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Abstract
We consider a system of interacting Moran models with seed-banks. Individuals live
in colonies and are subject to resampling andmigration as long as they are active. Each
colony has a seed-bank into which individuals can retreat to become dormant, sus-
pending their resampling and migration until they become active again. The colonies
are labelled by Z

d , d ≥ 1, playing the role of a geographic space. The sizes of the
active and the dormant population are finite and depend on the location of the colony.
Migration is driven by a random walk transition kernel. Our goal is to study the equi-
librium behaviour of the system as a function of the underlying model parameters. In
the present paper, under a mild condition on the sizes of the active populations, the
system is well defined and has a dual. The dual consists of a system of interacting
coalescing random walks in an inhomogeneous environment that switch between an
active state and a dormant state. We analyse the dichotomy of coexistence (= multi-
type equilibria) versus clustering (= mono-type equilibria) and show that clustering
occurs if and only if two random walks in the dual starting from arbitrary states even-
tually coalesce with probability one. The presence of the seed-bank enhances genetic
diversity. In the dual this is reflected by the presence of time lapses during which the
random walks are dormant and do not move.

Keywords Moran model · Resampling · Seed-bank · Migration · Duality ·
Coexistence versus clustering
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1 Background, Motivation and Outline

Dormancy is an evolutionary trait observed in plants, bacteria and other microbial
populations, where an organism enters a reversible state of low metabolic activity as
a response to adverse environmental conditions. The dormant state of an organism
in a population is characterized by interruption of basic reproduction and phenotypic
development during periods of environmental stress [24,29]. The dormant organisms
reside inwhat is called a seed-bank of the population.After a varying andpossibly large
number of generations, dormant organisms can be resuscitated under more favourable
conditions and reprise reproduction after becoming active by leaving the seed-bank.
This strategy is known to have important implications for the genetic diversity and
overall fitness of the underlying population [23,24], since the seed-bank of a population
often acts as a buffer against evolutionary forces such as genetic drift, selection and
environmental variability. The importance of dormancy has led to several attempts
to model seed-banks from a mathematical perspective ([1,2]; see also [3] for a broad
overview).

In [2] and [1], the Fisher–Wright model with seed-bank was introduced and anal-
ysed. In the Fisher–Wright model with seed-bank, individuals live in a colony, are
subject to resampling where they adopt each other’s type, and move in and out of
the seed-bank where they suspend resampling. The seed-bank acts as a repository for
the genetic information of the population. Individuals that reside inside the seed-bank
are called dormant and those that reside outside are called active. Both the long-time
behaviour and the genealogy of the population were analysed for the continuummodel
obtained by letting the size of the colony tend to infinity, called the Fisher–Wright dif-
fusion with seed-bank.

In [13–15], the continuummodel was extended to a spatial setting in which individ-
uals live in multiple colonies, labelled by a countable Abelian group playing the role
of a geographic space. In the spatial model with seed-banks, each colony is endowed
with its own seed-bank and individuals are allowed to migrate between colonies. The
goal was to understand the change in behaviour compared to the spatial model without
seed-bank.

Most papers on seed-banks deal with the large-colony-size limit, for which the evo-
lution is describedby a systemof coupledSDE’s. In [19], amulti-colonyFisher–Wright
model with seed-banks was introduced where the colony sizes are finite. However, this
model is restricted to homogeneous population sizes and a finite geographic space. The
present paper introduces an individual-based spatial model with seed-banks in con-
tinuous time where the sizes of the underlying populations are finite and vary across
colonies. The latter make the model more interesting from a biological perspective,
but raise extra technical challenges. The key tool that we use to tackle these challenges
is stochastic duality [4,11]. The spatial model introduced in this paper fits in the realm
of interacting particle systems, which often admit additional structures such as duality
[25,28]. In particular, our spatial model can be viewed as a hybrid of the well-known
Voter Model and the generalized Symmetric Exclusion Process, 2 j-SEP, j ∈ N/2
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[5,11,26]. Both the Voter Model and the 2 j-SEP enjoy the stochastic duality property,
and our system inherits this as well: it is dual to a system consisting of coalescing
random walks with repulsive interactions. The resulting dual process shares striking
resemblances with the dual processes of the Voter Model and 2 j-SEP, because the
original process is a modified hybrid of them. It has been recognized in the literature
[1,2,23,24,31] that qualitatively different behaviour may occur when the exit time of
a typical individual from the seed-bank can become large. In the present paper, we are
able to model this phenomenon as well, due to the inhomogeneity in the seed-bank
sizes. Our main goals are the following:

(1) Introduce a model with seed-banks whose size is finite and depends on the geo-
graphic location of the colony. Prove existence and uniqueness of the process via
well-posedness of an associated martingale problem and duality with a system of
interacting coalescing random walks.

(2) Identify a criterion for coexistence (= convergence towards multi-type equilibria)
and clustering (= convergence towards mono-type equilibria). Show that there is
a one-parameter family of equilibria controlled by the density of types.

(3) Identify the domain of attraction of the equilibria.
(4) Identify the parameter regime under which the criterion for clustering is met. In

case of clustering, find out how fast the mono-type clusters grow in space-time. In
case of coexistence, establish mixing properties of the equilibria.

In the present paper, we settle (1) and (2). In [18], wewill address (3) and (4).We focus
on the situation where the individuals can be of two types. The extension to infinitely
many types, called the Fleming–Viot measure-valued diffusion, only requires standard
adaptations and will not be considered here.

The paper is organized as follows: In Sect. 2, we give a quick definition of themodel
and state our main theorems about the well-posedness, the duality and the clustering
criterion. In Sect. 3, we give a more detailed definition of the model, prove that the
martingale problem associated with its generator is well-posed, establish duality with
an interacting seed-bank coalescent, demonstrate that the system exhibits a dichotomy
between clustering and coexistence, and formulate a necessary and sufficient condition
for clustering to prevail in terms of the dual, called the clustering criterion. Sections 4–
6 are devoted to the proof of our main theorems.

2 Main Theorems

In Sect. 2.1, we give a quick definition of the system. In Sect. 2.2, we argue that under
mild conditions on the sizes of the active population, the system is well defined and
has a dual that consists of finitely many interacting coalescing random walks.

2.1 Quick Definition of theMulti-colony System

Individuals live in colonies labelled byZ
d , d ≥ 1, which plays the role of a geographic

space. (In what follows, the geographic space can be any countable Abelian group.)
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Each colony has an active population and a dormant population. Each individual
carries one of two types: ♥ and ♠. Individuals are subject to:

(1) Active individuals in any colony resample with active individuals in any colony.
(2) Active individuals in any colony exchange with dormant individuals in the same

colony.

For (1) we assume that each active individual at colony i at rate a(i, j) uniformly
draws an active individual at colony j and adopts its type. For (2) we assume that
each active individual at colony i at rate λ uniformly draws a dormant individual at
colony i and the two individuals trade places while keeping their type (i.e. the active
individual becomes dormant and the dormant individual becomes active). Note that
dormant individuals do not resample.

At each colony i , we register the pair (Xi (t),Yi (t)), representing the number of
active, respectively, dormant individuals of type ♥ at time t at colony i . We write
(Ni , Mi ) to denote the size of the active, respectively, dormant population at colony
i . The resulting Markov process is denoted by

(Z(t))t≥0, Z(t) = ((Xi (t),Yi (t))i∈Zd , (2.1)

and lives on the state space

X :=
∏

i∈Zd

[Ni ] × [Mi ], (2.2)

where [n] = {0, 1, . . . , n}, n ∈ N. In Sect. 3.2, we will show that under mild assump-
tions on the model parameters, the Markov process in (2.1) is well defined and has
a dual (Z∗(t))t≥0. The latter consists of finite collections of particles that perform
interacting coalescing random walks, with rates that are controlled by the model
parameters.

Let P be the set of probability distributions on X defined by

P := {Pθ : θ ∈ [0, 1]}, Pθ := θ
⊗

i∈Zd

δ(0,0) + (1 − θ)
⊗

i∈Zd

δ(Ni ,Mi ). (2.3)

We say that (2.1) exhibits clustering if the distribution of Z(t) converges to a limiting
distribution μ ∈ P as t → ∞. Otherwise, we say that it exhibits coexistence. In
Sect. 3.2,wewill show that clustering is equivalent to coalescenceoccurring eventually
with probability 1 in the dual consisting of two particles. This will be the main route
to the dichotomy.

For simplicity, we let the exchange rate λ ∈ (0,∞) be the same for every colony,
and let the migration kernel be translation invariant and irreducible.

Assumption 2.1 (Homogeneous migration) The migration kernel a(·, ·) satisfies:
• a(·, ·) is irreducible in Z

d .
• a(i, j) = a(0, j − i) for all i, j ∈ Z

d .
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• c :=
∑

i∈Zd

a(0, i) < ∞ and a(0, 0) = 1
2 . �

The former of the last two assumptions ensures that theway genetic informationmoves
between colonies is homogeneous in space, while the latter ensures that the total rate
of resampling is finite and that resampling is possible also at the same colony. Since it
is crucial for our analysis that the population sizes remain constant, we viewmigration
as a change of types without the individuals actually moving themselves. In this way,
genetic information moves between colonies, while the individuals themselves stay
put.

We write

Ki = Ni

Mi
, i ∈ Z

d , (2.4)

to denote the ratio of the size of the active and the dormant population in colony i .

2.2 Well-Posedness and Duality

Theorem 2.2 (Well-posedness and duality) Suppose that Assumption 2.1 is in force.
Then, the Markov process (Z(t))t≥0 in (2.1) has a factorial moment dual (Z∗(t))t≥0
living in the state space X ∗ ⊂ X consisting of all configurations with finite mass, and
the martingale problem associated with (2.1) is well posed under either of the two
following conditions:

(a) lim‖i‖→∞ ‖i‖−1 log Ni = 0 and
∑

i∈Zd eδ‖i‖a(0, i) < ∞ for some δ > 0,
(b) supi∈Zd\{0} ‖i‖−γ Ni < ∞ and

∑
i∈Zd ‖i‖d+γ+δa(0, i) < ∞ for γ > 0 and some

δ > 0.

Theorem2.2 provides uswith two sufficient conditions underwhich the system iswell-
defined and has a tractable dual. It shows a trade-off : the more we restrict the tails
of the migration kernel, the less we need to restrict the sizes of the active population.
The sizes of the dormant population play no role because all the events (resampling,
migration and exchange) in our model are initiated by active individuals and dormant
individuals do not feel the spatial extent of the geographic space. Theorem 3.10,
Corollary 3.11 and Theorem 3.13 in Sect. 3.2 contain the fine details.

2.3 Equilibrium: Coexistence Versus Clustering

Theorem 2.3 (Equilibrium) If the initial distribution of the system is such that each
active and each dormant individual adopts a type with the same probability inde-
pendently of other individuals, then the system admits a one-parameter family of
equilibria.

• The family of equilibria is parameterized by the probability to have one of the two
types.

• The system converges to a mono-type equilibrium if and only if two random walks
in the dual starting from arbitrary states eventually coalesce with probability one.

123



Journal of Theoretical Probability

Table 1 Scheme of transitions in the single-colony model

Initial state Event Final state Transition rate

(x, y) Resampling (x − 1, y) x(N − x)/N

(x + 1, y) x(N − x)/N

Exchange (x − 1, y + 1) λx(M − y)/M

(x + 1, y − 1) λ(N − x)y/M

Theorem 2.3 tells us that the system converges to an equilibriumwhen it is started from
a specific class of initial distributions, namely products of binomials. It also provides
a criterion in terms of the dual that determines whether the equilibrium is mono-type
or multi-type. Theorem 3.14, Corollary 3.15 and Theorem 3.17 in Sect. 3.2 contain
the fine details.

3 Basic Theorems: Duality, Well-Posedness and Clustering Criterion

In Sect. 3.1,wedefine and analyse the single-colonymodel. In Sect. 3.2,wedo the same
for the multi-colony model. Our focus is on well-posedness, duality and convergence
to equilibrium.

3.1 Single-ColonyModel

3.1.1 Definition: Resampling and Exchange

Consider two populations, called active and dormant, consisting of N and M haploid
individuals, respectively. Individuals in the population carry one of two genetic types:
♥ and ♠. Dormant individuals reside inside the seed-bank, active individuals reside
outside. The dynamics of the single-colonyMoranmodel with seed-bank is as follows:

– Each individual in the active population carries a resampling clock that rings at
rate 1. When the clock rings, the individual randomly chooses an active individual
and adopts its type.

– Each individual in the active population also carries an exchange clock that rings
at rate λ. When the clock rings, the individual randomly chooses a dormant indi-
vidual and exchanges state, i.e. becomes dormant and forces the chosen dormant
individual to become active. During the exchange, the two individuals retain their
type.

Since the sizes of the two populations remain constant, we only need two variables to
describe the dynamics of the population, namely the number of a type-♥ individuals
in both populations (see Table 1).

Let x and y denote the number of individuals of type♥ in the active and the dormant
population, respectively. After a resampling event, (x, y) can change to (x − 1, y) or
(x + 1, y), while after an exchange event (x, y) can change to (x − 1, y + 1) or
(x + 1, y − 1). Both changes in the resampling event occur at rate x N−x

N . In the
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exchange event, however, to see (x, y) change to (x − 1, y + 1), an exchange clock
of a type-♥ individual in the active population has to ring (which happens at rate
λx), and that individual has to choose a type-♠ individual in the dormant population
(which happens with probability M−y

M ). Hence, the total rate at which (x, y) changes

to (x − 1, y + 1) is λx M−y
M . By the same argument, the total rate at which (x, y)

changes to (x + 1, y − 1) is λ(N − x) y
M .

For convenience we multiply the rate of resampling by a factor 1
2 , in order to make

it compatible with the Fisher–Wright model. Thus, the generator G of the process is
given by

G = GMor + GExc, (3.1)

where

(GMor f )(x, y) = x(N − x)

2N
[ f (x − 1, y) + f (x + 1, y) − 2 f (x, y)] (3.2)

describes the Moran resampling of active individuals at rate 1
2 and

(GExc f )(x, y) = λ

M
x(M − y) [ f (x − 1, y + 1) − f (x, y)]

+ λ

M
y(N − x) [ f (x + 1, y − 1) − f (x, y)] (3.3)

describes the exchange between active and dormant individuals at rate λ. From here
onwards, we denote the Markov process associated with the generator G by

Z = (Z(t))t≥0, Z(t) = (X(t),Y (t)), (3.4)

where X(t) and Y (t) are the number of type-♥ active and dormant individuals at time
t , respectively. The process Z has state space [N ] × [M], where [N ] = {0, 1, . . . , N }
and [M] = {0, 1, . . . , M}. Note that Z is well defined because it is a continuous-time
Markov chain with finitely many states.

