Universiteit
 Leiden

The Netherlands

Synthesis of ribitol phosphate based wall teichoic acids Ali, S.

Citation

Ali, S. (2022, February 10). Synthesis of ribitol phosphate based wall teichoic acids. Retrieved from https://hdl.handle.net/1887/3270894

Version:	Publisher's Version Licence agreement concerning inclusion of doctoral
License:	thesis in the Institutional Repository of the University
Downloaded from:	$\underline{\text { of Leiden }}$

Note: To cite this publication please use the final published version (if applicable).

Synthesis of Staphylococcus aureus C-3 glycosylated ribitol phosphates

INTRODUCTION

Staphylococcus aureus (S. aureus) is a commensal bacterium that colonizes approximately 30% of the human population. ${ }^{1}$ It is also a major human pathogen that can cause a wide variety of infections to the skin and respiratory system, as well as endocarditis and post-operative infections. ${ }^{2}$ Especially the antibiotic resistant strains, commonly designated MRSA (methicillin-resistant S. aureus), are a growing health threat causing 20-25\% of all hospital acquired bacterial infections. ${ }^{3}$ MRSA was first reported in 1960, ${ }^{4}$ however recently ${ }^{4}$ it became clear that the first MRSA strains emerged already in the mid-1940s long before the introduction of methicillin in 1959. Resistance against vancomycin, the antibiotic of last resort against multi-drug resistant S. aureus, has also emerged in so called VRSA (vancomycin resistant S. aureus) strains that have acquired the vanA operon from vancomycin resistant enterococci (VRE). ${ }^{5-6}$ The continuous development of resistance against antibiotics urges the development of alternative ways to treat infections, for example through passive or active immunization.

[^0]The bacterial cell wall of S. aureus carries wall teichoic acids (WTAs) that are covalently attached to the peptidoglycan. WTAs are built up from repeating ribitol phosphate (RboP) units that can be decorated with N -acetylglucosamine (GIcNAc) through the action of TarS and TarM at the C-4 position in either an α - or β-configuration respectively. In addition, the C-2 can be modified with a D-alanine ester and this latter modification is involved in bacterial resistance to cationic antimicrobial peptides (CAMPs). ${ }^{7,8,9}$ These WTA modifications play a crucial role in cell division, phage infectivity and pathogenicity of S. aureus. ${ }^{10,11}$ Recently, the healthcare-associated MRSA (HA-MRSA) strain, CC5 ${ }^{12}$ and livestock associated MRSA (LS-MRSA) strains CC398 ${ }^{13}$ and CC5 ${ }^{14}$ strains were found to carry an unique C-3 β-GIcNAc modification. These strains were found to express an additional glycosyltransferase TarP, which was shown to be responsible for this C-3 modification. ${ }^{15}$

Because of exposure to bacteria, humans carry protective antibodies against S. aureus. Previous studies have shown high levels of antibodies directed to the (1,4) β-GIcNAc, while the amount of antibodies directed against α-GIcNAc modified WTA was significantly lower. ${ }^{16}$ To unravel antibody specificity at the molecular level and provide well-defined material for conjugate vaccine generation, synthetic WTA fragments are invaluable tools. Chapter 2 of this Thesis reported the assembly of synthetic RboP oligomers up to the dodecamer level and showed the successful application of automated solid phase synthesis (ASPS) for unsubstituted WTAs. Chapter 3 presented methods for the generation of C4-modified WTAs carrying α - or β-GIcNAc residues. This chapter describes the synthesis of C-3 β-glycosylated WTAs for antibody binding studies. In line with the set of WTA-fragments generated in the previous Chapter, the set of targeted C-3 β-GIcNAc WTAs comprises a symmetric trimer with a single C-3 β-GlcNAc in the middle RboP residue (1), intended for crystallization studies and two hexamers carrying either one or two β-GIcNAc-residues and a hexylamine spacer for conjugation purposes ($\mathbf{2}$ and 3, see Figure 1).

Figure 1. C-3 glycosylated compounds 1, 2 and 3, described in this Chapter.

RESULTS AND DISCUSSION

In line with the synthetic approach taken in Chapter 2 and 3, the synthesis of the C-3 β-glycosylated WTAs employs a monomeric assembly strategy, and the synthesis of the required building blocks is depicted in Scheme 1. The synthesis of the C3-OH ribitol acceptor $\mathbf{1 4}$ is more challenging compared to the $\mathrm{C} 4-\mathrm{OH}$ ribitol acceptor discussed in Chapter 3 and two synthetic pathways were explored to generate this building block. Scheme 1A depicts the first synthesis route with the formation of the orthoester $\mathbf{1 0}^{17}$ as a key intermediate giving access to the orthogonal protection of the C-3-OH. Starting from commercially available D-ribose 4, a Fisher glycosylation followed by isopropylidene protection of the secondary alcohols and subsequent allylation of the primary alcohol, delivered compound 5 in 84% over 3 steps. Acidic hydrolysis of the methyl acetal and isopropylidene ketal then yielded the corresponding triol 6. Benzoylation of the free alcohols and subsequent $\mathrm{HBr} / \mathrm{AcOH}$ treatment formed the bromide $\mathbf{8},{ }^{17}$ which was subjected to a reaction with N, N-dimethylformamide dimethyl acetal. Initially, the bromide with acetyl groups on the 2 - and 3-position was used to synthesize the 1,2-or-
thoester instead of the benzoylated compound 7. However, lower yields were obtained with the acetylated derivative compared to the benzoylated compound. On 4.85 mmol scale, the desired the 1,2-orthoester 9 was formed in 80%, but scale up of the reaction to 85.7 mmol resulted in a much lower yield (33%). Direct $\mathrm{S}_{\mathrm{N}} 2$ type displacement of the bromide to provide the methyl riboside and ribose hemiacetal formation occurred as major competing side reactions. In the next step the benzoyl at the C-3 position was removed under Zemplén conditions followed by naphthylation of the resulting alcohol, yielding compound $\mathbf{1 1}$ in $\mathbf{7 2 \%}$ over 2 steps. Hydrolysis of the orthoester gave lactol 12, which was reduced using NaBH_{4} followed by the removal of the benzoyl ester to yield ribitol triol 13 in 60% over 2 steps. Protection of the primary alcohol with a TBDPS group gave 14, of which the remaining alcohols were benzylated using BnBr and NaH . During this alkylation step a byproduct formed, due to TBDPS migration and this product could not be separated from the desired product at this stage. Therefore, the naphthyl ether and TBDPS ethers were removed to provide 15, which could be purified from the formed byproduct at this stage yielding product 15 in 62\% yield over 3 steps. Reinstallation of the TBDPS group on the primary alcohol furnished the C3-OH ribitol building block 16.

To circumvent the laborious orthoester formation step, a second synthesis route was established as depicted in Scheme 1B. This route started from diacetone-D-glucose ${ }^{18}$ which can be transformed into the corresponding allose 18, having the required ribose stereochemistry, through a well-established ${ }^{18}$ oxidation-reduction sequence in 69% yield. Naphthylation of the C-3 hydroxyl gave the fully protected allofuranose. The selective removal of the 5,6-isopropylidene was first tried using the conditions reported by Kiss et al ${ }^{19}$, using $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(\mathrm{v} / \mathrm{v}=5: 1$), however these conditions led to solubility issues. Adding more THF to increase the solubility of the starting material unfortunately led to an increase of reaction time and the removal of both isopropylidene groups, which in turn resulted in a poor 15% yield of compound 19. Switching to the use of p-TsOH in MeOH did cleave the 5,6 -isopropylidene selectively to form diol 19 with a yield of 75% over 2 steps. Next, oxidative cleavage of the 5,6-diol with NaIO_{4} gave the aldehyde which was reduced to form the primary alcohol. Allylation of this alcohol, afforded ribose $\mathbf{2 0}$ with a yield of 88% over 3 steps. Subsequently, the 1,2-isopropylidene was cleaved under acidic conditions to give 21. Reductive opening of hemiacetal 21, and TBDPS protection of the primary alcohol then provided 14 . The first synthetic pathway (Scheme 1A) to synthon 14 proceeded with an overall yield of 7%, while the second synthesis route (Scheme 1B) delivered 14 in an overall yield of 22%, making the second synthesis route clearly favorable over the first one.

The synthesis of key phosphoramidite $\mathbf{2 8}$ is presented in Scheme 1C. First, ribitol alcohol 16 was glycosylated with glucosazide donor 22, described in Chapter 3. The desired β-glycosidic bond was introduced by the use of ACN as solvent under activation of

TMSOTf. ${ }^{20}$ ACN can coordinate to the intermediately formed oxocarbenium ion in axial manner, driving the acceptor to react on the β-face of the glucosazide. The desired β - GlcN_{3} ribitol $\mathbf{2 3}$ was obtained as the sole anomer in 80% yield. The following protecting groups manipulations were required to arrive at amidite $\mathbf{2 8}$: reduction of the azide group using propanedithiol and subsequent acetylation gave acetamide $\mathbf{2 4}$ in 86% yield over 2 steps. Removal of the TBDPS group using TBAF gave alcohol 25, which was protected with a dimethoxytrityl (DMTr) group. Isomerization of the allyl ether by an iridium catalyst and subsequent iodine mediated enol ether hydrolysis provided alcohol 27. Coupling of the alcohol to the 2-cyanoethyl N, N-diisopropylchlorophosphoramidite resulted in amidite $\mathbf{2 8}$.

Next, the C-3- β-GlcNAc WTA fragments $\mathbf{1 - 3}$ were assembled with key amidites $\mathbf{2 8}$ and 29 (See Chapter 2 and 3) as schematically depicted in Scheme 2 and 3. Hexamer 2 and $\mathbf{3}$ are equipped with a chemoselective handle for conjugation purposes while trimer $\mathbf{1}$ was designed for crystallization studies and therefore lacks this handle. The syntheses were first explored using solution phase chemistry (for trimer 1 and hexamer 3) and next translated to an automated solid phase synthesis approach (for hexamers $\mathbf{2}$ and $\mathbf{3}$).

The assembly of trimer 1 started with the union of ribitol phosphoramidite $\mathbf{3 0}$ (See Chapter 3) and C-3- β-GlcNAc ribitol 27 (Scheme 2A). Condensation of these two building blocks occurred under the agency of dicyanoimidazole to provide the intermediate phosphite, which was oxidized using (10-camphorsulfonyl)oxaziridine (CSO) to deliver the phosphotriester. Unmasking the primary alcohol by removal of the DMTr-group using dichloroacetic acid gave dimer 31 in 68% yield. In the next coupling-oxidationdeprotection cycle, comprising the same three steps, trimer 32 was formed in 78% yield. Deprotection of the trimer was accomplished by removal of the cyanoethyl esters under aqueous ammonia conditions and subsequent hydrogenation of the semi protected trimer to yield 1 in 77% yield over 2 steps.

Next the assembly of the longer hexamer $\mathbf{3}$ was undertaken, which started with the coupling of the spacer amidite $\mathbf{3 4}$ and ribitol alcohol $\mathbf{3 3}$ using the above described coupling-oxidation-deprotection cycle (Scheme 2B). The resulting spacer functionalized monomer 35, obtained in 72% yield, was then elongated using phosphoramidite 29 to provide dimer 36 (88\%). Ensuing coupling with C-3- β-GlcNAc phosphoramidite 28 then gave, after oxidation and DMTr removal, trimer $\mathbf{3 7}$ in similar yield. Trimer $\mathbf{3 7}$ was next elongated towards hexamer $\mathbf{4 0}$ by three coupling-oxidation-deprotection cycles involving amidite 29 ($2 x$) and C-3- β-GlcNAc amidite 28, which all proceeded in good yield. Global deprotection of the fully protected hexamer was accomplished using the same conditions as described for the trimer to deliver C-3- β-GlcNAc WTA fragment $\mathbf{3}$ in 77% yield over 2 steps.

A

B

C

Scheme 1. A Building block synthesis; Reagents and conditions: a) $\mathrm{AcCl}, \mathrm{MeOH} ; \mathrm{b}$) acetone, $\mathrm{HCl} ; \mathrm{c}) \mathrm{AllylBr}, \mathrm{NaH}, \mathrm{THF} / \mathrm{DMF}$, 84% over 3 steps, d) formic acid $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(\mathrm{v} / \mathrm{v} / \mathrm{v}=6 / 2 / 2), 50^{\circ} \mathrm{C}, 76 \%$; e) BzCl , pyridine, quant.; f) $\mathrm{HBr}, \mathrm{AcOH} ; \mathrm{g}$) N, N dimethylformamide dimethyl acetal, DCM, 80%; h) $\mathrm{NaOMe}, \mathrm{MeOH}$; i) $\mathrm{NAPBr}, \mathrm{NaH}, \mathrm{TBAI}, \mathrm{THF}, 72 \%$ over 2 steps; j) formic acid/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ ($\mathrm{v} / \mathrm{v} / \mathrm{v}=2 / 2 / 6$), 76%; k) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; l) $\mathrm{NaOMe}, \mathrm{MeOH}, 60 \%$ over 2 steps; m) TBDPSCI, TEA, DCM, $81 \% ; \mathrm{n}$) BnBr, NaH, THF/ DMF (v/v=7/1); o) DDQ, DCM/H2O (v/v=4/1) p) TBAF, THF, 62% over 2 steps; q) TBDPSCI, TEA, DCM, 98%; B Building block synthesis; Reagents and conditions: a) DMSO, $\mathrm{Ac}_{2} \mathrm{O}$; b) NaBH_{4}, EtOH/H2O (v/v=7/3), 69\% over 2 steps; c) NAPBr, $\mathrm{NaH}, \mathrm{TBAI}$, THF; d) p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 75 \%$ over 2 steps; e) $0.2 \mathrm{M} \mathrm{NaIO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$; f) $\mathrm{NaBH}_{4}, \mathrm{MeOH} ; \mathrm{g}$) AllylBr, NaH , THF/DMF (v/v= $7 / 1$), 88%; h) THF/H2O/formic acid ($\mathrm{v} / \mathrm{v} / \mathrm{v}=2 / 2 / 6$) 85%; i) i. $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; ii. TBDPSCI, TEA, DCM, 57% over 2 steps; C Building block synthesis; Reagents and conditions: a) $\mathbf{1 6}, \mathrm{TMSOTf}, \mathrm{ACN},-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 80 \%$; b) propane dithiol, TEA, pyridine $/ \mathrm{H}_{2} \mathrm{O}$; C) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 86% over 2 steps; d) TBAF, THF, 96%; e) DMTrCI, TEA, DCM, 61%; f) i. $\operatorname{Ir}(\mathrm{COD})\left(\mathrm{Ph}_{2} \mathrm{MeP}\right)_{2} \mathrm{PF}_{6}, \mathrm{H}_{2}, \mathrm{THF}$, ii. I_{2}, sat. aq. NaHCO_{3}, THF, 94%; g) 2-Cyanoethyl N, N-diisopropylchlorophosphoramidite, DIPEA, DCM, 85%.

Chapter 4 | Synthesis of Staphylococcus aureus C-3 glycosylated ribitol phosphates

\leftarrow Scheme 2. A. WTA assembly of glycosylated trimer 1 and glycosylated hexamers 3; Reagents and conditions: a) i. DCI, ACN, 33; ii. CSO; iii. 3\% DCA in DCM, 31: 68\%; b) i. DCI, ACN, phosphoramidite 29; ii. CSO; iii. 3\% DCA in DCM, 32: 78\%; c) i. $\mathrm{NH}_{3}\left(30-33 \%\right.$ aqueous solution), dioxane; d) Pd black, $\mathrm{H}_{2}, \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O} /$ dioxane, 1: 77\%; B. Reagents and conditions: a) i. DCI, ACN, 33; ii. CSO; iii. 3\% DCA in DCM, 35: 72\%; b) i. DCI, ACN, phosphoramidite $\mathbf{2 8}$ or 29; ii. CSO; iii. 3\% DCA in DCM, 36: $88 \%, 37$: 88\%; 38: 92%; 39: 87\%; 40: quant.; c) i. NH_{3} (30-33\% aqueous solution), dioxane; d) Pd black, $\mathrm{H}_{2}, \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O} /$ dioxane, 3: 70\%.

As discussed in Chapter 2, automated solid phase synthesis (ASPS) was applied for the synthesis of unsubstituted WTAs and being encouraged by the synthesis of glycosylated TAs as reported by Hogendorf et al. ${ }^{21-23}$ and van der Es et al. ${ }^{24}$ the synthesis of glycosylated WTAs was attempted (Scheme 3). To ensure spacer installation at the "peptidoglycan attachment site", commercial CPG resin 41 was used, featuring a phthalimide protected aminohexanol spacer moiety. ASPS was performed on $10 \mu \mathrm{~mol}$ scale resin and a DMTr cleavage using 3\% DCA in toluene liberated the primary alcohol 42 on which the first coupling could take place. To this end the resin was reacted with amidite $\mathbf{2 9}$ under the agency of 5 -(Benzylthio)- 1 H -tetrazole to give the phosphite intermediate, which was oxidized to the corresponding phosphate using I_{2} and pyridine. Afterwards a capping step took place to prevent alcohol functionalities to react in the next step, which could lead to difficult to separate byproducts. Liberation of the primary alcohol then allowed for a new coupling cycle with an amidite of choice. En route to target hexamer 2, 4 additional couplings cycle with amidite 29 were performed and for the last coupling β-glycosylated amidite $\mathbf{2 8}$ was used. For target hexamer 3, featuring two C-3- β-GIcNAc RboP residues, the second cycle used amidite 29 and the third cycle β-glycosylated amidite 28. Two ensuing coupling cycles with amidite 29 and a last coupling cycle with β-glycosylated amidite $\mathbf{2 8}$ were performed to arrive at the hexamer stage. The primary alcohol was unmasked using 3\% DCA followed by treatment with aqueous $25 \% \mathrm{NH}_{3}$ that removed the cyanoethyls and released the oligomers from the resin. The crude hexamers were purified using reversed HPLC and a desalting step afforded 43 and 44 in 20\% and 11% yield respectively. Final hydrogenations of the semi-protected hexamers gave the targets $\mathbf{2}$ and $\mathbf{3}$ in 87% and quantitative yield.

