Universiteit
 Leiden

The Netherlands

Synthesis of ribitol phosphate based wall teichoic acids Ali, S.

Citation

Ali, S. (2022, February 10). Synthesis of ribitol phosphate based wall teichoic acids. Retrieved from https://hdl.handle.net/1887/3270894

Version:	Publisher's Version Licence agreement concerning inclusion of doctoral
License:	thesis in the Institutional Repository of the University
Downloaded from:	$\underline{\text { of Leiden }}$

Note: To cite this publication please use the final published version (if applicable).

Synthesis of glycosylated ribitol phosphates and their binding to human langerin

INTRODUCTION

The skin provides the first line of defense against microbes and the skin immune system relies on a rich network of professional antigen-presenting dendritic cells (DCs) on the epidermis and dermis. ${ }^{1-2}$ Langerhans cells (LCs) are a subset of DCs, present in the epidermis and they express high levels of langerin, a CD207 C-type lectin receptor ${ }^{3}$, which aids in the detection of invading pathogens by binding to pathogen-associated molecular patterns (PAMPs). Langerin is involved in the detection and uptake of a wide set of pathogens, including viruses like HIV^{4} and measles ${ }^{5}$, fungi ${ }^{6}$, and (myco)bacteria. ${ }^{7}$ Langerin is a type II C-type lectin receptor that has been shown to bind mannose, fucose, glucose, galactose-6-phosphate as well as N -acetyl glucosamine and sulfated heparin disaccharides, in a calcium dependent manner through its carbohydrate-recognition domain. ${ }^{8}$

[^0]Staphylococcus aureus (S. aureus) is a commensal bacterium residing on our skin and LCs play a crucial role in the host defence against the bacterium. The cell wall of S. aureus is densely functionalized with wall teichoic acids (WTAs), ribitol phosphate (RboP) polymers decorated with N -acetyl glucosamine (GIcNAc) and D-alanine residues. As described in Chapter 1 and 2, WTAs are involved in host interaction, biofilm formation, cation homeostasis and autolysin activity. It has previously been shown that langerin can recognize β-GlcNAc modifications on S. aureus contributing to LC activation and production of Th1- and Th17-polarizing cytokines, while α-GlcNAcylation was found to impair langerin interaction, weakening the functional response of LCs. ${ }^{9}$ This latter finding implies that S. aureus can modulate immune detection and subsequent inflammation in the epidermis. van Dalen et al. ${ }^{9}$ reported langerin as the first human innate receptor to discriminate between the α-GlcNAc and β-GlcNAc modifications. Unraveling the interactions of S. aureus WTAs and langerin at the molecular level is of importance for the development of a vaccine specifically targeting skin and soft tissue infections and may also open up possibilities for the targeted delivery of vaccines. ${ }^{10-11}$

Since the isolation of WTA from bacterial sources results in heterogenous fragments with possible bacterial contaminations, the synthesis of well-defined fragments is of great interest. This Chapter describes the synthesis of a set of glycosylated ribitol phosphate oligomers, varying in length of the ribitol phosphate chain as well as the substitution pattern. Both C-4- α - and C-4- $\beta-$ GIcNAc are incorporated (Fig 1). The GIcNAc-WTAs fragments will be equipped with an aminohexanol linker that serves as a ligation handle to attach the molecules to surfaces, biotin affinity handles or carrier proteins for example. The short trimer fragments are intended for future crystallization studies. These latter fragments lack the flexible spacer entity as its presence may hamper crystallization.

Chapter 3 | Synthesis of glycosylated ribitol phosphates and their binding to human langerin

Figure 1. Library of glycosylated ribitol phosphates targeted in this Chapter.

