction could grow was chosen to be significantly
smaller. In ANarcHY, Sp = 0.01, which is 100 times smaller than the
value chosen here (Schaye et al. 2015, Appendix A3). This addi-
tional conduction is required to accurately capture contact disconti-
nuities with a Density-Energy SPH equation of motion.

4 MOTIVATION FOR THE CONDUCTION LIMITER

The conduction limiter first described in §3 is formed of two com-
ponents; a maximal value for the conduction coefficient in viscous
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Figure 1. Energy in various components as a function of time for a simulated
supernova blast (see text for details of the set-up). Blue shows energy in
the kinetic phase, orange shows energy in the thermal phase (neglecting the
thermal energy of the background) and green shows energy lost to radiation.
The solid lines show the simulation performed with the artificial conduction
limiter applied, and the dashed lines show the simulation without any such
limiter. Simulations performed without the limiter show huge, rapid, cooling
losses.
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Figure 2. The set-up from Fig. 1 performed for different values for the max-
imum artificial conduction coefficient @p max (i.e. a different horizontal axis
as Fig. 1, with the same vertical axis), now showing the components of en-
ergy in each phase at a fixed time of 7 = 25 Myr. Colours and line styles are
the same as in Fig. 1. As well as demonstrating the issue with un-limited
conduction, this figure shows that the conduction limiter prevents the loss
of additional energy energy relative to a simulation performed without any
artificial conduction.
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flows (Eqn. 34), and one that ensures that a particle with a higher
pressure takes preference within the conduction interaction (Eqn.
27).

This limiter is necessary due to interactions of the artificial con-
duction scheme with the sub-grid physics model. Here the EAGLE
sub-grid model is shown as this is what SpHENIX was designed for
use with, however all schemes employing energetic feedback and
unresolved cooling times will suffer from the same problems when
using un-limited artificial conduction. In short, when an energetic
feedback event takes place, the artificial conduction switch is acti-
vated (as this is performed by injecting lots of energy into one par-
ticle, leading to an extreme value of V2u). This then leads to energy
leaking out of the particle ahead of the shock front, which is then
radiated away as the neighbouring particles can rapidly cool due to
their temperature being lower leading to smaller cooling times.

To show the effect of this problem on a real system, we set up a
uniform volume containing 323 gas particles at approximately solar
metallicity (Z = 0.014) and equilibrium temperature (around 10* K),
at a density of nyg = 0.1 cm™>. The central particle in the volume
has approximately the same amount of energy injected into it as in
a single EAGLE-like stellar feedback event (heating it to ~ 107 K)
at the start of the simulation and the code is ran with full sub-grid
cooling (using the tables from Wiersma et al. 2009) enabled. The
initial values for the artificial viscosity and conduction coefficients
are set to be zero (whereas in practice they are set to be their maxi-
mum and minimum in ‘real’ feedback events; this has little effect on
the results as the coeflicients rapidly stabilise).

Fig. 1 shows the energy in the system (with the thermal energy of
the ‘background’ particles removed to ensure a large dynamic range
in thermal energy is visible on this plot) in various components. We
see that, at least for the case with the limiter applied, at ¢ = 0 there is
the expected large injection of thermal energy that is rapidly partially
transformed into kinetic energy as in a classic blastwave problem
(like the one shown in Fig. 5; in our idealised, non-radiative, Sedov
blasts only 28% of the injected thermal energy is converted to kinetic
energy). A significant fraction, around two thirds, of the energy is
lost to radiation, but the key here is that there is a transformation of
the initial thermal injection to a kinetic wave.

In the same simulation, now with the conduction limiter removed
(dashed lines), almost all of the injected energy is immediately lost
to radiation (i.e. the feedback is unexpectedly inefficient). The inter-
nal energy in the affected particle is rapidly conducted to its neigh-
bours (that are then above, but closer to, the equilibrium tempera-
ture) which have a short cooling time and hence the energy is quickly
lost.

The direct effect of the conduction limiter is shown in Fig. 2,
where the same problem as above is repeated ten times with max-
imal artificial conduction coefficients ap max of 0 to 2.5 in steps of
0.1 (note that the value of @p max used in production simulations is
1). We choose to show these extreme values to demonstrate the effi-
cacy of the limiter even in extreme scenarios. The simulations with
and without the limiter show the same result at @p max = 0 (i.e. with
conduction disabled) but those without the limiter show a rapidly
increasing fraction of the energy lost to cooling as the maximal con-
duction coeflicient increases. The simulations with the limiter show
a stable fraction of energy (at this fixed time of # = 25 Myr) in each
component, showing that the limiter is working as expected and is
curtailing these numerical radiative losses. This result is qualita-
tively unchanged for a factor of 100 higher, or lower, density back-
ground gas (i.e. gas between nyg = 0.001 cm™3 and nyg = 10.0 cm™3).
In both of these cases, the conduction can rapidly cause numerical
radiative losses, but with the limiter enabled this is remedied entirely.
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We also note that the limiter remains effective even for extreme val-
ues of the conduction parameter (e.g. with @p max = 100), returning
the same result as the case without artificial conduction for this test.

5 HYDRODYNAMICS TESTS

In this section the performance of Spuenix is shown on hydrody-
namics tests, including the Sod (1978) shock tube, Sedov (1959)
blastwave, and the Gresho & Sani (1990) vortex, along with many
other problems relevant to galaxy formation. All problems are per-
formed in hydrodynamics-only mode, with no radiative cooling or
any other additional physics, and all use a y = 5/3 equation of state
(P=(2/3)uip).

Crucially, all tests were performed with the same scheme param-
eters and settings, meaning that all of the switches are consistent
(even between self-gravitating and pure hydrodynamical tests) un-
less otherwise stated. This departs from most studies where parame-
ters are set for each problem independently, in an attempt to demon-
strate the maximal performance of the scheme for a given test. The
parameters used are as follows:

e The quartic spline kernel.

e CFL condition Ccrr, = 0.2, with multiple time-stepping enabled
(see e.g. Lattanzio et al. 1986).

e Viscosity alpha 0.0 < ay < 2.0 with the initial value being ay =
0.1 (similar to Cullen & Dehnen 2010).

e Viscosity beta Sy = 3.0 and length ¢y = 0.05 (similarly to
Cullen & Dehnen 2010).

e Conduction alpha 0.0 < @p < 1.0 (a choice consistent with Price
2008) with the viscosity-based conduction limiter enabled and the
same functional form for the conduction speed (Eqn. 26) used in all
simulations.

e Conduction beta 8p = 1.0 with the initial value of ap = 0.0.