3.1.2 Duality and Equilibrium

The classical Moran model is known to be dual to the block-counting process of the
Kingman coalescent. In this section, we show that the single-colony Moran model
with seed-bank also has a coalescent dual.

Definition 3.1 (Block-counting process) Theblock-counting process of the interacting
seed-bank coalescent (defined in Definition 3.5) is the continuous-timeMarkov chain

Z∗ = (Z∗(t))t≥0, Z∗(t) = (nt ,mt ), (3.5)
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taking values in the state space [N ] × [M] with transition rates

(n,m) �→
(n − 1,m + 1) at rate λn

(
1 − m

M

)
,

(n + 1,m − 1) at rate λKm
(
1 − n

N

)
,

(n − 1,m) at rate 1
N

(n
2

)
1{n≥2},

(3.6)

where K = N
M is the ratio of the sizes of the active and the dormant population. �


The first two transitions in (3.6) correspond to exchange, the third transition to resam-
pling. Later in this sectionwe describe the associated interacting seed-bank coalescent
process, which gives the genealogy of Z .

The following result gives the duality between Z and Z∗.

Theorem 3.2 (Duality)The process Z is dual to the process Z∗ via the duality relation

E(X ,Y )

[(X(t)
n

)
(N
n

)
(Y (t)

m

)
(M
m

) 1{n≤X(t),m≤Y (t)}

]
= E

(n,m)

[( X
n(t)

)

( N
n(t)

)

( Y
m(t)

)

( M
m(t)

)1{n(t)≤X ,m(t)≤Y }

]
, t ≥ 0,

(3.7)

where E stands for generic expectation. On the left the expectation is taken over Z
with initial state Z(0) = (X ,Y ) ∈ [N ] × [M]; on the right the expectation is taken
over Z∗ with initial state Z∗(0) = (n,m) ∈ [N ] × [M].
Note that the duality relation fixes the factorial moments and thereby the mixed
moments of the random vector (X(t),Y (t)). This enables us to determine the equilib-
rium distribution of Z .

Although the above duality is new in the literature on seed-banks, the notion of
factorial duality is not uncommon in mathematical models involving finite and fixed
population sizes [8,12]. Similar types of dualities are often found for other models too
(e.g. self-duality of independent random walks, exclusion and inclusion processes,
etc. [11]). Remarkably, in the special case where N = M = 2 j for some j ∈ N/2,
Giardinà et al. (2009) [11, Section 3.2] identified the same duality relation as in (3.7)
as a self-duality for the generalized 2 j-SEP on two-sites. This is not surprising given
the fact that the exchange rates between active and dormant individuals defined in
Table 1 are precisely the rates (up to rescaling) for the 2 j-SEP on two sites. We refer
the reader to Sect. 4.1 to gain further insights into this.

Proposition 3.3 (Convergence of moments) For any (X ,Y ), (n,m) ∈ [N ]×[M]with
(n,m) �= (0, 0),

lim
t→∞ E(X ,Y )

[
X(t)nY (t)m

] = NnMm X + Y

N + M
. (3.8)

Since the vector (X(t),Y (t)) takes values in [N ]×[M], which has (N +1)(M+1)
points, the above proposition determines the limiting distribution of (X(t),Y (t)).
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Corollary 3.4 (Equilibrium) Suppose that Z starts from initial state (X ,Y ) ∈ [N ] ×
[M]. Then, (X(t),Y (t)) converges in law as t → ∞ to a random vector (X∞,Y∞)

whose distribution is given by

L(X ,Y )(X∞,Y∞) = X + Y

N + M
δ(N ,M) +

(
1 − X + Y

N + M

)
δ(0,0). (3.9)

Note that the equilibrium behaviour of Z is the same as for the classical Moran model
without seed-bank. The fixation probability of type ♥ is X+Y

N+M , which is nothing but
the initial frequency of type-♥ individuals in the entire population. Even though the
presence of the seed-bank delays the time of fixation, because its size is finite size it
has no significant effect on the overall qualitative behaviour of the process. We will
see in Sect. 3.2 that the situation is different in the multi-colony model.

3.1.3 Interacting Seed-Bank Coalescent

In our model, the genealogy of a sample taken from the finite population of N + M
individuals is governed by a partition-valued coalescent process similarly as for the
genealogy of the classical Moran model. However, due to the presence of the seed-
bank, blocks of a partition are marked as A (active) and D (dormant). Unlike in the
genealogy of the classical Moran model, the blocks interact with each other. This
interaction is present because of the restriction to finite size of the active and the
dormant population. For this reason, we name the block process an interacting seed-
bank coalescent. For convenience, we will use the word lineage to refer to a block in
a partition.

Let Pk be the set of partitions of {1, 2, . . . , k}. For ξ ∈ Pk , denote the number of
lineages in ξ by |ξ |. Furthermore, for j, k, l ∈ N, define

M j,k,l =
{
u ∈ {A, D} j : the numbers of A and D in u are at most k and l, respectively

}
.

(3.10)

The state space of the process isPN ,M = {(ξ, u) : ξ ∈ PN+M , u ∈ M|ξ |,N ,M }. Note
that PN ,M contains only those marked partitions of {1, 2, . . . , N + M} that have at
most N active lineages and M dormant lineages. This is because we can only sample
at most N active and M dormant individuals from the population.

Before we give the formal definition, let us adopt some notation. For π, π ′ ∈ PN ,M ,
we say that π � π ′ if π ′ can be obtained from π by merging two active lineages.
Similarly, we say that π��π ′ if π ′ can be obtained from π by altering the state of a
single lineage (A → D or D → A). We write |π |A and |π |D to denote the number of
active and dormant lineages present in π , respectively.

Definition 3.5 (Interacting seed-bank coalescent) The interacting seed-bank coales-
cent is the continuous-time Markov chain with state space PM,N characterized by the
following transition rates:
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Fig. 1 Scheme of transitions for an interacting particle system with an active reservoir of size N = 6 and a
dormant reservoir of size M = 2, so that K = N

M = 6
2 = 3. The effective rate for each of n active particles

to become dormant is λ M−m
M when the dormant reservoir has m particles. Similarly, the effective rate for

each of m dormant particles to become active is λK N−n
N when the active reservoir has n particles

π �→ π ′ at rate
1
N if π � π ′,
λ
(
1 − |π |D

M

)
if π��π ′ by change of state of one lineage in π from A to D,

λK
(
1 − |π |A

N

)
if π��π ′ by change of state of one lineage in π from D to A.

(3.11)

�

The factor 1 − |π |D

M in the transition rate of a single active lineage when π becomes
dormant reflects the fact that as the seed-bank gets full, it becomes more difficult for
an active lineage to enter the seed-bank. Similarly, as the number of active lineages
decreases due to the coalescence, it becomes easier for a dormant lineage to leave
the seed-bank and become active. This also tells us that there is a repulsive interac-
tion between the lineages of the same state (A or D). Due to this interaction, it is
tricky to study the coalescent. As N , M get large, the interaction becomes weak. As
N , M → ∞, after proper space-time scaling, the coalescent converges weakly to a
limit coalescent where the interaction is no longer present. In fact, it can be shown that
when both the time and the parameters are scaled properly, the coalescent converges
weakly as N , M → ∞ to the seed-bank coalescent described in [1].

We can also describe the coalescent in terms of an interacting particle system with
the help of a graphical representation (see Fig. 1). The interacting particle system
consists of two reservoirs, called active reservoir and dormant reservoir, having N
and M labelled sites, respectively, each of which can be occupied by at most one
particle. The particles in the active and dormant reservoir are called active and dormant
particles, respectively. The active particles can coalesce with each other, in the sense
that if an active particle occupies a labelled site where an active particle is present
already, then the two particles are glued together to form a single particle at that
site. Active particles can become dormant by moving to an empty site in the dormant
reservoir, while dormant particles can become active by moving to an empty site in
the active reservoir. The transition rates are as follows:

• An active particle tries to coalescewith another active particle at rate 1
2 by choosing

uniformly at random a labelled site in the active reservoir. If the chosen site is
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empty, then it ignores the transition; otherwise, it coalesces with the active particle
present at the new site.

• An active particle becomes dormant at rate λ by moving to a random labelled site
in the dormant reservoir when the chosen site is empty; otherwise, it remains in
the active reservoir.

• A dormant particle becomes active at rate λK by moving to a random labelled site
in the active reservoir when the chosen site is empty; otherwise, it remains in the
dormant reservoir.

Clearly, the particles interact with each other due to the finite capacity of the two
reservoirs. If N , M → ∞, then the probability to choose an empty site in a reservoir
tends to 1, and so the system converges (after proper scaling) to an interacting particle
system where the particles move independently between the two reservoirs.

Note that if we define nt = number of active particles at time t and mt = number
of dormant particles at time t , then Z∗ = (nt ,mt )t≥0 is the block-counting process
defined in Definition 3.1. Also, if we remove the labels of the sites in the two reservoirs
and represents the particle configuration by an element of PN ,M , then we obtain the
interacting seed-bank coalescent described in Definition 3.5. Even though it is natural
to describe the genealogical process via a partition-valued stochastic process, we will
stick with the interacting particle system description of the dual, since this will be
more convenient for the multi-colony model.

3.2 Multi-colonyModel

In this section, we consider multiple colonies, each with their own seed-bank. Each
colony has an active population and a dormant population. We take Z

d as the under-
lying geographic space where the colonies are located (any countable Abelian group
will do). With each colony i ∈ Z

d we associate a variable (Xi ,Yi ), with Xi and Yi
the number of type-♥ active and dormant individuals, respectively, at colony i . Let
(Ni , Mi ) denote the size of the active and the dormant population at colony i . In each
colony, active individuals are subject to resampling and migration, and to exchange
with dormant individuals that are in the same colony. Dormant individuals are not
subject to resampling and migration.

Since it is crucial for our duality to keep the population sizes constant, we consider
migration of types without the individuals actually moving themselves. To be precise,
by a migration from colony j to colony i we mean that an active individual from
colony i randomly chooses an active individual from colony j and adopts its type.
In this way, the genetic information moves from colony j to colony i , while the
individuals themselves stay put.

3.2.1 Definition: Resampling, Exchange andMigration

We assume that each active individual at colony i resamples from colony j at rate
a(i, j), adopting the type of a uniformly chosen active individual at colony j . Here,
the migration kernel a(·, ·) is assumed to satisfy Assumption 2.1. After a migration
to colony i , the only variable that is affected is Xi , the number of type-♥ active
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Table 2 Scheme of transitions in the multi-colony model

Initial state Event Final state Transition rate

(Xi , Yi )i∈Zd Migration from colony j to i (· · · , (Xi − 1, Yi ), · · · ) a(i, j)Xi (N j − X j )/N j

(· · · , (Xi + 1, Yi ), · · · ) a(i, j)(Ni − Xi )X j /N j

Exchange at colony i (· · · , (Xi − 1, Yi + 1), · · · ) λXi (Mi − Yi )/Mi

(· · · , (Xi + 1, Yi − 1), · · · ) λ(Ni − Xi )Yi /Mi

individuals at colony i . The final state can be either Xi − 1 or Xi + 1 depending on
whether a type-♥ active individual from colony i chooses a type-♠ active individual
from another colony or a type-♠ active individual from colony i chooses a type-♥
active individual from another colony. The rate at which Xi changes to Xi − 1 due to
a migration from colony j is

a(i, j)Xi
N j−X j

N j
,

while the rate at which Xi changes to Xi + 1 due to a migration from colony j is

a(i, j)(Ni − Xi )
X j
N j

.

Note that for i = j the migration rate is

a(i, i)Xi
Ni−Xi
Ni

= Xi (Ni−Xi )
2Ni

,

which is the sameas the effective birth anddeath rate in the single-colonyMoranmodel.
Thus, the resampling within each colony is already taken care of via the migration.

It remains to define the associated exchange mechanism between the active and the
dormant individuals in a colony. The exchange mechanism is the same as in the single-
colonymodel, i.e. in each colony each active individual at rate λ performs an exchange
with a dormant individual chosen uniformly from the seed-bank of that colony. For
simplicity, we take the exchange rate λ to be the same in each colony.

The state space X of the process is

X :=
∏

i∈Zd

{0, 1, . . . , Ni } × {0, 1, . . . , Mi } =
∏

i∈Zd

[Ni ] × [Mi ]. (3.12)

A configuration η ∈ X is denoted by η = (Xi ,Yi )i∈Zd , with Xi ∈ [Ni ] and Yi ∈ [Mi ].
For each i ∈ Z

d , let δi,A = (Xn,Yn)n∈Zd and δi,D = (X̂n, Ŷn)n∈Zd be the configura-
tions defined as

(Xn,Yn) := (1{n=i}, 0), (X̂n, Ŷn) := (0, 1{n=i}) ∀ n ∈ Z
d . (3.13)
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For two configurations η = (X̄i , Ȳi )i∈Zd and ξ = (X̂i , Ŷi )i∈Zd , we define η ± ξ :=
(Xi ,Yi )i∈Zd ∈ X by setting, for each i ∈ Z

d ,

Xi = (X̄i ± X̂i )1{0≤X̄i±X̂i≤Ni } + Ni 1{X̄i±X̂i>Ni },

Yi = (Ȳi ± Ŷi )1{0≤Ȳi±Ŷi≤Mi } + Mi 1{Ȳi±Ŷi>Mi }.
(3.14)

Throughout the remainder of this paper, we adopt the convention given in (3.14) for
addition and subtraction of configurations in X .