2: $R_{1}=\beta-G I C N A c, R_{2}=H$
3: $R_{1}=\beta-G I c N A c, R_{2}=\beta-G I c N A c$
Scheme 3. Assembly of glycosylated WTAs 2 and $\mathbf{3}$ using ASPS approach; Reagents and conditions: a) 3\% DCA, toluene; b) phosphoramidite $\mathbf{2 8}$ or 29, 5-(Benzylthio)-1H-tetrazole, $\mathrm{ACN} ; \mathrm{c}$) I_{2}, pyridine, $\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{ACN} ; \mathrm{d}\right) \mathrm{Ac}_{2} \mathrm{O}, \mathrm{N}$-methylimidazole, 2,6-lutidine, ACN ; e) i. 3% DCA, toluene; ii. $25 \% \mathrm{NH}_{3}(\mathrm{aq}) 43: 6.9 \mathrm{mg} ; 20 \% ; \mathbf{4 4 :} 4.2 \mathrm{mg} ; 11 \%$; f) Pd black, H_{2}, dioxane $\mathrm{H}_{2} \mathrm{O}, \mathrm{AcOH}, \mathbf{2}$: $3.0 \mathrm{mg} ; 87 \%$; 3: $2.5 \mathrm{mg} ; 1.30 \mu \mathrm{~mol}$; quant.

Figure 2 depicts the ${ }^{1} \mathrm{H}$ NMR spectra of the $\alpha-1,4-, \beta-1,4$ - and the $\beta-1,3-\mathrm{GIcNAc}$ WTAs. The NMR spectra of these well-defined WTAs can be very useful for the structure determination of new WTA-species isolated from bacterial strains, and in particular the position and configuration of the modifications along the chain. As shown in Fig 2, the anomeric protons of the β-linked GlcNAc are present at a different chemical shift value than the anomeric protons of the α-GlcNAc. The $\beta-1,3-$ GlcNAc anomeric protons appear at 4.62 ppm , slightly lower than the $\beta-1,4-\mathrm{GlcNAc}$ anomeric protons with resonances at 4.70 ppm . These values are in accordance with those reported by Sanofi Pasteur ${ }^{25}$ for $\beta-1,3-$ GIcNAc modified WTA, isolated from strain ATC 55804 with a anomeric value of 4.65 and with $\beta-1,4$-GlcNAc WTA isolated from strain wood 46 showing anomeric signals at 4.75 ppm for. The reported anomeric signals for $\alpha-1,4-$ GlcNAc WTA from Newman D2C (at 5.07 ppm) are also well in agreement with the values for the $\alpha-1,4-G I c N A c$ WTA (5.03 ppm and 5.06 ppm). They are also in line with the TarP and TarM modified WTAs described by Gerlach et al. ${ }^{15}$

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra of the synthetic $\alpha-1,4-, \beta-1,4$ - and $\beta-1,3$ glycosylated WTAs.

Figure 3. ${ }^{13} \mathrm{C}$ NMR spectra of the synthetic $\alpha-1,4-, \beta-1,4$ - and $\beta-1,3$ glycosylated WTAs.

Figure 3 shows the ${ }^{13} \mathrm{C}$ NMR of the $\beta-1,3-, \beta-1,4-$ and $\alpha-1-4-$ GlcNAc WTAs. The anomeric signals of the $\beta-1,3$-WTA appear at 101.6 and the C-3 glycosylated Rbo shows a shift at 80.8 and 81.0 which is in agreement with previously reported data at 81.8 for C-3 glycosylated Rbo position, appearing at higher ppm values than the non-glycosylated ribitol positions ${ }^{15}$. The $\beta-1,4$-WTA anomeric shifts are at 101.4 and 101.6 comparable to the $\beta-1,3-$ GlcNAc anomeric signals. The C-4 Rbo glycosylated appears around 79.4-79.9 and is closely in accordance with 80.8 ppm for $\mathrm{C}-4$ glycosylated Rbo position ${ }^{15}$. The anomeric signals corresponding to $\alpha-1-4$ - GlcNAc WTAs appear at 96.4 and 96.5 , lower in ppm shift as expected for α-glycosidic linkages and the glycosylated $\mathrm{C}-4$ position ppm values are at 77.6-77.8.

Next, the ${ }^{31}$ P NMR spectra of the $\alpha-1,4$-GlcNAc WTA, $\beta-1,4-$ GlcNAc WTA and $\beta-1,3-$ GIcNAc WTA hexamers were compared, and it appears that the ${ }^{31} \mathrm{P}$-chemical shift is diagnostic for the type of GIcNAc appendage (Figure 4). The ${ }^{31} \mathrm{P}$ signals are assigned $\mathbf{P}_{\mathbf{1}}$ to \mathbf{P}_{6}, as shown in the schematic structure diagrams next to the spectra. The spectrum of the $\alpha \alpha-1,4-\mathrm{GlcNAc}$ hexamer shows three types of signals: three around 2 ppm , a single peak at 1.8 ppm and two peaks around 1.7 ppm . Considering that the phosphate next to the spacer will be different from the other phosphate diesters that are all flanked by two ribitol residues the single peak likely corresponds to the phosphate diester attached to the spacer. When the spectra of the $\alpha-1,4-G l c N A c$ and $\alpha \alpha-1,4-G I c N A c$ hexamers are compared it becomes clear that one peak has shifted to a lower ppm value. This phosphorous resonance thus likely corresponds to $\mathbf{P}_{\mathbf{3}}$. This analysis also holds for the $\beta-1,4-$ GIcNAc and $\beta \beta-1,4-$ GlcNAc hexamer which shows a similar chemical shift pattern. The ${ }^{31} \mathrm{P}$-spectrum of the $\beta-1,3$ glycosylated WTA shows similarity to the $\beta-1,4-$ and $\alpha-1,4-$ GIcNAc WTAs. The introduction of the second GIcNAc substituent at the third ribitol residue causes the resonance of the phosphate diesters $\mathbf{P}_{\mathbf{3}}$ and $\mathbf{P}_{\mathbf{4}}$ (which are equally close to the GlcNAc residue in the middle of the RboP moiety) to shift to a lower ppm value: the peaks around 1.8-1.9, corresponding to four P signals, belong to $\mathbf{P}_{1}, \mathbf{P}_{\mathbf{3}}, \mathbf{P}_{4}$ and \mathbf{P}_{6}. The phosphodiesters, flanked by two non-substituted ribitols are found around 2 ppm . In all, this analysis shows that ${ }^{31} \mathrm{P}$-NMR chemical shifts can be diagnostic for the substitution pattern along the RboP chain, and the relative intensity of the signals indicative for the degree of glycosylation.

3.2
3.2
ppm
ppm

Figure 4. ${ }^{31}$ P NMR spectra of the synthetic mono- and di- $\alpha-1,4-,-\beta-1,4-$ and $-\beta-1,3$ glycosylated WTAs.

To probe Ab binding to the generated WTA-hexamers, the fragments were evaluated in the previously described magnetic bead assay (See Chapter 2) using two monoclonal antibodies (mAbs): 4461, a recombinantly expressed anti $\alpha-1,4-$ GlcNAc-WTA antibody, and 4497, which recognizes $1,4-\beta-$ GIcNAc-WTA. To this end the synthesized glycosylated WTA hexamers ($\beta \beta-1,3-\mathrm{GlcNAc}$ WTA 3, $\beta \beta-1,4-\mathrm{GlcNAc}$ WTA 50, and $\alpha \alpha-1,4-\mathrm{GIcNAc}$ WTA 52) were equipped with a biotin handle to couple them to Streptavidin-coated magnetic beads (Scheme 4A). Figure 4B depicts the binding of the bead-bound hexamers with the monoclonal antibodies used in increasing concentration. As can be seen from the left graph the anti $\alpha-m A b 4461$ selectively binds to the $\alpha \alpha-1,4-$ GIcNAc WTA in a concentration dependent manner. The anti $\beta-\mathrm{mAb} 4497$ on the other hand (See right panel in Figure 4B), shows binding to both the $\beta \beta-1,4$ - and the $\beta \beta-1,3-$ GIcNAc WTAs, with the former being recognized slightly better than the latter. This shows that this mAb, raised against $\beta-1,4-$ GIcNAc WTA, can cross react with $\beta-1,3-$ GIcNAc WTA. It is thus not unlikely that $\lg G$ in human serum is also capable of interacting with both TarS-WTA and TarP-WTA, as described by Van Dalen et al. ${ }^{26}$ More detailed binding studies are required to pinpoint the differences in binding between the two different epitopes and the (recombinantly expressed) monoclonal antibodies and human sera.

Scheme 4. A. Biotinylation of hexamer 50, 52 and 3; Reagents and conditions: Biotin-OSu, DIPEA, DMSO, 55: 51\%, 58: 68\%, 57: 93\%; B. Concentration dependent assay of mAbs 4461 and 4497 against WTA hexamers, 55, $\mathbf{5 7}$ and 58.

CONCLUSION

This Chapter described the successful synthesis of C-3 glycosylated ribitol phosphate WTA fragments. A solution phase synthesis approach has enabled the synthesis of well-defined $\beta-1,3-$ GlcNAc WTA fragments on large scale yielding sufficient amounts for various activity and binding studies. The automated solid phase assembly afforded lower amounts but it does allow the rapid assembly of WTA fragments with a diverse substitution pattern, without the need for purification steps after each coupling cycle. NMR analysis of the full set of WTA fragments, generated in this and the previous chapter, showed characteristic chemical shifts for the different GIcNAc epimers and regioisomers in both ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ spectra, indicating and corroborating how these NMR techniques can be used in structural elucidation studies performed on ribitol phosphate WTA. Binding of the synthesized fragments with mAbs raised against either α - or β-GIcNAc WTAs, was evaluated using the magnetic bead model and it was shown only binding to the WTA-type against which the mAbs were raised could be detected. Noteworthy, the binding of the mAbs directed to the β-GlcNAc which showed binding to both the C-4 and the C-3 glycosylated WTA. The magnetic bead assay allows the sensitive and specific detection of antibodies using well-defined synthetic WTA fragments and presents a reliable way to detect WTA specific antibodies in serum. In the future it can be used to screen larger cohorts to show how adaptive immunity develops or fails to develop upon
exposure to different S. aureus infections. Similarly, the assembled library of WTAs can be used to generate a TA-microarray platform to screen serum and used to identify infections by different strains of S. aureus. This will require a lower amount of the fragments and would not require the attachment of a biotin affinity handle as used in the magnetic bead assay. Both platforms would be expertly suited to also interrogate other relevant biomolecules, such as C-type lectin receptors or phage proteins. Finally, the synthetic structures reported here may be explored as antigens to generate synthetic vaccines or antibodies against S. aureus.

EXPERIMENTAL SECTION

General information

All chemicals (Acros, Fluka, Merck, Sigma-Aldrich, etc.) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 ($0.040-0.063 \mathrm{~mm}$). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol or with a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O} 25 \mathrm{~g} / \mathrm{l}$ and $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} 10 \mathrm{~g} / \mathrm{l}$, in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by charring at $+/-140^{\circ} \mathrm{C}$. Some unsaturated compounds were visualized by spraying with a solution of KMnO_{4} (2\%) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \%)$ in water. Optical rotation measurements ($[\alpha]_{\mathrm{D}}{ }^{20}$) were performed on a Propol automated polarimeter (Sodium D- line, $\lambda=589 \mathrm{~nm}$) with a concentration of 10 $\mathrm{mg} / \mathrm{mL}$ ($\mathrm{c}=1$), unless stated otherwise. Infrared spectra were recorded on a Shimadzu FT-IR 8300. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31}$ P NMR spectra were recorded with a Bruker AV 400 (400,101 and 162 MHz respectively), a Bruker AV 500 (500 and 202 MHz respectively) or a Bruker DMX 600 (600 and 151 MHz respectively). NMR spectra were recorded in CDCl_{3} with chemical shift (δ) relative to tetramethylsilane, unless stated otherwise. High resolution mass spectra were recorded by direct injection ($2 \mu \mathrm{l}$ of a $2 \mu \mathrm{M}$ solution in water/acetonitrile; $50 / 50 ; \mathrm{v} / \mathrm{v}$ and 0.1% formic acid) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV , sheath gas flow 10 , capillary temperature $250^{\circ} \mathrm{C}$) with resolution $\mathrm{R}=60000$ at m / z 400 (mass range $m / z=150-2000$) and dioctylphthalate ($m / z=391.28428$) as a lock mass. The high resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

General procedure for phosphoramidite synthesis

The alcohol was co-evaporated with distilled toluene two times under a N_{2} atmosphere, and dissolved in dry DCM (0.1 M). DIPEA (1.5 eq.) and activated molecular sieves ($3 \AA$)
were added and the solution was stirred for 30 minutes. 2-Cyanoethyl- N, N-diisopropylchlorophosphoramidite (1.2 eq.) was added and the reaction mixture was stirred for 2.5 hours. Next, a few drops of $\mathrm{H}_{2} \mathrm{O}$ were added and the mixture was diluted in DCM. The organic phase was washed with sat. aq. $\mathrm{NaHCO}_{3} /$ brine (1:1)(v/v). The water layer was extracted with DCM (3x), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated in vacuo. Purification was performed by neutralized column chromatography to give the corresponding phosphoramidite.

Phosphoramidite coupling, oxidation and detritylation

The starting alcohol was co-evaporated 2 times with dry toluene before being dissolved in dry acetonitrile (ACN, 0.15 M). 4,5-dicyanoimidazole (DCI) (1.6-2.4 eq; 0.25 M in ACN) was added and the mixture was stirred over freshly activated molecular sieves under an argon atmosphere for 20 minutes. Then phosphoramidite ($1.3-2.0 \mathrm{eq} ; 0.20 \mathrm{M}$) was added and the mixture was stirred at rt until total conversion of the starting material (15-45 minutes). Subsequently, (10-camphorsulfonyl)oxaziridine (CSO) (2.0 eq; 0.5 M in ACN) was added and the stirring was continued for 15 minutes. The mixture was diluted with DCM and washed with a $1 / 1$ solution of saturated $\mathrm{NaCl} / \mathrm{NaHCO}_{3}$. The water layer was extracted 3 times with DCM and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was dissolved in DCM, DCA was added (5 eq; 0.18 M in DCM), and the mixture was stirred at rt . After 40-60 minutes an aqueous solution of methanol (1:1) was added, stirred for an additional 30-40 minutes and diluted with DCM. The organic layer was washed with saturated $\mathrm{NaCl} / \mathrm{NaHCO}_{3}$ solution (1/1), the water layer was extracted 3 times with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was further purified by either flash chromatography (DCM/acetone) or size exclusion chromatography (sephadex LH-20, MeOH/DCM, 1/1).

General procedure for global deprotection

The fully protected oligomer was dissolved in a ($\mathrm{v} / \mathrm{v}=1: 1$) mixture of $\mathrm{NH}_{4} \mathrm{OH}$ /dioxane $(3.33 \mathrm{mM}$) and the reaction mixture was stirred at rt overnight. The mixture was concentrated under reduced pressure, and the residue was flushed over a Dowex Na^{+}cationexchange resin (type: $50 \mathrm{WX} 4-50-100$, stored on 0.5 M NaOH in $\mathrm{H}_{2} \mathrm{O}$, flushed with MiliQ water and MeOH before use). The crude product was dissolved in a ($\mathrm{v} / \mathrm{v}=1: 1$) mixture of dioxane $/ \mathrm{H}_{2} \mathrm{O}(0.013 \mathrm{M})$, and 3 drops of AcOH were added. The mixture was purged with N_{2}, Pd black ($\pm 50 \mathrm{mg}$) was added and the mixture was repurged with N_{2}. Then the mixture was purged with H_{2} and was stirred under a H_{2} atmosphere multiple days. The mixture was filtered over celite and concentrated in vacuo. The residue was purified by size-exclusion chromatography (HW40, dimensions: $16 / 60 \mathrm{~mm}$, eluent: $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ or $\mathrm{NH}_{4} \mathrm{HCO}_{3}$). The product was co-evaporated repeatedly with MiliQ water to remove
$\mathrm{NH}_{4} \mathrm{OAc} / \mathrm{NH}_{4} \mathrm{HCO}_{3}$ traces, and eluted through a small column containing Dowex Na^{+} cation-exchange resin (type: $50 \mathrm{WX} 4-200$, stored on 0.5 M NaOH in $\mathrm{H}_{2} \mathrm{O}$, flushed with MiliQ water and MeOH before use), to give the deprotected ribitol phosphate oligomer.

General procedure for automated solid phase synthesis

A small column containing highly cross-linked polystyrene based universal support resin (USP III PS, Glen research) was loaded in an automated synthesizer (Äkta oligopilot plus, GE healthcare). The resin was flushed with a solution of 3\% DCA in toluene (15 $\mathrm{ml}, 3 \mathrm{~min}$) followed by ACN ($5 \mathrm{ml}, 1 \mathrm{~min}$). A solution of phosphoramidite ($0.1 \mathrm{M} \mathrm{in} \mathrm{ACN}$, $0.5 \mathrm{ml}, 2 \times 30 \mu \mathrm{~mol}$) and a solution of 5 -(Benzylthio)- 1 H -tetrazole (0.3 M in ACN, 0.75 ml , 0.2 mmol) were added to the column and the mixture was recycled over the resin for 5 minutes. The resin was flushed with $\mathrm{ACN}(1 \mathrm{ml}, 5 \mathrm{x})$ and a solution of $\mathrm{I}_{2}(0.05 \mathrm{M}$ in a mixture of pyridine and $\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=7: 1), 2 \mathrm{ml}, 1 \mathrm{~min}\right)$ subsequently. The resin was flushed with ACN ($1 \mathrm{ml}, 5 \mathrm{x}$) and a capping mixture ($1 / 1$) mixture of cap $\mathrm{A}\left(0.5 \mathrm{M} \mathrm{Ac}_{2} \mathrm{O}\right.$ in ACN) and cap B (N-methylimidazole, 2,6-lutidine, $A C N, v / v / v=1: 1: 9,1 \mathrm{ml}, 0.2 \mathrm{~min}$) subsequently. The system was flushed with ACN ($1 \mathrm{ml}, 5 \mathrm{x}$), and a detritylation step was performed using the reaction conditions mentioned before. The molecule was further elongated following the same set of reactions (coupling, oxidation, capping, detritylation). When the desired length was obtained, the column was removed from the system and NH_{3} (25% in $\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{ml}$) was added and the mixture was rested for 1 hour. The mixture was passed over a filter and the resin was flushed with $\mathrm{ACN}, \mathrm{H}_{2} \mathrm{O}$, a mixture of ($t-\mathrm{BuOH}, \mathrm{ACN}$ and $\mathrm{H}_{2} \mathrm{O}, \mathrm{v} / \mathrm{v} / \mathrm{v}=1: 1: 1,10 \mathrm{ml}$), ACN and DMF. The combined eluate was concentrated in vacuo and the residue was purified using reversed phase HPLC ($\mathrm{C} 4, \mathrm{NH}_{4} \mathrm{OAC}$). After repeated lyophilization, the product was eluted through a small column containing Dowex Na^{+} cation-exchange resin (type: $50 \mathrm{WX} 4-200$, stored on 0.5 M NaOH in $\mathrm{H}_{2} \mathrm{O}$, flushed with MiliQ water and MeOH before use).