RESULTS AND DISCUSSION

As discussed in Chapter 1, a team at Sanof Pasteur synthesized two octamers with either an α - or a β-GIcNAc on the C-4 of each ribitol phosphate moiety and a nonamer bearing a C-3 β-GlcNAc on each ribitol phosphate repeating unit using a block coupling
approach. ${ }^{12}$ The spacer was installed in the last coupling event to the ribitol phosphate chain, on the opposite position on the WTA chain with respect to the peptidoglycan binding site. Jung et al. ${ }^{13}$ also used a block approach to generate ribitol phosphate tetramers bearing an α - or β-GIcNAc moiety at C-4 of the RboP motifs, and D-alanine amides at C-2. This Chapter outlines a strategy for the assembly of well-defined WTA fragments based on repetitive coupling cycles using monomeric RboP building blocks to allow for maximum flexibility in terms of substitution patterns that can be targeted. The spacer will be attached at the site of the WTA chain where the peptidoglycan is attached in the bacterial structures.

Scheme 1 depicts the synthesis of the required phosphoramidite building blocks 20, 37, and 41 , which will be used alongside building block 42 (Scheme 2), the synthesis and use of which has been described in Chapter 2. Scheme 1A shows the synthesis of $\mathrm{C} 4-\mathrm{OH}$ ribitol 12, and starts from compound 9 by allylation of the primary alcohol, followed by isopropylidene hydrolysis to yield $\mathbf{1 0}$. Benzylation and ensuing acidic hydrolysis of the methyl riboside yielded the corresponding hemi-acetal intermediate and subsequent ring opening using sodium borohydride provided primary alcohol 11. Protection with a TBDPS group then gave acceptor 12. Two approaches were explored to introduce the β-GlcNAc as shown in scheme 1B. In the first approach, acceptor 12 was coupled with trichloroacetimidate donor 14. The TCA protecting group on the glucosamine donor can participate in the stabilization of the oxocarbenium ion formed upon activation of the donor, forcing the nucleophilic attack to the other side of the pyranose ring leading to the desired β-product and coupling of acceptor 12 and donor 14 afforded the desired β-product 15 in 92% yield. Subsequent deacetylation under Zemplén conditions yielded triol 16, after which the alcohols were benzylated. To avoid benzylation of the trichloroacetamide the reaction was kept at $0^{\circ} \mathrm{C}$ although this also led to slower and incomplete conversion of the starting material. The TCA was removed using CsCO_{3} in DMF at $70^{\circ} \mathrm{C},{ }^{14}$ followed by acetylation of the free amine and TBAF mediated TBDPS removal to yield β-product $\mathbf{1 7}$ in 42% over 4 steps. The primary alcohol was protected with a DMTr group in 53% yield, after which an iridium catalyzed allyl isomerization and iodine mediated enol ether hydrolysis delivered alcohol 19 in 79\%. Equipment of the alcohol with a cyanoethyl protected phosphoramidite yielded key building block 20 for the upcoming oligomerization. Although the TCA protecting group served well to provide a β-selective glycosylation reaction, its undesired reactivity in the benzylation reaction and relatively difficult removal made the assembly of $\mathbf{2 0}$ using donor $\mathbf{1 4}$ suboptimal. To circumvent the use of a TCA group, a second route was developed in which glucose azide $\mathbf{2 6}$ was coupled to acceptor 12. This donor ${ }^{15}$ was synthesized starting from commercially available glucosamine 21, of which the amine was masked with an azide using Stick's reagent ${ }^{16}$ after which acetylation gave 22. Subsequent introduction of a
thiophenol and deacetylation under Zemplén conditions led to compound 23 in 56\% over 2 steps. Benzylation of the free alcohols gave $\mathbf{2 4}$ in 98% yield and hydrolysis of the anomeric thiophenyl gave hemiacetal 25 in 62% yield. The hemiacetal was equipped with an imidate moiety, completing the synthesis of donor $\mathbf{2 6}$. The use of acetonitrile as a β-directing solvent in combination with a low reaction temperature ensured the stereoselective formation of the desired β-glucosamine linkage and $\mathbf{2 7}$ was obtained in $85 \% .^{17-24}$ Propanedithiol mediated azide reduction, followed by acetylation delivered acetamide $\mathbf{2 8}$ in 59\% over 2 steps and removal of the TBDPS afforded alcohol 19 in 68\% yield. Overall this latter route proved significantly more efficient than the route using TCA-donor 14.