These choices were all ‘calibrated’ to achieve an acceptable result on
the Sod shock tube, and then left fixed with the results from the rest
of the tests left unseen. We choose to present the tests in this manner
in an effort to show a representative overview of the performance
of SpHENIX in real-world conditions as it is primarily designed for
practical use within future galaxy formation simulations.

The source code required to produce the initial conditions (or a
link to download the initial conditions themselves if this is imprac-
tical) are available open source from the SWIFT repository.

5.1 Sod shock tube

The Sod (1978) shock tube is a classic Riemann problem often used
to test hydrodynamics codes. The tube is made up of three main
sections in the final solution : the rarefaction wave (between 0.7 <
x < 1.0), contact discontinuity (at position x ~ 1.2), and a weak shock
(at position x ~ 1.4) at the time that we show it in Figure 3.

5.1.1 Initial Conditions

The initial conditions for the Sod shock tube uses body centred cu-
bic lattices to ensure maximally symmetric lateral forces in the ini-
tial state. Two lattices with equal particle masses, one at a higher
density by a factor of 8 (e.g. one with 323 particles and one with 643
particles) are attached at x = 1.0%. This forms a discontinuity, with

4 This simplistic particle arrangement does cause a slight problem at the in-
terface at higher (i.e. greater than one) dimensions. In 3D, some particles may
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Figure 3. Individual quantities plotted against the analytic solution (purple
dashed line) for the Sod shock tube in 3D. The horizontal axis shows the
x position of the particles. All particles are shown in blue, with the purple
shading in the background showing the regions considered for the conver-
gence (Fig. 4) with the rarefaction wave, contact discontinuity, and shock,
shown from left to right. All panels are shown at the same time # = 0.2, and
for the same resolution level, using the 643 and 1283 initial conditions for
x < 1 and x > 1 respectively.

the higher density lattice being placed on the left with p; = 1 and
the lower density lattice on the right with pg = 1/8. The velocities
are initially set to zero for all particles and pressures set to be Py, =1
and P =0.1.

5.1.2 Results

Fig. 3 shows the shock tube at r = 1, plotted against the analytic
solution. This figure shows the result from the 643 and 1283 initial
condition. In general the simulation data (blue points) shows very
close agreement with the analytic solution (purple dashed line).

The three purple bands correspond to three distinct regions within
the shock tube. The furthest left is the rarefaction wave, which is
an adiabatically expanding fluid. The band covers the turnover point
of the wave, as this is where the largest deviation from the analytic
solution is present. There is a slight overestimation of the density
at this turnover point, primarily due to the symmetric nature of the
SPH kernel.

The next band shows the contact discontinuity. No effort is made
to suppress this discontinuity in the initial conditions (i.e. they are
not relaxed). There is a small pressure blip, of a similar size to that
seen with schemes employing Riemann solvers such as GIZMO
(Hopkins 2015). There is no large velocity discontinuity associ-
ated with this pressure blip as is seen with SPH schemes that do

have spurious velocities in the y and z directions at the interface, due to asym-
metries in the neighbours found on the left and right side of the boundary. To
offset this, the lattices are placed so that the particles are aligned along the
x-axis wherever possible over the interface, however some spurious forces
still result.

SPHENIX 7

[ = Rarefaction Wave (L; o« 71%%%) /
o
r Contact Discontinuity (L; «2%%")
[ —— Shock (L) x hO81)
I o)
/ o
/ o /./
L) / e
@

L,(P) Norm for pressure

102 |~
L~

L L L TR | L L L
102
Mean smoothing length £

Figure 4. Pressure convergence for the three regions in Fig 3. The solid lines
show fits to the data at various resolution levels (points) for each region, with
the dotted lines showing convergence speed when the artificial conduction
term is removed. The dashed grey line shows the expected speed of conver-
gence for shocks in SPH simulations, to guide the eye, with a dependence of
Lioch.

not explicitly treat the contact discontinuity (note that every particle
present in the simulation is shown here) with some form of conduc-
tion, a smoothed pressure field, or other method. Due to the strong
discontinuity in internal energy present in this region, the artificial
conduction coefficient ap peaks, allowing for the pressure ‘blip’ to
be reduced to one with a linear gradient.

The final section of the system, the rightmost region, is the shock.
This shock is well captured by the scheme. There is a small acti-
vation of the conduction coefficient in this region, which is bene-
ficial as it aids in stabilising the shock front (Hu et al. 2014). This
shows that the conduction limiter (§4) does not eliminate this benefi-
cial property of artificial conduction within these frequently present
weak (leading to ay < 1.0) shocks.

In an ideal case, the scheme would be able to converge at second
order L; o« h? away from shocks, and at first order L o« i within
shocks (Price et al. 2018). Here the L norm of a band is defined as

1
Li(K) = > KD~ Kret () (35)

with K some property of the system such as pressure, the subscripts
sim and ref referring to the simulation data and reference solution
respectively, and n the number of particles in the system.

Fig. 4 shows the convergence properties of the SPHENIX scheme on
this problem, using the pressure field in this case as the convergence
variable. Compared to a scheme without artificial conduction (dot-
ted lines), the SPHENIX scheme shows significantly improved conver-
gence and a lower norm in the contact discontinuity, without sacri-
ficing accuracy in other regions.

5.2 Sedov-Taylor Blastwave

The Sedov-Taylor blastwave (Sedov blast; Taylor 1950; Sedov 1959)
follows the evolution of a strong shock front through an initially
isotropic medium. This is a highly relevant test for cosmological
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Figure 5. Particle properties at t = 0.1 shown against the analytic solution
(purple dashed line) for the Sedov-Taylor blastwave. A random sub-set of
1/5th of the particles are shown in blue, with the orange points showing the
mean value within equally spaced horizontal bins with one standard devia-
tion of scatter. The background purple band shows the region considered for
measuring convergence in Fig. 6. This figure shows the results for a 1283
particle glass file.

simulations, as this is similar to the implementations used for sub-
grid (below the resolution scale) feedback from stars and black
holes. In SPH schemes this effectively tests the artificial viscosity
scheme for energy conservation; if the scheme does not conserve
energy the shock front will be misplaced.