Biotinylation

Chapter 2 described the enzymatic glycosylation using the glycosyltransferases TarS and TarM in the presence of UDP-GIcNAc and unglycosylated 6-mer and 12-mer as substrates. In order to explore if these enzymes are also able to glycosylate synthetic glycosylated WTAs, whether in α - or β conformation, the set of glycosylated WTAs was subjected to the biotinylation conditions as described below.

General procedure biotinylation

$0.5 \mu \mathrm{~mol}$ of the GlcNAc-RboP-hexamer was dissolved in DMSO ($250 \mu \mathrm{~L} ; 2.0 \mathrm{mM}$). $105 \mu \mathrm{~L}$ of 0.075 M Biotin-OSu in DMSO was added ($0.85 \mu \mathrm{~mol} ; 1.7 \mathrm{eq}$) followed by DIPEA (104.5 $\mu \mathrm{L}$) and the mixture was shaken overnight at rt . $250 \mu \mathrm{~L}$ of magic and $250 \mu \mathrm{~L}$ were added and the mixture was centrifuged and purified by size exclusion chromatography (HW-40
column, dimensions: $16 / 60 \mathrm{~mm}$, eluent 0.15 M NH 44 OAc . After repeated co-evaporation ($7-10 x$) with miliQ water to remove $\mathrm{NH}_{4} \mathrm{OAc}$, the product was eluted through a small column containing Dowex Na^{+}cation-exchange resin (type 50WX8-50-100, stored on 0.5 M NaOH in $\mathrm{H}_{2} \mathrm{O}$, flushed with $\mathrm{H}_{2} \mathrm{O}$ and MeOH before use). Lyophilization yielded the product.

Methyl 5-O-allyl-2,3-O-isopropylidene- α-D-ribofuranoside (5)

D-ribose ($37.5 \mathrm{~g}, 250 \mathrm{mmol}, 1.0$ eq.) was dissolved in MeOH (930 $\mathrm{mL}, 0.27 \mathrm{M}$). $\mathrm{AcCl}(5.45 \mathrm{~mL}, 76.4 \mathrm{mmol}, 0.31 \mathrm{eq}$.) was added dropwise and the reaction mixture was stirred for 2 hours at rt. After full conversion solid NaHCO_{3} was added until the mixture reached a neutral pH. The NaHCO_{3} was filtered, and the solution was concentrated under reduced pressure. The crude product was dissolved in acetone ($1240 \mathrm{~mL}, 0.20 \mathrm{M}$). Concentrated HCl (37%) ($14.9 \mathrm{~mL}, 2.0 \mathrm{eq}$.) was added and the reaction mixture was stirred at rt overnight. Solid NaHCO_{3} was added until the mixture was pH neutral. The NaHCO_{3} was filtered, and the solution was concentrated under reduced pressure. Subsequently, the crude product was dissolved in a ($\mathrm{v} / \mathrm{v}=7: 1$) mixture of THF/DMF ($715 \mathrm{~mL}, 0.35 \mathrm{M}$) and the mixture was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(15.0 \mathrm{~g}, 375 \mathrm{mmol}, 1.5 \mathrm{eq} ., 60 \%$ in mineral oil) was added in portions. Allyl bromide ($25.9 \mathrm{~mL}, 300 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise and the reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight, followed by the slow addition of MeOH at $0^{\circ} \mathrm{C}$. The mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{x})$. The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100% pentane to 20 \% EtOAc in pentane) yielded the pure α title compound 5 ($51.3 \mathrm{~g}, 210 \mathrm{mmol}$) in 84% over 3 steps. IR (neat, cm^{-1}): 2939, 2362, $1373,1211,1090,1049,962,870 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.32$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Acetyl), 1.48 (s, 3H, CH ${ }_{3}$-Acetyl), 3.31 (s, 3H, OCH ${ }_{3}$), 3.37 - 3.56 (m, 2H, H-5), 4.01 (dd, 2H, J= 5.6, $1.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}$), $4.33(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-4), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-2), 4.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.1$ $\mathrm{Hz}, \mathrm{H}-3), 4.96$ (s, 1H, H-1), $5.14-5.41$ (m, 2H, CH ${ }_{2}=\mathrm{CH}$), 5.90 (ddt, $1 \mathrm{H}, \mathrm{J}=17.3,10.3,5.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right)$; ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=25.0\left(\mathrm{CH}_{3}\right.$-Acetyl), $26.5\left(\mathrm{CH}_{3}\right.$-Acetyl), 54.8 $\left(\mathrm{OCH}_{3}\right), 71.0(\mathrm{C}-5), 72.2\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 81.2(\mathrm{C}-3), 85.2(\mathrm{C}-2, \mathrm{C}-4), 109.3(\mathrm{C}-1), 112.3\left(\mathrm{CH}_{3}-\mathrm{Cq}\right)$, $117.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $134.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na} 267.1203$, found 267.1213.

5-O-allyl-d-ribofuranoside (6)

Compound 5 ($50.0 \mathrm{~g}, 205 \mathrm{mmol}$) was dissolved in a ($\mathrm{v} / \mathrm{v} / \mathrm{v}=6: 2: 2$) mixture of formic acid/ $\mathrm{H}_{2} \mathrm{O} /$ THF ($1.4 \mathrm{~L}, 0.15 \mathrm{M}$), and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ overnight. The mixture was concentrated in vacuo and the product was co-evaporated with toluene two times. Column chromatography (100% DCM to $15 \% \mathrm{MeOH}$ in DCM) yielded triol 6 ($29.7 \mathrm{~g}, 156 \mathrm{mmol}$)
as an $\alpha: \beta$ mixture with a ratio of $\pm 2: 1$ in 76% yield. $\operatorname{IR}\left(\right.$ neat, cm^{-1}): 2943, 2360, 1654, 1507, 1049; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.49-3.72(\mathrm{~m}, 2.3 \mathrm{H}, \mathrm{H}-5 \alpha, \beta), 3.94-4.23(\mathrm{~m}$, $5.6 \mathrm{H}, \mathrm{H}-2 \alpha, \mathrm{H}-3 \alpha, \mathrm{H}-4 \alpha, \mathrm{H}-4 \beta, \mathrm{H}-2 \beta, \mathrm{H}-3 \beta, \mathrm{CH}_{2}-\mathrm{CH} \alpha, \beta$), $5.11-5.39(\mathrm{~m}, 3.5 \mathrm{H}, \mathrm{H}-1 \alpha$, H-1 $\beta, \mathrm{CH}_{2}=\mathrm{CH}$), 5.81 - 5.97 (ddt, $1 \mathrm{H}, \mathrm{J}=17.2,10.4,5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$); ${ }^{13} \mathrm{C}$-APT NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=70.3(\mathrm{C}-5), 71.4(\mathrm{C}-2, \mathrm{C}-3), 71.2(\mathrm{C}-5), 71.7(\mathrm{C}-2 / \mathrm{C}-3), 72.5,72.5\left(\mathrm{CH}_{2}-\mathrm{CH}\right)$, 75.7(C-2/C-3), 81.9, 82.4 (C-4), $96.6(\mathrm{C}-1 \alpha), 101.9(\mathrm{C}-1 \beta), 117.6,118.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 134.1$, $134.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$; $\mathrm{HRMS}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na} 213.0733$, found 213.0741.

5-O-allyl-1,2,3-tri-O-benzoyl-D-ribofuranoside (7)

Triol 6 ($16.3 \mathrm{~g}, 85.7 \mathrm{mmol}, 1.0$ eq.) was dissolved in pyridine (430 $\mathrm{mL}, 0.20 \mathrm{M}$) and the mixture was cooled to $0^{\circ} \mathrm{C} . \mathrm{BzCl}(44.8 \mathrm{~mL}$, $386 \mathrm{mmol}, 4.5$ eq.) was added and the reaction was stirred for 1.5 hours from $0^{\circ} \mathrm{C}$ to rt .250 mL H O was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 15 minutes at $0^{\circ} \mathrm{C}$. The mixture was diluted in EtOAc, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(1 x), 3 \mathrm{M} \mathrm{HCl}(2 x)$, sat. aq. $\mathrm{NaHCO}_{3}(1 x)$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100\% pentane to 35% EtOAc in pentane) yielded title compound 7 ($43.1 \mathrm{~g}, 85.7 \mathrm{mmol}$) as an $\alpha: \beta$ mixture with a ratio of $\pm 3: 2$ in quantitative yield. IR (neat, cm^{-1}): 2860, 1724, 1261, $1108,1066,1025,707 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.63-3.93(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4 \alpha, \mathrm{H}-4 \beta, \mathrm{H}-5 \alpha$, $\mathrm{H}-5 \beta$), 4.02 (dt, $\left.2 \mathrm{H}, \mathrm{J}=5.6,1.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH} \alpha\right), 4.06-4.17\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{CH}_{2}-\mathrm{CH} \beta\right.$), $4.61-4.80$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3 \alpha, \mathrm{H}-3 \beta$), $5.04-5.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH} \alpha, \mathrm{CH}_{2}=\mathrm{CH} \beta\right.$), $5.61-6.11(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-2 \alpha$, $\mathrm{H}-2 \beta, \mathrm{CH}_{2}=\mathrm{CH} \alpha, \mathrm{CH}_{2}=\mathrm{CH} \beta$), $6.68(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{H}-1 \beta)$, $7.14-8.29\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=69.4-69.8(\mathrm{C}-5 \alpha, \beta), 71.5$ - 71.8 (C-4 α, β), 72.6 - $72.7\left(\mathrm{CH}_{2}-\mathrm{CH} \alpha, \beta\right)$, $75.3(\mathrm{C}-2 \alpha, \beta), 82.1(\mathrm{C}-3 \alpha), 84.5(\mathrm{C}-3 \beta), 95.2$ ($\mathrm{C}-1 \beta$), $99.2(\mathrm{C}-1 \alpha), 117.2-117.6\left(\mathrm{CH}_{2}=\mathrm{CH} \alpha, \beta\right), 128.4-130.1$ (C-arom), 133.4 - 133.5 $\left(\mathrm{CH}_{2}=\mathrm{CH} \alpha, \beta\right), 165.0-165.9(6 x \mathrm{C}=\mathrm{O})$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{Na}$ 525.1520, found 525.1529.

5-O-allyl-3-O-benzoyl-(1,2-0-methylorthobenzoyl)- α-D-ribofuranoside (9)

Compound 7 ($4.9 \mathrm{~g}, 9.7 \mathrm{mmol}, 1.0$ eq.) was dissolved in dry DCE ($32 \mathrm{~mL}, 0.3 \mathrm{M}$) and the mixture was cooled to $0^{\circ} \mathrm{C} .33 \%$ HBr in $\mathrm{AcOH}(2.4 \mathrm{~mL}, 14.6 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise, and the mixture was stirred for 10 minutes at $0^{\circ} \mathrm{C}$, and 1 hour at rt . The reaction mixture was diluted in DCM and the organic phase was washed with ice cold sat. aq. NaHCO_{3}. The water layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated under reduced pressure at $30^{\circ} \mathrm{C}$ to give the crude anomeric bromide intermediate in situ, which was used in the next step without further purification. The crude ($2.24 \mathrm{~g}, 4.85 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was
dissolved in dry DCM ($12.1 \mathrm{~mL}, 0.4 \mathrm{M}$), and the mixture was cooled to $0^{\circ} \mathrm{C}$. N, N-dimethylformamide dimethyl acetal ($0.97 \mathrm{~mL}, 7.28 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise and the reaction was stirred from $0^{\circ} \mathrm{C}$ to rt for 3 days. The reaction mixture was concentrated in vacuo at $30^{\circ} \mathrm{C}$ and column chromatography (100% pentane to $35 \% \mathrm{EtOAc}$ in pentane) yielded title compound $9(1.61 \mathrm{~g}, 3.89 \mathrm{mmol})$ in 80% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+115.5^{\circ}$ (c 1.0, DCM); IR (neat, cm^{-1}): 2943, 2360, 1724, 1457, 1272, 1095, 1055, 766, 712, 700; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48-3.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.92-4.03\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2}-\mathrm{CH}\right), 5.02$ (dd, 1H, J=9.1, 5.4 Hz, H-3), 5.08-5.29 (m, 3H, H-2, CH $2=C H$), 5.83 (ddt, 1H, J= 17.3, 10.4, $5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), $6.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2 \mathrm{~Hz}, \mathrm{H}-1), 7.30-8.15\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=50.1(\mathrm{Cq}-\mathrm{O}-\mathrm{CH} 3), 67.8(\mathrm{C}-5), 72.5(\mathrm{C}-3), 72.6\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 77.8-78.1$ (C-2, C-4), $104.7(\mathrm{C}-1), 117.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 126.1\left(\mathrm{Cq}^{\left.-\mathrm{O}-\mathrm{CH}_{3}\right), 128.1 \text { - } 129.2(\mathrm{C}-\mathrm{arom}), 129.9}\right.$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 137.4$ (Cq-arom), $165.7(\mathrm{C}=\mathrm{O})$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na} 435.1414$, found 435.1419.

5-O-allyl-(1,2-O-methylorthobenzoyl)-3-O-(2-naphtylmethyl)- α-Dribofuranoside (11)

Compound 9 ($13.3 \mathrm{~g}, 32.3 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{MeOH}(160 \mathrm{~mL}, 0.2 \mathrm{M})$. $\mathrm{NaOMe}(5.4 \mathrm{M})$ in $\mathrm{MeOH}(0.6 \mathrm{~mL}, 3.23$ mmol, 0.1 eq.) was added dropwise, and the reaction was stirred at rt for 2 hours. The mixture was concentrated in vacuo and continued without purification to give the crude alcohol. The crude compound (9.96 g) was co-evaporated with toluene and dissolved in THF ($110 \mathrm{~mL}, 0.3 \mathrm{M}$). The mixture was cooled to $0^{\circ} \mathrm{C}$, followed by the portion wise addition of $\mathrm{NaH}(2.60 \mathrm{~g}, 64.6 \mathrm{mmol}$, 2.0 eq., 60% in mineral oil) and TBAI ($1.19 \mathrm{~g}, 3.23 \mathrm{mmol}, 0.1 \mathrm{eq}$.$) . \operatorname{NAPBr}(9.30 \mathrm{~g}, 42.0$ mmol, 1.3 eq.) was added and the reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight. A small amount of MeOH was added to the reaction mixture at $0^{\circ} \mathrm{C}$. The mixture was diluted in EtOAc and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, and brine (1x). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. Column chromatography (100% pentane to 45% EtOAc in pentane) yielded title compound 11 ($10.4 \mathrm{~g}, 23.1 \mathrm{mmol}$) in 72% yield over 2 steps. $[\alpha]_{D}^{25}=+77.8^{\circ}(c 1.0, \mathrm{DCM})$; IR (neat, cm^{-1}): 2911, 2360, 1734, 1288, 1089, 1047, 973, 766; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cq}-\mathrm{O}-\mathrm{CH}_{3}\right), 3.42-3.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.78-3.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{CH}_{2}-\mathrm{CH}\right)$, $4.84(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{H}-3), 4.69-5.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP}\right), 5.07-5.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.78$ (ddt, $1 \mathrm{H}, \mathrm{J}=17.2,10.3,5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), $6.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{H}-1), 7.30-7.98(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}-$ arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=50.6\left(\mathrm{Cq}-\mathrm{O}-\mathrm{CH}_{3}\right), 67.6(\mathrm{C}-5), 72.4\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 72.5$ (CH_{2}-NAP), 77.3 (C-2/C-4), $78.0(\mathrm{C}-3), 78.4$ (C-2/C-4), $104.6(\mathrm{C}-1), 117.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 124.1$ (Cq-O-CH $)_{3}$, 126.0 - 129.3 (C-arom), 133.3 (Cq-arom), $134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.2$ (Cq -arom), 136.9 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na} 471.1778$, found 471.1782.

5-O-allyl-2-O-benzoyl-3-O-(2-naphtylmethyl)-D-ribofuranoside (12)

Orthoester 11 ($10.4 \mathrm{~g}, 23.1 \mathrm{mmol}$) was dissolved in a ($\mathrm{v} / \mathrm{v} / \mathrm{v}=$ 2:2:6) mixture of formic acid $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(230 \mathrm{~mL}, 0.1 \mathrm{M}$), and the reaction mixture was stirred at rt for 1.5 hours. DCM was added and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(1 x)$, sat. aq. $\mathrm{NaHCO}_{3}(2 x)$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100% DCM to 3% acetone in DCM) yielded title compound 12 (5.77 $\mathrm{g}, 17.5 \mathrm{mmol}$) as an $\beta: \alpha$ mixture with a ratio of $\pm 3: 1$ in in 76% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=3.29-3.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.90-4.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH} \beta, \mathrm{CH}_{2}-\mathrm{CH} \alpha, \mathrm{H}-2 \alpha\right), 4.25-$ 4.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \beta$), $4.42-4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \beta, \mathrm{H}-4 \alpha), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{NAP}), 4.80$ (d, 1H, J= $10.8 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{NAP}), 5.00-5.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH} \beta\right), 5.19-5.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH} \alpha\right)$, 5.44 (d, 1H, J= $6.7 \mathrm{~Hz}, \mathrm{H}-1 \beta$), 5.51 (d, 1H, J= $4.5 \mathrm{~Hz}, \mathrm{H}-2 \beta$), 5.52 - 5.56 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1 \alpha$), 5.68 (ddt, 1H, J= 16.7, 10.0, $5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH} \beta$), $5.77-5.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH} \alpha\right), 7.28-8.47(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{H}$-arom $)$; ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=69.2(\mathrm{C}-5 \beta), 69.9(\mathrm{C}-5 \alpha), 72.4\left(\mathrm{CH}_{2}-\mathrm{CH} \beta\right)$, $72.5\left(\mathrm{CH}_{2}-\mathrm{CH} \alpha\right), 72.9(\mathrm{C}-2 \alpha), 73.2\left(\mathrm{CH}_{2}-\mathrm{NAP}\right)$, $75.8(\mathrm{C}-2 \beta), 76.8(\mathrm{C}-3 \beta), 77.6(\mathrm{C}-3 \alpha), 81.0$ $(\mathrm{C}-4 \beta), 81.5(\mathrm{C}-4 \alpha), 96.3(\mathrm{C}-1 \alpha), 100.6(\mathrm{C}-1 \beta), 117.4\left(\mathrm{CH}_{2}=\mathrm{CH} \alpha\right), 118.0\left(\mathrm{CH}_{2}=\mathrm{CH} \beta\right), 126.0$ - 129.0 (C-arom), 129.8 (Cq-arom), 133.1 (Cq-arom), 133.2 (Cq-arom), $133.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 133.6, 133.7 (C-arom), 134.3, 134.6, 135.0 (Cq-arom), 165.8 (C=O); HRMS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na} 457.1622$, found 457.1627.