The generator L for the process, acting on functions in

D = {
f ∈ C(X ) : f depends on finitely many coordinates

}
, (3.15)

is given by

L = LMig + LRes + LExc, (3.16)

where

(LMig f )(η) =
∑

i∈Zd

∑

j∈Zd ,

j �=i

a(i, j)

N j

{
Xi (N j − X j )[ f (η − δi,A) − f (η)]

+ X j (Ni − Xi )[ f (η + δi,A) − f (η)]
}

(3.17)

describes the resampling of active individuals in different colonies (= migration),

(LRes f )(η) =
∑

i∈Zd

Xi (Ni − Xi )

2Ni
[ f (η − δi,A) + f (η + δi,A) − 2 f (η)] (3.18)

describes the resampling of active individuals in the same colony, and

(LExc f )(η) =
∑

i∈Zd

λ

Mi

{
Xi (Mi − Yi )[ f (η − δi,A + δi,D) − f (η)]

+ Yi (Ni − Xi )[ f (η + δi,A − δi,D) − f (η)]
} (3.19)

describes the exchange of active and dormant individuals in the same colony.
From now on, we denote the process associated with the generator L by

Z = (Z(t))t≥0, Z(t) = (Xi (t),Yi (t))i∈Zd , (3.20)

with Xi (t) and Yi (t) representing the number of type-♥ active and dormant individuals
at colony i at time t , respectively. Since Z is an interacting particle system, in order to
show existence and uniqueness of the process, we can in principle follow the method
described by Liggett in [25, Chapter I, Section 3]. However, for Liggett’s method to
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Fig. 2 Scheme of transitions in the interacting particle system. Each block depicts the reservoirs located
at sites of Z

d . The blue lines represent the evolution of active particles, and the red lines represent the
evolution of dormant particles (Color figure online)

work, a uniform bound on the sizes (Ni , Mi )i∈Zd is needed that we want to avoid.
Fortunately, if L is a Markov pregenerator (see [25, Definition 2.1]), then we can
construct the process by providing a unique solution to the martingale problem for L .
The following proposition tells us that L is indeed a Markov pregenerator and thus
prepares the ground for proving the well-posedness of the martingale problem for L .

Proposition 3.6 (Pregenerator) The generator L defined in (3.16), acting on functions
in D defined in (3.15), is a Markov pregenerator.

The existence of solutions to the martingale problem will be shown by using the
techniques described in [25]. In order to establish uniqueness of the solution, we will
need to exploit the dual process.

3.2.2 Duality

The dual process is a block-counting process associated with a spatial version of
the interacting seed-bank coalescent described in Sect. 3.1.3. We briefly describe the
spatial coalescent process in terms of an interacting particle system. At each site
i ∈ Z

d , there are two reservoirs, an active reservoir and a dormant reservoir, with
Ni ∈ N and Mi ∈ N labelled locations, respectively. Each location in a reservoir can
accommodate at most one particle. As before, we refer to the particles in an active
and dormant reservoir as active particles and dormant particles, respectively. The
dynamics of the interacting particle system is as follows (see Fig. 2).

• An active particle at site i ∈ Z
d becomes dormant at rate λ by moving to a random

labelled location (out of Mi many) in the dormant reservoir at site i when the
chosen labelled location is empty; otherwise, it remains in the active reservoir.

• A dormant particle at site i ∈ Z
d becomes active at rate λKi with Ki = Ni

Mi
by

moving to a random labelled location (out of Ni many) in the active reservoir
at site i when the chosen labelled location is empty; otherwise, it remains in the
dormant reservoir.

• An active particle at site i chooses a random labelled location (out of N j many)
from the active reservoir at site j at rate a(i, j) and does the following:
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– If the chosen location in the active reservoir at site j is empty, then the particle
moves to site j and thereby migrates from the active reservoir at site i to the
active reservoir at site j .

– If the chosen location in the active reservoir at site j is occupied by a particle,
then it coalesces with that particle.

Note that an active particle can migrate between different sites in Z
d and can coalesce

with another active particle even when they are at different sites in Z
d . For simplicity,

we will impose the same assumptions on the migration kernel a(·, ·) as stated in
Assumption 2.1. A configuration (ηi )i∈Zd of the particle system is an element of∏

i∈Zd {0, 1}Ni × {0, 1}Mi . For i ∈ Z
d , ηi represents the state of the labelled locations

in the active and the dormant reservoir at site i (1 means occupied by a particle, 0
means empty).

Below we give the definition of the block-counting process associated with the
spatial coalescent process described above. Although it is an interesting problem to
construct the block-counting process starting from a configurationwith infinitelymany
particles, we will restrict ourselves to configurations with finitely many particles only
because this makes the state space countable. Thus, the block-counting process is a
continuous-time Markov chain on a countable state space, and hence, in the definition
below, it suffices to specify the possible transitions and their respective rates only.

Definition 3.7 (Dual) The dual process

Z∗ = (Z∗(t))t≥0, Z∗(t) = (ni (t),mi (t))i∈Zd , (3.21)

is a continuous-time Markov chain with state space

X ∗ :=
{
(ni ,mi )i∈Zd ∈

∏

i∈Zd

[Ni ] × [Mi ] :
∑

i∈Zd

(ni + mi ) < ∞
}

(3.22)

and with transition rates

(nk ,mk)k∈Zd

→

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(nk ,mk)k∈Zd − δi,A at rate 2a(i,i)
Ni

(ni
2

)
1{ni≥2} + ∑

j∈Zd ,

j �=i

ni a(i, j)n j
N j

for i ∈ Z
d ,

(nk ,mk)k∈Zd − δi,A + δi,D at rate λni (Mi−mi )
Mi

for i ∈ Z
d ,

(nk ,mk)k∈Zd + δi,A − δi,D at rate λ(Ni−ni )mi
Mi

for i ∈ Z
d ,

(nk ,mk)k∈Zd − δi,A + δ j,A at rate
ni a(i, j)(N j−n j )

N j
for i �= j ∈ Z

d ,

(3.23)

where the configurations δi,A, δi,D ∈ X ∗ ⊂ X are as in (3.13), and additions and
subtractions of configurations are performed in accordance with (3.14). �

Here, ni (t) and mi (t) are the number of active and dormant particles at site i ∈ Z

d

at time t . The first transition describes the coalescence of an active particle at site i
with other active particles elsewhere. The second and third transitions describe the
movement of particles between the active and the dormant reservoir at site i . The
fourth transition describes the migration of an active particle from site i to site j . The
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following lemma tells us that the dual process Z∗ is a well-defined and non-explosive
(equivalent to uniqueness) Feller process on the countable state space X ∗.

Lemma 3.8 (Uniqueness of dual) There exists a unique minimal Feller process
(Z∗(t))t≥0 on X ∗ with transition rates given in (3.23).

Before we proceed we recall the definition of the martingale problem.

Definition 3.9 (Martingale problem) Suppose that (L,D) is a Markov pregenerator,
and let η ∈ X . A probability measure Pη (or, equivalently, a process with law Pη) on
D([0,∞),X ) is said to solve the martingale problem for L with initial point η if

• Pη[ξ(·) ∈ D([0,∞),X ) : ξ0 = η] = 1.
• ( f (ηt ) − ∫ t

0 (L f )(ηs) ds)s≥0 is a martingale relative to (Pη, (Ft )t≥0) for all f ∈
D, where (ηt )t≥0 is the coordinate process on D([0,∞),X ) and (Ft )t≥0 is the
filtration given by Ft := σ(ηs | s ≤ t) for t ≥ 0. �

The following theorem gives the duality relation between the dual process Z∗ and
any solution to the martingale problem for (L,D). This type of duality is sometimes
referred to as martingale duality.

Theorem 3.10 (Duality relation) Let the process Z with law Pη be a solution to the
martingale problem for (L,D) starting from initial state η = (Xi ,Yi )i∈Zd ∈ X . Let
Z∗ be the dual process with law P

ξ starting from initial state ξ = (ni ,mi )i∈Zd ∈ X ∗.
For t ≥ 0, let Γ (t) be the random variable defined by

Γ (t) := max
{
‖i‖: i ∈ Z

d , ni (s) + mi (s) > 0 for some 0 ≤ s ≤ t
}
. (3.24)

Suppose that the sizes (Ni )i∈Zd of the active populations are such that for any T > 0,

∑

i∈Zd

Ni P
ξ
(
Γ (T ) ≥ ‖i‖) < ∞. (3.25)

Then, for any t ≥ 0,

Eη

⎡

⎣
∏

i∈Zd

(Xi (t)
ni

)

(Ni
ni

)

(Yi (t)
mi

)

(Mi
mi

) 1{ni≤Xi (t),mi≤Yi (t)}

⎤

⎦

= E
ξ

⎡

⎣
∏

i∈Zd

( Xi
ni (t)

)

( Ni
ni (t)

)

( Yi
mi (t)

)

( Mi
mi (t)

)1{ni (t)≤Xi ,mi (t)≤Yi }

⎤

⎦ , (3.26)

where the expectations are taken with respect to Pη and P
ξ , respectively.

Note that the duality function is a product over all colonies of the duality function that
appeared in the single-colony model. The infinite products are well defined: all but
finitely many factors are 1, because of our assumption that there are only finitely many
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particles in the dual process. Also note that there is no restriction on (Mi )i∈Zd , the
sizes of the dormant populations. This is because dormant individuals do not migrate
and therefore do not feel the spatial extent of the system.

At first glance, it may seem that (3.25) places a severe restriction on (Ni )i∈Zd , the
sizes of the active populations. However, this is not the case. The following corollary
provides us with a large class of active population sizes for which Theorem 3.10 is
true under mild assumptions on the migration kernel a(·, ·).
Corollary 3.11 (Duality criterion) Suppose that Assumption 2.1 is in force. Then,
(3.25) and consequently the duality relation in (3.26) hold for every (Ni )i∈Zd ∈ N ,
where

(a) either

N :=
{
(Ni )i∈Zd ∈ N

Z
d : lim‖i‖→∞

1

‖i‖ log Ni = 0

}
(3.27)

when
∑

i∈Zd eδ‖i‖a(0, i) < ∞ for some δ > 0,
(b) or

N :=
{

(Ni )i∈Zd ∈ N
Z
d : sup

i∈Zd\{0}
Ni

‖i‖δ
< ∞

}
(3.28)

when
∑

i∈Zd ‖i‖γ a(0, i) < ∞ for some δ > 0 and γ > d + δ.

Corollary 3.11 shows a trade-off : the more we restrict the tails of the migration kernel,
the less we need to restrict the sizes of the active populations.

3.2.3 Well-Posedness

We use a martingale problem for the generator L defined in (3.16), in the sense of [9,
p.173], to construct Z . The following proposition gives existence of solutions for any
choice of the reservoir sizes. As for the uniqueness of solutions, we will see that a
restriction on the sizes of the active populations is required.

Proposition 3.12 (Existence) Let L be the generator defined in (3.16) acting on the
set of local functionsD defined in (3.15). Then, for all η ∈ X there exists a solution Pη

(a probability measure on D([0,∞),X )) to the martingale problem of (L,D) with
initial state η.

The following theorem gives the well-posedness of the martingale problem for
(L,D) under a restricted class of sizes of the active populations and thus proves the
existence of a unique Feller Markov process describing our multi-colony model.

Theorem 3.13 (Well-posedness) Let (Ni )i∈Zd ∈ N and (Mi )i∈Zd ∈ N
Z
d
, and let L

be the generator defined in (3.16) acting on the set of local functions D defined in
(3.15). Then, the following hold:
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• For all η ∈ ∏
i∈Zd [Ni ] × [Mi ], there exists a unique solution Z in D([0,∞),X )

of the martingale problem for (L,D) with initial state η.
• Z is Feller and strong Markov, and its generator is an extension of (L,D).

In viewof the above result, fromhere onwards,we implicitly assume that the restriction
on (Ni )i∈Zd to N is always in force.

3.2.4 Equilibrium

Let us set Zi (t) := (Xi (t),Yi (t)) for i ∈ Z
d and denote by μ(t) the distribution of

Z(t). Further, for each θ ∈ [0, 1] and i ∈ Z
d , let νiθ be the probability measure on

[Ni ] × [Mi ] defined as

νiθ := Binomial(Ni , θ) ⊗ Binomial(Mi , θ). (3.29)

For θ ∈ [0, 1], let νθ be the distribution on X defined by νθ :=
⊗

i∈Zd

νiθ and set

J := {νθ | θ ∈ [0, 1]}. (3.30)

Let D : X × X ∗ → [0, 1] be the function defined by

D((Xk,Yk)k∈Zd ; (nk,mk)k∈Zd ) :=
∏

i∈Zd

(Xi
ni

)

(Ni
ni

)

(Yi
mi

)

(Mi
mi

)1{ni≤Xi ,mi≤Yi }. (3.31)

Theorem 3.14 (Convergence to equilibrium) Suppose that μ(0) = νθ ∈ J for some
θ ∈ [0, 1]. Then, there exists a probability measure ν determined by the parameter θ

such that

• lim
t→∞ μ(t) = ν.

• ν is an equilibrium for the process Z.
• Eν[D(Z(0); η)] = lim

t→∞ E
η[θ |Z∗(t)|], where D(·, ·) is defined in (3.31), the

right expectation is taken w.r.t. the dual process Z∗ started at configuration
η = (ni ,mi )i∈Zd ∈ X ∗ and |Z∗(t)| := ∑

i∈Zd [ni (t) + mi (t)] is the total number
of dual particles present at time t.

Corollary 3.15 Let ν be the equilibrium measure of Z in Theorem 3.14 corresponding
to θ ∈ [0, 1]. Then,

Eν

[
Xi (0)
Ni

]
= Eν

[
Yi (0)
Mi

]
= θ. (3.32)

3.2.5 Clustering Criterion

We next analyse the long-time behaviour of the multi-colony Moran model with seed-
banks. Our interest is to capture the nature of the equilibrium. To be precise, we
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investigate whether coexistence of different types is possible in equilibrium. The
measures

⊗
i∈Zd δ(0,0) and

⊗
i∈Zd δ(Ni ,Mi ) are the trivial equilibria where the sys-

tem concentrates on only one of the two types. When the system converges to an
equilibrium that is not a mixture of these two trivial equilibria, we say that coexis-
tence happens. For i ∈ Z

d , let us denote the frequency of type-♥ active and dormant
individuals at colony i at time t by xi (t) := Xi (t)

Ni
and yi (t) := Yi (t)

Mi
respectively.