5.2.1 Initial Conditions

Here, we use a glass file generated by allowing a uniform grid of
particles to settle to a state where the kinetic energy has stabilised.
The particle properties are then initially set such that they represent
a gas with adiabatic index y = 5/3, a uniform pressure of Py = 107°,
density pg = 1, all in a 3D box of side-length 1. Then, the n = 15
particles closest to the centre of the box have energy Eg = 1/n in-
jected into them. This corresponds, roughly, to a temperature jump
of a factor of ~ 103 over the background medium.

5.2.2 Results

Fig. 5 shows the particle properties of the highest resolution initial
condition (1283) at r = 0.1 against the analytic solution. The SPHENIX
scheme closely matches the analytic solution in all particle fields,
with the only deviation (aside from the smoothed shock front, an
unavoidable consequence of using an SPH scheme) being a slight
upturn in pressure in the central region (due to a small amount of
conduction in this region). Of particular note is the position of the
shock front matching exactly with the analytic solution, showing
that the scheme conserves energy in this highly challenging situa-
tion thanks to the explicitly symmetric artificial viscosity equation
of motion. The SpHENIX scheme shows qualitatively similar results
to the PHANTOM scheme on this problem (Price et al. 2018).
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Figure 6. L; Convergence with mean smoothing length for various particle
fields in the Sedov-Taylor blastwave test, measured at r = 0.1 against the
analytic solution within the purple band of Fig. 5. Each set of points shows a
measured value from an individual simulation, with the lines showing a linear
fit to the data in logarithmic space. Dotted lines for the simulation without
conduction are not shown as they lie exactly on top of the lines shown here.

SPH schemes in general struggle to show good convergence on
shock problems due to their inherent discontinuous nature. Ideal
convergence for shocks with the artificial viscosity set-up used in
SpHENIX is only first order (i.e. L o« h).

Fig. 6 shows the L; convergence for various fields in the Sedov-
Taylor blastwave as a function of mean smoothing length. Conver-
gence here has a best-case of L (v) « h'/2 in real terms, much slower
than the expected L; oc =L, This is primarily due to the way that the
convergence is measured; the shock front is not resolved instanta-
neously (i.e. there is a rise in density and velocity over some small
distance, reaching the maximum value at the true position) at the
same position as in the analytic solution. However, all resolution
levels show an accurately placed shock front and a shock width that
scales linearly with resolution (see Appendix A for more informa-
tion).

5.3 Gresho-Chan Vortex

The Gresho-Chan vortex (Gresho & Chan 1990) is typically used to
test for the conservation of vorticity and angular momentum, and is
performed here in two dimensions.

5.3.1 Initial Conditions

The initial conditions use a two dimensional glass file, and treat the
gas with an adiabatic index y = 5/3, constant density pg = 1, in a
square of side-length 1. The particles are given azimuthal velocity

S5r r<0.2
vg=12-5r 02<r<04 (36)
0 r>04
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Figure 7. Gresho vortex at ¢ = 1.3 after one rotation of the vortex peak with
the SpHENTX scheme using a background resolution of 5122 and with a mach
number of M = 0.33. Here the blue points show all particles in the volume,
the purple band the region used for convergence testing in Fig. 8, and the pur-
ple dashed line shows the analytic solution. The viscosity switch panel shows
a very low maximal value (0.15) relative to the true maximum allowed by the
code (ayB = 2.0), with the mean value (orange points with error bars indi-
cating one standard deviation of scatter) of around 0.02 showing an excellent
activation of the viscosity reducing switches throughout the SpHENIX scheme.

with the pressure set so that the system is in equilibrium as

5+12.572 r<02
Po=49+12.5r2-20r+4log(5r) 02<r<0.4 37
3+4log(2) r>04

where r = +/x2 +?2 is the distance from the box centre.

5.3.2 Results

Fig. 7 shows the state of a high resolution (using a glass containing
5122 particles) result after one full rotation at the peak of the vor-
tex (r = 0.2, t = 1.3). The vortex is well supported, albeit with some
scatter, and the peak of the vortex is preserved. There has been some
transfer of energy to the centre with a higher density and internal en-
ergy than the analytic solution due to the viscosity switch (shown on
the bottom right) having a very small, but nonzero, value. This then
allows for some of the kinetic energy to be transformed to thermal,
which is slowly transported towards the centre as this is the region
with the lowest thermal pressure.

Fig. 8 shows the convergence properties for the vortex, with the
SpHENIX scheme providing convergence as good as L o k%7 for the
azimuthal velocity. As there are no non-linear gradients in internal
energy present in the simulation there is very little difference be-
tween the simulations performed with and without conduction at
each resolution level due to the non-activation of Eqn. 31. This level
of convergence is better than the rate seen in Dehnen & Aly (2012)
implying that the SPHENIX scheme, even with its less complex viscos-
ity limiter, manages to recover some of the benefits of the more com-
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Figure 8. L; Convergence with mean smoothing length for various particle
fields in the Gresho vortex test, measured against the analytic solution within
the shaded region of Fig. 7. Each set of points shows a measured value from
an individual simulation, with the lines showing a linear fit to the data in
logarithmic space. The solid lines show results obtained with the full SPHENIX
scheme, with dotted lines showing the results with the artificial conduction
scheme disabled.

plex Inviscid scheme thanks to the novel combination of switches
employed.

5.4 Noh Problem

The Noh (1987) problem is known to be extremely challenging, par-
ticularly for particle-based codes, and generally requires a high par-
ticle number to correctly capture due to an unresolved convergence
point. It tests a converging flow that results in a strong radial shock.
This is an extreme, idealised, version of an accretion shock com-
monly present within galaxy formation simulations.