5-O-allyl-3-O-(2-naphtylmethyl)-D-ribitol (13)

Compound 12 ($5.77 \mathrm{~g}, 17.5 \mathrm{mmol}, 1.0$ eq.) was dissolved in
$\mathrm{MeOH}(88 \mathrm{~mL}, 0.2 \mathrm{M})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, followed by the portion wise addition of $\mathrm{NaBH}_{4}(0.79 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.2$ eq.). The reaction mixture was stirred for 30 minutes, followed by the addition of a small amount of EtOAc at $0^{\circ} \mathrm{C}$. Subsequently, the mixture was concentrated under reduced pressure and co-evaporated with toluene. Column chromatography (100% pentane to 70% EtOAc in pentane) yielded the benzoylated product as crude (4.77 g). The crude compound was dissolved in $\mathrm{MeOH}(55 \mathrm{~mL}, 0.32 \mathrm{M}$), and $\mathrm{NaOMe}(5.4 \mathrm{M})$ in $\mathrm{MeOH}(0.35$ $\mathrm{mL}, 1.75 \mathrm{mmol}, 0.1 \mathrm{eq}$.) was added dropwise. The reaction was stirred at rt overnight, followed by the addition of H^{+}amberlite. The H^{+}amberlite was filtered off, and the mixture was concentrated in vacuo. Column chromatography (100% DCM to $10 \% \mathrm{MeOH}$ in DCM) yielded triol $13(3.51 \mathrm{~g}, 10.6 \mathrm{mmol})$ in 60% yield over 2 steps. $[\alpha]_{D}^{25}=+7.5^{\circ}(\mathrm{c}$ 1.0, CHCl_{3}); IR (neat, cm^{-1}): $3400,2928,2356,1457,1078 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 3.52 - 3.65 (m, 3H, H-3, H-5), 3.71 - 3.87 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-1,2 x \mathrm{OH}$), 3.91 - 4.06 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$, $\mathrm{CH}_{2}-\mathrm{CH}, \mathrm{OH}$), 4.77 (q, 2H, J=20.0, $11.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Cq}$), $4.94-5.34$ (m, 2H, CH2 ${ }_{2}=\mathrm{CH}$), 5.84 (ddt, $\left.1 \mathrm{H}, \mathrm{J}=17.1,10.2,5.8 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.30-7.96$ (m, 7H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=63.4(\mathrm{C}-1), 71.1(\mathrm{C}-5), 71.4(\mathrm{C}-2 / \mathrm{C}-4), 72.4(\mathrm{CH} 2-\mathrm{CH}), 72.8(\mathrm{C}-2 / \mathrm{C}-4), 73.9\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cq}), 79.5$ (C-3), $117.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 126.0$ - 128.3 (C-arom), 133.0 (Cq-arom), 133.3 (Cq-arom),
$134.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $135.4\left(\mathrm{Cq}\right.$-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na} 355.1516$, found 355.1526.

5-0-allyl-3-O-(2-naphtylmethyl)-1-O-(tert-butyldiphenylsilyl)-D-ribitol (14)

Compound 13 ($3.51 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.0$ eq.) was dissolved in dry DCM ($106 \mathrm{~mL}, 0.1 \mathrm{M}$) and cooled to $0^{\circ} \mathrm{C}$. TEA (13.4 mL , $95.4 \mathrm{mmol}, 9.0$ eq.) was added, followed by the addition of TBDPSCI ($3.6 \mathrm{~mL}, 13.8 \mathrm{mmol}, 1.3 \mathrm{eq}$.). The reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt for 2 days. Next, MeOH was added at $0^{\circ} \mathrm{C}$ and the mixture was concentrated in vacuo. Column chromatography with neutralized silica (100% DCM to $3 \% \mathrm{MeOH}$ in DCM) yielded title compound 14 ($4.87 \mathrm{~g}, 8.53 \mathrm{mmol}$) in 81% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=6.2^{\circ}$ (c 1.0, CHCl_{3}); IR (neat, cm^{-1}): 2931, 2364, 1684, 1507, 1457, 1112, 703; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.08(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{x}$ $\mathrm{CH}_{3}-\mathrm{Cq}$), $2.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{OH}-2), 3.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{OH}-4), 3.57-3.68(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-5), 3.73$ (t, 1H, J= $6.2 \mathrm{~Hz}, \mathrm{H}-3$), $3.79-3.92$ (m, 2H, H-1), $3.93-3.97$ (m, 1H, H-2), 4.00 (ddt, 2H, J=5.5, 3.9, 1.4 Hz, CH -CH), $4.07(\mathrm{p}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-4), 4.75(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=32.0,11.5$ $\mathrm{Hz}, \mathrm{CH}_{2}$-NAP), $5.07-5.35$ (m, 2H, CH $\mathrm{CH}_{2}=\mathrm{CH}$), 5.89 (ddt, $1 \mathrm{H}, \mathrm{J}=17.3,10.4,5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), 7.24 - 7.89 (m, 17H, H-arom); ${ }^{13} \mathrm{C}-A P T$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3\left(\mathrm{CH}_{3}-\mathrm{Cq}\right), 27.0(3 \mathrm{x}$ $\left.\mathrm{CH}_{3}-\mathrm{Cq}\right), 64.9(\mathrm{C}-1), 71.0(\mathrm{C}-5), 71.8(\mathrm{C}-4), 72.4\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 72.8(\mathrm{C}-2), 74.0\left(\mathrm{CH}_{2}-\mathrm{Cq}\right), 78.9$ (C-3), 117.4 ($\mathrm{CH}_{2}=\mathrm{CH}$), 126.0 - 129.9 (Carom), 133.0 (Cq-arom), 133.1 (Cq-arom), 133.3 (Cq-arom), 135.6 (Cq-arom), $135.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}$ 593.2694, found 593.2705.

5-O-allyl-2,4-di-O-benzyl-D-ribitol (15)

Compound 14 ($4.54 \mathrm{~g}, 7.95 \mathrm{mmol}, 1.0$ eq.) was dissolved in a ($\mathrm{v} / \mathrm{v}=7: 1$) mixture of dry THF/dry DMF ($22.7 \mathrm{~mL}, 0.35 \mathrm{M}$). The mixture was cooled to $0^{\circ} \mathrm{C}$, followed by the addition of BnBr ($2.83 \mathrm{~mL}, 23.9 \mathrm{mmol}, 3.0$ eq.). NaH ($0.95 \mathrm{~g}, 23.9 \mathrm{mmol}, 3.0$ eq., 60% in mineral oil) was added portion wise and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 hours. The mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}$, and washed carefully with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{x}), \mathrm{H}_{2} \mathrm{O}$ (3x), and brine $(1 \mathrm{x})$. The organic phase was dried over MgSO_{4}, filtrated, concentrated under reduced pressure, and column chromatography (100% pentane to 8% EtOAc in pentane) yielded the crude benzylated compound $(5.37 \mathrm{~g})$ with small traces byproduct of the migrated TBDPS group to the second position. The crude product (4.98 g) was dissolved in a ($\mathrm{v} /$ $\mathrm{v}=4: 1$) mixture of DCM/ $\mathrm{H}_{2} \mathrm{O}(66.3 \mathrm{~mL}, 0.1 \mathrm{M})$, followed by the addition of DDQ (2.26 g , $9.94 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was stirred for 30 minutes at rt , followed by the addition of a small amount of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted in DCM, and the organic phase was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{x})$, sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. Column
chromatography (100% pentane to 20% EtOAc in pentane) yielded the product (3.61 g) still with small traces of the byproduct. The crude product was dissolved in dry THF (35 $\mathrm{mL}, 0.17 \mathrm{M})$, followed by the addition of TBAF (1.0 M) in THF ($8.84 \mathrm{~mL}, 8.84 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction mixture was stirred at rt for 3 hours, and concentrated in vacuo. Column chromatography (100% DCM to 10% acetone in DCM) yielded title compound 15 (1.68 $\mathrm{g}, 4.51 \mathrm{mmol}$) with a yield of 62% over 3 steps. $[\alpha]_{\mathrm{D}}{ }^{25}=+0.3^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}): $3430,2872,2364,1684,1560,1507,1457,1070,1027,697$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $2.90(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{OH}-1)$, 3.42 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{OH}-3$), $3.55-3.70$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5$), 3.72 - 3.78 (m, 3H, H-1, H-4), 3.94 (dd, 2H, J=5.6, 1.4 Hz, CH -CH), $4.05(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.0,5.1$ $\mathrm{Hz}, \mathrm{H}-3), 4.45-4.75\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}-\mathrm{Bn}\right), 5.05-5.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.86(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=17.3$, $10.4,5.6 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), $7.24-7.45$ (m, 10H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $61.2(\mathrm{C}-1), 69.8(\mathrm{C}-5), 71.5\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 71.9(\mathrm{C}-3) 72.1\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 72.3\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 77.9(\mathrm{C}-4), 78.4$ (C-2), $117.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.8$ - 128.4 (C-arom), $134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 138.1$ (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na} 395.1834$, found 395.1835.

5-O-allyl-2,4-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (16)

Compound 15 ($1.68 \mathrm{~g}, 4.51 \mathrm{mmol}, 1.0$ eq.) was dissolved in dry DCM ($45 \mathrm{~mL}, 0.1 \mathrm{M}$) and cooled to $0^{\circ} \mathrm{C}$. TEA (3.77 mL , $27.1 \mathrm{mmol}, 6.0$ eq.) and TBDPSCI ($1.28 \mathrm{~mL}, 4.91 \mathrm{mmol}, 1.1$ eq.) were added. The reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight, followed by the addition of MeOH at $0^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo, and column chromatography (100% pentane to 20% EtOAc in pentane) yielded title compound 16 $(2.69 \mathrm{~g}, 4.40 \mathrm{mmol})$ in 98% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+4.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}): 2858, 2360, $1654,1507,1457,1112,740,700 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.07\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{XCH}_{3}-\mathrm{Cq}\right), 3.12$ (d, $1 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}, \mathrm{OH}$), 3.60-3.81 (m, 4H, H-2, H-4, 2x H-5), 3.86-3.99 (m, 4H, $2 \times \mathrm{H}-1, \mathrm{CH}_{2}-$ $\mathrm{CH}), 4.05-4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.46-4.75\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}-\mathrm{Bn}\right), 5.11-5.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)$, 5.87 (ddt, $\left.1 \mathrm{H}, \mathrm{J}=17.3,10.8,5.6 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.20-7.80\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta=19.3\left(\mathrm{CH}_{3}-\mathrm{Cq}\right), 26.9\left(3 x \mathrm{CH}_{3}-\mathrm{Cq}\right), 64.3(\mathrm{C}-1), 70.4(\mathrm{C}-5), 71.9(\mathrm{C}-3)$, 72.1 - $72.2\left(2 \times \mathrm{CH}_{2}-\mathrm{Bn}\right), 72.4\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 78.3(\mathrm{C}-4), 79.4(\mathrm{C}-2), 117.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.8-129.8$ (C-arom), 133.1 (Cq-arom), 134.7 ($\mathrm{CH}_{2}=\mathrm{CH}$), 135.8 (C-arom), 138.6 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SiNa} 633.3012$, found 633.3019.

1,2;5,6-di-O-isopropylidene- α-D-allofuranose (18)

1,2;5,6-di-O-isopropylidene- α-D-glucofuranose (17) ($52.1 \mathrm{~g}, 200$ $\mathrm{mmol})$ was dissolved in a $(\mathrm{v} / \mathrm{v}=3: 2)$ mixture of $\mathrm{DMSO} / \mathrm{Ac}_{2} \mathrm{O}(1.0$ $\mathrm{L}, 0.2 \mathrm{M}$), and the reaction mixture was stirred at rt overnight. The mixture was concentrated in vacuo to give the crude ketone (51.7 g), which was used in the next step without further purification. The crude compound was dissolved in a $(\mathrm{v} / \mathrm{v}=7: 3)$ mixture of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~L}, 0.2 \mathrm{M})$. The mixture was
cooled to $0^{\circ} \mathrm{C}$ and NaBH_{4} ($26.0 \mathrm{~g}, 687 \mathrm{mmol}, 3.4$ eq.) was added portion wise. The reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight. The mixture was diluted with EtOAc, and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The water layer was extracted with EtOAc (5x), and the combined organic layers were dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100% DCM to 11% acetone in DCM) yielded title compound 18 ($35.7 \mathrm{~g}, 137 \mathrm{mmol}$) in 69% yield over 2 steps. $[\alpha]_{D}^{25}=+31.7^{\circ}$ (c 1.0, CHCl_{3}); IR (neat, cm^{-1}): 2986, 2360, 1684, 1507, 1457, 1215, 1059, 1017, 856; ' ${ }^{1} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 1.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}$), 1.39 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}\right), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}\right), 2.65$ (d, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{OH}$), 3.83 (dd, $1 \mathrm{H}, \mathrm{J}=8.5,4.6 \mathrm{~Hz}, \mathrm{H}-4), 3.98-4.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3,2 x \mathrm{H}-6), 4.32$ (td, 1H, J= $6.6,4.6 \mathrm{~Hz}, \mathrm{H}-5), 4.62$ (dd, 1H, J=5.2, 3.8 Hz, H-2), $5.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}-$ APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=25.3-26.6(4 \mathrm{x} \mathrm{CH} 3-\mathrm{Cq}), 65.9$ (C-6), 72.5 (C-3), 75.6 (C-5), 79.1 (C-4), $79.7(\mathrm{C}-2), 104.0(\mathrm{C}-1), 109.9\left(\mathrm{CH}_{3}-\mathrm{Cq}\right), 112.9\left(\mathrm{CH}_{3}-\mathrm{Cq}\right)$; $\mathrm{HRMS}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na} 283.1152$, found 283.1163 .

1,2-O-isopropylidene-3-O-(2-naphtylmethyl)- α-D-allofuranose (19)

Compound 18 ($36.5 \mathrm{~g}, 140 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was co-evaporated with toluene and dissolved in a ($\mathrm{v} / \mathrm{v}=7: 1$) mixture of THF/DMF (470 mL , $0.3 \mathrm{M})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaH}(11.2 \mathrm{~g}, 260 \mathrm{mmol}$, 2.0 eq., 60% in mineral oil) and TBAI ($5.2 \mathrm{~g}, 20 \mathrm{mmol}, 0.1$ eq.) were added portion wise. $\operatorname{NAPBr}(40.4 \mathrm{~g}, 182 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added, and the reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight. Subsequently, MeOH was added slowly at $0^{\circ} \mathrm{C}$, and the mixture was concentrated under reduced pressure. The mixture was diluted in EtOAc, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(5 x)$, sat. aq. $\mathrm{NaHCO}_{3}(1 x)$, and brine (1x). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated in vacuo. The resulting crude was continued without purification. The crude compound (51.3 g) was dissolved in $\mathrm{MeOH}(2.56 \mathrm{~L}, 0.05 \mathrm{M})$, followed by the addition of $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.43 \mathrm{~g}, 12.8$ mmol, 0.1 eq.). The reaction mixture was stirred at rt for 3 hours, after which the reaction was quenched by the addition of TEA. The mixture was concentrated in vacuo, and column chromatography (100% DCM to 30% acetone in DCM) yielded title compound 19 ($34.4 \mathrm{~g}, 95.4 \mathrm{mmol}$) in 75% yield over 2 steps. $[\alpha]_{\mathrm{D}}{ }^{25}=+69.4^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); IR (neat, $\left.\mathrm{cm}^{-1}\right): 3439,2935,2360,1653,1560,1507,1457,1020 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.31$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}$), 1.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}$), $3.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-6), 3.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{OH}-5), 3.66$ (t, 2H, J= $4.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.92 (dd, 1H, J= 8.9, $4.3 \mathrm{~Hz}, \mathrm{H}-3$), 3.99 (tt, $1 \mathrm{H}, \mathrm{J}=6.2,3.3 \mathrm{~Hz}, \mathrm{H}-5$), 4.10 (dd, $1 \mathrm{H}, J=8.8,3.2 \mathrm{~Hz}, \mathrm{H}-4), 4.46(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}, \mathrm{H}-2), 4.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CHH}-$ NAP), 4.91 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{NAP}, 5.67$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1$), $7.35-7.91$ (m, 7H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=26.5-26.8\left(2 \mathrm{XCH}_{3}-\mathrm{Cq}\right), 63.1(\mathrm{C}-6), 71.1(\mathrm{C}-5)$, $72.2\left(\mathrm{CH}_{2}-\mathrm{Cq}\right), 77.0(\mathrm{C}-3), 77.4(\mathrm{C}-2), 78.9(\mathrm{C}-4), 104.1(\mathrm{C}-1), 113.0\left(\mathrm{CH}_{3}-\mathrm{Cq}\right), 125.9-128.3$ (C-arom), 133.10 (Cq-arom), 134.51 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}$ 383.1471 , found 383.1468.