The synthesis of amidite 37, bearing the α-GlcNAc appendage is shown in Scheme 1C. Azide donor $\mathbf{2 9}$ was coupled with acceptor $\mathbf{1 2}$ to yield $\mathbf{3 0}$ as a 7:1 α / β mixture. The two anomers could be separated after Zemplén deacetylation, leading to the pure α product 31 in 70% yield. ${ }^{25}$ Benzylation of the liberated alcohols, followed by Staudinger reduction and subsequent acetylation of the amine yielded 33 in 89% yield over 3 steps. Removal of the TBDPS group gave 34 in 86% yield and protection of the primary alcohol with a DMTr group afforded $\mathbf{3 5}$. Allyl removal as described above yielded the primary alcohol 36 which was functionalized with a cyanoethyl phosphoramidite to give the second key building block 37 in 81% yield.

Where the spacer is required for conjugation and biological purposes, it may impede crystallization studies. Therefore, a terminal building block was generated with a benzyl group at the terminating alcohol. To this end phosphoramidite 41 was assembled by benzylation of alcohol $\mathbf{3 8}$ which was followed by detritylation to yield intermediate $\mathbf{4 0}$ in 66% over 2 steps. Conversion into the amidite yielded 41.

With all the required phosphoramidites in hand, the stage was set to assemble the target library (Fig 1). Scheme 2A schematically depicts the assembly of the fragments. For the elongation of the oligomers, the condensation procedure described in Chapter 2 was employed: in the first step the phosphoramidite is activated by DCI, after which the activated group is replaced by the incoming alcohol of the growing chain to yield the phosphite triester. Subsequent oxidation using CSO affords the phosphate triester, after which a detritylation step using 3\% DCA in DCM liberates the alcohol for the next coupling event. Purification was achieved by size exclusion or silica gel column chromatography.