5.4.1 Initial Conditions

There are many ways to generate initial conditions, from very sim-
ple schemes to schemes that attempt to highly optimise the particle
distribution (see e.g. Rosswog 2020a). Here, we use a simple ini-
tial condition, employing a body-centred cubic lattice distribution of
particles in a periodic box. The velocity of the particles is then set
such that there is a convergent flow towards the centre of the box,

.
Cc-%x

>

IC—X]

N
V=-

(38)

with € = 0.5L(1,1,1), where L is the box side-length, the coordinate
at the centre of the volume. This gives every particle a speed of unity,
meaning those in the centre will have extremely high relative veloc-
ities. We cap the minimal value of |C - to be 1071°L to prevent a
singularity at small radii.

The simulation is performed in a dimensionless co-ordinate sys-
tem, with a box-size of L =1.
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Figure 9. Noh problem simulation state at f = 0.6, showing a random sub-set
of 1/100th of all of the particles plotted as blue points, the analytical solution
as a dashed purple line, and binned quantities as orange points with error
bars showing one standard deviation of scatter in that bin. The background
shaded band shows the region considered for convergence in Fig. 11, with
this figure showing the highest resolution simulation performed, using 5123
particles. This simulation state is also visualised in Fig. 10.
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Figure 10. A density slice through the centre of the Noh probeem at ¢ =
0.6 corresponding to the particle distribution shown in Fig. 9. The SpHENIX
scheme yields almost perfect spherical symmetry for the shock, but does not
capture the expected high density in the central region, likely due to lower
than required artificial conductivity (see Appendix B for more information).
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Figure 11. L; convergence test for various particle properties at ¢ = 0.6 for
the Noh problem, corresponding to the particle distribution shown in Fig. 9.
The lines without conduction are not shown here as there is little difference
between the with and without conduction case, due to the extremely strong
shock present in this test (leading to low values of the viscosity alpha, Equa-
tion 34).

5.4.2 Results

The state of the simulation is shown at time 7 = 0.6 in Fig. 9 and vi-
sualised in Fig. 10, which shows the radial velocity, which should be
zero inside of the shocked region (high density in Fig. 10), and the
same as the initial conditions (i.e. -1 everywhere) elsewhere. This
behaviour is captured well, with a small amount of scatter, corre-
sponding to the small radial variations in density shown in the im-
age.

The profile of density as a function of radius is however less well
captured, with some small waves created by oscillations in the ar-
tificial viscosity parameter (see e.g. Rosswog 2020b, for a scheme
that corrects for these errors). This can also be seen in the density
slice, and is a small effect that also is possibly exacerbated by our
non-perfect choice of initial conditions, but is also present in the im-
plementation shown in Rosswog (2020a). The larger, more signifi-
cant, density error is shown inside the central part of the shocked,
high-density, region. This error is ever-present in SPH schemes, and
is likely due to both a lack of artificial conduction in this central
region (as indicated by Noh 1987, note the excess pressure in the
centre caused by ‘wall heating’) and the unresolved point of flow
convergence.

The Noh problem converges well using SPHENIX, with better than
linear convergence for the radial velocity (Fig. 11; recall that for
shocks SPH is expected to converge with Ly o /).

This problem does not activate the artificial conduction in the
SpHENIX implementation because of the presence of Equation 34 re-
ducing conductivity in highly viscous flows, as well as our some-
what conservative choice for artificial conduction coefficients (see
Appendix B for more details on this topic). However, as these are
necessary for the practical functioning of the SpHENIX scheme in
galaxy formation simulations, and due to this test being highly ar-
tificial, this outcome presents little concern.
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Figure 12. The density field for the square test at t = 4, shown at various
resolution levels (different columns, numbers at the top denote the number
of particles in the system) and with various modifications to the underlying
SPH scheme (different rows). The dashed line shows the initial boundary of
the square that would be maintained with a perfect scheme due to the uni-
form pressure throughout. The white circle at the centre of the square shows
a typical smoothing length for this resolution level. Vertically, the scheme
with no conduction is shown at the top, with the SPHENIX scheme in the mid-
dle and a scheme with the conduction coefficient set to the maximum level
throughout at the bottom. The schemes with conduction maintain the square
shape significantly better than the one without conduction, and the SPHENIX
limiters manage to provide the appropriate amount of conduction to return to
the same result as the maximum conduction case.

5.5 Square Test

The square test, first presented in Saitoh & Makino (2013), is a par-
ticularly challenging test for schemes like SpHENIX that do not use
a smoothed pressure in their equation of motion, as they typically
lead to an artificial surface tension at contact discontinuities (the
same ones that lead to the pressure blip in §5.1). This test is a more
challenging variant of the ellipsoid test presented in Hef3 & Springel
(2010), as the square includes sharp corners which are more chal-
lenging for conduction schemes to capture.

5.5.1 Initial conditions

The initial conditions are generated using equal mass particles. We
set up a grid in 2D space with n X n particles, in a box of size L = 1.
The central 0.5 % 0.5 square is set to have a density of pc = 4.0, and
so is replaced with a grid with 2n X 2n particles, with the outer region
having pp = 1.0. The pressures are set to be equal with Pc = Pp =
1.0, with this enforced by setting the internal energies of the particles
to their appropriate values. All particles are set to be completely
stationary in the initial conditions with ¥ = 0. The initial conditions
are not allowed to relax in any way.

SPHENIX 11

5.5.2 Results

Fig. 12 shows the square test at t = 4 for four different resolution
levels and three different variations on the SpHENIX scheme. By this
time the solutions are generally very stable. The top row shows the
SpHENIX scheme without any artificial conduction enabled (this is
achieved by setting @p max to zero) and highlights the typical end
state for a Density-Energy SPH scheme on this problem. Artificial
surface tension leads to the square deforming and rounding to be-
come more circular.

The bottom row shows the SpHENIX scheme with the artificial con-
duction switch removed; here ap min is set to the same value as
apmax = 1. The artificial conduction scheme significantly reduces
the rounding of the edges, with a rapid improvement as resolution in-
creases. The rounding present here only occurs in the first few steps
as the energy outside the square is transferred to the boundary region
to produce a stable linear gradient in internal energy.

Finally, the central row shows the SpHENIX scheme, which gives
a result indistinguishable from the maximum conduction scenario.
This is despite the initial value for the conduction coefficient ap =0,
meaning it must ramp up rapidly to achieve such a similar result. The
SpHENIX result here shows that the choices for the conduction coeffi-
cients determined from the Sod tube (§5.1) are not only appropriate
for that test, but apply more generally to problems that aim to cap-
ture contact discontinuities.