5-O-allyl-1,2-O-isopropylidene-3-O-(2-naphtyImethyl)- α-Dribofuranoside (20)

Compound 19 ($34.4 \mathrm{~g}, 95.4 \mathrm{mmol}, 1.0$ eq.) was dissolved in MeOH ($950 \mathrm{~mL}, 0.1 \mathrm{M}$), and cooled to $0^{\circ} \mathrm{C}$. A 0.2 M aqueous solution of $\mathrm{NaIO}_{4}(600 \mathrm{~mL}, 0.16 \mathrm{M})$ was added and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. Subsequently, 200 mL ethylene glycol was added, and the solid side product was filtered off. The filtrate was diluted in DCM, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, filtrated, concentrated in vacuo and continued without purification to give the crude aldehyde intermediate in situ. The crude compound was dissolved in $\mathrm{MeOH}\left(950 \mathrm{~mL}, 0.1 \mathrm{M}\right.$), and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(4.70 \mathrm{~g}, 124 \mathrm{mmol}, 1.3$ eq.) was added and the reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight. Subsequently, a small amount of acetone was added, and the mixture was concentrated under reduced pressure. The product was diluted in DCM, and washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The water layer was extracted with DCM, and the combined organic layers were dried over MgSO_{4}, filtrated, concentrated in vacuo, and continued without purification to give the crude alcohol. The crude compound (36.9 g) was dissolved in a ($\mathrm{v} / \mathrm{v}=7: 1$) mixture of THF/DMF ($320 \mathrm{~mL}, 0.35 \mathrm{M}$), and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(6.70 \mathrm{~g}, 168 \mathrm{mmol}, 1.5$ eq., 60% in mineral oil) was added in portions and allyl bromide ($11.6 \mathrm{~mL}, 134 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise. The reaction was stirred from $0^{\circ} \mathrm{C}$ to rt for 4 hours, followed by the slow addition of a small amount of MeOH at $0^{\circ} \mathrm{C}$. The reaction mixture was diluted in $200 \mathrm{mLEt} \mathrm{E}_{2} \mathrm{O}$, and the organic phase was washed with $300 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}(5 \mathrm{x})$. The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (5\% EtOAc in pentane to 20% EtOAc in pentane) yielded title compound 20 ($36.3 \mathrm{~g}, 98.0 \mathrm{mmol}$) in 88% yield over 3 steps. $[\alpha]_{D}^{25}=+60.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right): 2931,2360,1653$, $1560,1507,1132,1098,873$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Cq}\right), 1.60(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{Cq}$), $3.44-3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.84$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}=9.2,4.5,1.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.87-4.00(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{CH}$), 4.19 (ddd, $1 \mathrm{H}, \mathrm{J}=9.1,4.0,2.1 \mathrm{~Hz}, \mathrm{H}-4$), 4.52 (t, 1H, J=4.1 Hz, H-2), $4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $12.2 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{NAP}$) 4.88 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{CH}-\mathrm{NAP}$), $5.04-5.23$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$), 5.71 (d, 1H, J= $3.7 \mathrm{~Hz}, \mathrm{H}-1$), 5.78 (ddt, $1 \mathrm{H}, \mathrm{J}=17.3,10.4,5.6 \mathrm{~Hz}^{2} \mathrm{CH}_{2}=\mathrm{CH}$), $7.36-8.34$ (m, 7H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=26.4-26.7\left(2 \mathrm{XCH}_{3}-\mathrm{Cq}\right), 67.9(\mathrm{C}-5), 72.3\left(\mathrm{CH}_{2}-\right.$ NAP, $\mathrm{CH}_{2}-\mathrm{CH}$), 76.9 (C-3), $77.2(\mathrm{C}-2), 77.8(\mathrm{C}-4), 104.0(\mathrm{C}-1), 112.7\left(\mathrm{CH}_{3}-\mathrm{Cq}\right), 117.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 125.8 - 128.2 (C-arom), 133.0 - 133.1 (Cq-arom), $134.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.0$ (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na} 393.1678$, found 393.1670.

5-O-allyl-3-O-(2-naphtylmethyl)-D-ribofuranoside (21)

Compound 20 ($32.3 \mathrm{~g}, 87.2 \mathrm{mmol}$) was dissolved in a ($\mathrm{v} / \mathrm{v} / \mathrm{v}=2: 2: 6$) mixture of THF/ $\mathrm{H}_{2} \mathrm{O} /$ formic acid ($1.0 \mathrm{~L}, 0.087 \mathrm{M}$). The reaction mixture was stirred at rt for 4 hours. Subsequently, the mixture was diluted in DCM, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(1 x)$, sat. aq. $\mathrm{NaHCO}_{3}(3 x)$,
and brine (1x). The first $\mathrm{H}_{2} \mathrm{O}$ layer was extracted with DCM. The organic phase was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100% DCM to 16% acetone in DCM) yielded diol 21 ($24.5 \mathrm{~g}, 74.1 \mathrm{mmol}$) as an $\alpha: \beta$ mixture with a ratio of $\pm 1: 1$ in 85% yield. IR (neat, cm^{-1}): 2968, 2345, 1684, 1560, 1507, 1053; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=2.96(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{OH}-2 \alpha / \beta), 3.22(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{OH}-2 \alpha / \beta)$, 3.28 - 3.61 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5 \alpha, \beta$), 3.81 - 3.91 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH} \alpha, \beta$), 3.92 - 4.01 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ $\alpha / \beta), 4.08(\mathrm{td}, 1 \mathrm{H}, J=4.0,3.1 \mathrm{~Hz}, \mathrm{H}-2 \alpha / \beta), 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \alpha / \beta), 4.20(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=$ $6.3,3.5 \mathrm{~Hz}, \mathrm{H}-4 \alpha / \beta), 4.26(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=4.8,1.4 \mathrm{~Hz}, \mathrm{H}-3 \alpha, \beta), 4.58-4.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP} \alpha\right.$, β), 5.01 - $5.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH} \alpha, \beta\right), 5.21-5.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \alpha, \beta), 5.74$ (dddt, $2 \mathrm{H}, \mathrm{J}=18.6$, $\left.17.3,10.4,5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH} \alpha, \beta\right), 7.34-8.47(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}$-arom $\alpha, \beta)$) ${ }^{13} \mathrm{C}$-APT NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=69.7$ - $70.0(\mathrm{C}-5 \alpha, \beta), 70.8(\mathrm{C}-4 \alpha), 72.3$ - 73.1 (CH2-NAP $\left.\alpha, \beta\right), 74.4(\mathrm{C}-2 \beta), 77.6$ (C-3 β), $78.2(\mathrm{C}-2 \alpha), 80.4(\mathrm{C}-3 \alpha), 80.8(\mathrm{C}-4 \beta), 96.9(\mathrm{C}-1 \alpha), 102.5(\mathrm{C}-1 \beta), 117.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right.$ α), $117.9\left(\mathrm{CH}_{2}=\mathrm{CH} \beta\right), 125.8$ - 128.6 (C-arom), $133.2\left(\mathrm{Cq}\right.$-arom), $133.8\left(\mathrm{CH}_{2}=\mathrm{CH} \beta\right), 134.3$ $\left(\mathrm{CH}_{2}=\mathrm{CH} \alpha\right.$), 134.5-134.6 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na} 353.1365$, found 353.1367.

O-(3,4,6-tri-O-benzyl-2-azido-2-deoxy- β-D-glucopyranosyl)-(1-3)-5-O-allyl-2,4-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (23)

Alcohol 16 ($2.35 \mathrm{~g}, 3.85 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was co-evaporated with toluene under a N_{2} atmosphere, and dissolved in dry ACN (38 $\mathrm{mL}, 0.1 \mathrm{M}$). Activated molecular sieves ($3 \AA \AA$) were added and the solution was stirred for 30 minutes. The mixture was cooled to $-40^{\circ} \mathrm{C}$ and TMSOTf ($70 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 0.1 \mathrm{eq}$.) was added. Imidate 22 ($3.58 \mathrm{~g}, 5.78 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was co-evaporated with toluene under a N_{2} atmosphere and dissolved in dry ACN ($2 \mathrm{~mL}, 0.15 \mathrm{M}$). The imidate stock solution was added to the reaction mixture and the mixture was stirred from $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ in a timeframe of 3 hours. Subsequently, a few drops of TEA were added and the mixture was diluted in DCM. The organic phase was washed with sat. aq. NaHCO_{3} :brine $(1: 1)(\mathrm{v} / \mathrm{v})$, and the water layer was extracted with DCM. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. Column chromatography (100% pentane to $14 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) yielded title compound $23(3.29 \mathrm{~g}, 3.08 \mathrm{mmol})$ in 80% yield. [α] $D^{25}=-9.5^{\circ}\left(c 1.0, C D C l_{3}\right) ;$ IR (neat, cm^{-1}): 2858, 2361, 2109, 1560, 1507, 1457, 1112, 1029, 737, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.05$ (s, 9H, $3 \mathrm{x} \mathrm{CH}_{3}-\mathrm{Cq}$), 3.17 - 3.31 (m, 2H, H-2 GlcNAc, H-5 GlcNAc), 3.37 (t, 1H, J=9.4 Hz, H-3 GlcNAc), 3.49 - 3.62 (m, 3H, H-4 GlcNAc, $2 x \mathrm{H}-6 \mathrm{GlcNAc}), 3.77$ (qd, 2H, J= 10.7, 4.3 Hz, 2x H-5 Rbo), 3.87 (dd, $1 \mathrm{H}, \mathrm{J}=10.2,6.5 \mathrm{~Hz}, \mathrm{H}-1$ Rbo), 3.93 - 4.01 (m, 4H, H-1 Rbo, H-2 Rbo, CH ${ }_{2}-\mathrm{CH}$), $4.00-4.08$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{Rbo}$), 4.20 (t, $1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{Rbo}), 4.26-4.94\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-1 \mathrm{GlcNAc}, 5 \times \mathrm{CH}_{2}-\mathrm{Bn}\right), 5.07-5.34(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CH}$), 5.89 (ddt, $\left.1 \mathrm{H}, \mathrm{J}=17.2,10.4,5.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.15-7.75$ (m, $35 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-$ APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.3\left(\mathrm{CH}_{3}-\mathrm{Cq}\right), 27.0(3 \mathrm{xCH}-\mathrm{Cq}), 65.8(\mathrm{C}-1 \mathrm{Rbo}), 67.2(\mathrm{C}-2$

GlcNAc), 68.7 (C-6 GlcNAc), 69.8 (C-5 Rbo), $72.3\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 72.3-75.6\left(5 \times \mathrm{CH}_{2}-\mathrm{Bn}\right), 75.2$ (C-5 GlcNAc), 77.1 (C-3 Rbo), 77.9 (C-4 GlcNAc), 78.6 (C-4 Rbo), 81.4 (C-2 Rbo), 83.3 (C-3 GlcNAc), 101.1 (C-1 GlcNAc), 116.9 ($\mathrm{CH}_{2}=\mathrm{CH}$), 127.4 - 129.7 (C-arom), 133.6 - 133.8 (Cqarom), $135.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.7-135.8$ (C-arom), 138.0-139.0 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{65} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{SiNa}$ 1091.5014, found 1091.5054.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-3)-5-O-allyl-2,4-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (24)

Compound 23 ($3.42 \mathrm{~g}, 3.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dissolved in a ($\mathrm{v} / \mathrm{v}=5: 1$) mixture of pyridine $/ \mathrm{H}_{2} \mathrm{O}(55 \mathrm{~mL}, 0.058 \mathrm{M})$, followed by the addition of TEA (0.2 mL). Propane dithiol ($1.60 \mathrm{~mL}, 16.0$ mmol, 5.0 eq.) was added, and the reaction mixture was stirred at rt overnight. The mixture was concentrated under reduced pressure, and co-evaporated with toluene (3x). The crude compound was dissolved in a ($\mathrm{v} / \mathrm{v}=2: 1$) mixture of pyridine $/ \mathrm{Ac}_{2} \mathrm{O}(55 \mathrm{~mL}, 0.058 \mathrm{M})$, and the reaction mixture was stirred at rt overnight. A small amount of MeOH was added at $0^{\circ} \mathrm{C}$ and the mixture was diluted in EtOAc. The organic phase was washed with aq. $\mathrm{CuSO}_{4}(1 x)$, sat. aq. $\mathrm{NaHCO}_{3}(2 x)$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100% pentane to 50% EtOAc in pentane) yielded title compound $24(2.99 \mathrm{~g}, 2.76 \mathrm{mmol})$ in 86% yield over 2 steps. $[\alpha]_{D}^{25}=+5.5^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}): 2858, 1560, 1457, 1112, 1070, 1029, 738, 698 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.05\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{xCH}_{3}-\mathrm{Cq}\right.$ TBDPS), 1.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Acetyl), 3.72 - 3.81 (m, 1H, H-2 GlcNAc), 3.86 - 3.94 (m, 2H, CH2-CH), $3.16-4.29$ (m, 12H, H-3 GIcNAc, H-4 GIcNAc, H-5 GlcNAc, $2 x \mathrm{H}-6 \mathrm{GlcNAc}, 2 x \mathrm{H}-1$ Rbo, H-2 Rbo, H-3 Rbo, H-4 Rbo, $2 x \mathrm{H}-5 \mathrm{Rbo}$), $4.40-4.94$ ($\mathrm{m}, 11 \mathrm{H}, \mathrm{H}-1 \mathrm{GlcNAc}, 5 \mathrm{xCH}_{2}-\mathrm{Bn}$), $5.07-5.33$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$), 5.66 (d, 1H, J= $8.4 \mathrm{~Hz}, \mathrm{NH}$), 5.86 (ddt, 1H, J=17.3, 10.6, $5.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), $6.96-7.74$ (m, $35 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3\left(\mathrm{CH}_{3}-\mathrm{Cq}\right.$ TBDPS), $23.5\left(\mathrm{CH}_{3}\right.$-Acetyl), 27.0 ($3 \times \mathrm{CH}_{3}-\mathrm{Cq}$), 55.6 ($\mathrm{C}-2 \mathrm{GlcNAc}$), 65.6 - 70.0 (C-6 GIcNAc, C-1 Rbo, C-5 Rbo), $72.3\left(\mathrm{CH}_{2}-\right.$ CH), 73.1 - 74.9 ($5 \times \mathrm{CH}_{2}-\mathrm{Bn}$), 75.5 - 83.4 (C-3 GlcNAc, C-4 GlcNAc, C-5 GlcNAc, C-2 Rbo, C-3 Rbo, C-4 Rbo), 102.8 ($\mathrm{C}-1 \mathrm{GlcNAc}$), $116.8\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.5-135.8$ (C -arom), 134.9 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 133.5-138.8$ (Cq-arom), $170.2(\mathrm{C}=\mathrm{O})$; $\mathrm{HRMS}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{67} \mathrm{H}_{77} \mathrm{NO}-$ ${ }_{10} \mathrm{SiNa} 1106.5214$, found 1106.5228 .

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-3)-5-O-allyl-2,4-di-O-benzyl-d-ribitol (25)

Compound 24 ($2.99 \mathrm{~g}, 2.76 \mathrm{mmol}, 1.0$ eq.) was dissolved in dry THF ($17 \mathrm{~mL}, 0.17 \mathrm{M}$). TBAF (1 M in THF) ($8.4 \mathrm{~mL}, 8.28 \mathrm{mmol}, 3.0$ eq.) was added dropwise, and the reaction mixture was stirred at rt overnight. The mixture was concentrated in vacuo, and column chromatography ($10 \% \mathrm{EtOAc}$ pentane to $80 \% \mathrm{EtOAc}$ in pentane) yielded title compound 25 ($2.23 \mathrm{~g}, 2.64 \mathrm{mmol}$) in 96% yield. $[\alpha]_{D}{ }^{25}=$ $+12.4^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat, cm^{-1}): 2866, 2360, 1550, 1507, 1457, 1072, 737, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.69$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Acetyl), 3.21 (dd, $1 \mathrm{H}, \mathrm{J}=10.1,8.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{GlcNAc}$), 3.32 - 3.50 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-3 \mathrm{Rbo}, \mathrm{H}-3 \mathrm{GlcNAc}, \mathrm{H}-5 \mathrm{GlcNAc}, \mathrm{H}-6 \mathrm{GlcNAc}, \mathrm{OH}$), $3.54-3.63$ (m, 2H, $2 x \mathrm{H}-1 \mathrm{Rbo}$), 3.78 - 3.97 ($\mathrm{m}, 5 \mathrm{H}, 2 \times \mathrm{H}-5 \mathrm{Rbo}, \mathrm{H}-2 \mathrm{GlcNAc}, \mathrm{CH}_{2}-\mathrm{CH}$), 4.07 ($\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=6.8,4.2$, $2.5 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{Rbo}$), 4.22 (dd, 1H, J= 9.9, 2.2 Hz, H-2 Rbo), $4.36-4.78$ (m, 11H, H-1 GlcNAc, $\left.5 x \mathrm{CH}_{2}-\mathrm{Bn}\right), 5.10-5.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{NH}), 5.86$ (ddt, $1 \mathrm{H}, \mathrm{J}=17.3$, $10.6,5.4 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), $7.12-7.81$ (m, $25 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 23.3 (CH_{3}-Acetyl), 54.9 ((-2 GlcNAc), 57.9 (C-5 Rbo), 68.7 (C-1 Rbo), 69.5 (C-6 GIcNAc), 70.7 ($\mathrm{CH}_{2}-\mathrm{Bn}$), 72.1 ($\mathrm{CH}_{2}-\mathrm{CH}$), 73.1 - 75.0 ($4 \mathrm{x} \mathrm{CH}-\mathrm{Bn}$), 74.7 (C-3 Rbo), 77.3 - 78.2 (C-3 GlcNAc, C-5 GlcNAc), 78.9 (C-2 Rbo), 79.1 (C-4 Rbo), 83.7 (C-4 GlcNAc), 103.8 (C-1 GIcNAc), 116.9 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.7-128.8$ (C-arom), $134.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 137.6$ - 138.4 (5 x Cq-arom), 170.2 (C=O); HRMS: [M+Na] calcd for $\mathrm{C}_{51} \mathrm{H}_{59} \mathrm{NO}_{10} \mathrm{Na} 868.4037$, found 868.4061.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-3)-5-O-allyl-2,4-di-O-benzyl-1-O-(4,4'-dimethoxytrityl)-D-ribitol (26)