Scheme 1. A Building block synthesis; Reagents and conditions: a) AllylBr, $\mathrm{NaH}, \mathrm{THF} / \mathrm{DMF}(\mathrm{v} / \mathrm{v}=7 / 1), 0^{\circ} \mathrm{C}$ to rt ; b) $\mathrm{AcOH} /$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=1 / 1), 50^{\circ} \mathrm{C}, 300 \mathrm{mbar}, 62 \% 2$ steps; c) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF} / \mathrm{DMF}(\mathrm{v} / \mathrm{v}=7 / 1), 0^{\circ} \mathrm{C}$ to rt; d) 4 M HCl dioxane, $80^{\circ} \mathrm{C}$; e) NaBH_{4}, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 50 \%$ over 3 steps; f) TBDPSCI, TEA, DCM $0^{\circ} \mathrm{C}$ to rt, 95%.
B Building block synthesis; Reagents and conditions: a) $14, \mathrm{TMSOTf}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 92 \%$; b) $\mathrm{NaOMe}, \mathrm{MeOH}, 85 \%$; c) $\mathrm{BnBr}, \mathrm{NaH}$, DMF, $0^{\circ} \mathrm{C}$; d) i. $\mathrm{CsCO}_{3}, ~ D M F, 70^{\circ} \mathrm{C}$; ii. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; e) TBAF, THF, rt, $42 \% 4$ steps; f) DMTrCI, TEA, DCM, 53%; g) i. $\operatorname{Ir}(\mathrm{COD}$) $\left(\mathrm{Ph}_{2} \mathrm{MeP}\right)_{2} \mathrm{PF}_{6}, \mathrm{H}_{2}$, THF, ii. I_{2}, sat. aq. $\mathrm{NaHCO}_{3}, \mathrm{THF}, 79 \%$; h) 2-cyanoethyl- N, N-diisopropylchlorophosphoramidite, DIPEA, DCM, 78%; i) 12, TMSOTf, $\mathrm{ACN},-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 85 \%$; j) propane dithiol, pyridine, $\mathrm{H}_{2} \mathrm{O}, \mathrm{TEA}, \mathrm{rt}$; ii. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $59 \% 2$ steps; k) TBAF, THF, rt, 68%; I) Stick reagent, $\left.\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH} ; \mathrm{m}\right) \mathrm{Ac}_{2} \mathrm{O}$, pyridine, 99% over 2 steps; n), $\mathrm{PhSH}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM}^{2}$; o) $\mathrm{NaOMe}, \mathrm{MeOH}, 56 \%$ over 2 steps; p) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF} / \mathrm{DMF}(\mathrm{v} / \mathrm{v}=1 / 1), 98 \% ; q$) NBS, acetone, 62%; r) TCAN, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DCM}$, 89\%. C Building block synthesis; Reagents and conditions: a) 12, TMSOTf, DCM, rt, $92 \%, \alpha / \beta$ (7:1); b) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 70 \%$ α-anomer; c) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF} / \mathrm{DMF}(\mathrm{v} / \mathrm{v}=7 / 1), 0^{\circ} \mathrm{C}$ to rt, 73%; d) i. $\mathrm{PMe}_{3}, \mathrm{KOH}, \mathrm{THF} ; \mathrm{ii} . \mathrm{Ac}_{2} \mathrm{O}$, pyridine, $89 \% 2$ steps; e) TBAF, THF, rt, 86\%; f) DMTrCl, TEA, DCM, 78\%; g) i. $\operatorname{Ir}(\mathrm{COD})\left(\mathrm{Ph}_{2} \mathrm{MeP}_{2} \mathrm{PF}_{6}, \mathrm{H}_{2}\right.$, THF, ii. I 2 , sat. aq. $\mathrm{NaHCO}_{3}, \mathrm{THF}, 88 \%$; h) 2-cyanoethyl- N, N diisopropylchlorophosphoramidite, DIPEA, DCM, 81\%.
D Building block synthesis; Reagents and conditions: a) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF} / \mathrm{DMF}(\mathrm{v} / \mathrm{v}=7 / 1) 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 84 \%$; b) $3 \% \mathrm{DCA}$ in DCM, 87\%; c) 2-cyanoethyl- N, N-diisopropylchlorophosphoramidite, DIPEA, DCM, 82\%.

As described in Chapter 2, alcohol 38 was coupled with spacer phosphoramidite 43 to give monomer 44. Detritylation then set the stage for a second coupling cycle with amidite 42 to deliver dimer 45, which was coupled to β-GIcNAc amidite $\mathbf{2 0}$ or α-GIcNAc amidite 37 to give trimers 46 and 47 . Both trimers were extended by two coupling cycles using $\mathbf{4 2}$ to yield pentamers $\mathbf{5 0}$ and $\mathbf{5 1}$. Both pentamers were coupled to $\mathbf{2 0}$ or $\mathbf{3 7}$ yielding four double glycosylated hexamers $\mathbf{5 2 , 5 3 , 5 4 , 5 5}$ with a different substitution pattern. In addition, unsubstituted pentamer $\mathbf{5 6}$ (Chapter 2) was coupled to amidite $\mathbf{2 0}$ and $\mathbf{3 7}$ to yield hexamers $\mathbf{5 7}$ and $\mathbf{5 8}$ bearing a single terminal GlcNAc moiety. Global deprotection using aqueous ammonia and subsequent hydrogenolysis of the semi protected fragments yielded hexamers $\mathbf{1 , 2 , 3 , 4 , 5}$, and $\mathbf{6}$.

Scheme 2B depicts the generation of the α - and β-GIcNAc trimers, designed for crystallization studies. Phosphoramidite 41 was coupled to α - and β-GIcNAc ribitol alcohol 36 and 19 giving dimers 59 and 61, which were coupled with amidite 42 to afford trimers 60 and 62. Global deprotection as described above yielded trimers 7 and 8.