Definition 3.16 (Clustering and Coexistence) The system is said to exhibit clustering
if the following hold:

• lim
t→∞ Pη(xi (t) ∈ {0, 1}) = 1, lim

t→∞ Pη(yi (t) ∈ {0, 1}) = 1,

• lim
t→∞ Pη(xi (t) �= x j (t)) = 0, lim

t→∞ Pη(yi (t) �= y j (t)) = 0,

• lim
t→∞ Pη(xi (t) �= y j (t)) = 0,

for all i, j ∈ Z
d and any initial configuration η ∈ X . Otherwise, the system is said to

exhibit coexistence. �

The above conditions make sure that if an equilibrium exists, then it is a mixture of
the two trivial equilibria.

The following criterion, which follows from Corollary 3.11, gives an equivalent
condition for clustering.

Theorem 3.17 (Clustering criterion) The system clusters if and only if in the dual
process defined in Definition 3.7 two particles, starting from any locations in Z

d and
any states (active or dormant), coalesce with probability 1.

Note that the system clusters if and only if the genetic variability at time t between any
two colonies converges to 0 as t → ∞. From the duality relation in Theorem 3.10, it
follows that this quantity is determined by the state of the dual process starting from
two particles.

4 Proofs: Duality and Equilibrium for the Single-ColonyModel

Section 4.1 contains the proof of Theorem 3.2, which follows the algebraic approach
to duality described in [4,30]. Section 4.2 contains the proof of Proposition 3.3 and
Corollary 3.4, which uses the duality in the single-colony model.

4.1 Duality and Change of Representation

Before we proceed with the proof of Theorem 3.2, and other results related to stochas-
tic duality, it is worth stressing the importance of duality theory. Though originally
introduced in the context of interacting particle systems, over the last decade duality
theory has gained popularity in various fields, ranging from statistical physics and
stochastic analysis to population genetics. One reason behind this wide interests is the
simplification that duality provides: it often allows one to extract information about a
complex stochastic process through a simpler process. To date, in the literature there
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exist two systematic approaches towards duality, namely pathwise construction and
Lie-algebraic framework. The former of the two approaches is more practical and
widespread in the context of mathematical population genetics [7,16,20,21], while the
latter has been developed more recently and reveals deeper mathematical structures
behind duality, and often also provides a larger class of duality functions (see, for
example, [4,10,17,30] for a general overview and further references). In what fol-
lows, we adopt the Lie algebraic framework suggested by Carinci et al. (2015) [4]
and prepare the ground for this setting. The downside is that this approach does not
capture the underlying genealogy of the original process. However, it does offer the
opportunity to obtain a larger class of duality functions by applying symmetries from
the Lie algebra to an already existing duality function [11]. In this paper, we refrain
from exploring the latter aspect of the Lie-algebraic framework.

We start with briefly recalling that a (real) Lie algebra g is a linear space over
R endowed with a so-called Lie bracket [·, ·] : g × g → g that is bilinear, skew-
symmetric and satisfies the Jacobi identity [30]. The requirement of the bilinearity
and skew-symmetry uniquely characterizes a Lie bracket by its action on a basis of
g. An example of a (real) Lie algebra is the well-known su(2)-algebra, which is the
three-dimensional vector space over R defined by the action of a Lie bracket on its
basis elements {J+, J−, J 0} as

[J 0, J+] = J+, [J 0, J−] = −J−, [J−, J+] = −2J 0. (4.1)

For α ∈ N, let Vα be the linear space of all functions f : [α] → R, and let gl(Vα)

denote the space of all linear operators onVα .Note thatgl(Vα) is a (1+α)2-dimensional
Lie algebra with the natural choice of Lie bracket given by [A, B] := AB − BA for
A, B ∈ gl(Vα). Let us define the operators Jα,±, Jα,0, Aα,±, Aα,0 ∈ gl(Vα) acting on
f : [α] → R as

Jα,+ f (n) = (α − n) f (n + 1), Jα,− f (n) = n f (n − 1), Jα,0 f (n) = (n − α
2 ) f (n),

Aα,+ = Jα,− − Jα,+ − 2Jα,0, Aα,− = Jα,+, Aα,0 = Jα,+ + Jα,0. (4.2)

It is straightforward to see that

[Aα,0, Aα,±] = ±Aα,±, [Aα,−, Aα,+] = −2Aα,0, (4.3)

which are the same commutation relations as in (4.1). Thus, for each α ∈ N, the
Lie homomorphism φα : su(2) → gl(Vα) defined by its action on the generators
{J+, J−, J 0} given by

J+ �→ Aα,+, J− �→ Aα,−, J 0 �→ Aα,0, (4.4)

is a finite-dimensional representation of su(2). Similarly, we can verify that
{Jα,+, Jα,−, Jα,0}, α ∈ N, form a representation of the dual su(2)-algebra (defined
by the commutation relations in (4.1), but with opposite signs).
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Belowwe introduce the notion of duality between two operators and prove a lemma
that will be crucial in the proof of duality of both the single-colony and the multi-
colony model. The relevance to our context of the above discussion on su(2) and its
dual algebra will become clear as we go along.

Definition 4.1 (Operator duality) Let A and B be two operators acting on functions
f : Ω → R and g : Ω̂ → R, respectively. We say that A is dual to B with respect

to the duality function D : Ω × Ω̂ → R, denoted by A
D−→ B, if (AD(·, y))(x) =

(BD(x, ·))(y) for all (x, y) ∈ Ω × Ω̂ . �

The following lemma intertwines the su(2) and its dual algebrawith a duality function.

Lemma 4.2 (Single-colony intertwiner) For α ∈ N, let dα : [α] × [α] → [0, 1] be
the function defined by

dα(x, n) =
(x
n

)
(
α
n

)1{n≤x}. (4.5)

Then, the following duality relations hold:

Jα,+ dα−→ Aα,+, Jα,− dα−→ Aα,−, Jα,0 dα−→ Aα,0. (4.6)

Proof By straightforward calculations, it can be shown that dα(x, n) satisfies the rela-
tions

(α−x) dα(x+1, n) = n [dα(x, n−1)−dα(x, n)]+(α − n) [dα(x, n)−dα(x, n+1)],
x dα(x − 1, n) = (α − n) dα(x, n),

x dα(x, n) = (α − n) dα(x, n + 1) + n dα(x, n),

(4.7)

from which the above dualities in (4.6) follow immediately. �

Remark 4.3 (Seed-bank and su(2)-algebra) The basic idea behind the algebraic
approach to duality is to write the generator of a given process in terms of simple
operators that form a representation of some known Lie algebra and to make an ansatz
to obtain an intertwiner of the chosen representation. The intertwiner dα in the above
lemma was first identified in [12, Lemma 1] as a duality function in disguise for the
classical duality between the Moran model and the block-counting process of King-
man’s coalescent. Recently, in [4] this duality was put in the algebraic framework
by deriving it from an intertwining via dα of two representations of the Heisenberg
algebraH (2). The connection of dα to the su(2)-algebra was also made in [11, Sec-
tion 3.2], where the authors obtained a self-duality function of 2 j-SEP factorized in
terms of dα by considering symmetries related to the su(2)-algebra. The relation of our
seed-bankmodel to the su(2)-algebra becomes clear oncewe realize that the seed-bank
component in our single-colony model is an inhomogeneous version of the 2 j-SEP
on two sites. Thus, it is natural to expect that the classical duality of Moran model can
be retrieved from representations of su(2)-algebra as well. The above lemma indeed
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provides the ingredients to establish the duality of our single-colony model from rep-
resentations of the su(2)-algebra. Although it is possible to guess the dual process
of the single-colony model without going into the Lie-algebraic framework, the true
usefulness of this approach lies in identifying the dual of the spatial model, where
such speculation is no longer feasible. �

Proof of Theorem 3.2 Recall that both Z = (X(t),Y (t))t≥0 and Z∗ = (nt ,mt )t≥0 live
on the state space Ω = [N ] × [M]. Let D : Ω × Ω → [0, 1] be the function defined
by

D
(
(X ,Y ); (n,m)

) =
(X
n

)
(N
n

)
(Y
m

)
(M
m

)1{n≤X ,m≤Y } = dN (X , n)dM (Y ,m),

(X ,Y ), (n,m) ∈ Ω. (4.8)

Let G = GMor + GExc be the generator of the process Z , where GMor,GExc are as in
(3.2)–(3.3). Also note from (3.7) that the generator Ĝ of the dual process is given by
Ĝ = GKing + GExc where GKing : C(Ω) → C(Ω) is defined as

(GKing f )(n,m) = n(n − 1)

2N
[ f (n − 1,m) − f (n,m)], (n,m) ∈ Ω. (4.9)

Since Ω is countable, it is enough to show the generator criterion for duality, i.e.

(
GD( · ; (n,m))

)
(X ,Y ) = (

ĜD((X ,Y ); · ))(n,m), (X ,Y ), (n,m) ∈ Ω.

(4.10)

In our notation, (4.10) translates into G
D−→ Ĝ. It is somewhat tedious to verify

(4.10) by direct computation. Rather, we will write down a proof with the help of the
elementary operators defined in (4.2). This approach will also reveal the underlying
change of representation of the two operators G, Ĝ that is embedded in the duality.

Note that

GKing = 1
2N

[
(AN ,+

1 − AN ,−
1 + 2AN ,0

1 )AN ,0
1 + N

2 (AN ,+
1 + AN ,−

1 − N )
]
,

GMor = 1
2N

[
J N ,0
1 (J N ,+

1 − J N ,−
1 + 2J N ,0

1 ) + N
2 (J N ,+

1 + J N ,−
1 − N )

]
,

GExc = λ
M

[
J N ,+
1 J M,−

2 + J N ,−
1 J M,+

2 + 2J N ,0
1 J M,0

2 − NM
2

]

= λ
M

[
AN ,+
1 AM,−

2 + AN ,−
1 AM,+

2 + 2AN ,0
1 AM,0

2 − NM
2

]
,

(4.11)

where the subscripts indicatewhich variable of the associated function the operators act
on. For example, J N ,+

1 and J M,+
2 act on the first and second variable, respectively. So,

for a function f : [N ] × [M] → R, we have (J N ,+
1 f )(n,m) = (J N ,+ f ( · ; m))(n)

and (J M,+
2 f )(n,m) = (J M,+ f (n ; · ))(m). The equivalent version of Lemma 4.2

holds for these operators with subscript as well, except that the duality function is
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D. In other words, J N ,+
1

D−→ AN ,+
1 , J M,+

2
D−→ AM,+

2 , and so on. Using these

duality relations and the representations in (4.11), we have GMor
D−→ GKing and

GExc
D−→ GExc, where we use:

• Two operators acting on different sites commute with each other.

• For some duality function d and operators A, B, Â, B̂, if A
d−→ Â, B

d−→ B̂,

then, for any constants c1, c2, AB
d−→ B̂ Â and c1A + c2B

d−→ c1 Â + c2 B̂.

Since G = GMor + GExc and Ĝ = GKing + GExc, we have G
D−→ Ĝ, which proves

the claim. �


4.2 Equilibrium

Proof (Proof of Proposition 3.3.) For x ∈ R and r ∈ N, let (x)r be the falling factorial
defined as

(x)r = x(x − 1) × · · · × (x − r + 1), (4.12)

where we put (x)r = 1 when r = 0. For any n ∈ N0, we can write xn as

xn =
n∑

j=0

cn, j (x) j , (4.13)

where the constants cn, j (known as the Stirling numbers of the second kind) are
unique and depend only on n and j ∈ [n]. Let (n,m) ∈ Ω = [N ] × [M] be such that
(n,m) �= (0, 0), and let (nt ,mt )t≥0 be the dual process in Definition 3.7. It follows
from (4.13) and Theorem 3.2 that

lim
t→∞ E(X ,Y )[X(t)nY (t)m]

=
n∑

i=0

m∑

j=0

cn,i cm, j lim
t→∞ E(X ,Y )[(X(t))i (Y (t)) j ]

=
n∑

i=0

m∑

j=0

cn,i cm, j (N )i (M) j lim
t→∞ E(X ,Y )[D((X(t),Y (t)); (i, j))]

=
n∑

i=0

m∑

j=0

cn,i cm, j (N )i (M) j lim
t→∞ E

(i, j)[D((X ,Y ); (nt ,mt ))],

(4.14)

where D : Ω × Ω → [0, 1] is the duality function in Theorem 3.2, defined by

D((X ,Y ); (n,m)) = (Xn)

(Nn )

(Ym)

(Mm)
1{n≤X ,m≤Y } ≡ (X)n(Y )m

(N )n(M)m
, (4.15)
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and the expectation in the last line of (4.14) is with respect to the dual process. Let T
be the first time at which there is only one particle left in the dual, i.e. T = inf{t >

0 : nt + mt = 1}. Note that, for any initial state (i, j) ∈ Ω\{(0, 0)}, T < ∞ with
probability 1, and the distribution of (nt ,mt ) converges as t → ∞ to the invariant
distribution N

N+M δ(1,0) + M
N+M δ(0,1). So, for any (i, j) ∈ Ω\{(0, 0)},

lim
t→∞ E

(i, j)[D((X ,Y ); (nt ,mt ))]
= lim

t→∞ E
(i, j)[D((X ,Y ); (nt ,mt )) | T ≤ t] P

(i, j)(T ≤ t)

+ lim
t→∞ E

(i, j)[D((X ,Y ); (nt ,mt )) | T > t]︸ ︷︷ ︸
≤1

P
(i, j)(T > t)

= lim
t→∞

[
X
N P

(i, j)(nt = 1,mt = 0) + Y
M P

(i, j)(nt = 0,mt = 1)
]

= X

N

N

N + M
+ Y

M

M

N + M
= X + Y

N + M
,

(4.16)

where we use that the second term after the first equality converges to 0 because
T < ∞ with probability 1. Combining (4.16) with (4.14), we get

lim
t→∞ E(X ,Y )[X(t)nY (t)m]

=
n∑

i=0

m∑

j=0

cn,i cm, j (N )i (M) j lim
t→∞ E

(i, j)[D((X ,Y ); (nt ,mt ))]

= X + Y

N + M

(
n∑

i=0

cn,i (N )i

)⎛

⎝
m∑

j=0

cm, j (M) j

⎞

⎠ +
(
1 − X+Y

N+M

)
cn,0cm,0

= NnMm X + Y

N + M
,

(4.17)

where the last equality follows from (4.13) and the fact that cn,0cm,0 = 0 when
(n,m) �= (0, 0). �

Proof (Proof of Corollary 3.4.)Note that the distribution of a two-dimensional random
vector (Z1, Z2) taking values in [N ] × [M] is determined by the mixed moments
E[Zi

1Z
j
2 ], i, j ∈ [N ] × [M]. For i ∈ I = [NM], let pi = P((Z1, Z2) = f −1(i)),

where f : [N ] × [M] → I is a bijection. For i ∈ I , let ci = E[Zx
1 Z

y
2 ], where

(x, y) = f −1(i). We can write c = A p, where p = (pi )i∈I , c = (ci )i∈I and A
is an invertible (N + 1)(M + 1) × (N + 1)(M + 1) matrix. Hence, p = A−1c is
uniquely determined by the mixed moments, and convergence of the mixed moments
of (X(t),Y (t)) as shown in Proposition 3.3 is enough to conclude that (X(t),Y (t))
converges in distribution as t → ∞ to a random vector (X∞,Y∞) taking values in
[N ]× [M]. The distribution of (X∞,Y∞) is also uniquely determined and is given by
X+Y
N+M δ(N ,M) + (1 − X+Y

N+M )δ(0,0). �
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5 Proofs: Duality andWell-Posedness for theMulti-colonyModel

In Sect. 5.1, we give the proof of Lemma 3.8. In Sect. 5.2, we introduce equivalent
versions for the multi-colony setting of the operators defined in (4.2) for the single-
colony setting, and use these to prove Theorem 3.10 and Corollary 3.11. In Sect. 5.3,
we prove Propositions 3.6, 3.12 and Theorem 3.13.