Compound 25 ($2.23 \mathrm{~g}, 2.64 \mathrm{mmol}, 1.0$ eq.) was co-evaporated with toluene under a N_{2} atmosphere, and dissolved in dry DCM ($26.4 \mathrm{~mL}, 0.1 \mathrm{M}$). The mixture was cooled to $0^{\circ} \mathrm{C}$. TEA (0.55 mL , $3.96 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and $\operatorname{DMTrCl}(1.08 \mathrm{~g}, 3.17 \mathrm{mmol}, 1.2$ eq.) were added, and the reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight, after which a small amount of MeOH was added at $0^{\circ} \mathrm{C}$. The mixture was diluted in DCM, and the organic phase was washed with sat. aq. NaHCO_{3} :brine (1:1). The water layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated in vacuo. Column chromatography with neutralized silica (100% pentane to $50 \% \mathrm{EtOAc}$ in pentane) yielded title compound $26(1.83 \mathrm{~g}, 1.60 \mathrm{mmol})$ in 61% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+0.9^{\circ}(c 1.0, \mathrm{DCM})$; IR (neat, cm^{-1}): 2866, 2368, 1560, 1508, 1457, 1067, 736, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-Acetyl), $3.25-3.45(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{x} \mathrm{H}-1 \mathrm{Rbo}, \mathrm{H}-3 \mathrm{Rbo}), 3.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.1$ Hz, H-4 GlcNAc), 3.57-3.64 (m, 3H, H-5 GlcNAc, 2x H-6 GlcNAc), 3.64-3.75 (m, 2H, 2x H-5 Rbo), 3.72 (d, 6H, J= $2.0 \mathrm{~Hz}, 2 x \mathrm{CH}_{3} \mathrm{O}$), $3.74-3.89$ (m, 1H, H-2 GlcNAc), 3.90 (dt, 1H, J= $6.5,3.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{GlcNAc}), 3.96$ (dd, $2 \mathrm{H}, \mathrm{J}=5.3,1.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}$), $4.00-4.07$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ Rbo,
 (ddt, 1H, J= 17.3, 10.5, 5.3 Hz, CH $=C H$), 6.58 (d, 1H, J= $9.3 \mathrm{~Hz}, \mathrm{NH}$), $6.73-7.59$ (m, 38H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=23.7\left(\mathrm{CH}_{3}\right.$-Acetyl), $55.9\left(2 \mathrm{XCH}_{3} \mathrm{O}\right), 56.6(\mathrm{C}-2$ GlcNAc), 66.4 ($\mathrm{C}-1$ ribitol), 70.3 (C-6 GlcNAc), 71.2 (C-5 Rbo), 72.7 ($\mathrm{CH}_{2}-\mathrm{CH}$), 73.1 - 75.6 ($5 \mathrm{x} \mathrm{CH}_{2}-\mathrm{Bn}$), 75.8 (C-3 Rbo), 78.9 (C-2 Rbo/C-4 Rbo), 79.5 - 79.6 (C-3 GlcNAc, C-4 GlcNAc), 80.8 (C-2 Rbo/C-4 Rbo), 83.7 (C-5 GIcNAc), 87.0 (Cq-DMTr), 102.2 (C-1 GIcNAc), 114.0 (Carom), $116.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 128.4$ - 129.3 (C-arom), 131.19 (C-arom), $136.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 137.1$ (Cq-arom), 137.3 (Cq-arom), 139.5 - 140.1 (Cq- arom), 146.6 (Cq-arom), 159.5 (Cq-arom), 170.6 (C=O); HRMS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{72} \mathrm{H}_{77} \mathrm{NO}_{12} \mathrm{Na} 1170.5343$, found 1170.5374.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-3)-2,4-di-O-benzyl-1-O-(4,4'-dimethoxytrityl)-d-ribitol (27)

Compound 26 ($1.83 \mathrm{~g}, 1.60 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was co-evaporated with distilled toluene (2x) under a N_{2} atmosphere, and dissolved in freshly distilled dry THF ($16 \mathrm{~mL}, 0.1 \mathrm{M}$). The mixture was degassed with N_{2}. Next,(1,5-Cyclooctadiene)bis(methyldiphenylphosphine) iridium(I) hexafluorophosphate ($0.015 \mathrm{~g}, 0.01 \mathrm{eq}$.) was added, and the mixture was degassed with N_{2}. The reaction mixture was then purged with H_{2} gas for ± 7 seconds. Then the mixture was degassed with N_{2} to remove the excess of H_{2} gas. The mixture was stirred at rt under a N_{2} atmosphere for 75 minutes. THF (8.0 mL), sat. aq. $\mathrm{NaHCO}_{3}(8.0 \mathrm{~mL})$, and iodine ($0.61 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were added and the reaction was stirred for 15 minutes. Next, sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added to the reaction mixture until the dark colour disappeared. The mixture was diluted in EtOAc, and the organic phase was washed with sat. aq. NaHCO_{3} :brine (1:1). Column chromatography with neutralized silica (100% pentane to 95% EtOAc in pentane) yielded title compound 27 ($1.67 \mathrm{~g}, 1.51 \mathrm{mmol}$) in 94% yield. $[\alpha]_{D}{ }^{25}=+1.7^{\circ}$ (c 1.0, DCM); IR (neat, cm^{-1}): 3278, 2931, 2355, 1560, 1507, 1457, 1066, 736, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.88$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Acetyl), 3.03 (s, OH), $3.17-3.45$ ($\mathrm{m}, 3 \mathrm{H}, 2 \mathrm{xH}-1 \mathrm{Rbo}, \mathrm{H}-3 \mathrm{Rbo}$), 3.54 (t, $1 \mathrm{H}, \mathrm{J}=$ 9.2 Hz, H-4 GlcNAc), 3.60-3.84 (m, 12H, H-5 GlcNAc, 2x H-6 GlcNAc, $2 x$ H-5 Rbo, H-2 GlcNAc, $2 x \mathrm{CH}_{3}-\mathrm{O}$), 3.99 (t, $1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{Rbo}$), 4.18 (dt, $1 \mathrm{H}, \mathrm{J}=7.4,3.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{Rbo}$), 4.32 - 4.94 (m, 11H, H-1 GlcNAc, $5 x$ CH $_{2}-\mathrm{Bn}$), 6.73 (d, $1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{NH}$), $6.70-7.77$ (m, $38 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=23.7\left(\mathrm{CH}_{3}\right.$-Acetyl), $55.9\left(2 x \mathrm{CH}_{3} \mathrm{O}\right), 56.6$ (C-2 GlcNAc), 61.4 (C-5 Rbo), 66.4 (C-1 Rbo), 70.2 (C-6 GlcNAc), 72.7 - 75.6 ($5 \mathrm{x} \mathrm{CH}_{2}$-Bn), 75.8 (C-3 Rbo), 79.4 (C-4 GlcNAc), 79.8 (C-4 Rbo), 80.5 (C-3 GIcNAc), 81.4 (C-2 Rbo), 83.8 (C-5 GlcNAc), 86.9 (Cq-DMTr), 102.8 (C-1 GIcNAc), 114.0 (C-arom), 127.7 - 131.2 (C-arom), 137.1 (Cq-arom), 139.6 - 140.2 (Cq-arom), 146.6 (Cq-arom), 159.5 (Cq-arom), 171.0 (C=O); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{69} \mathrm{H}_{73} \mathrm{NO}_{12} \mathrm{Na} 1130.5030$, found 1130.5054 .

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-3)-2,4-di-O-benzyl-5-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-1-O-(4,4'-dimethoxytrityl)-d-ribitol (28)

Phosphoramidite $\mathbf{2 8}$ was prepared based on the general procedure for phosphoramidite synthesis (starting with $0.90 \mathrm{mmol}, 1.2$ eq. of alcohol 27 and $1.08 \mathrm{mmol}, 1.2 \mathrm{eq}$. 2-cyanoethyl N, N-diisopropylchlorophosphoramidite). Column chromatography with neutralized silica (100\% pentane to 40% EtOAc in pentane) yielded title compound $28(1.00 \mathrm{~g}, 0.76 \mathrm{mmol})$ in 85% yield. $[\alpha]_{D}^{25}=-0.8^{\circ}(c 1.0, D C M)$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$: 2931, 2314, 1684, 1560, 1507, 1457, 1066, 737, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.91-1.33$ (m, $12 \mathrm{H}, 4 \mathrm{xCH}-\mathrm{CH}$), 1.85 (d, 3H, J= $9.3 \mathrm{~Hz}, \mathrm{CH}_{3}$-Acetyl), 2.55 (dt, 2H, J=35.9, $6.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}$), 3.14 - 3.34 (m, 2H, 2x H-1 Rbo), $3.34-3.43$ (m, 1H, H-3 Rbo), 3.45 - 3.54 (m, 1H, H-4 GlcNAc), 3.54 - 3.65 (m, 5H, 2x CH3-CH, H-5 GlcNAc, $2 x$ H-6 GlcNAc), 3.71 (d, 6H, J= 1.5 $\mathrm{Hz}, 2 x \mathrm{CH}_{3} \mathrm{O}$), 3.66-3.90 (m, 5H, NC-CH 2 , H-2 GlcNAc, $2 x \mathrm{H}-5 \mathrm{Rbo}$), $3.90-4.15$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3$ GlcNAc, H-2 Rbo, H-4 Rbo), $4.24-4.92$ (m, 11H, H-1 GlcNAc, $5 x \mathrm{CH}_{2}-\mathrm{Bn}$), 6.43 (t, 1H, J= $10.0 \mathrm{~Hz}, \mathrm{NH}), 6.64-7.58$ (m, 38H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=21.1$ (NCCH_{2}), 24.9-25.3 ($4 \mathrm{x} \mathrm{CH} 3-\mathrm{CH}$), 43.8-43.9 ($2 \mathrm{xCH} \mathrm{CH}_{3}-\mathrm{CH}$), $55.9\left(2 x \mathrm{CH}_{3} \mathrm{O}\right)$, 56.5 ($\mathrm{C}-2 \mathrm{GlcNAc}$), 59.1 - 59.4 (C-5 Rbo), 66.5 (C-1 Rbo), 70.28 (C-6 GlcNAc), 73.1 - 75.6 ($5 x \mathrm{CH}_{2}-\mathrm{Bn}$), 75.9 (C-3 Rbo), 79.0 (C-3 GlcNAc), 79.5 (C-4 GlcNAc), 80.9 - 81.2 (C-2 Rbo, C-4 Rbo), 83.74 (C-5 GlcNAc), 86.93 (Cq-DMTr), 102.2 - 102.5 (C-1 GIcNAc), 114.0 (C-arom), 119.8 ($\mathrm{NCq}^{\left.-C H_{2}\right), ~}$ 127.6-131.2 (C-arom), 137.1-137.3 (Cq-arom), 139.7 (Cq-arom), 140.2 (Cq-arom), 146.6 (Cq-arom), 159.5 (Cq-arom), 170.5 (C=O); ${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=149.2,149.8$.

Trimer (37)

Trimer 37 was synthesized based on the general procedure for phosphoramidite coupling (starting with $0.40 \mathrm{mmol}(1.0$ eq.) of dimer 36 and 0.56 mmol (1.4 eq .) of phosphoramidite 28). Size exclusion column chromatography yielded title compound 37 ($0.75 \mathrm{~g}, 0.33 \mathrm{mmol}$) in 88% yield. IR (neat, cm^{-1}): 3567, 2915, 2360, 1717, $1684,1570,1456,1266,1027,740,697 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.38-1.26(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2}-3$ linker and $\mathrm{CH}_{2}-4$ linker), 1.44 (qd, $2 \mathrm{H}, J=9.5,8.8,4.6 \mathrm{~Hz}_{, ~ C H_{2}}-2$ linker), $1.60(\mathrm{p}, 2 \mathrm{H}$, $J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-5$ linker), 1.89 (d, $\left.3 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NHAc}\right), 2.55-2.78$ ($\mathrm{m}, 6 \mathrm{H}, 3 x \mathrm{NC}-\mathrm{CH}_{2}$), 3.09 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}-1$ linker), 3.33 (td, $1 \mathrm{H}, \mathrm{J}=6.8,2.8 \mathrm{~Hz}, \mathrm{OH} \mathrm{Rbo}$), $3.57-3.81$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{GlcNAc}$), 3.86-4.19 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CH}_{2}-6$ linker, $\mathrm{H}-2 \mathrm{GIcNAc}, 3 \times \mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}$), 3.48 4.19 ($\mathrm{m}, 12 \mathrm{H}, \mathrm{H}-3 \mathrm{GlcNAc}, \mathrm{H}-4 \mathrm{GlcNAc}, \mathrm{H}-5 \mathrm{GlcNAc}, 3 \mathrm{H}$ H-2 Rbo, $3 \mathrm{xH}-3$ Rbo, $3 \mathrm{xH} \mathrm{H}-4 \mathrm{Rbo}$), 4.21 - 4.46 ($\mathrm{m}, 10 \mathrm{H}, 4 \mathrm{xH}-1$ Rbo, $6 \times \mathrm{H}-5 \mathrm{Rbo}$), $4.49-4.90$ ($\mathrm{m}, 23 \mathrm{H}, \mathrm{H}-1 \mathrm{GlcNAc}, 11 \times \mathrm{CH}_{2}-\mathrm{Bn}$),
$5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 5.83(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{NH}), 6.78(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{NHAc}), 7.03-7.59$ (m, 60H, H-arom); ${ }^{13} \mathrm{C}-$ APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1$ - $20.3\left(3 x \mathrm{NC}-\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}-\right.$ NHAc), 25.8 - 26.9 (C-3 linker, C-4 linker), 30.5 (C-2 linker), 30.9 (C-5 linker), $41.5\left(\mathrm{NH}-\mathrm{CH}_{2}\right.$ (C-1 linker)), 56.1 (C-2 GlcNAc), 60.54 (C-1 Rbo), 63.1 - 63.3 ($3 x$ P-O-CH $)_{2}$, $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right)$, 67.5 - 68.4 ($2 x$ C-1 Rbo, 3x C-5 Rbo), 69.0 (C-6 linker), 70.1 (C-6 GlcNAc), 72.4 - 75.7 (11x $\mathrm{CH}_{2}-\mathrm{Bn}$), 75.3 - 80.2 (C-3 GlcNAc, C-4 GlcNAc, C-5 GlcNAc, $3 x$ C-2 Rbo, $3 x \mathrm{C}-3$ Rbo, $3 x \mathrm{C}-4$ Rbo), 102.9 (C-1 GlcNAc), 118.7 ($\mathrm{NCq}^{-C H_{2}}$), 128.5 - 129.4 (C-arom), 139.2 - 139.7 (Cqarom), 157.4 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 170.9 ($\mathrm{C}=\mathrm{O} \mathrm{Ac);}{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.0,0.0,0.1,0.2$, 0.4; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{123} \mathrm{H}_{144} \mathrm{~N}_{5} \mathrm{O}_{29} \mathrm{P}_{3}$ 1124.4591, found 1124.4628.

Tetramer (38)

Tetramer 38 was synthesized based on the general procedure for phosphoramidite coupling (starting with 0.28 mmol (1.0 eq .) of trimer 37 and 0.42 mmol (1.5 eq .) of phosphoramidite 29. Size exclusion column chromatography yielded title compound ($0.72 \mathrm{~g}, 0.26 \mathrm{mmol}$) in 92% yield. IR (neat, cm^{-1}): 3567, 2931, 2360, 1717, 1684, 1540, 1507, 1457, 1026, 740, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.19$ 1.36 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3$ linker, $\mathrm{CH}_{2}-4$ linker), $1.39-1.51$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-2$ linker), 1.61 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.9$ $\mathrm{Hz}, \mathrm{CH}_{2}-5$ linker), 1.93 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NHAc}\right), 2.44-2.74\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{xNC}-\mathrm{CH}_{2}\right), 3.09(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}, \mathrm{NH}-\mathrm{CH}_{2}$ ($\mathrm{CH}_{2}-1$ linker), OH Rbo), 3.68 - 3.86 (m, 4H, $2 \times \mathrm{H}-6 \mathrm{GlcNAc}, 2 \times \mathrm{H}-1 \mathrm{Rbo}$), 3.86 4.20 ($\mathrm{m}, 11 \mathrm{H}, \mathrm{H}-2 \mathrm{GlcNAc}, \mathrm{CH}_{2}-6$ linker, 4 x P-O-CH2), $3.39-4.17$ ($\mathrm{m}, 15 \mathrm{H}, \mathrm{H}-3 \mathrm{GlcNAc}, \mathrm{H}-4$ GlcNAc, H-5 GlcNAc, 4x H-2 Rbo, 4x H-3 Rbo, 4x H-4 Rbo), 4.18-4.49 ($\mathrm{m}, 14 \mathrm{H}, 6 \mathrm{xH}-1$ Rbo, $8 x \mathrm{H}-5 \mathrm{Rbo}$), $4.50-4.87$ (m, 29H, H-1 GlcNAc, $14 \mathrm{x} \mathrm{CH}_{2}-\mathrm{Bn}$), 5.08 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}$), 5.83 (t, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NH}-\mathrm{Cbz}), 6.91-7.09$ (m, 1H, NHAc), 7.16-7.53 (m, 75H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1$ - $20.3\left(4 \mathrm{x} \mathrm{NC}-\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{3}-\mathrm{NHAc}\right), 25.8$ - $26.9(\mathrm{C}-3$ linker, C-4 linker), 30.5 (C-2 linker), 30.9 (C-5 linker), 41.5 ($\mathrm{NH}-\mathrm{CH}_{2}$ (C-1 linker)), 56.2 (C-2 GlcNAc), 61.6 (C-1 Rbo), 63.1 - $63.6(4 x$ P-O-CH $), 66.7\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5-68.3$ (3x C-1 Rbo, $4 x$ C-5 Rbo), 69.1 (C-6 linker), 70.0 (C-6 GlcNAc), $72.8-75.6$ ($14 \times \mathrm{CH}_{2}-\mathrm{Bn}$), $75.9-83.9$ (C-3 GlcNAc, C-4 GIcNAc, C-5 GlcNAc, 4x C-2 Rbo, 4x C-3 Rbo, 4x C-4 Rbo), 103.1 (C-1 GIcNAc), 118.5-118.6 (4x NCq-CH2), 128.5-129.4 (C-arom), 138.5-139.8 (Cq-arom), 157.4 (C=O Cbz), 170.9 ($\mathrm{C}=\mathrm{O} \mathrm{Ac);}{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.0,0.1,0.1,0.1,0.4,0.4,0.4,0.8$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{152} \mathrm{H}_{176} \mathrm{~N}_{6} \mathrm{O}_{36} \mathrm{P}_{4} 1393.0549$, found 1393.0594.