To study the interactions of glycosylated and non-glycosylated WTAs with human langerin, a micro array interaction study was undertaken. As previously reported by van der Es et al., ${ }^{26}$ teichoic acid (TA) micro arrays can be employed to rapidly report on the sequence binding specificity of biomolecules interaction with TAs. Thus, amino spacer functionalized WTA fragments 1-5 as well as non-glycosylated trimer 63, tetramer 64, octamer 65, and dodecamer 66 (Chapter 2) were coupled to epoxide functionalized micro array slides and the generated arrays were interrogated using langerin-FITC. 8, ${ }^{27}$ As can be seen in Figure 2, the WTAs that bear a β-GlcNAc show selective binding to langerin, with fragment $\mathbf{2}$ having 2β-GlcNAcs showing highest binding. The $\alpha-G I c N A c$ WTAs $(\mathbf{3}, 4)$ did not bind to langerin, nor did the unsubstituted WTAs (63-66). WTA 5 that bears an α - and a β-GlcNAc shows binding comparable to the mono- β-GIcNAc WTA 1. The array clearly reveals that langerin does not bind to the RboP-backbone and that a β-GlcNAc is required for binding. These results support the data of van Dalen et al. ${ }^{9}$, who studied binding of langerin-FITC to a panel of S. aureus strains, expressing either the glycosyltransferase TarM or TarS, responsible for the introduction of WTAα - and WTA- β-GIcNAc residues, respectively. It was shown that the knock-out of both enzymes ($\Delta \mathrm{TarS} / \mathrm{TarM}$) decreased langerin binding compared to the wild-type indicating that a GlcNAc is required for binding. The Δ TarM species showed increased binding to langerin compared to the S. aureus wild-type, while the $\Delta T a r S$ bacterium showed 7-8 fold lower binding compared to the wild type. These results showed that at the bacterial level the WTA β-GIcNAc is required for langerin binding and that the α-GlcNAc-moieties could hinder langerin binding. The micro array results confirm langerin WTA β-GIcNAc binding at the molecular level, and show that a single α-GlcNAc-residue (as in 5) does

$55 \xrightarrow{\mathrm{c}, \mathrm{d}}$

$57 \xrightarrow{\mathrm{c}, \mathrm{d}}$

Scheme 2. WTA hexamer assembly A; Reagents and conditions: a) i. DCI, ACN, 38; ii. CSO; iii. 3\% DCA in DCM, 44: 85\%; b) i. DCI, ACN, phosphoramidite 20 or $\mathbf{3 7}$ or 42; ii. CSO; iii. 3\% DCA in DCM, 45: 74\%, 47: 53\%, 46: 88\%, 49: 82\%, 48: 90\%, 51: 89\%, 50: 68\%, 54: 88\%, 52: 79\%, 53: 76\%, 55: 61\%, 58: 73\%, 57: 85\%; c) i. $\mathrm{NH}_{3}(30-33 \%$ aqueous solution), dioxane; d) Pd black, $\mathrm{H}_{2}, \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O} /$ dioxane, 4: 55\%, 2: 78\%, 5: 88\%, 6: 16\%, 3: 96\%, 1: 68\%;
WTA trisaccharide assembly B: a) i. DCI, ACN, alcohol 36 or 19, 61: 80\%, 59: 46\%; b) i. DCI, ACN, amidite 42, 60: 91\%, 62: 91%; c) i. $\mathrm{NH}_{3}\left(30-33 \%\right.$ aqueous solution), dioxane; d) Pd black, $\mathrm{H}_{2}, \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O} /$ dioxane, 7: 90\%, 8: 85\%.
not adversely affect interaction of the C-type lectin with the WTA β-GIcNAc-moieties. The differences between the S. aureus study of van Dalen et al. and the here presented results may be explained by the different number of GlcNAc residues per RboP unit and/ or the difference in density of the WTAs on the array vs the bacterial cell wall. In addition, D-alanine residues may also play a role in WTA-langerin interaction.

A

unsubstituted WTAs: substituted WTAs:
B

Figure 2. A) Human langerin binding on a RboP micro array. X-as represents the WTA fragments printed with 3 different concentrations on the slide; B) WTA fragments included on micro array for their langerin binding.