5.6 2D Kelvin-Helmholtz Instability

The two dimensional Kelvin-Helmholtz instability is presented be-
low. This test is a notable variant on the usual Kelvin-Helmholtz
test as it includes a density jump at constant pressure (i.e. yet an-
other contact discontinuity). This version of the Kelvin-Helmholtz
instability is performed in two dimensions. A recent, significantly
more detailed, study of Kelvin-Helmholtz instabilities within SPH
is available in Tricco (2019). In this section we focus on qualitative
comparisons and how the behaviour of the instability changes with
resolution within SPHENIX.

5.6.1 Initial conditions

The initial conditions presented here are similar to those in Price
(2008), where they discuss the impacts more generally of the inclu-
sion of artificial conduction on fluid mixing instabilities. This is set
up in a periodic box of length L = 1, with the central band between
0.25 <y < 0.75 set to pc =2 and vcx = 0.5, with the outer region
having pp =1 and v, = —0.5 to set up a shear flow. The pres-
sure Pc = Pp = 2.5 is enforced by setting the internal energies of
the equal mass particles. Particles are initially placed on a grid with
equal separations. This is the most challenging version of this test
for SPH schemes to capture as it includes a perfectly sharp contact
discontinuity; see Agertz et al. (2007) for more information.

We then excite a specific mode of the instability, as in typical SPH
simulations un-seeded instabilities are dominated by noise and are
both unpredictable and unphysical, preventing comparison between
schemes.

5.6.2 Results

Fig. 13 shows the simulation after various multiples of the Kelvin-
Helmholtz timescale for the excited instability, with Ty given by
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Figure 13. Density map of the standard Kelvin-Helmholtz 2D test at various
resolutions (different columns, with the number of particles in the volume at
the top) and at various times (different rows showing times from ¢ = Ty to
t = 10tgn). Despite this being a challenging test for SPH, the instability is
captured well at all resolutions, with higher resolution levels capturing finer
details.

_(I+ 4

VX
where y = pc/po =2 is the density contrast, ¥ = vy —vp = 1 the
shear velocity, and 4 = 0.5 the wavelength of the seed perturbation
along the horizontal axis (e.g Hu et al. 2014). The figure shows three
initial resolution levels, increasing from left to right. Despite this
being the most challenging version of the Kelvin-Helmholtz test (at
this density contrast) for a Density-Energy based SPH scheme, the
instability is captured well at all resolutions, with higher resolutions
allowing for more rolls of the ‘swirl’ to be captured. In particular, the
late-time highly mixed state shows that with the conduction removed
after a linear gradient in internal energy has been established, the
SpHENIX scheme manages to preserve the initial contact discontinuity
well.

The non-linear growth rate of the swirls is resolution dependent
within this test, with higher-resolution simulations showing faster
growth of the largest-scale modes. This is due to better capturing
of the energy initially injected to perturb the volume to produce
the main instability, with higher resolutions showing lower viscous
losses.

TKH (39
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Figure 14. The same as Fig. 13, but this time using initial conditions with a
significantly higher (1:8 instead of 1:2) density contrast. The initial instabil-
ities are captured well at all resolution levels, but at the lowest level they are
rapidly mixed by the artificial conduction scheme due to the lack of resolu-
tion elements in the low-density region.

Fig. 14 shows a different initial condition where the density con-
trast y = 8, four times higher than the one initially presented. Be-
cause SPH is fundamentally a finite mass method, and we use equal-
mass particles throughout, this is a particularly challenging test as
the low-density region is resolved by so few particles. Here we also
excite an instability with a wavelength A = 0.125, four times smaller
than the one used for the y = 2 test. This value is chosen for two
reasons; it is customary to lower the wavelength of the seeded insta-
bility as the density contrast is increased when grid codes perform
this test as it allows each instability to be captured with the same
number of cells at a given resolution level; and also to ensure that
this test is as challenging as is practical for the scheme.

SpHENIX struggles to capture the instability at very low resolutions
primarily due to the lack of particles in the low-density flow (an issue
also encountered by Price 2008). In the boundary region the artificial
conduction erases the small-scale instabilities on a timescale shorter
than their formation timescale (as the boundary region is so large)
and as such they cannot grow efficiently. As the resolution increases,
however, SPHENIX is able to better capture the linear evolution of the
instability, even capturing turn-overs and the beginning of nonlinear
evolution for the highest resolution.
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Figure 15. Time-evolution of the blob within the supersonic wind at vari-
ous resolution levels (different columns; the number of particles in the whole
volume is noted at the top) and at various times (expressed as a function
of the Kelvin-Helmholtz time for the whole blob 7xy; different rows). The
projected density is shown here to enable all layers of the three dimensional
structure to be seen. At all resolution levels the blob mixes with the surround-
ing medium (and importantly mixes phases with the surrounding medium),
with higher resolution simulations displaying more thermal instabilities that
promote the breaking up of the blob.

5.7 Blob Test

The Blob test is a challenging test for SPH schemes (see Klein et al.
1994; Springel 2005) and aims to replicate a scenario where a cold
blob of gas falls through the hot IGM/CGM surrounding a galaxy.
In this test, a dense sphere of cold gas is placed in a hot, low density,
and supersonic wind. Ideally, the blob should break up and dissolve
into the wind, but Agertz et al. (2007) showed that the inability of
traditional SPH schemes to exchange entropy between particles pre-
vents this from occurring. The correct, specific, rate at which the
blob should mix with its surroundings, as well as the structure of the
blob whilst it is breaking up, are unknown.

5.7.1 Initial Conditions

There are many methods to set up the initial conditions for the Blob
test, including some that excite an instability to ensure that the blob
breaks up reliably (such as those used in Hu et al. 2014). Here we
excite no such instabilities and simply allow the simulation to pro-
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ceed from a very basic particle set-up with a perfectly sharp contact
discontinuity. The initial conditions are dimensionless in nature, as
the problem is only specified in terms of the Mach number of the
background medium and the blob density contrast.