5.1 Proof of Lemma 3.8

Proof Note that the rate-matrix is nothing but the dual generator Ldual obtained from
the rates specified in (3.23). The action of Ldual on a function f : X ∗ → R is given
by

(Ldual f )(ξ) =
∑

i∈Zd

⎡

⎢⎢⎣
ni (ni−1)

2Ni
+ ni

∑

j∈Zd ,

j �=i

a(i, j)
n j
N j

⎤

⎥⎥⎦
[
f (ξ − δi,A) − f (ξ)

]

+
∑

i∈Zd

λ ni
(Mi−mi )

Mi

[
f (ξ − δi,A + δi,D) − f (ξ)

]

+
∑

i∈Zd

λ(Ni − ni )
mi
Mi

[
f (ξ + δi,A − δi,D) − f (ξ)

]

+
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)ni
N j−n j
N j

[
f (ξ − δi,A + δ j,A) − f (ξ)

]
,

(5.1)

where ξ = (ni ,mi )i∈Zd ∈ X ∗ and the configurations δi,A, δi,D ∈ X ∗ ⊂ X are as
in (3.13). It is enough to show that Ldual satisfies the well-known Foster–Lyapunov
criterion for stability (see, for example, [27, Theorem 2.1] or [6, Theorem (1.11)] for
Markov processes on countable state spaces), i.e.

(LdualV )(ξ) ≤ pV (ξ) ∀ξ ∈ X ∗, (5.2)

for some p > 0 with V : X ∗ → (0,∞) a function such that there exist (Ek)k∈N with
Ek ↑ X ∗ and inf x /∈Ek V (x) → ∞ as k → ∞.

Let us define the function V : X ∗ → (0,∞) as

V ((ni ,mi )i∈Zd ) := 1 +
∑

i∈Zd

(ni + mi ), (ni ,mi )i∈Zd ∈ X ∗, (5.3)

and, for k ∈ N, set

Ek :=
{
(ni ,mi )i∈Zd ∈ X ∗ :

∑

i∈Zd

ni + mi ≤ k
}
. (5.4)
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Since X ∗ contains configurations with finitely many particles, V is well defined. It is
straightforward to see that

Ek ↑ X ∗, lim
k→∞ inf

x /∈Ek
V (x) = ∞. (5.5)

Let ξ = (ni ,mi )i∈Zd ∈ X ∗ be arbitrary. Note that, for any i, j ∈ Z
d with i �= j ,

[V (ξ − δi,A) − V (ξ)] = −1{ni≥1},
[V (ξ + δi,A − δi,D) − V (ξ)](Ni − ni )mi = 0,

[V (ξ − δi,A + δi,D) − V (ξ)] ni (Mi − mi ) = 0,

[V (ξ − δi,A + δ j,A) − V (ξ)] ni (N j − n j ) = 0

(5.6)

and so by using (5.1) we obtain

|(LdualV )(ξ)| ≤
∑

i∈Zd

⎡

⎢⎢⎣
ni (ni−1)

2Ni
+ ni

∑

j∈Zd ,

j �=i

a(i, j)
n j
N j

⎤

⎥⎥⎦ |V (ξ − δi,A) − V (ξ)|

≤
∑

i∈Zd

⎡

⎣ ni
2 + ni

∑

j∈Zd

a(i, j)

⎤

⎦ ≤ max{1, c}
∑

i∈Zd

ni ≤ max{1, c}V (ξ),

(5.7)

where c = ∑
i∈Zd a(0, i) < ∞. Hence, setting p := max{1, c} > 0, we have that

(LdualV )(ξ) ≤ |(LdualV )(ξ)| ≤ p V (ξ), (5.8)

which proves our the claim. �


5.2 Duality

5.2.1 Generators and Intertwiners

Let f ∈ C(X ) and η = (Xi ,Yi )i∈Zd ∈ X , and let δi,A, δi,D be as in (3.13). Define
the action of the multi-colony operators as in Table 3.
The same duality relations as in Lemma 4.2 hold for these operators as well. The only
difference is that the duality function becomes the site-wise product of the duality
functions appearing in the single-colony model.

Lemma 5.1 (Multi-colony intertwiner) Let D : X × X ∗ → [0, 1] be the function
defined by

D((Xk,Yk)k∈Zd ; (nk,mk)k∈Zd ) =
∏

i∈Zd

(Xi
ni

)

(Ni
ni

)

(Yi
mi

)

(Mi
mi

)1{ni≤Xi ,mi≤Yi }, (5.9)
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Table 3 Action of operators on f ∈ C(X )

Operators acting on variable Xi , i ∈ Z
d Operators acting on variable Yi , i ∈ Z

d

J
Ni ,+
i,A f (η) = (Ni − Xi ) f (η + δi,A) J

Mi ,+
i,D f (η) = (Mi − Yi ) f (η + δi,D)

J
Ni ,−
i,A f (η) = Xi f (η − δi,A) J

Mi ,−
i,D f (η) = Yi f (η − δi,D)

J
Ni ,0
i,A f (η) = (Xi − Ni

2 ) f (η) J
Mi ,0
i,D f (η) = (Yi − Mi

2 ) f (η)

A
Ni ,+
i,A = J

Ni ,−
i,A − J

Ni ,+
i,A − 2J

Ni ,0
i,A A

Mi ,+
i,D = J

Mi ,−
i,D − J

Mi ,+
i,D − 2J

Mi ,0
i,D

A
Ni ,−
i,A = J

Ni ,+
i,A A

Mi ,−
i,D = J

Mi ,+
i,D

A
Ni ,0
i,A = J

Ni ,+
i,A + J

Ni ,0
i,A A

Mi ,0
i,D = J

Mi ,+
i,D + J

Mi ,0
i,D

where (Xk,Yk)k∈Zd ∈ X and (nk,mk)k∈Zd ∈ X ∗. Then, for every i ∈ Z
d and

s ∈ {0,+,−},

J Ni ,s
i,A

D−→ ANi ,s
i,A , J Mi ,s

i,D
D−→ AMi ,s

i,D . (5.10)

Proof The proof is exactly the same as the proof of Lemma 4.2. �

Proposition 5.2 (Generator criterion) Let L be the generator defined in (3.16), and L̂
the generator of the dual process defined in Definition 3.7. Furthermore, let D : X ×
X ∗ → [0, 1] be the function defined in Lemma 5.1. Then, L

D−→ L̂.

Proof Recall that L = LMig + LRes + LExc, where LMig, LRes, LEx are defined in
(3.17)–(3.19). In terms of the operators defined earlier, these have the following rep-
resentations:

LMig =
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)

N j

[(
J Ni ,+
i,A − J Ni ,−

i,A + 2J Ni ,0
i,A

)
J
N j ,0
j,A

+ N j
2

(
J Ni ,+
i,A + J Ni ,−

i,A − Ni

)]
,

LRes =
∑

i∈Zd

1

2Ni

[
J Ni ,0
i,A

(
J Ni ,+
i,A − J Ni ,−

i,A + 2J Ni ,0
i,A

)

+ Ni
2

(
J Ni ,+
i,A + J Ni ,−

i,A − Ni

)]
,

LExc =
∑

i∈Zd

λ

Mi

[
J Ni ,+
i,A J Mi ,−

i,D + J Ni ,−
i,A J Mi ,+

i,D + 2J Ni ,0
i,A J Mi ,0

i,D − Ni Mi
2

]

=
∑

i∈Zd

λ

Mi

[
ANi ,+
i,A AMi ,−

i,D + ANi ,−
i,A AMi ,+

i,D + 2ANi ,0
i,A AMi ,0

i,D − Ni Mi
2

]
.

(5.11)

Similarly, the generator L̂ of the dual process defined in Definition 3.7 acting on
f ∈ C(X ∗) is given by L̂ = L̂Mig + LExc + LKing, where
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L̂Mig f (ξ) =
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)

N j

{
ni (N j − n j )[ f (ξ − δi,A + δ j,A) − f (ξ)]

+ nin j [ f (ξ − δi,A) − f (ξ)]
}
,

LKing f (ξ) =
∑

i∈Zd

ni (ni − 1)

2Ni
[ f (ξ − δi,A) + f (ξ + δi,A) − 2 f (ξ)],

(5.12)

for ξ = (ni ,mi )i∈Zd ∈ X ∗. The representations of these operators are

L̂Mig =
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)

N j

[
A
N j ,0
j,A

(
ANi ,+
i,A − ANi ,−

i,A + 2ANi ,0
i,A

)

+ N j
2

(
ANi ,+
i,A + ANi ,−

i,A − Ni

)]
,

LKing =
∑

i∈Zd

1

2Ni

[(
ANi ,+
i,A ANi ,−

i,A + 2ANi ,0
i,A

)
ANi ,0
i,A

+ Ni
2

(
ANi ,+
i,A + ANi ,−

i,A − Ni

)]
. (5.13)

From Lemma 5.1 and the representations in (5.11)–(5.13), we see that LMig
D−→

L̂Mig, LRes
D−→ LKing and LEx

D−→ LEx, which yields L
D−→ L̂ . �


As shown in [22, Proposition 1.2], the generator criterion is enough to get the
required duality relation of Theorem 3.10 when both L and L̂ are Markov generators
of Feller processes. Since it is not a priori clear whether L (or its extension) is aMarkov
generator, we need to use [9, Theorem 4.11, Corollary 4.13].

5.2.2 Proof of Duality Relation

Proof of Theorem 3.10 We combine [9, Theorem 4.11 and Corollary 4.13] and reinter-
pret these in our context:

• Let (ηt )t≥0 and (ξt )t≥0 be two independent processes on E1 and E2 that are
solutions to the martingale problem for (L1,D1) and (L2,D2) with initial states
x ∈ E1 and y ∈ E2. Assume that D : E1 × E2 → R is such that D( · ; ξ) ∈ D1
for any ξ ∈ E2 and D(η ; ·) ∈ D2 for any η ∈ E1. Also assume that for each
T > 0, there exists an integrable random variable UT such that

sup
0≤s,t≤T

|D(ηt ; ξs)| ≤ UT , sup
0≤s,t≤T

|(L1D( · ; ξs))(ηt )| ≤ UT ,

sup
0≤s,t≤T

|(L2D(ηt ; · ))(ξs)| ≤ UT . (5.14)

If (L1D( · ; y))(x) = (L2D(x ; · ))(y), then Ex [D(ηt ; y)] = E
y[D(x, ξt )] for all

t ≥ 0.
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To apply the above, pick E1 = X , E2 = X ∗, L1 = L , L2 = Ldual, D1 = D,
D2 = C(X ∗), where Ldual is the generator of the dual process Z∗ and set D to be
the function defined in Lemma 5.1. Note that since D contains local functions only,
D( · ; ξ) ∈ D for any ξ ∈ X ∗ and, since X ∗ is countable, D(η ; · ) ∈ C(X ∗) for
any η ∈ X . Fix x = (Xi ,Yi )i∈Zd ∈ X and y = (ni ,mi )i∈Zd ∈ X ∗. Note that by
Proposition 5.2, (L1D( · ; y))(x) = (L2D(x ; · ))(y). Pick (ξt )t≥0 to be the process
Z∗ with initial state y. Note that (ξt )t≥0 is the unique solution to the martingale
problem for (Ldual,C(X ∗)) with initial state y. Let (ηt )t≥0 denote any solution Z to
the martingale problem for (L,D) with initial state x . Fix T > 0 and note that for
0 ≤ s, t < T ,

(L1D( · ; ξs))(ηt ) =
∑

i∈Zd

Xi (t)

⎡

⎣
∑

j∈Zd

a(i, j)
N j−X j (t)

N j

⎤

⎦[
D(ηt−δi,A; ξs)−D(ηt ; ξs)

]

+
∑

i∈Zd

(Ni − Xi (t))

⎡

⎣
∑

j∈Zd

a(i, j)
X j (t)
N j

⎤

⎦

× [
D(ηt + δi,A; ξs) − D(ηt ; ξs)

]

+
∑

i∈Zd

λXi (t)
Mi−Yi (t)

Mi

[
D(ηt − δi,A + δi,D; ξs) − D(ηt ; ξs)

]

+
∑

i∈Zd

λ(Ni−Xi (t))
Yi (t)
Mi

[
D(ηt+δi,A−δi,D; ξs) − D(ηt ; ξs)

]

(5.15)

and

(L2D(ηt ; · ))(ξs) =
∑

i∈Zd

⎡

⎢⎢⎣
ni (s)(ni (s)−1)

2Ni
+ ni (s)

∑

j∈Zd ,

j �=i

a(i, j)
n j (s)
N j

⎤

⎥⎥⎦

× [
D(ηt ; ξs − δi,A) − D(ηt ; ξs)

]

+
∑

i∈Zd

λ ni (s)
Mi−mi (s)

Mi

[
D(ηt ; ξs − δi,A + δi,D) − D(ηt ; ξs)

]

+
∑

i∈Zd

λ(Ni − ni (s))
mi (s)
Mi

[
D(ηt ; ξs + δi,A − δi,D) − D(ηt ; ξs)

]

+
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)ni (s)
N j−n j (s)

N j

× [
D(ηt ; ξs − δi,A + δ j,A) − D(ηt ; ξs)

]
.