To further probe langerin WTA binding with fragments having a higher density of GIcNAc residues, an assay using WTA functionalized magnetic beads was employed. Thus, as described in Chapter 2, the biotinylated non-glycosylated RboP-hexamer and RboP-dodecamer were enzymatically glycosylated using the enzymes TarS, TarM and TarP generating β-(1,4)-GIcNAc-WTA, $\alpha-(1,4)$-GIcNAc-WTA and β-(1,3)-GIcNAc-WTA respectively, which were then captured on streptavidin functionalized beads. Figure 3 shows langerin-FITC binding to these beads and reveals that both the $\beta-(1,4)$ - and β-(1,3)-GlcNAc-WTAs are recognized by langerin, with equal binding efficiency. The dodecamer shows significantly higher binding than the hexamers. Thus, although the microarray has indicated that a single β-GIcNAc can already provide langerin binding, the presence of more copies of the sugar ligand on the RboP chains leads to stronger binding with the lectin.

6-mer vs 12-mer

3
Figure 3. Magnetic beads functionalized with enzymatically glycosylated 6-mer and 12-mer can bind langerin in an anomeric configuration dependent manner.

CONCLUSION AND OUTLOOK

This Chapter described the successful synthesis of a set of C-4 glycosylated WTAs on milligram scale. Here, the phosphoramidite chemistry developed in Chapter 2 was further extended by synthesizing α - and β-linked C4-GIcNAc ribitol phosphoramidite building blocks. The synthetic route towards β-glycosylated amidites was realized following two approaches with different donors. The trichloroacetamide protecting group, chosen for the excellent beta selectivity during the glycosylation reaction, showed to be less optimal for the overall efficiency in the rest of the route. It presented an obstacle during the benzylation and its removal proved challenging. Meanwhile, the glucose azide donor, bearing a non-participating group on the C-2 gave excellent beta-selectivity in a nitrileassisted glycosylation reaction and no further laborious steps in the synthesis route were encountered, making the approach using this latter donor the preferred one to generate the required building block on multigram scale. The activity of the synthesized WTAs towards langerin has been established on a micro array platform and it was found that langerin binds in selective manner to the β-epitope. A similar outcome was found using WTA-functionalized beads, carrying TarS, TarM or TarP modified synthetic ribitol phosphate hexa- or dodecamers. The α-GIcNAc WTA beads did not capture langerin, while the β-GIcNAc functionalized beads effectively bound the C-type lectin. The position of the GIcNAc on the ribitol phosphates seems to be of less importance for binding. These results clearly demonstrate $\beta-G l c N A c-W T A$ to be an epitope for human langerin. Establishing the molecular interaction of langerin and S. aureus using well-defined WTA fragments is of great importance for the development of treatments against S. aureus soft skin and tissue infections. The activity of the glycosylated WTA-fragments against monoclonal antibodies will be presented in Chapter 4 to reveal the role of these antigens in adaptive immunity.

EXPERIMENTAL SECTION

General information

All chemicals (Acros, Fluka, Merck, Sigma-Aldrich, etc.) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 ($0.040-0.063 \mathrm{~mm}$). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol or with a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O} 25 \mathrm{~g} / \mathrm{L}$ and $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} 10 \mathrm{~g} / \mathrm{L}$, in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by charring at $+/-140^{\circ} \mathrm{C}$. Some unsaturated compounds were visualized by spraying with a solution of KMnO_{4} (2\%) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \%)$ in water. Optical rotation measurements ($[\alpha]_{D}{ }^{20}$) were performed on an Anton Paar Modular Circular Polarimeter MCP 100/150 with a concentration of $10 \mathrm{mg} / \mathrm{mL}$ (c 1), unless stated otherwise. Infrared spectra were recorded on a Shimadzu FT-IR 8300. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded with a Bruker AV 400 (400, 101 and 162 MHz respectively), a Bruker AV 500 (500 and 202 MHz respectively) or a Bruker DMX 600 (600 and 151 MHz respectively). NMR spectra were recorded in CDCl_{3} with chemical shift (δ) relative to tetramethylsilane, unless stated otherwise. High resolution mass spectra were recorded by direct injection ($2 \mu \mathrm{l}$ of a $2 \mu \mathrm{M}$ solution in water/acetonitrile; 50/50; v/v and 0.1 \% formic acid) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV , sheath gas flow 10 , capillary temperature $250^{\circ} \mathrm{C}$) with resolution $\mathrm{R}=60000$ at m / z 400 (mass range $m / z=150-2000$) and dioctylphthalate ($m / z=391.28428$) as a lock mass. The high resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