To set up the initial particle distribution, we use two body centred
cubic lattices, one packed at a high-density (for the blob, ppjen = 10)
and one at low density (for the background medium, ppg = 1). The
low-density lattice is tiled four times in the x direction to make a
box of size 4x 1 X1, and at [0.5,0.5,0.5] a sphere of radius 0.1 is
removed and filled in with particles from the high-density lattice.
The particles in the background region are given a velocity of vpg =
2.7 (with the blob being stationary), and the internal energy of the
gas everywhere is scaled such that the background medium has a
mach number of M = 2.7 and the system is in pressure equilibrium
everywhere.

5.7.2 Results

The blob is shown at a number of resolution levels at various times
in Fig. 15. At all resolution levels the blob mixes well with the back-
ground medium after a few Kelvin-Helmholtz timescales (see Eqn.
39 for how this is calculated; here we assume that the wavelength
of the perturbation is the radius of the blob)>. The rate of mixing
is consistent amongst all resolution levels, implying that the artifi-
cial conduction scheme is accurately capturing unresolved mixing
at lower resolutions.

The rate of mixing of the blob is consistent with that of modern
SPH schemes and grid codes, however our set of initial conditions
appear to mix slightly slower (taking around ~ 4 — 67gy to fully
mix) than those used by other contemporary works (Agertz et al.
2007; Read & Hayfield 2012; Hu et al. 2014), likely due to the lack
of perturbation seeding. When testing these initial conditions with a
scheme that involves a Riemann solver or a Pressure-based scheme
the rate of mixing is qualitatively similar to the one presented here;
see Appendix C.

5.8 Evrard Collapse

The Evrard collapse (Evrard 1988) test takes a large sphere of self-
gravitating gas, at low energy and density, that collapses in on itself,
causing an outward moving accretion shock. This test is of particular
interest for cosmological and astrophysical applications as it allows
for the inspection of the coupling between the gravity and hydrody-
namics solver.

5.8.1 Initial Conditions

Gas particles are set up in a sphere with an adiabatic index of
y =5/3, sphere mass M = 1, sphere radius R = 1, initial density pro-
file p(r) = 1/2nr, and in a very cold state with u = 0.05, with the
gravitational constant G = 1. These initial conditions are created in
a box of size 100, ensuring that effects from the periodic boundary
are negligible. Unfortunately, due to the non-uniform density profile,
it is considerably more challenging to provide relaxed initial condi-
tions (or use a glass file). Here, positions are simply drawn randomly
to produce the required density profile.

The Evrard collapse was performed at four resolution levels, with
total particle numbers in the sphere being 104, 105, 106, and 107.

5 Note that here the Kelvin-Helmholtz timescale is 1.1 times the cloud crush-
ing timescale (Agertz et al. 2007).
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Figure 16. State of the Evrard sphere at t = 0.8 for a resolution of 107 particles. A random sub-set of 1/10th of the particles is shown in blue, with the solution
from a high resolution 1D grid code shown as a purple dashed line. The orange points with error bars show the median within a radial equally log-spaced bin
with the bar showing one standard deviation of scatter. The shaded band in the background shows the region considered for the convergence test in Fig. 17.
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Figure 17. L; convergence for various gas properties for the Evrard collapse
sphere at r = 0.8. The region considered for convergence here is the purple
band shown in Fig. 16. The SpuENIX scheme is shown with the points and
linear fits in solid, and the same scheme is shown with artificial conduc-
tion turned off as dotted lines. Artificial conduction significantly improves
convergence here as it helps stabilise the thermal properties of the initially
randomly placed particles.

The gravitational softening was fixed at 0.001 for the 10° resolution
level, and this was scaled with m~!/3 with m the particle mass for the
other resolution levels. The simulations were performed once with
artificial conduction enabled (the full Spuenix scheme), and once
with it disabled.

5.8.2 Results

The highest resolution result (107 particles) with the full SPHENIX
scheme is shown in Fig. 16. This is compared against a high resolu-
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tion grid code® simulation performed in 1D, and here SPHENIX shows
an excellent match to the reference solution. The shock at around
r= 107! is sharply resolved in all variables, and the density and ve-
locity profiles show excellent agreement. In the centre of the sphere,
there is a slight deviation from the reference solution for the internal
energy and density (balanced to accurately capture the pressure in
this region) that remains even in the simulation performed without
artificial conduction (omitted for brevity, as the simulation without
conduction shows similar results to the simulation with conduction,
with the exception of the conduction reducing scatter in the internal
energy profile). This is believed to be an artefact of the initial con-
ditions, however it was not remedied by performing simulations at
higher resolutions.

The convergence properties of the Evrard sphere are shown in Fig.
17. The velocity profile shows a particularly excellent result, with
greater than linear convergence demonstrated. The thermodynamic
properties show roughly linear convergence. Of particular note is
the difference between the convergence properties of the simula-
tions with and without artificial conduction; those with this feature
of SPHENIX enabled converge at a more rapid rate. This is primarily
due to the stabilising effect of the conduction on the internal energy
profile. As the particles are initially placed randomly, there is some
scatter in the local density field at all radii. This is quickly removed
by adiabatic expansion in favour of scatter in the internal energy
profile, which can be stabilised by the artificial conduction.

5.9 nIFTy Cluster

The nIFTy cluster comparison project, Sembolini et al. (2016), uses
a (non-radiative, cosmological) cluster-zoom simulation to evaluate
the efficacy of various hydrodynamics and gravity solvers. The orig-
inal paper compared various types of schemes, from traditional SPH
(Gadget, Springel 2005) to a finite volume adaptive mesh refine-
ment scheme (RAMSES, Teyssier 2002). The true answer for this
simulation is unknown, but it is a useful case to study the different
characteristics of various hydrodynamics solvers.

6 HydroCodelD, see https://github.com/bwvdnbro/HydroCodelD
and the SwrFT repository for more details.
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Figure 18. Thermodynamics profiles for the nIFTy cluster at z = 0 with five codes and schemes. The solid lines show those simulated with Swirt, with the
blue line showing the full SpHENIX scheme, and the orange line showing SpHENIX without artificial conduction . The dashed lines were extracted directly from
Sembolini et al. (2016) and show a modern Pressure-Entropy scheme (G2-anarchy; Schaye et al. 2015, appendix A), a moving mesh finite volume scheme
(AREPO; Springel 2010), and a traditional SPH scheme (G3-music; Springel 2005).