(5.16)

The random variable Γ (t) defined in Theorem 3.10 is stochastically increasing in
time t , and if we change the configuration ηt outside the box [0, Γ (s)]d ∩ Z

d , then
the value of D(ηt ; ξs) does not change. Consequently, all the summands in (5.15) for
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‖i‖ > Γ (s), i ∈ Z
d , are 0, and since Γ (s) ≤ Γ (T ), we have the estimate

|(L1D( · ; ξs))(ηt )| ≤ 2(c + λ)
∑

i∈Zd‖i‖≤Γ (s)

Ni ≤ 2(c + λ)
∑

i∈Zd‖i‖≤Γ (T )

Ni , (5.17)

where c = ∑
i∈Zd a(0, i). Now, byDefinition 3.7, the process (ξt )t≥0 is the interacting

particle system with coalescence in which the total number of particles can only
decrease in time, and so

∑
i∈Zd (ni (s) + mi (s)) ≤ N , where N = ∑

i∈Zd (ni + mi ).
Also, since s ≤ T , for i ∈ Z

d with ‖i‖ > Γ (T ) we have ni (s) = mi (s) = 0. Hence,
from (5.16) we get

|(L2D(ηt ; · ))(ξs)| ≤ 2(c + λ)N + 2λ
∑

i∈Zd‖i‖≤Γ (T )

Ni . (5.18)

Define the random variable UT by

UT = 1 + 2(c + λ)N + 2(c + λ)
∑

i∈Zd‖i‖≤Γ (T )

Ni . (5.19)

Then, combining (5.17)–(5.18) with the fact that the function D takes values in [0, 1],
we see thatUT satisfies all the conditions in (5.14),while assumption (3.25) inTheorem
3.10 ensures the integrability of UT . �


5.2.3 Proof of Duality Criterion

Proof of Corollary 3.11 Let ξ = (ni ,mi )i∈Zd ∈ X ∗ and T > 0 be fixed. By Theorem
3.10, it suffices to show that for any (Ni )i∈Zd ∈ N ,

∑

i∈Zd

Ni P
ξ (Γ (T ) ≥ ‖i‖) < ∞, (5.20)

where P
ξ is the law of the dual process Z∗ started from initial state ξ . Let n =∑

i∈Zd (ni +mi ) be the initial number of particles, and let N (t) be the total number of
migration events within the time interval [0, t].Wewill construct a Poisson process N∗
via coupling such that N (t) ≤ N∗(t) for all t ≥ 0 with probability 1. For this purpose,
let us consider n independent particles performing a random walk on Z

d according
to the migration kernel a(·, ·). For each k = 1, . . . , n, let ξk(t) and ξ∗

k (t) denote the
position of the k-th dependent and independent particle at time t , respectively. We
take ξk(0) = ξ∗

k (0) and couple each k-th interacting particle with the k-th independent
particle as below:
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• If the independent particle makes a jump from site ξ∗
k (t) to j∗ ∈ Z

d , then the
dependent particle jumps from ξk(t) to j = ξk(t) + ( j∗ − ξ∗

k (t)) with probability
pk(t) given by

pk(t)=
{
1− n j (t)

N j
if the dependent particle is in an active and non-coalesced state,

0 otherwise,

(5.21)

where n j (t) is the number of active particles at site j .
• The dependent particle does the other transitions (waking up, becoming dormant
and coalescence) independently of the previous migration events, with the pre-
scribed rates defined in Definition 3.7.

Note that since the migration kernel is translation invariant, under the above cou-
pling the effective rate at which a dependent particle migrates from site i to j is
nia(i, j)(1 − n j

N j
) when there are ni and n j active particles at site i and j , respec-

tively. Also, if Nk(t) and N∗
k (t) are the number of migration steps made within the

time interval [0, t] by the k-th dependent and independent particle, respectively, then
under this coupling Nk(t) ≤ N∗

k (t) with probability 1. Set N∗(·) = ∑n
k=1 N

∗
k (·).

Then, clearly,

N (·) =
n∑

k=1

Nk(·) ≤ N∗(·) with probability 1. (5.22)

Also, N∗ is a Poisson process with intensity cn, since each independent particle
migrates at a total rate c.

Let Yl , Xl ∈ Z
d denote the step at the l-th migration event in the dependent and

independent particle systems, respectively. Note that (Xl)l∈N are i.i.d. with distribution
(a(0, i))i∈Zd . Since, under the above coupling, a dependent particle copies the step
of an independent particle with a certain probability (possibly 0), and Γ (0) is the
minimum length of the box within which all n dependent particles at time 0 are
located, we have, for any t ≥ 0,

Γ (t) ≤ Γ (0) +
N (t)∑

l=1

|Yl | ≤ Γ (0) +
N∗(t)∑

l=1

|Xl |. (5.23)

Therefore,

P
ξ (Γ (T ) ≥ k) ≤ P

(
SN∗(T ) ≥ k − Γ (0)

) ∀ k ≥ 0, (5.24)

where SN∗(T ) = ∑N∗(T )
l=1 |Xl |.

To prove part (a), note that E[eδSN∗(T )] < ∞ and so, by Chebyshev’s inequality,

P(SN∗(T ) ≥ x) = P(eδSN∗(T ) ≥ eδx ) ≤ E[eδSN∗(T )] e−δx . (5.25)
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Thus, the inequality in (5.24) reduces to

P
ξ (Γ (T ) ≥ k) ≤ V e−δk ∀ k ≥ 0, (5.26)

where

V = E
[
exp{δΓ (0) + δSN∗(T )}

]
< ∞. (5.27)

For k ∈ N, let αk = #{i ∈ Z
d : ‖i‖∞ = k}. Then, αk = (2k + 1)d − (2k − 1)d ≤

4dkd−1. Hence,

∑

i∈Zd\{0}
Ni P

ξ (Γ (T ) ≥ ‖i‖) ≤
∑

k∈N
ckαk P

ξ (Γ (T ) ≥ k)

≤
∑

k∈N
ck4

dkd−1
P

ξ (Γ (T ) ≥ k), (5.28)

where ck = sup{Ni : ‖i‖∞ = k, i ∈ Z
d}. Since under the assumption of part (a),

limk→∞ 1
k log ck = 0, there exists a K ∈ N such that ck ≤ eδk/2 for all k ≥ K . Hence,

using (5.26), we find that

∑

i∈Zd

Ni P
ξ (Γ (T ) ≥ ‖i‖) ≤ N0 +

K−1∑

k=1

ckαk + 4dV
∞∑

k=K

kd−1 e−δk/2 < ∞,

(5.29)

which settles part (a).
To prove part (b), note that under the assumption

∑
i∈Zd ‖i‖γ a(0, i) < ∞ for some

γ > d + δ, we have E[Sγ

N∗(T )] < ∞, and since SN∗(T ) is a positive random variable,
we get

P(SN∗(T ) ≥ x) ≤ E[Sγ

N∗(T )] x−γ . (5.30)

From (5.24) we get

P
ξ (Γ (T ) ≥ k) ≤ V

(k − Γ (0))γ
∀ k > Γ (0), (5.31)

where V = E[Sγ

N∗(T )]. By the assumption of part (b), there exists a C > 0 such that

ck = sup{Ni : ‖i‖∞ = k, i ∈ Z
d} ≤ Ckδ (5.32)

and so using (5.28), we obtain
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∑

i∈Zd

Ni P
ξ (Γ (T ) ≥ ‖i‖) ≤ N0 +

∑

k≤Γ (0)

ckαk

+4dCV
∑

k>Γ (0)

kd+δ−1

(k − Γ (0))γ
< ∞, (5.33)

which settles part (b). �


5.3 Well-Posedness

In this section, we prove Propositions 3.6, 3.12 and Theorem 3.13.

5.3.1 Existence

Since the state space X is compact, the theory described in [25, Chapter I, Section 3]
is applicable in our setting without any significant changes. The interacting particle
systems in [25] have state space WS , where W is a compact phase space and S is
a countable site space. In our setting, the site space is S = Z

d , but the phase space
differs at each site, i.e. [Ni ] × [Mi ] at site i ∈ Z

d . The general form of the generator
of an interacting particle system in [25] is

(Ω f )(η) =
∑

T

∫

WT

cT (η, dξ)[ f (ηξ ) − f (η)], η ∈ X , (5.34)

where the sum is taken over all finite subsets T of S, and ηξ is the configuration

η
ξ
i =

{
ξi if i ∈ T ,

ηi else.
(5.35)

For finite T � X , cT (η, dξ) is a finite positivemeasure onWT = WT . Tomake the lat-
ter compatible with our setting, we defineWT = ∏

i∈T [Ni ]×[Mi ]. The interpretation
is that η is the current configuration of the system, cT (η,WT ) is the total rate at which
a transition occurs involving all the coordinates in T , and cT (η, dξ)/cT (η,WT ) is the
distribution of the restriction to T of the new configuration after that transition has
taken place. Fix η = (Xi ,Yi )i∈Zd ∈ X . Comparing (5.34) with the formal generator
L defined in (3.16), we see that the form of cT (·, ·) is as follows:
• cT (η, dξ) = 0 if |T | ≥ 2.
• For |T | = 1, let T = {i} for some i ∈ Z

d . Then, cT (η, ·) is the measure on
[Ni ] × [Mi ] given by

cT (η, ·) = Xi

⎡

⎣
∑

j∈Zd

a(i, j)
N j−X j

N j

⎤

⎦ δ(Xi−1,Yi )(·) + (Ni − Xi )

123



Journal of Theoretical Probability

×
⎡

⎣
∑

j∈Zd

a(i, j)
X j
N j

⎤

⎦ δ(Xi+1,Yi )(·)

+λXi
Mi−Yi
Mi

δ(Xi−1,Yi+1)(·) + λ(Ni − Xi )
Yi
Mi

δ(Xi+1,Yi−1)(·).
(5.36)

Note that the total mass is

cT (η,WT ) = Xi

⎡

⎣
∑

j∈Zd

a(i, j)
N j−X j

N j

⎤

⎦ + (Ni − Xi )

⎡

⎣
∑

j∈Zd

a(i, j)
X j
N j

⎤

⎦

+ λXi
Mi − Yi

Mi
+ λ(Ni − Xi )

Yi
Mi

.

(5.37)

Lemma 5.3 (Bound on rates) Let c = ∑
i∈Zd a(0, i) < ∞. For a finite set T �

Z
d , let cT = supη∈X cT (η,WT ). Then, cT ≤ (c + λ)1{|T |=1} supi∈T Ni with c =∑
i∈Zd a(0, i).

Proof Clearly, cT = 0 if |T | ≥ 2. So let T = {i} for some i ∈ Z
d . We see that for

η = (Xk,Yk)k∈Zd , cT (η,WT ) ≤ cXi +c(Ni −Xi )+λXi +λ(Ni −Xi ) = (c+λ)Ni =
(c + λ) supi∈T Ni . �

Proof of Proposition 3.6 By [25, Proposition 6.1 of Chapter I], it suffices to show that

∑

T� i

cT < ∞ ∀ i ∈ S, (5.38)

where the sum is taken over all finite subsets T � S containing i ∈ S. Since in our
case S = Z

d , we let i ∈ Z
d be fixed. By Lemma 5.3, the sum reduces to c{i}, and

clearly c{i} ≤ (c + λ)Ni < ∞. �

Proof of Proposition 3.12 By [25, Proposition 6.1 and Theorem 6.7 of Chapter I],
to show existence of solutions to the martingale problem for (L,D), it is enough
to prove that (5.38) is satisfied. But we already showed this in the proof of
Proposition 3.6. �


5.3.2 Uniqueness

Before we turn to the proof of Theorem 3.13, we state and prove the following propo-
sition, which, along with the duality established in Corollary 3.11, will play a key role
in the proof of the uniqueness of solutions to the martingale problem.

Proposition 5.4 (Separation) Let D : X×X ∗ → [0, 1] be the duality function defined
in Lemma 5.1. Define the set of functions M = {D( · ; ξ) : ξ ∈ X ∗}. Then, M is
separating on the set of probability measures on X .
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Proof Let P be a probability measure on X = ∏
i∈Zd [Ni ] × [Mi ]. It suffices to show

that the finite-dimensional distributions of P are determined by {∫X f d P : f ∈ M}.
Note that it is enough to show the following:

• Let X = (X1, X2, . . . , Xn) ∈ ∏n
i=1[Ni ] be an n-dimensional random vector with

some distribution PX on
∏n

i=1[Ni ]. Then, PX is determined by the family

F =
{

E

[
n∏

i=1

(Xiαi
)

(Niαi
)

]
: (αi )1≤i≤n ∈

n∏

i=1

[Ni ]
}

. (5.39)

By (4.13), the family F is equivalent to the family

F∗ =
{

E

[
n∏

i=1

Xαi
i

]
: (αi )1≤i≤n ∈

n∏

i=1

[Ni ]
}

(5.40)

containing the mixed moments of (X1, . . . , Xn). Since X takes a total of N =∏n
i=1(Ni + 1) many values, we can write the distribution PX as the N -dimensional

vector p = (p1, . . . , pN ), where pi = PX (X = f −1(i)) and f : ∏n
i=1[Ni ] →

{1, . . . , N } is the bijection defined by

f (x1, x2, . . . , xn) =
n−1∑

i=1

⎛

⎝
n∏

j=i+1

(N j + 1)

⎞

⎠ xi + xn + 1, (x1, . . . , xn) ∈
n∏

i=1

[Ni ].

(5.41)

Note thatF∗ also contains N elements, and so we can writeF∗ as the N -dimensional
vector e = (e1, . . . , eN ), where ei = E[∏n

k=1 X
αk
k ], (α1, . . . , αn) = f −1(i).We show

that there exists an invertible linear operator that maps p to e. Indeed, for i = 1, . . . , n,
define the (Ni + 1) × (Ni + 1) Vandermonde matrix Ai ,

Ai =

⎡

⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
α1 α2 α3 . . . αNi+1

α2
1 α2

2 α2
3 . . . α2

Ni+1
...