Phosphoramidite coupling, oxidation, and detritylation

The starting alcohol was co-evaporated 2 times with toluene before being dissolved in acetonitrile (ACN, 0.15 M). 4,5-dicyanoimidazole (DCI) (1.6-2.4 eq; 0.25 M in ACN) was added and the mixture was stirred over freshly activated molecular sieves under an argon atmosphere for 20 min . Then phosphoramidite (1.3-2.0 eq; 0.20 M) was added and the mixture was stirred at rt until total conversion of the starting material (15-45 min). Subsequently, (10-camphorsulfonyl)oxaziridine (CSO) (2.0 eq; 0.5 M in ACN) was added and the stirring was continued for 15 min . The mixture was diluted with DCM and washed with a $1: 1$ solution of saturated $\mathrm{NaCl} / \mathrm{NaHCO}_{3}$. The water layer was extracted 3 times with DCM and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was dissolved in DCM, DCA was added (5 eq; 0.18 M in DCM), and the mixture was stirred at rt. After 40-60 min an aqueous solution of methanol (1:1) was added, stirred for an additional 30-40 min, and diluted with DCM.

The organic layer was washed with saturated $\mathrm{NaCl} / \mathrm{NaHCO}_{3}$ solution (1:1), the water layer was extracted 3 times with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by either flash chromatography (DCM/acetone) or size exclusion chromatography (sephadex LH20, MeOH/DCM, 1/1).

General procedure for global deprotection

The oligomer was dissolved in a 1:1 solution of $\mathrm{NH}_{3}(30-33 \%$ aqueous solution) and dioxane (1.2-2.4 mM) and stirred overnight. The mixture was concentrated in vacuo and loaded on a Dowex Na^{+}cation-exchange resin ($50 \mathrm{WX} 4-200$, stored on 0.5 M NaOH , flushed with $\mathrm{H}_{2} \mathrm{O}$ and MeOH before use) column and flushed with water/dioxane (1:1). The fractions were then concentrated in vacuo, dissolved in water/dioxane (2 ml per 10 $\mu \mathrm{mol}$) and 4 drops of glacial AcOH were added. After purging the mixture with argon, Pd black was added ($32-59 \mathrm{mg}$), and the mixture was repurged with N_{2}. The mixture was stirred under hydrogen gas for 3-7 days, filtered over celite, and concentrated in vacuo. The crude product was purified by size-exclusion chromatography (Toyopearl HW-40, $\mathrm{NH}_{4} \mathrm{OAc}$ buffer) and the fractions were concentrated. The product was co-evaporated repeatedly with MilliQ water to remove $\mathrm{NH}_{4} \mathrm{OAc} / \mathrm{NH}_{4} \mathrm{HCO}_{3}$ traces and eluted through a Dowex Na^{+}cation-exchange resin column, and lyophilized.