In Fig. 18 the SpHENIX scheme is shown with and without artificial
conduction against three reference schemes from Sembolini et al.
(2016). Here, the centre the cluster was found using the VELOC]Irap-
tor (Elahi et al. 2019) friends-of-friends halo finder, and the particle
with the minimum gravitational potential was used as the reference
point.

The gas density profile was created using 25 equally log-spaced
radial bins, with the density calculated as the sum of the mass within
a shell divided by the shell volume. SpHENIX scheme shows a similar
low-density core as AREPO, with the no conduction scheme result-
ing in a cored density profile similar to the traditional SPH scheme
from Sembolini et al. (2016).

The central panel of Fig. 18 shows the ‘entropy’ profile of the
cluster; this is calculated as Tn, 23 with ne the electron density (as-
suming primordial gas, this is n. = 0.875p/my with my the mass of
a hydrogen atom) and T the gas temperature. Each was calculated
individually in the same equally log-spaced bins as the density pro-
file, with the temperature calculated as the mass-weighted tempera-
ture within that shell. The rightmost panel shows this mass-weighted
temperature profile, with SpHENIX showing slightly higher temper-
atures in the central region than AREPO, matching G2-anarchy
instead. This high-temperature central region, along with a low-
density centre, lead to the ‘cored’ (i.e. flat, with high values of en-
tropy, at small radii) entropy profile for SPHENIX.

The cored central entropy profile with SPHENIX is attained primar-
ily due to the artificial conduction scheme and is not due to the other
improvements over the traditional SPH base scheme (including for
example the artificial viscosity implementation). We note again that
there was no attempt to calibrate the artificial conduction scheme
to attain this result on the nIFTy cluster, and any and all parameter
choices were made solely based on the Sod shock tube in §5.1.

In Fig. 19, a projected mass-weighted temperature image of the
cluster is shown. The image demonstrates how the artificial conduc-
tion present in the SPHENIX scheme promotes phase mixing, resulting
in the cored entropy profile demonstrated in Fig. 18.

The temperature distribution in the SPH simulation without con-
duction appears noisier, due to particles with drastically different
phases being present within the same kernel. This shows how arti-

ficial conduction can lead to sharper shock capture as the particle
distribution is less susceptible to this noise, enabling a cleaner en-
ergy transition between the pre- and post-shock region.

6 CONCLUSIONS

We have presented the SpHENIX SPH scheme and its performance on
seven hydrodynamics tests. The scheme has been demonstrated to
show convergent (with resolution) behaviour on all these tests. In
summary:

o SpHENIX is an SPH scheme that uses Density-Energy SPH as a
base, with added artificial viscosity for shock capturing and artificial
conduction to reduce errors at contact discontinuities and to promote
phase mixing.

e A novel artificial conduction limiter allows SPHENIX to be used
with energy injection feedback schemes (such as those used in EA-
GLE) by reducing conduction across shocks and other regions where
the artificial viscosity is activated.

e The artificial viscosity and conduction scheme coeflicients
were determined by ensuring good performance on the Sod Shock
tube test, and remain fixed for all other tests.

e The modified Inviscid SPH (Cullen & Dehnen 2010) scheme
captures strong shocks well, ensuring energy conservation, as shown
by the Sedov-Taylor blastwave test, but the smooth nature of SPH
prevents rapid convergence with resolution.

e The use of the Balsara (1989) switch in SPHENIX was shown to
be adequate to ensure that the Gresho-Chan vortex is stable. Conver-
gence on this test was shown to be faster than in Cullen & Dehnen
(2010).

e The artificial conduction scheme was shown to work ade-
quately to capture thermal instabilities in both the Kelvin-Helmholtz
and Blob tests, with contact discontinuities well preserved when re-
quired.

o SpHeNIX performed well on both the Evrard collapse and nIFTY
cluster problems, showing that it can couple to the FMM gravity
solver in SwiFr and that the artificial conduction scheme can allow
for entropy cores in clusters.
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Figure 19. Image of the nIFTY cluster, as a projected mass-weighted tem-
perature map, shown for the SpHENIX scheme with (top) and without artificial
conduction enabled (bottom). The image shows a 5 Mpc wide view, centred
on the most bound particle in the halo.

o SPHENIX is implemented in the SwiFT code and is available fully
open source to the community.

SpHENIX hence achieves its design goals; the Lagrangian nature of
the scheme allows for excellent coupling with gravity; the artificial
conduction limiter allows the injection of energy as in the EAGLE
sub-grid physics model; and the low cost-per-particle and lack of
matrices carried on a particle-by-particle basis provide for a very
limited computational cost (see Borrow et al. 2019, for a compar-
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ison of computational costs between a scheme like SpHENIX and the
GIZMO-like schemes also present in SWIFT).
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7.1 Software Citations
This paper made use of the following software packages:

e Swirt (Schaller et al. 2018)
e python (van Rossum & Drake Jr 1995), with the following li-
braries

numpy (Harris et al. 2020)

scipy (SciPy 1.0 Contributors et al. 2020)
numba (Lam et al. 2015)

— matplotlib (Hunter 2007)

swiftsimio (Borrow & Borrisov 2020)

8 DATA AVAILABILITY

All code and initial conditions used to generate the simulations is
open source as part of Swirr version 0.9.0 (Schaller et al. 2018)7.
As the simulations presented in this paper are small, test, simula-
tions that can easily be repeated, the data is not made immediately
available.
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APPENDIX A: SEDOV BLAST

In Fig. 6 we presented the convergence properties of the Sedov blast
with the SpHENIX scheme. The scheme only demonstrated conver-
gence as L (v) « 193, which is much slower than the expected con-
vergence rate of L « h! for shock fronts in SPH (that is demon-
strated and exceeded in the Noh problem in Fig. 11). This is, how-
ever, simply an artefact of the way that the convergence is measured.

In Fig. A1 we show the actual density profiles of the shock front,
by resolution (increasing as the subfigures go to the right). Note here
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Figure A1l. The density profile of the Sedov blasts initially presented in Fig. 6. The blue points show the positions of every particle in the volume, the purple
dashed line the analytical prediction, and the orange points binned means with error bars showing one standard deviation. The shaded band is the region over
which the convergence properties were measured. The text at the top notes the total number of particles in each volume.

that the width of the shock front (from the particle distribution to the
right of the vertical line to the vertical line in the analytical solution)
does converge at the expected rate of Li o 1/n'/3 o h with n the
number of particles in the volume (in 3D).