Pentamer (39)

Pentamer 39 was synthesized based on the general procedure for phosphoramidite coupling (starting with 0.26 mmol (1.0 eq.) of tetramer 38 and 0.39 mmol (1.5 eq .) of phosphoramidite 29). Size exclusion column chromatography yielded title compound 39 ($0.75 \mathrm{~g}, 0.23 \mathrm{mmol}$) in 87% yield. IR (neat, cm^{-1}): 3567, 2921, 2355, 1717, 1550, 1507, 1457, 1266, 1027, 740, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.22-1.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3\right.$ linker and $\mathrm{CH}_{2}-4$ linker), $1.40-1.51$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-2$ linker), 1.62 ($\mathrm{h}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-5$ linker), 1.95 (d, 3H, J= $\left.1.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NHAc}\right), 2.47-2.76$ (m, 10H, $\left.5 \mathrm{x} \mathrm{NC}-\mathrm{CH}_{2}\right), 3.11(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$, $\mathrm{NH}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}-1\right.$ linker)), 3.19 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$ Rbo), $3.72-3.87$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{GlcNAc}, 2 \times \mathrm{H}-1$ Rbo), 3.87 - 4.21 ($\mathrm{m}, 13 \mathrm{H}, \mathrm{H}-2 \mathrm{GlcNAc}, \mathrm{CH}_{2}-6$ linker, $5 \times \mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}$), $3.42-4.21$ ($\mathrm{m}, 18 \mathrm{H}$, H-3 GlcNAc, H-4 GlcNAc, H-5 GlcNAc, 5x H-2 Rbo, $5 x \mathrm{H}-3$ Rbo, 5 x H-4 Rbo), 4.20 - 4.50 ($\mathrm{m}, 18 \mathrm{H}, 8 \mathrm{x} \mathrm{H}-1 \mathrm{Rbo}, 10 \mathrm{x} \mathrm{H}-5 \mathrm{Rbo}$), $4.50-4.89$ ($\mathrm{m}, 35 \mathrm{H}, \mathrm{H}-1 \mathrm{GlcNAc}, 17 \mathrm{x} \mathrm{CH}_{2}-\mathrm{Cq}$), 5.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}$), 5.86 (t, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NH}$ linker), 7.04 (dt, $1 \mathrm{H}, J=26.4,7.1 \mathrm{~Hz}, \mathrm{NHAc}$), 7.16-7.47 (m, 90H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1$ - 20.3 (5 x NC-CH2), $23.7\left(\mathrm{CH}_{3}-\mathrm{NHAc}\right), 25.8$ - 26.9 ($\mathrm{C}-3$ linker, $\mathrm{C}-4$ linker), 30.5 ($\mathrm{C}-2$ linker), 30.9 ($\mathrm{C}-5$ linker), $41.5\left(\mathrm{NH}-\mathrm{CH}_{2}(\mathrm{C}-1\right.$ linker)$)$, 56.2 (C-2 GlcNAc), 61.6 (C-1 Rbo), 63.1 - 63.6 ($5 \times \mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}$), 66.6 ($\left.\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5$ - 68.4 ($4 \mathrm{x} \mathrm{C-1} \mathrm{Rbo}, \mathrm{5x} \mathrm{C-5} \mathrm{Rbo)}$,69.0 (C-6 linker), 70.0 (C-6 GlcNAc), 72.8 - 75.6 ($17 \mathrm{x} \mathrm{CH}_{2}$-Bn), 75.9 - 83.9 (C-3 GlcNAc, C-4 GlcNAc, C-5 GlcNAc, 5x C-2 Rbo, 5x C-3 Rbo, $5 \times \mathrm{C}-4 \mathrm{Rbo}$), 103.1 (C-1 GlcNAc), $118.6\left(\mathrm{NCq}^{-C H_{2}}\right), 128.5$ - 129.4 (C-arom), 138.5 139.8 (Cq-arom), 157.4 (C=O Cbz), 170.8 ($\mathrm{C}=\mathrm{O} \mathrm{Ac}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.0,0.1$, $0.1,0.1,0.2,0.2,0.4,0.5,0.5,0.5,0.8,0.8 ;$ HRMS: $[M+2 H]^{2+}$ calculated for $\mathrm{C}_{181} \mathrm{H}_{208} \mathrm{~N}_{7} \mathrm{O}_{43} \mathrm{P}_{5}$ 1661.6508, found 1661.6534 .

Hexamer 40

Hexamer 40 was synthesized based on the general procedure for phosphoramidite coupling (starting with 0.080 mmol (1.0 eq .) of pentamer 39 and 0.110 mmol (1.5 eq .) of phosphoramidite $\mathbf{2 8}$). Size exclusion column chromatography yielded title compound

40 ($0.339 \mathrm{~g}, 0.080 \mathrm{mmol}$) in a quantitative yield. IR (neat, cm^{-1}): 3546, 2909, 2314, 1717, 1550, 1506, 1457, 1266, 1027, 740, 697; 'H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{CN}$) $\delta=1.20-1.34(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2}-3$ linker, $\mathrm{CH}_{2}-4$ linker), $1.37-1.47$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-2$ linker), $1.59\left(\mathrm{~h}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}-5\right.$ linker), 1.86 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NHAc}$), 1.90 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NHAc}$), $2.47-2.74$ (m, 12H, 6x $\mathrm{NC}-\mathrm{CH}_{2}$), 3.07 (q, $2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-1$ linker), $3.28(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OH} \mathrm{Rbo}$), $3.54-3.80$ ($\mathrm{m}, 4 \mathrm{H}, 4 \mathrm{x} \mathrm{H}-6 \mathrm{GlcNAc}$), 3.68 - 3.75 ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{x} \mathrm{H}-1 \mathrm{Rbo}$), $3.81-4.16$ ($\mathrm{m}, 16 \mathrm{H}, \mathrm{H}_{2}-6$ linker,
 GlcNAc, $6 x \mathrm{H}-2$ Rbo, $6 x \mathrm{H}-3$ Rbo, $6 x \mathrm{H}-4 \mathrm{Rbo}$), 4.16 - 4.44 (m, 22H, 10x H-1 Rbo, $12 x \mathrm{H}-5$ Rbo), 4.43 - 4.83 ($\mathrm{m}, 46 \mathrm{H}, 2 \times \mathrm{H}-1 \mathrm{GlcNAc}, 22 \times \mathrm{CH}_{2}-\mathrm{Bn}$), 5.06 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}$), 5.77 (t, 1H, $J=6.1 \mathrm{~Hz}, \mathrm{NH}$ linker), $6.72(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NHAc}), 6.89-7.04$ (m, 1H, NHAc), $7.11-7.54$ (m, 115H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1$ - $20.3\left(6 x \mathrm{NC}-\mathrm{CH}_{2}\right), 23.7$ (2 x NHAc), 25.8 - 26.9 (C-3 linker, C-4 linker), 30.5 (C-2 linker), 30.9 (C-5 linker), 41.5 ($\mathrm{NH}-\mathrm{CH}_{2}$ (C-1 linker)), 56.1 - 56.2 ($2 x \mathrm{C}-2 \mathrm{GlcNAc}$), 60.6 (C-1 Rbo), 63.1 - 63.6 ($6 x$ P-O-CH C_{2}), 66.7 (CH ${ }_{2}$-Cbz), 67.5 - 68.4 ($5 x \mathrm{C}-1$ Rbo, $6 x$ C-5 Rbo), 69.01 (C-6 linker), 70.1 ($2 x$ C-6 GIcNAc),
 Rbo, $6 x$ C-3 Rbo, $6 x$ C-4 Rbo), 103.0 - 103.2 ($2 x$ C-1 GlcNAc), 118.5 - 118.7 ($6 x$ NCq-CH $)_{2}$, 128.5 - 129.5 (C-arom), 138.6 - 139.8 (Cq-arom), 157.36 (C=O Cbz), 170.8 - 170.9 ($2 \times \mathrm{C}=0$ Ac); ${ }^{31}$ P NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=0.0,0.0,0.0,0.1,0.1,0.2,0.2,0.4,0.4,0.5,0.8,0.8 ;$ HRMS: $[\mathrm{M}+3 \mathrm{H}]^{3+}$ calculated for $\mathrm{C}_{232} \mathrm{H}_{266} \mathrm{~N}_{9} \mathrm{O}_{55} \mathrm{P}_{6} 1415.2257$, found 1415.2283.

Dimer (31)

According to the general procedure for phosphoramidite coupling, alcohol 27 (602 mg ; 0.54 mmol ; 1.0 eq.) was coupled with phosphoramidite $\mathbf{3 0}$ (543 $\mathrm{mg} ; 0.76 \mathrm{mmol} ; 1.4 \mathrm{eq}$.) and the title compound was synthesized in 68% yield (530 mg ; 0.37 mmol). IR (neat, cm^{-1}): 3736, 2872, 2360, 1717, 1654, 1560, $1521,1457,1042,740,697 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.84$ ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NAc}$), 2.58 (t, 2H, J=6.0 Hz, CH2-cyanoethyl), 3.19 (t, 1H, J=5.6 Hz, OH), 3.53-3.62 (m, 1H, H-3 GlcNAc), 3.67-3.76 (m, 2H, CH2-Rbo), 3.82-3.87 (m, 1H, H-2 GlcNAc), 3.98-4.08 (m, 2H, CH_{2}-cyanoethyl), 3.43 - 4.34 (m, 16H, H-4 GlcNAc, H-5 GlcNAc, $2 x \mathrm{H}-6$ GlcNAc, $3 \mathrm{xH}_{2}-$ Rbo, $2 x \mathrm{H}-2$ Rbo, $2 x \mathrm{H}-3$ Rbo, $2 x \mathrm{H}-4 \mathrm{Rbo}$), 4.42 - 4.81 (m, 19H, H-1 GlcNAc, $9 x \mathrm{CH}_{2}-\mathrm{Bn}$), 6.63 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{NH}$), $7.16-7.52\left(\mathrm{~m}, 45 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=$ $20.2\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $23.7\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 56.1$ (C-2 GlcNAc), $63.3\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 60.6 70.6 (C-6 GIcNAc, 2x C-1 Rbo, 2x C-5 Rbo), 72.4 - 75.7 ($9 x$ CH $_{2}-\mathrm{Bn}$), 75.4 -83.8 (C-3 GlcNAc, C-4 GlcNAc, C-5 GlcNAc, $2 x$ C-2 Rbo, $2 x$ C-3 Rbo, $2 x$ C-4 Rbo), 103.0 (C-1 GlcNAc), 118.7 (Cq-cyanoethyl), 128.5 - 129.4 (C-arom), 139.3 - 139.7 (Cq-arom), 170.9 ($\mathrm{C}=\mathrm{O}$); ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.4,0.2$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{84} \mathrm{H}_{94} \mathrm{~N}_{2} \mathrm{O}_{17} \mathrm{P}$ 1433.6285, found 1433.6323.

Trimer (32)

According to the general procedure for phosphoramidite coupling, alcohol 31 (530 mg ; $0.37 \mathrm{mmol} ; 1.0$ eq.) was coupled with phosphoramidite 29 ($481 \mathrm{mg} ; 0.52 \mathrm{mmol} ; 1.4 \mathrm{eq}$.) and the title compound was synthesized in 78% yield ($567 \mathrm{mg} ; 0.288 \mathrm{mmol}$). IR (neat, cm^{-1}): 3736, 2883, 2355, 1717, 1560, 1457, 1027, 740, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.90$ ($\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 2.48-2.62 (m, 4H, 2x CH2-cyanoethyl), 3.01 (s, 1H, OH), 3.45 (ddt, $1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, \mathrm{H}-4$ GlcNAc), 3.53-3.62 (m, 1H, H-5 GlcNAc), 3.63-3.81 (m, 5H, H-3 GlcNAc, 2x H-6 GlcNAc, CH_{2}-Rbo), $3.85-4.15$ (m, 14H, H-2 GlcNAc, $2 \mathrm{xCH}_{2}$-cyanoethyl, $3 x \mathrm{H}-2 \mathrm{Rbo}, 3 \mathrm{xH}-3 \mathrm{Rbo}, 3 \mathrm{x}$ H-4 Rbo), 3.96-4.39 (m, 10H, 5x CH 2 -Rbo), $4.38-4.99$ ($\mathrm{m}, 25 \mathrm{H}, \mathrm{H}-1 \mathrm{GlcNAc}, 12 \mathrm{xCH}_{2}$-Bn), $6.84-7.03$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NHAc}$), $7.19-7.45(\mathrm{~m}, 60 \mathrm{H}, \mathrm{H}-\mathrm{arom}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=$ 20.1 - 20.3 ($2 \mathrm{x} \mathrm{CH}_{2}$-cyanoethyl), 23.7 ($\mathrm{CH}_{3}-\mathrm{NAc}$), 56.2 (C-2 GlcNAc), 70.0 (C-6 GIcNAc), 61.6-70.6 ($2 \mathrm{x} \mathrm{CH}_{2}$-cyanoethyl, $6 \mathrm{xCH}_{2}$-Rbo), 72.8 - 75.7 ($12 \mathrm{xCH}_{2}$ - Bn), 75.9 (C-4 GIcNAc), 78.4 - 80.2 ($3 x \mathrm{C}-2$ Rbo, $3 x$ C-3 Rbo, 3x C-4 Rbo), 80.7 (C-3 GIcNAc), 84.0 (C-5 GIcNAc), 103.2 (C-1 GlcNAc), 118.6 (2x Cq-cyanoethyl), 128.5 - 129.4 (C-arom), 139.1 - 139.8 (Cqarom), $170.8(\mathrm{C}=\mathrm{O}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.0,0.3,0.4,0.4,0.4,0.8,0.8$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{113} \mathrm{H}_{126} \mathrm{~N}_{3} \mathrm{O}_{24} \mathrm{P}_{2}$ 1971.8235, found 1971.8245.

Trimer (1)

Compound $32 \quad$ (0.200 g; 0.101 mmol) was deprotected according to the general procedure for global deprotection affording the target compound in 77% yield (63.8 mg ; $77.1 \mu \mathrm{~mol})$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.96$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $3.25-4.08\left(\mathrm{~m}, 27 \mathrm{H}, 6 \mathrm{CH}_{2}-\mathrm{Rbo}, 9 \mathrm{CH}-\mathrm{Rbo}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5\right.$, $2 x \mathrm{H}-6), 4.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-1)$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.28\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 55.55$ (C-2), $60.46-66.64$ (C-6, $6 \times \mathrm{CH}_{2}$-Rbo), $69.35-80.50$ (C-3, C-4, C-5, CH-Rbo), 101.68 (C-1), $174.69(\mathrm{C}=\mathrm{O}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.9,1.8 ; \mathrm{HRMS}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{NO}_{24} \mathrm{P}_{2}$ 784.2036, found 784.2042.

Hexamer (2)

Hexamer 43 ($6.9 \mathrm{mg}, 1.94 \mu \mathrm{~mol}$) was deprotected according to the general procedure for global deprotection yielding compound $2(3.0 \mathrm{mg}, 1.73 \mu \mathrm{~mol})$ in 88% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=1.38-$ 1.44 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}$-hexylspacer), 1.66 (h, $4 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{XCH}$-hexylspacer), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.98\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}_{2} \mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 3.41 - 4.11 ($\mathrm{m}, 50 \mathrm{H}, 12 \mathrm{x} \mathrm{CH} 2$-Rbo, 18 xCH -Rbo, $\mathrm{CH}_{2}-\mathrm{O}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$, $2 x \mathrm{H}-6), 4.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-1)$; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=2.0,2.0,1.8,1.8$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{44} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{48} \mathrm{P}_{6} 803.17736$, found 803.17766 .

Hexamer (3)

Hexamer 44 ($4.2 \mathrm{mg}, 1.07 \mu \mathrm{~mol}$) was deprotected according to the general procedure for global deprotection yielding compound $\mathbf{3}(2.5 \mathrm{mg}, 1.30 \boxtimes \mathrm{~mol})$ in quantitative yield. NMR data is in agreement with the reported data for hexamer 3. HRMS: $\left[\mathrm{M}+2 \mathrm{NH}_{4}\right]^{2+}$ calculated for $\mathrm{C}_{52} \mathrm{H}_{114} \mathrm{~N}_{5} \mathrm{NaO}_{53} \mathrm{P}_{6} 932.73457$, found 932.17575.

Hexamer (3)

Hexamer 40 (0.040 mmol) was deprotected according to general procedure for global deprotection. All aromatic groups were removed after the reaction mixture was stirred $3 x$ for a full week. The first two times, after work-up, NMR still showed aromatic signals. After all aromatic groups were removed, the product was purified by size-exclusion chromatography (HW40, dimensions: $16 / 60 \mathrm{~mm}$, eluent: $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$), and the product was co-evaporated 3 times with MiliQ water to remove $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ traces. The product
was eluted through a small column containing Dowex Na^{+}cation-exchange resin (type: $50 \mathrm{WX} 4-200$, stored on 0.5 M NaOH in $\mathrm{H}_{2} \mathrm{O}$, flushed with MiliQ water and MeOH before use), yielding title compound $\mathbf{3}(0.0545 \mathrm{~g}, 0.0281 \mathrm{mmol})$ in 70% yield over 2 steps. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.33-1.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3\right.$ linker, $\mathrm{CH}_{2}-4$ linker), $1.57-1.71(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2}-2$ linker, $\mathrm{CH}_{2}-5$ linker), 2.07 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}-\mathrm{NAc}$), $2.98\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}-1\right.\right.$ linker)), $3.66-3.76$ (m, 2H, 2x H-2 GlcNAc), $3.84-3.90$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-6$ linker), $3.36-4.16$ ($\mathrm{m}, 54 \mathrm{H}, 2 \mathrm{xH}-3 \mathrm{GlcNAc}, 2 x \mathrm{H}-4 \mathrm{GlcNAc}, 2 x \mathrm{H}-5 \mathrm{GlcNAc}, 4 \mathrm{x}$ H-6 GlcNAc, $\mathrm{CH}_{2}-\mathrm{Cbz}, 12 x$ CH_{2}-Rbo, $6 \times \mathrm{H}-2$ Rbo, $6 \times \mathrm{H}-3 \mathrm{Rbo}, 6 \times \mathrm{H}-4 \mathrm{Rbo}$), 4.61 (d, $1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{GlcNAc}$), 4.63 (d, $1 \mathrm{H}, J=3.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{GIcNAc}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.5\left(2 \mathrm{xCH}_{3}-\mathrm{NAc}\right), 24.6-25.3$ (C-3 linker, C-4 linker), 26.8 - 29.6 (C-2 linker, C-5 linker), 39.6 ($\mathrm{NH}-\mathrm{CH}_{2}$ (C-1 linker)), 55.7 - 55.8 ($2 x \mathrm{C}-2 \mathrm{GlcNAc}$), 60.7 - 66.7 ($\mathrm{CH}_{2}-\mathrm{Cbz}, 2 x \mathrm{C}-6 \mathrm{GlcNAc}, 12 x \mathrm{CH}_{2}$-Rbo), $69.7-81.0$ (2 x C-3 GlcNAc, $2 x$ C-4 GIcNAc, $2 x$ C-5 GlcNAc, $6 x$ C-2 Rbo, $6 x$ C-3 Rbo, $6 x$ C-4 Rbo), 101.9 ($2 x$ C-1 GlcNAc), $175.0(2 x \mathrm{C}=\mathrm{O}) ;{ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.8,1.9,1.9,2.0 ;$ HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{52} \mathrm{H}_{109} \mathrm{~N}_{3} \mathrm{O}_{53} \mathrm{P}_{6} 904.7170$, found 904.7176 .