...
...

. . .
...

α
Ni
1 α

Ni
2 α

Ni
3 . . . α

Ni
Ni+1

⎤

⎥⎥⎥⎥⎥⎦
, (α1, α2 . . . , αNi+1) = (0, 1, . . . , Ni ).

(5.42)

Being Vandermonde matrices, all Ai are invertible. Finally, define the N × N matrix
A by A = A1 ⊗ A2 ⊗· · ·⊗ An , where ⊗ denotes the Kronecker product for matrices.
Then, A is invertible because all Ai are. Also, we can check that A p = e, and hence,
the distribution of X given by p = A−1e is uniquely determined by e, i.e. the family
F∗. �

Proof of Theorem 3.13 We use [9, Proposition 4.7], which states the following (rein-
terpreted in our setting):
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• Let S1 be compact and S2 be separable. Let x ∈ S1, y ∈ S2 be arbitrary and
D : S1 × S2 → R be such that the set {D( · ; z) : z ∈ S2} is separating on the
set of probability measures on S1. Assume that for any two solutions (ηt )t≥0 and
(ξt )t≥0 of the martingale problem for (L1,D1) and (L2,D2) with initial states x
and y, the duality relation holds: Ex [D(ηt , y)] = E

y[D(x, ξt )] for all t ≥ 0. If for
every z ∈ S2 there exists a solution to the martingale problem for (L2,D2) with
initial state z, then for every η ∈ S1 uniqueness holds for the martingale problem
for (L1,D1) with initial state η.

Pick S1 = X , S2 = X ∗, (L1,D1) = (L,D) and (L2,D2) = (Ldual,C(X ∗)), where
Ldual is the generator of the dual process Z∗. Note that in our setting the martingale
problem for (Ldual,C(X ∗)) is already well-posed (the unique solution is the dual
process Z∗ in Lemma 3.8). Hence, combining the above observations with Proposition
5.4 and Corollary 3.11, we get uniqueness of the solutions to the martingale problem
for (L,D) for every initial state η ∈ X .

The second claim follows from [25, Theorem 6.8 of Chapter I]. �


6 Proofs: Equilibrium and Clustering Criterion

In Sect. 6.1, we prove Theorem 3.14 and Corollary 3.15. In Sect. 6.2, we derive
expressions for the single-site genetic variability in terms of the dual process. In
Sect. 6.3, we use one dual particle to write down expressions for first moments. In
Sect. 6.4, we use two dual particles to write down expressions for second moments.
In Sect. 6.5, we use these expressions to prove Theorem 3.17.

6.1 Convergence to Equilibrium

Proof of Theorem 3.14 Since the state space X is compact, the set of all proba-
bility measures on X is compact as well, by Prokhorov’s theorem. It therefore
suffices to prove convergence of the finite-dimensional distributions of Z(t) =
(Xi (t),Yi (t))i∈Zd . Now recall from the proof of Proposition 5.4 that the distribu-
tion of an n-dimensional random vector X(t) := (X1(t), . . . , Xn(t)) taking values in∏n

l=1[Nl ] is determined by

Ft =
{

E

[
n∏

l=1

(Xl (t)αl
)

(Nlαl
)

]
: (αl)1≤l≤n ∈

n∏

l=1

[Nl ]
}

. (6.1)

In fact, the distribution of X(t) converges if and only if E

[∏n
l=1

(Xl (t)
/

)
αl
(Nl
αl

)]
con-

verges for all (αl)1≤l≤n ∈ ∏n
l=1[Nl ] as t → ∞. Since our duality function is given

by

D((Xk,Yk)k∈Zd ; (nk,mk)k∈Zd ) =
∏

i∈Zd

(Xi
ni

)

(Ni
ni

)

(Yi
mi

)

(Mi
mi

)1{ni≤Xi ,mi≤Yi }, (6.2)
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it suffices to show that limt→∞ Eνθ [D(Z(t); η)] exists for all η ∈ X ∗. Let η ∈ X ∗ be
fixed. By duality, we have

Eνθ [D(Z(t); η)] =
∫

X
Eξ [D(Z(t); η)] dνθ (ξ) =

∫

X
E

η[D(ξ ; Z∗(t))] dνθ (ξ)

= E
η

[∫

X
D(ξ ; Z∗(t)) dνθ (ξ)

]
,

(6.3)

where Eξ denotes expectation w.r.t the law of Z(t) started at configuration ξ ∈ X ,
Z∗(t) = (ni (t),mi (t))i∈Zd is the dual process started at configuration η, and E

η

denotes expectation w.r.t the law of the dual process. A simple calculation shows that

if V is a random variable with distribution Binomial(N , p), then E

[(V
n

)
/
(N
n

)] = pn

for 0 ≤ n ≤ N . Since (Xi (0),Yi (0))i∈Zd are all independent under νθ with Binomials
as marginal distributions, we have

Eνθ [D(Z(t); η)] = E
η

⎡

⎣
∏

i∈Zd

θni (t) θmi (t)

⎤

⎦ = E
η[θ |Z∗(t)|], (6.4)

where |Z∗(t)| := ∑
i∈Zd ni (t) + mi (t) is total number of particles in the dual

process at time t . Now, since the dual process is coalescing, |Z∗(t)| is decreas-
ing in t . Since θ ∈ [0, 1], we see that Eνθ [D(Z(t); η)] is increasing in t . Thus,
limt→∞ Eνθ [D(Z(t); η)] exists, which proves the existence of an equilibrium mea-
sure ν such that the distribution of Z(t) weakly converges to ν. Also, by definition,
Eν[D(Z(0); η)] = limt→∞ Eνθ [D(Z(t); η)] = limt→∞ E

η[θ |Z∗(t)|]. �


Proof of Corollary 3.15 This follows by choosing η = δi,A and η = δi,D in the last
part of Theorem 3.14 and noting that E

η[θ |Z∗(t)|] = θ when |η| = 1. �


6.2 Genetic Variability

For i, j ∈ Z
d and t ≥ 0, define

Δi, j (t) = Δ(i,A),( j,A)(t) + Δ(i,A),( j,D)(t), (6.5)

where

Δ(i,A),( j,A)(t) =

⎧
⎪⎨

⎪⎩

Xi (t)(N j−X j (t))
Ni N j

+ X j (t)(Ni−Xi (t))
N j Ni

if i �= j,
2Xi (t)(Ni−Xi (t))

Ni (Ni−1) if i = j and Ni �= 1,

0 otherwise,

(6.6)

is the genetic variability (also frequently referred to as ‘sample heterozygosity’) at
time t between the active populations of colony i and j , i.e. the probability that two
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individuals drawn randomly from the two populations at time t are of different type,
and

Δ(i,A),( j,D)(t) = Xi (t)(Mj−Y j (t))
Ni M j

+ (Ni−Xi (t))Y j (t)
Ni M j

(6.7)

is the genetic variability at time t between the active population of colony i and
the dormant population of colony j . Note that the conditions in Definition 3.16 are
equivalent to

lim
t→∞ E[Δi, j (t)] = 0 ∀ i, j ∈ Z

d , (6.8)

where the expectation is taken conditional on an arbitrary initial condition (Xi (0),Yi
(0))i∈Zd , which we suppress from the notation.

We use the dual process to compute E(Δ(i,A),( j,A)(t)) and E(Δ(i,A),( j,D)(t)),
namely

E(Δ(i,A),( j,A)(t)) =
⎧
⎨

⎩
E

[
Xi (t)
Ni

)
+ E

(
X j (t)
N j

]
− 2E

[
Xi (t)X j (t)

Ni N j

]
if i �= j,

2
(
E

[
Xi (t)
Ni

]
− E

[
Xi (t)(Xi (t)−1)

Ni (Ni−1)

])
otherwise,

(6.9)

and

E[Δ(i,A),( j,D)(t)] = E

[
Xi (t)
Ni

]
+ E

[
Y j (t)
Mj

]
− 2E

(
Xi (t)Y j (t)
Ni M j

)
. (6.10)

Thus, in terms of the duality function D defined in Lemma 5.1,

E[Δ(i,A),( j,A)(t)] = E

[
D(Z(t); δi,A)

]
+ E

[
D(Z(t); δ j,A)

]

−2E

[
D(Z(t); δi,A + δ j,A)

]
, (6.11)

where δi,A, δ j,A are defined in (3.13). Similarly,

E[Δ(i,A),( j,D)(t))] = E

[
D(Z(t); δi,A)

]
+ E

[
D(Z(t); δ j,D)

]

−2E

[
D(Z(t); δi,A + δ j,D)

]
. (6.12)

Since, by the duality relation in (3.26),

E

[
D(Z(t); Z∗(0))

]
= E

[
D(Z(0); Z∗(t))

]
, (6.13)
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we have

E
δi,A

[
D(η0; ξt )

]
= E

[
Xi (t)
Ni

]
, E

δi,D
[
D(η0; ξt )

]
= E

[
Yi (t)
Mi

]
,

E
δi,A+δ j,A

[
D(η0; ξt )

]
=

⎧
⎨

⎩
E

[
Xi (t)(Xi (t)−1)

Ni (Ni−1)

]
if i = j,

E

[
Xi (t)X j (t)

Ni N j

]
otherwise,

E
δi,A+δ j,D

(
D(η0; ξt )

)
= E

(
Xi (t)Y j (t)
Ni M j

)
,

(6.14)

where η0 = Z∗(0) and the expectation in the left-hand side is taken with respect to
the dual process (ξt )t≥0 = Z∗ defined in Definition 3.7. Combining the above with
(6.11)–(6.12), we get

E[Δ(i,A),( j,A)(t)] =
(
E

δi,A
[
D(η0; ξt )

]
− E

δi,A+δ j,A
[
D(η0; ξt )

])

+
(
E

δ j,A
[
D(η0; ξt )

]
− E

δi,A+δ j,A
[
D(η0; ξt )

]) (6.15)

and

E[Δ(i,A),( j,D)(t)] =
(
E

δi,A
[
D(η0; ξt )

]
− E

δi,A+δ j,D
[
D(η0; ξt )

])

+
(
E

δ j,D
[
D(η0; ξt )

]
− E

δi,A+δ j,D
[
D(η0; ξt )

])
.
(6.16)

In Sects. 6.3–6.4, we derive expressions for the terms appearing in (6.15)–(6.16).

6.3 Dual: Single Particle

We saw earlier that in order to compute the first moment of Xi (t) and Yi (t), we need to
put a single particle at site i in the active and the dormant state as initial configurations,
respectively. This motivates us to analyse the dual process when it starts with a single
particle. The generator Ldual of the dual process can be written as

Ldual = LCoal + L AD + LDA + LMig, (6.17)

where

(LCoal f )(ξ) =
∑

i∈Zd

ni (ni − 1)

2Ni
[ f (ξ − δi,A) − f (ξ)]

+
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)

N j
nin j [ f (ξ − δi,A) − f (ξ)], (6.18)

(L AD f )(ξ) =
∑

i∈Zd

λ ni (Mi − mi )

Mi
[ f (ξ − δi,A + δi,D) − f (ξ)], (6.19)
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(LDA f )(ξ) =
∑

i∈Zd

λmi (Ni − ni )

Mi
[ f (ξ + δi,A − δi,D) − f (ξ)], (6.20)

(LMig f )(ξ) =
∑

i∈Zd

∑

j∈Zd
j �=i

a(i, j)

N j
ni (N j − n j )[ f (ξ − δi,A + δ j,A) − f (ξ)], (6.21)

for f ∈ C(X ∗) and ξ = (ni ,mi )i∈Zd ∈ X ∗.
When there is a single particle in the system at time 0, and consequently at any

later time, the only parts of the generator that are nonzero are LAD , LDA and LMig.
Here, LAD turns an active particle at site i into a dormant particle at site i at rate λ,
LDA turns a dormant particle at site i into an active particle at site i at rate λKi , with
Ki = Ni

Mi
, while LMig moves an active particle at site i to site j �= i at rate a(i, j).

Let us denote the state of the particle at time t by ξ(t) ∈ Z
d × {A, D}, where the first

coordinate of ξ(t) is the location of the particle and the second coordinate indicates
whether the particle is active (A) or dormant (D). Let P

ξ be the law of the process
(ξ(t))t≥0 with initial state ξ .

Lemma 6.1 (First moments)

E

[
Xi (t)

Ni

]
=

∑

k∈Zd

Xk(0)

Nk
P

(i,A)(ξ(t) = (k, A)) + Yk(0)

Mk
P

(i,A)(ξ(t) = (k, D)),

E

[
Yi (t)

Mi

]
=

∑

k∈Zd

Xk(0)

Nk
P

(i,D)(ξ(t) = (k, A)) + Yk(0)

Mk
P

(i,D)(ξ(t) = (k, D)).

(6.22)

Proof (Proof.) Recall that, via the duality relation,

E

[
Xi (t)

Ni

]
= E

δi,A

⎡

⎣
∏

k∈Zd

(Xk (0)
nk (t)

)

( Nk
nk (t)

)

(Yk (0)
mk (t)

)

( Mk
mk (t)

)1{nk (t)≤Xk (0),mk (t)≤Yk(0)}

⎤

⎦ , (6.23)

where the expectation in the right-hand side is taken with respect to the dual process
with initial state δi,A (a single active particle at site i), which has law P(i,A). Since the
term inside the expectation is equal to Xk (0)

Nk
or Yk(0)

Mk
, depending on whether ξ(t) =

(k, A) or ξ(t) = (k, D), the claim follows immediately. The same argument holds for
E[Yi (t)Mi

] with initial condition (i, D) in the dual process. �


6.4 Dual: Two Particles

We need to find expressions for the secondmoments appearing in (6.9)–(6.10) in order
to fully specify E(Δ(i,A),( j,A)(t)) and E(Δ(i,A),( j,D)(t)). This requires us to analyse
the dual process starting from two particles. Unlike for the single-particle system, now
all parts of the generator Ldual (see (6.17)) are nonzero, until the two particles coalesce
into a single particle. The two particles repel each other: one particle discourages the
other particle to come to the same location. The rates in the two-particle system are:
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• (Migration) An active particle at site i migrates to site j at rate a(i, j) if there is
no active particle at site j ; otherwise, at rate a(i, j)(1 − 1

N j
).

• (A → D) An active particle at site i becomes dormant at site i at rate λ if there is
no dormant particle at site i ; otherwise, at rate λ(1 − 1

Mi
).