The Sedov blast, unlike the Noh problem and Sod tubes, does not
aim to reproduce a simple step function in density and velocity, but
also a complex, expanding, post-shock region. The L; convergence
is measured ‘vertically’ in this figure, but it is clear here that the
vertical deviation from the analytical solution is not representative
of the ‘error’ in the properties of a given particle, or in the width of
the shock front. Small deviations in the position of the given particle
could result in changes of orders of magnitude in the value of the L
norm measured for it.

Because of this, and because we have demonstrated in other sec-
tions that SPHENIX is able to converge on shock problems at faster
than first order, we believe the slow convergence on the Sedov prob-
lem to be of little importance in practical applications of the scheme.

APPENDIX B: CONDUCTION IN THE NOH PROBLEM

In §5.4 we presented the Noh problem, and showed that the SPHENIX
scheme (like other SPH schemes in general) struggles to capture the
high density in the central region due to so-called ‘wall heating’.

The Spuenix scheme includes a switch to reduce artificial con-
duction in viscous flows. This is, as presented in §4, to allow for
the capturing of energetic feedback events. It does, however, lead to
a minor downside; the stabilising effect of the conduction in these
shocks is almost completely removed. Usually, the artificial conduc-
tion lowers the dispersion in local internal energy values, and hence
pressures, allowing for a more regular particle distribution.

In Fig. B1 we show three re-simulations of the Noh problem
(at 2563 resolution) with three separate schemes. The first, the full
SpHENIX scheme, is simply a lower resolution version of Fig. 10. The
second, ‘No Conduction Limiter’, is the SpHENIX scheme, but with
Equation 34 removed; i.e. the particle-carried artificial conduction
coefficient depends solely on the local internal energy field (through
V2y and Eqn. 28), instead of also being mediated by the velocity
divergence field. The final case, ‘Fixed ap = 1.0’, shows the case
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where we remove all conduction switches and use a fixed value for
the conduction ap of 1.0. The former two look broadly similar, sug-
gesting that the post-shock region is not significantly affected by the
additional SpHENIX conduction limiter.

The final panel, however, shows the benefits available to a hypo-
thetical scheme that can remove the artificial conduction switch; the
central region is able to hold a significantly higher density thanks
to energy being conducted out of this region, allowing the pressure
to regularise. In addition to the above, this case shows significantly
weaker spurious density features (recall that the post-shock, high-
density, region should have a uniform density) because these have
been regularised by the conduction scheme.

We present this both to show the drawbacks of the SpHENIX artifi-
cial conduction scheme, and to show the importance of demonstrat-
ing test problems with the same switches that would be used in a
production simulation.

APPENDIX C: BLOB TEST

In Fig. 15 we demonstrated the performance of the SPHENIX scheme
on an example ‘blob’ test. Here, we show how the same initial con-
ditions are evolved using two schemes: a ‘traditional SPH’ scheme
with fixed artificial viscosity (ay = 0.8) and no artificial conduction
(e.g. Monaghan 1992)8, and a SPH-ALE (Vila 1999) scheme sim-
ilar to GIZMO-MFM® (Hopkins 2015) with a diffusive slope lim-
iter. This is in an effort to demonstrate how the initial conditions are
evolved with a minimally viable non-diffusive scheme, through to
what could be considered the most diffusive viable scheme.

Fig. C1 shows the result of the blob test with the traditional SPH
scheme. Here, as expected, there is a severe lack of mixing, with
the artificial surface tension holding the blob together even at the
highest resolutions. The lack of phase mixing also contributes to a
lack of overall mixing, with the stripped trails (shown most clearly
at t = 3rgy) adiabatically expanding but crucially remaining distinct
from the hot background medium.

8 The minimal scheme in SwiFr.
9 The gizmo-mfm scheme in Swirr with a HLLC Riemann solver.
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Figure B1. Density slice through the centre of the Noh problem (analogue of Fig. 10) shown for three different artificial conduction schemes (see text). The
colour bar is shared between all, and they all use the same, 2563, initial condition, and are also all shown at # = 0.6. The case with the fixed, high, conduction

coefficient (right) shows the smallest deviation in density in the centre, as the conduction can treat the wall heating present in this test.
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Figure C2. A repeat of Fig. 15 but using an SPH-ALE scheme with a dif-

diffusive switches. fusive slope limiter. Note however that this is one step lower in resolution,
due to the additional computational cost required to perform a simulation

Figure C1. A repeat of Fig. 15 but using a ‘traditional’ SPH scheme without

including a Riemann solver.
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Figure C3. The evolution of a single blob (using the medium resolution, 2116547 particle, initial conditions from Fig. 15), to illustrate the effect of turning off
the conduction limiter (Eqn. 34; bottom row) in comparison to the full SpHENIX scheme (top row). The limiter suppresses some of the initial mixing during the
cloud crushing, but does not cause significant qualitative changes in the mixing of the cloud.

Fig. C2 shows the result of the blob test with the SPH-ALE
(GIZMO-MFM) scheme. This scheme is known to be highly dif-
fusive (due to the less conservative slope limiter employed in the
Swirt implementation). This follows closely the results seen in e.g.
Agertz et al. (2007) for diffusive grid-based codes. Here, the blob
is rapidly shattered, and then dissolves quickly into the surrounding
media, especially at the lowest resolutions.

The SpHENIX results in Fig. 15 showed that the blob mixed with
the surrounding media, but at a less rapid rate than in the SPH-ALE
case. This is somewhat expected, given the trade-off required in the
artificial conduction switches (Eqn. 34). We do note, however, that
no analytical solution exists for the blob test, and as such all of these
comparisons may only be made qualitatively.

In Fig. C3 we examine the effect of removing the conduction lim-
iter from the SpHENIX implementation (i.e. Eqn. 34 is removed, al-
lowing ap to vary irrespective of the values of a@y). We see that the
inclusion of the limiter does slightly reduce the rate of initial mixing
within the blob, but that the effect of the limiter is not particularly
strong within this case.
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