Hexamer (43)

Hexamer 43 was synthesized based on the general procedure for solid phase synthesis (starting with $10.0 \mu \mathrm{~mol}$ of the universal linker 41). Title compound 43 $(6.9 \mathrm{mg}, 1.95 \mu \mathrm{~mol}$) was successfully synthesized with a total yield of 20%. $^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{MeOD}) \delta=1.24-1.49(\mathrm{~m}, 8 \mathrm{H}$,
4x CH 2 -hexylspacer), 1.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NHAc}$), $2.73\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 3.47 - 4.79 ($\mathrm{m}, 91 \mathrm{H}, 12 \mathrm{xCH}_{2}$-Rbo, 18 x CH-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \mathrm{xH}-6,20 \mathrm{x}$ CH_{2}-Bn), $7.10-7.35$ (m, 99H, H-arom); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{MeOD}$) $\delta=0.3,0.1,-0.2,-0.4$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{184} \mathrm{H}_{216} \mathrm{~N}_{2} \mathrm{O}_{48} \mathrm{P}_{6} 1704.65018$, found 1704.64992.

Hexamer (44)

Hexamer 44 was synthesized based on the general procedure for solid phase synthesis (starting with $10.0 \mu \mathrm{~mol}$ of the universal linker 41). Title compound $\mathbf{4 4}(4.2 \mathrm{mg}, 1.07 \mu \mathrm{~mol})$ was successfully synthesized with a total yield of 11%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.22-1.48\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-2\right.$ linker, $\mathrm{CH}_{2}-3$ linker, $\mathrm{CH}_{2}-4$ linker, $\mathrm{CH}_{2}-5$ linker), 1.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 2.66-4.75 (m, $84 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}$ ($\mathrm{CH}_{2}-1$ linker), $\mathrm{H}-1$ GlcNAc, $\mathrm{H}-2$ GlcNAc, $\mathrm{H}-3 \mathrm{GlcNAc}, \mathrm{H}-4 \mathrm{GlcNAc}, \mathrm{H}-5 \mathrm{GlcNAc}, \mathrm{H}-6$ GIcNAc,
 ($\mathrm{m}, 101 \mathrm{H}, \mathrm{NHAc}, \mathrm{H}$-arom) ; ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.0,1.2,1.5,1.6 ;$ HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{206} \mathrm{H}_{241} \mathrm{~N}_{3} \mathrm{O}_{53} \mathrm{P}_{6} 1896.23686$, found 1896.23710.

Hexamer (55)

The title compound was synthesized according to the general procedure for biotinylation yielding ($0.55 \mathrm{mg} ; 0.25 \mu \mathrm{~mol}$) the product in 51% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta=1.36-1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/CH CH_{2}-biotin), $1.50-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/ CH_{2}-biotin), 1.61 - 1.69 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/ CH_{2}-biotin), $2.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}\right), 2.24(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$), 2.77 (d, 1H, J= $13.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}$), 2.98-3.01 (m, 2H, S-CHH), 3.17 (hept, 2H, J= $6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$), 3.33 (dt, $1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}$), $3.40-3.49(\mathrm{~m}, 4 \mathrm{H}$, CH-Rbo, CH-GlcNAc), 3.51-3.64 (m, 3H, CH-Rbo, CH-GlcNAc, CHH-Rbo), 3.70-4.17 (m, 51H, CH-Rbo, CH 2 -Rbo CH-GlcNAc, H-6, CH ${ }_{2}$-O-hexylspacer), 4.42 (dd, $1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}$, J= $4.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}-\mathrm{CH}$), 4.60 (dd, $\left.1 \mathrm{H}, \mathrm{J}=8.01 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}\right), 4.73(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, \mathrm{H}-1 \beta \mathrm{GlcNAc}) ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=1.7,1.8,2.0$.

Hexamer (56)

The title compound was synthesized according to the general procedure for biotinylation yielding ($0.70 \mathrm{mg} ; 0.32 \mu \mathrm{~mol})$ the product in 44% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta=1.28-1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/ CH_{2}-biotin), 1.42-1.69(m,10H, CH_{2}-hexylspacer/ CH_{2}-biotin), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}\right)-2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}\right), 2.21-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right)$, $2.71-2.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}), 2.97$ (dd, $1 \mathrm{H}, J=13.1 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}$), 3.15 (hept, $2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$), 3.29-3.33 (m, 1H, S-CHH), 3.37-4.15 (56H, CH-Rbo, CH - -Rbo CHGlcNAc, H-6, CH ${ }_{2}$-O-hexylspacer), 4.40 (dd, 1H, J=7.9, $4.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}-\mathrm{CH}$), 4.58 (dd, 1H, J= $7.9,4.8 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}$), $4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-1 \quad \beta \mathrm{GlcNAc}), 5.03(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ $\alpha G I c N A c) ;{ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=2.0,1.9,1.8,1.6$.

Hexamer (57)

The title compound was synthesized according to the general procedure for biotinylation starting with $4.92 \mathrm{mg} ; 2.54 \mu \mathrm{~mol}$ of the hexamer yielding ($5.2 \mathrm{mg} ; 2.40 \mu \mathrm{~mol}$) the product in 93% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.27-1.43\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/CH CH_{2}-biotin), $1.46-1.54$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/CH C_{2}-biotin), 1.53-1.75 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/ CH_{2}-biotin), 2.07 (d, 6H, J= $1.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{NAc}$), $2.22\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 2.74-2.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{S}-$ CHH), 2.97 (ddd, 2H, J=13.1, 5.0, $2.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}$), $3.11-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right.$), 3.31 (ddd, 1H, $J=13.5,6.7,4.1 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}$), 3.38-3.55 (m, 2H, CH-Rbo/CH-GlcNAc/CHH-Rbo), 3.64-4.13 (m, 56H, CH-Rbo, CH2-Rbo, CH-GlcNAc, H-6, CH ${ }_{2}$-O-hexylspacer), 4.41 (td, J = 7.4, 4.4 Hz, $1 \mathrm{H}, \mathrm{S}-\mathrm{CH}-\mathrm{CH}), 4.55-4.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}, 2 \mathrm{x} \mathrm{H}-1\right)$; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.3,1.3$, 1.2, 1.1, 1.1, 1.0, 0.9, 0.8 .

Hexamer (58)

The title compound was synthesized according to the general procedure for biotinylation yielding ($0.74 \mathrm{mg} ; 0.34 \mu \mathrm{~mol})$ the product in 68% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta=1.29-1.46\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/ CH_{2}-biotin), 1.46-1.55 (m,2H, CH CH_{2}-hexylspacer/ CH_{2}-biotin), 1.55 - 1.77 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/CH ${ }_{2}$-biotin), 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}$), 2.06 (s , $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}$), 2.24 (t, 2H, J= $7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$), 2.78 (d, 1H, J=13.1 Hz, S-CHH), 2.96-3.02 (m, 2H, S-CHH), 3.18 (h, 2H, J=6.8 Hz, CH $2-\mathrm{N}$), 3.33 (dt, $1 \mathrm{H}, \mathrm{J}=10.0, J=5.3 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}), 3.45$ - 3.52 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Rbo}, \mathrm{CH}-\mathrm{GlcNAc}$), 3.58 - 3.65 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHH}-\mathrm{Rbo} / \mathrm{CH}-\mathrm{Rbo} / \mathrm{CH}-\mathrm{GlcNAc)}$, 3.71 - 4.17 ($\mathrm{m}, 52 \mathrm{H}, \mathrm{CH}$-Rbo, CH_{2}-Rbo, $\mathrm{CH}-\mathrm{GlcNAc}, \mathrm{H}-6, \mathrm{CH}_{2}$-O-hexylspacer), 4.42 (dd, 1H, $J=8.0, J=4.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}-\mathrm{CH}$), 4.60 (dd, $1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}$), 5.03 (d, 1H, J= $3.6 \mathrm{~Hz}, \mathrm{H}-1$ aGlcNAc), 5.06 (d, $1 \mathrm{H}, J=3.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{aGlcNAc}) ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=$ 1.6, 1.6, 1.8, 2.0.

Hexamer (59)

The title compound was synthesized according to the general procedure for biotinylation yielding ($0.70 \mathrm{mg} ; 0.32 \mu \mathrm{~mol}$) the product in 65% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.31$ - 1.44 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/CH CH_{2}-biotin), 1.51 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/CH C_{2} biotin), 1.55-1.76 (m, 6H, CH2-hexylspacer/ CH_{2}-biotin), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}$, CH_{3} NAc), $2.24\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 2.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}), 2.96-3.02(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{S}-\mathrm{CHH}), 3.18\left(\mathrm{~h}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.33(\mathrm{dt}, 1 \mathrm{H} \mathrm{J}=10.0, \mathrm{~J}=5.3 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}), 3.42-3.51$ (m, 4H, CH-Rbo, CH-GlcNAc), 3.52-3.66 (m, 3H, CH-Rbo, CH-GlcNAc, CHH-Rbo), 3.72 4.17 ($\mathrm{m}, 51 \mathrm{H}, \mathrm{CH}-\mathrm{Rbo}, \mathrm{CH}_{2}$-Rbo CH-GlcNAc, H-6, CH ${ }_{2}$-O-hexylspacer), 4.42 (dd, $1 \mathrm{H}, \mathrm{J}=8.0$, $J=4.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}-\mathrm{CH}$), 4.60 (dd, $1 \mathrm{H}, \mathrm{J}=8.0, J=4.9 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}$), $4.74(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1$ $\beta G I c N A c) 5.03$ (d, $1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{aGIcNAc}) ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta=1.6,1.7,1.8,2.0$.

Hexamer (60)

The title compound was synthesized according to the general procedure for biotinylation yielding ($0.87 \mathrm{mg} ; 0.44 \mu \mathrm{~mol}$) the product in 89% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.31$ - 1.44 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/CH H_{2}-biotin), 1.49 - 1.54 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/ CH_{2}-biotin), 1.59 - 1.67 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/ CH_{2}-biotin), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}$), 2.24 (t, 2H, J= $7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$), 2.78 (d, 1H, J= $13.1 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}$), 2.97 - 3.02 (m, 2H, S-CHH), $3.14-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.33(\mathrm{dd}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}), 3.41-3.48(\mathrm{~m}, 3 \mathrm{H}$, CH-Rbo, CH-GlcNAc), 3.56-3.63 (m, 3H, CH-Rbo, CH-GlcNAc, CHH-Rbo), 3.70-4.16 (m, 52H, CH-Rbo, CH 2 -Rbo CH-GlcNAc, H-6, CH ${ }_{2}$-O-hexylspacer), 4.42 (dd, $1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}$, J= $4.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}-\mathrm{CH}$), $4.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0, J=5.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}\right), 4.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-1$ $\beta G I c N A c) ;{ }^{31}$ P NMR (202 MHz, $\left.D_{2} \mathrm{O}\right) \delta=1.7,1.8,2.0$.

Hexamer (61)

The title compound was synthesized according to the general procedure for biotinylation yielding ($0.75 \mathrm{mg} ; 0.38 \mu \mathrm{~mol}$) the product in 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta=1.29-1.45\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/ CH_{2}-biotin), $1.49-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer/ CH_{2}-biotin), 1.55 - 1.76 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer/ CH_{2}-biotin), 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NAc}$), 2.24 (t, 2H, J= $7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$), 2.78 (d, 1H, J= $\left.13.1 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CHH}\right), 2.96-3.03$ (m, 2H, S-CHH), 3.17 (hept, $2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$), $3.33(\mathrm{dt}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}), 3.48(\mathrm{t}, 1 \mathrm{H}, J=$ $9.6 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo} / \mathrm{CH}-\mathrm{GlcNAc} / \mathrm{CHH}-\mathrm{Rbo}$), $3.60-3.65$ (m, 1H, CH-Rbo/CH-GlcNAc/CHH-Rbo), 3.72 - 4.16 ($\mathrm{m}, 56 \mathrm{H}, \mathrm{CH}$-Rbo, CH_{2}-Rbo, $\mathrm{CH}-\mathrm{GIcNAc}, \mathrm{H}-6, \mathrm{CH}_{2}$-O-hexylspacer), 4.42 (dd, 1 H , $J=8.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}-\mathrm{CH}), 4.61\left(\mathrm{dd}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}\right), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.6 \mathrm{~Hz}, \mathrm{H}-1 \alpha \mathrm{GlcNAc}) ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.6,1.8,2.0$.

REFERENCES

1. Wertheim, H. F.; Melles, D. C.; Vos, M. C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L., The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5 (12), 751-62.
2. Lowy, F. D., Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339 (8), 520-32.
3. Solberg, C. O., Spread of Staphylococcus aureus in hospitals: causes and prevention. Scand. J. Infect. Dis. 2000, 32 (6), 587-95.
4. Harkins, C. P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; De Lencastre, H.; Bentley, S. D.; Kearns, A. M.; Holden, M. T. G., Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017, 18.
5. Lowy, F. D., Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 2003, 111 (9), 1265-73.
6. Perichon, B.; Courvalin, P., VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53 (11), 4580-7.
7. Li, M.; Lai, Y. P.; Villaruz, A. E.; Cha, D. J.; Sturdevant, D. E.; Otto, M., Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (22), 9469-9474.
8. Bera, A.; Biswas, R.; Herbert, S.; Kulauzovic, E.; Weidenmaier, C.; Peschel, A.; Gotz, F., Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J. Bacteriol. 2007, 189 (1), 280-283.
9. Kraus, D.; Peschel, A., Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol. 2008, 3 (4), 437-451.
10. Xia, G.; Kohler, T.; Peschel, A., The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 2010, 300 (2-3), 148-54.
11. Swoboda, J. G.; Campbell, J.; Meredith, T. C.; Walker, S., Wall teichoic acid function, biosynthesis and inhibition. ChemBioChem 2010, 11 (1), 35-45.
12. Nubel, U.; Roumagnac, P.; Feldkamp, M.; Song, J. H.; Ko, K. S.; Huang, Y. C.; Coombs, G.; Ip, M.; Westh, H.; Skov, R.; Struelens, M. J.; Goering, R. V.; Strommenger, B.; Weller, A.; Witte, W.; Achtman, M., Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (37), 14130-14135.
13. Bal, A. M.; Coombs, G. W.; Holden, M. T. G.; Lindsay, J. A.; Nimmo, G. R.; Tattevin, P.; Skov, R. L., Genomic insights into the emergence and spread of international clones of healthcare-, com-munity- and livestock-associated meticillin-resistant Staphylococcus aureus: Blurring of the traditional definitions. J. Glob. Antimicrob. Resist. 2016, 6, 95-101.
14. Hau, S. J.; Bayles, D. O.; Alt, D. P.; Frana, T. S.; Nicholson, T. L., Draft Genome Sequences of 63 Swine-Associated Methicillin-Resistant Staphylococcus aureus Sequence Type 5 Isolates from the United States. Microbiol. Resour. Announce. 2017, 5 (44).
15. Gerlach, D.; Guo, Y.; De Castro, C.; Kim, S. H.; Schlatterer, K.; Xu, F. F.; Pereira, C.; Seeberger, P. H.; Ali, S.; Codee, J.; Sirisarn, W.; Schulte, B.; Wolz, C.; Larsen, J.; Molinaro, A.; Lee, B. L.; Xia, G.; Stehle, T.; Peschel, A., Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 2018, 563 (7733), 705-709.
16. Kurokawa, K.; Jung, D. J.; An, J. H.; Fuchs, K.; Jeon, Y. J.; Kim, N. H.; Li, X.; Tateishi, K.; Park, J. A.; Xia, G.; Matsushita, M.; Takahashi, K.; Park, H. J.; Peschel, A.; Lee, B. L., Glycoepitopes of staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin. J. Biol. Chem. 2013, 288 (43), 30956-68.

Chapter 4 | Synthesis of Staphylococcus aureus C-3 glycosylated ribitol phosphates
17. Banoub, S. H. a. J., Chemistry of the glycosidic linkage. A rapid and efficient synthesis of arbohydrate 1,2-orthoesters*. Carbohydr. Res. 1975, 44 (2), C14-C17.
18. Sowa, W.; Thomas, G. H. S., The oxidation of 1,2;5,6-di-O-isopropylidene-D-glucose by dimethyl sulfoxide - acetic anhydride. Can. J. Chem. 1966, 44 (7), 836-838.
19. Joseph Kiss, R. D. S. u. P. T., Präparative Herstellung von 5-Desoxy-L-Arabinose, Xylit Und D-Ribose Aus <<Diacetonglucose>>. Helv. Chim. Acta. 1975, 58, 311-317.
20. Tsuda, T.; Nakamura, S.; Hashimoto, S., A highly stereoselective construction of 1,2-trans- $\beta-$ glycosidic linkages capitalizing on 2-azido-2-deoxy-d-glycosyl diphenyl phosphates as glycosyl donors. Tetrahedron 2004, 60 (47), 10711-10737.
21. Hogendorf, W. F.; Bos, L. J.; Overkleeft, H. S.; Codee, J. D.; Marel, G. A., Synthesis of an alphakojibiosyl substituted glycerol teichoic acid hexamer. Bioorg. Med. Chem. 2010, 18 (11), 3668-78.
22. Hogendorf, W. F.; Kropec, A.; Filippov, D. V.; Overkleeft, H. S.; Huebner, J.; van der Marel, G. A.; Codee, J. D., Light fluorous synthesis of glucosylated glycerol teichoic acids. Carbohydr. Res. 2012, 356, 142-51.
23. Hogendorf, W. F.; Lameijer, L. N.; Beenakker, T. J.; Overkleeft, H. S.; Filippov, D. V.; Codee, J. D.; Van der Marel, G. A., Fluorous linker facilitated synthesis of teichoic acid fragments. Org. Lett. 2012, 14 (3), 848-51.
24. van der Es, D.; Berni, F.; Hogendorf, W. F. J.; Meeuwenoord, N.; Laverde, D.; van Diepen, A.; Overkleeft, H. S.; Filippov, D. V.; Hokke, C. H.; Huebner, J.; van der Marel, G. A.; Codee, J. D. C., Streamlined Synthesis and Evaluation of Teichoic Acid Fragments. Chemistry 2018, 24 (16), 4014-4018.
25. Driguez, P.-A. G.; Guillo, N; Rokbi, B.; Mistretta, N.; Talaga, P., Immunogenic compositions against S. aureus, Sanofi Pasteur, WO 2017/064190 A1 2017.
26. Rob van Dalen, M. M. M., Sara Ali, Kok P. M. van Kessel, Piet Aerts, Jos A. G. van Strijp, Carla J. C. de Haas, Jeroen Codée \& Nina M. van Sorge, Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature, Matters Arising 2019.

[^0]: Ali, S., Hendriks, A., van Dalen, R., Bruyning, T., Meeuwenoord, N., Overkleeft, H., Filippov, D., van der Marel, G., van Sorge, N., Codée, J.D.C., (Automated) Synthesis of Well-defined Staphylococcus Aureus Wall Teichoic Acid Fragments. Chem. Eur. J. 2021, 27 (40): 10461-10469.