• (D → A) A dormant particle at site i becomes active at site i at rate λKi if there
is no active particle at site i ; otherwise, at rate λ(Ki − 1

Mi
).

• (Coalescence) An active particle at site i coalesces with another active particle at
site j at rate 1

Ni
when j = i ; otherwise, at rate a(i, j)

N j
.

Note that after coalescence has taken place, there is only one particle left in the system,
which evolves as the single-particle system.

Let (ξ1(t), ξ2(t), c(t)) ∈ S = S∗ × S∗ × {0, 1} be the configuration of the two-
particle system at time t , where S∗ = Z

d ×{A, D}. Here, ξ1(t) and ξ2(t) represent the
location and state of the two particles. The variable c(t) takes value 1 if the two particles
have coalesced into a single particle by time t , and 0 otherwise. It is necessary to add
the extra variable c(t) to the configuration in order to make the processMarkovian (the
rates depend onwhether there are one or two particles in the system). To avoid triviality
we assume that c(0) = 0 with probability 1, i.e. two particles at time 0 are always
in a non-coalesced state. We denote the law of the process (ξ1(t), ξ2(t), c(t))t≥0 by
P

ξ , where the initial condition is ξ ∈ S∗ × S∗. It is to be noted that since the number
of active and dormant particles at a site i at any time are limited by Ni and Mi ,
respectively, the two-particle system is not defined whenever it is started from an
initial configuration violating the maximal occupancy of the associated sites. Let τ be
the first time at which the coalescence event has occurred, i.e.

τ = inf{t ≥ 0 : c(t) = 1}. (6.24)

Note that, conditional on τ < t , ξ1(s) = ξ2(s) for all s ≥ t with probability 1. Define

M(i,α),( j,β)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi (t)(Xi (t)−1)
Ni (Ni−1) if i = j and α = β = A,

Xi (t)X j (t)
Ni N j

if i �= j and α = β = A,

Yi (t)(Yi (t)−1)
Mi (Mi−1) if i = j and α = β = D,

Yi (t)Y j (t)
Mi Mj

if i �= j and α = β = D,

Xi (t)Y j (t)
Ni M j

if α = A and β = D,

Yi (t)X j (t)
Mi N j

otherwise,

(6.25)

where i, j ∈ Z
d and α, β ∈ {A, D}. To avoid ambiguity, we set M(i,α),( j,β)(·) = 0

when ((i, α), ( j, β)) is not a valid initial condition for the two-particle system.
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Lemma 6.2 (Second moments) For every valid initial condition ((i, α), ( j, β)) ∈
(Zd × {A, D})2 of the two-particle system,

E
[
M(i,α),( j,β)(t)

] = Q((i, α), ( j, β), t)

+
∑

k∈Zd

Xk(0)

Nk
P

((i,α),( j,β))
(
ξ1(t) = (k, A), τ < t

)

+
∑

k∈Zd

Yk(0)

Mk
P

((i,α),( j,β))
(
ξ1(t) = (k, D), τ < t

)
,

(6.26)

where

Q((i, α), ( j, β), t)

=
∑

k∈Zd

Xk(0)(Xk(0) − 1)

Nk(Nk − 1)
P

((i,α),( j,β))(ξ1(t) = ξ2(t) = (k, A), τ ≥ t)

+
∑

k,l∈Zd
k �=l

Xk(0)Xl(0)

NkNl
P

((i,α),( j,β))(ξ1(t) = (k, A), ξ2(t) = (l, A), τ ≥ t)

+
∑

k,l∈Zd

Xk(0)Yl(0)

NkMl
P

((i,α),( j,β))(ξ1(t) = (k, A), ξ2(t) = (l, D), τ ≥ t)

+
∑

k∈Zd

Yk(0)(Yk(0) − 1)

Mk(Mk − 1)
P

((i,α),( j,β))(ξ1(t) = ξ2(t) = (k, D), τ ≥ t)

+
∑

k,l∈Zd
k �=l

Yk(0)Yl(0)

MkMl
P

((i,α),( j,β))(ξ1(t) = (k, D), ξ2(t) = (l, D), τ ≥ t).

(6.27)

Proof Note thatM(i,α),( j,β)(t) = D(Z(t); δi,α+δ j,β),where D is the duality function.
So, via the duality relation, we have

E
[
M(i,α),( j,β)(t)

] = E
δi,α+δ j,β

⎡

⎣
∏

k∈Zd

(Xk (0)
nk (t)

)

( Nk
nk (t)

)

(Yk(0)
mk (t)

)

( Mk
mk (t)

)1{nk (t)≤Xk (0),mk (t)≤Yk(0)}

⎤

⎦ ,

(6.28)

where the expectation in the right-hand side is taken with respect to the dual process
when the initial condition has one particle at site i with state α and one particle at
site j with state β, which has law P

((i,α),( j,β)). Depending on the configuration of the
process at time t , the right-hand side of (6.28) equals the desired expression. �


The following lemma provides a nice comparison between the one-particle and
two-particle system.
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Lemma 6.3 (Correlation inequality) Let (ξ(t))t≥0 and (ξ1(t), ξ2(t), c(t))t≥0 be the
processes defined in Sects. 6.3 and 6.4, respectively, and τ the first time of coalescence
defined in (6.24). Then, for any valid initial condition ((i, α), ( j, β)) ∈ (Zd×{A, D})2
of the two-particle system and any (k, γ ) ∈ Z

d × {A, D},

P
(i,α)(ξ(t) = (k, γ )) ≥ P

((i,α),( j,β))(ξ1(t) = (k, γ ), τ < t). (6.29)

Proof Let α = A and i, j, k ∈ Z
d be fixed. Let η = Z(0) be the initial configuration

defined as

(Xn(0),Yn(0)) =

⎧
⎪⎨

⎪⎩

(Nk, 0) if n = k and γ = A,

(0, Mk) if n = k and γ = D,

(0, 0) otherwise,

∀ n ∈ Z
d . (6.30)

Combining Lemmas 6.1 and 6.2, we get

Eη

[
Xi (t)
Ni

− M(i,A),( j,β)(t)
]

=
∑

n∈Zd

Xn(0)

Nn

[
P

(i,A)(ξ(t) = (n, A)) − P
((i,A),( j,β))(ξ1(t) = (n, A), τ < t)

]

+
∑

n∈Zd

Yn(0)

Mn

[
P

(i,A)(ξ(t)=(n, D))−P
((i,A),( j,β))(ξ1(t)=(n, D), τ < t)

]

− Q((i, A), ( j, β), t)

= [
P

(i,A)(ξ(t)=(k, γ ))−P
((i,A),( j,β))(ξ1(t)=(k, γ ), τ<t)

] − Q((i, A), ( j, β), t).

(6.31)

Since Q((i, A), ( j, β), t) ≥ 0 and the left-hand quantity is positive, we get

P
(i,A)(ξ(t) = (k, γ )) ≥ P

((i,A),( j,β))(ξ1(t) = (k, γ ), τ < t). (6.32)

Replacing the left quantity in (6.31) with Eη[Yi (t)Mi
− M(i,D),( j,β)(t)] and using the

same arguments, we see that the inequality for α = D follows. �


6.5 Proof of Clustering Criterion

Proof of Theorem 3.17 “⇐�” First we show that, if ((i, A), ( j, β)) ∈ (Zd × {A, D})2
is a valid initial condition for the two-particle system, then

lim
t→∞ E

[
Xi (t)

Ni
− M(i,A),( j,β)(t)

]
= 0, lim

t→∞ E

[
Y j (t)

Mj
− M(i,A),( j,β)(t)

]
= 0.

(6.33)

Combining Lemmas 6.1 and 6.2, we have
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E

[
Xi (t)
Ni

− M(i,A),( j,β)(t)
]

=
∑

k∈Zd

Xk(0)

Nk

[
P

(i,A)(ξ(t) = (k, A)) − P
((i,A),( j,β))(ξ1(t) = (k, A), τ < t)

]

+
∑

k∈Zd

Yk(0)

Mk

[
P

(i,A)(ξ(t) = (k, D)) − P
((i,A),( j,β))(ξ1(t) = (k, D), τ < t)

]

− Q((i, A), ( j, β), t).

(6.34)

Using Lemma 6.3 and the fact that Q((i, A), ( j, β), t) ≥ 0, we have the following:

E

[
Xi (t)

Ni
− M(i,A),( j,α)(t)

]
≤

∑

S∈{A,D}
k∈Zd

∣∣P(i,A)(ξ(t) = (k, S))

− P
((i,A),( j,β))(ξ1(t) = (k, S), τ < t)

∣∣

=
∑

S∈{A,D}
k∈Zd

[
P

(i,A)(ξ(t) = (k, S))

− P
((i,A),( j,β))(ξ1(t) = (k, S), τ < t)

]

= 1 − P
((i,A),( j,β))(τ < t) = P

((i,A),( j,β))(τ ≥ t).

(6.35)

Since, by assumption, τ < ∞ with probability 1 irrespective of the initial configura-
tion of the two-particle system, and since the left-hand quantity is positive, we have
E
[ Xi (t)

Ni
− M(i,A),( j,β)(t)

] → 0 as t → ∞. By a similar argument the other part of
(6.33) is proved as well.

If ((i, A), ( j, A)) is a valid initial condition for the two-particle system, then by
using (6.15)–(6.16) and (6.33), we have

lim
t→∞ E

(
Δ(i,A),( j,A)(t)

)
= lim

t→∞ E

[
Xi (t)
Ni

− M(i,A),( j,A)(t)
]

+ lim
t→∞ E

[
X j (t)
N j

− M( j,A),(i,A)(t)
]

= 0.
(6.36)

If ((i, A), ( j, A)) is not a valid initial condition, then we must have that i = j and
Ni = 1, and so Δ(i,A),( j,A)(t) = 0 by definition. Thus, for any i, j ∈ Z

d ,

lim
t→∞ E

[
Δ(i,A),( j,A)(t)

]
= 0. (6.37)

Since ((i, A), ( j, D)) is always a valid initial condition for the two-particle system,
we also have

lim
t→∞ E

[
Δ(i,A),( j,D)(t)

]
= lim

t→∞ E

[
Xi (t)
Ni

− M(i,A),( j,D)(t)
]

+ lim
t→∞ E

[
Y j (t)
Mj

− M(i,A),( j,D)(t)
]

= 0, (6.38)
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and hence from (6.5) we have that for any i, j ∈ Z
d , E(Δi, j (t)) → 0 as t → ∞,

which proves the claim.

“�⇒” Suppose that the system clusters for any initial configuration Z(0) ∈ X . Then,
by dominated convergence, the system clusters for any initial distribution of Z(0) as
well. Fix θ ∈ (0, 1), and let the distribution of Z(0) be νθ , where

νθ =
⊗

i∈Zd

(Binomial(Ni , θ) ⊗ Binomial(Mi , θ)). (6.39)

Wewill prove via contradiction that in the dual two particles with arbitrary valid initial
states coalesce with probability 1, i.e. τ < ∞ with probability 1. Indeed, suppose
that this is not true, i.e. for some valid initial configuration (ξ1, ξ2) ∈ S∗ × S∗ of
the two-particle system we have P

(ξ1,ξ2)(τ = ∞) > 0, where S∗ = Z
d × {A, D}.

Since the dual process with two particles is irreducible (any valid configuration is
accessible), we have P

ξ (τ = ∞) > 0 for any valid initial condition ξ ∈ S∗ × S∗.
Let ρ := P

((i,A),(i,D))(τ = ∞) > 0, where i ∈ Z
d is fixed. Note that ((i, A), (i, D))

is always a valid initial condition for the two-particle system, since Ni , Mi ≥ 1. Let
P

(i,A) be the law of the single-particle process (ξ(t))t≥0 started with initial condition
(i, A).

Since, by assumption, Eνθ

[
Δ(i,A),(i,D)(t)

] → 0 as t → ∞, we must have

lim
t→∞ Eνθ

[
Xi (t)(Mi−Yi (t))

Ni Mi

]
= 0. (6.40)

Since ((i, A), (i, D)) is a valid initial condition for the two-particle system, by using
(6.34) with νθ as initial distribution we get

Eνθ

[
Xi (t)(Mi−Yi (t))

Ni Mi

]
= Eνθ

[
Xi (t)
Ni

− M(i,A),(i,D)(t)
]

=
∑

n∈Zd

Eνθ

[
Xn(0)

Nn

] [
P

(i,A)(ξ(t) = (n, A))

− P
((i,A),(i,D))(ξ1(t) = (n, A), τ < t)

]

+
∑

n∈Zd

Eνθ

[
Yn(0)

Mn

] [
P

(i,A)(ξ(t) = (n, D))

− P
((i,A),(i,D))(ξ1(t) = (n, D), τ < t)

]

− Eνθ

[
Q((i, A), (i, D), t)

]
,

(6.41)

where Q(·, ·, ·) is defined as in Lemma (6.2). Since, under νθ , (Xn(0))n∈Zd ,
(Yn(0))n∈Zd are all independent of each other and Xn(0) and Yn(0) have distribu-
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tions Binomial(Nn, θ) and Binomial(Mn, θ), respectively, we have

Eνθ

[
Xn(0)

Nn

]
= Eνθ

[
Yn(0)

Mn

]
= θ,

Eνθ

[
Xn(0)(Xn(0) − 1)

Nn(Nn − 1)

]
= θ2 if Nn �= 1,

Eνθ

[
Yn(0)(Yn(0) − 1)

Mn(Mn − 1)

]
= θ2 if Mn �= 1.

(6.42)

Hence, Eνθ [Q((i, A), (i, D), t)] = θ2 P
((i,A),(i,D))(τ ≥ t), and thus, (6.41) reduces

to

Eνθ

[
Xi (t)(Mi−Yi (t))

Ni Mi

]
= θ

[
1 − P

((i,A),(i,D))(τ < t)
]

− θ2 P
((i,A),(i,D))(τ ≥ t)

= θ(1 − θ) P
((i,A),(i,D))(τ ≥ t).

(6.43)

By (6.40), the left-hand side of (6.43) tends to 0 as t → ∞. Because θ ∈ (0, 1), we
have

ρ = lim
t→∞ P

((i,A),(i,D))(τ ≥ t) = 0, (6.44)

which is a contradiction. �
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