Methyl 2,3-O-isopropylidene- α-D-ribofuranoside (9)

D-Ribose ($40.0 \mathrm{~g} ; 266 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was dissolved in MeOH (950 $\mathrm{ml} ; 0.28 \mathrm{M}$) and $\mathrm{AcCl}(5.7 \mathrm{ml} ; 0.3 \mathrm{eq}$.) was added and the mixture was stirred for 2 h at rt . Then the mixture was quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, filtrated and concentrated. The crude was dissolved in acetone ($750 \mathrm{ml}, 0.35 \mathrm{M}$), $\mathrm{HCl}(16 \mathrm{ml})$ was added and the mixture was stirred overnight at rt . The mixture was quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, filtrated and concentrated under reduced pressure. Column purification pentane/EtOAc 9:1 to 6:4 pentane/EtOAc afforded the title compound 9 in 72% over 2 steps ($39.0 \mathrm{~g} ; 190.9 \mathrm{mmol}$). IR (neat, cm^{-1}): 3431, 2988, 2940, 1456, 1373, 1089, 1040, 866; ' ${ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.49(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.33(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, \mathrm{OH}), 3.43\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{O}\right), 3.59-3.70(\mathrm{~m}$, 2H, H-5), 4.41 (d, 1H, J= 2.8 Hz, H-4), 4.58-4.60 (m, 1H, H-3), 4.82-4.84 (m, 1H, H-2), 4.97 (d, 1H, J= $2.4 \mathrm{~Hz}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}-A P T$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=24.7,26.4\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 64.0$ (C-5), 81.5 (C-2), 85.8 (C-3), 88.3 (C-4), 109.9 (C-1), 112.1 (Cq); HRMS: $[M+N a]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na} 227.0895$, found 227.0896 .

Methyl 5-O-allyl- α / β-D-ribofuranoside (10)

Compound 9 ($38.7 \mathrm{~g} ; 189 \mathrm{mmol} ; 1.0$ eq.) was dissolved in a mixture of THF/DMF ($540 \mathrm{ml} ; 0.35 \mathrm{M} ; \mathrm{v} / \mathrm{v}=7 / 1$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(11.3 \mathrm{~g} ; 284 \mathrm{mmol} ; 1.5$ eq.) was added in portions followed by dropwise addition of $\operatorname{AllylBr}$ ($24.5 \mathrm{ml} ; 284 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) and the mixture was allowed to warm up to rt and was stirred overnight. Then the mixture was quenched with MeOH at $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed 5 x with $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{x}$ with brine, dried over MgSO_{4}, filtrated and concentrated under reduced pressure. The crude was dissolved in a mixture of $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=1: 1,528 \mathrm{ml} ; 0.35 \mathrm{M})$ and the mixture was stirred under a pressure of 300 mbar at $50^{\circ} \mathrm{C}$. Then the mixture was concentrated under reduced pressure and the crude was purified by column chromatography 8:2 pentane/EtOAc to 2:8 pentane/EtOAc affording the title compound 10 in 62% yield over 2 steps as an α / β mixture with a ratio of $11: 1$ ($24.1 \mathrm{~g} ; 118 \mathrm{mmol}$). IR (neat, cm- ${ }^{-1}$): 3441, 2914, 1558, 1449, 1103, 1051, 1026, 1005, 974 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 3.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3} \alpha$ anomer), 3.47 ($\mathrm{s}, 0.3 \mathrm{H}, \mathrm{OCH}_{3} \beta$ anomer), $3.51-3.61$ (m, 2.2H, $\mathrm{H}-5 \alpha / \beta$ anomer), 3.97-4.16 (m, 6.7H, H-2/H-3, H-4, CH ${ }_{2}-\mathrm{CH} \alpha / \beta$ anomer), 4.24 (d, $1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}$, $\mathrm{H}-2 / \mathrm{H}-3$), 4.83 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \alpha$ anomer), 4.92 ($\mathrm{d}, 0.09 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \beta$ anomer), $5.18-5.32$ (m, $\left.2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.86-5.96\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$-APT NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=55.1\left(\mathrm{CH}_{3} \mathrm{O} \alpha\right.$ anomer), 55.5 ($\mathrm{CH}_{3} \beta$ anomer), 70.0 ($\mathrm{C}-5 / \mathrm{CH}_{2}-\mathrm{CH} \beta$ anomer), 70.8 , 71.7 ($\mathrm{C} 2 / \mathrm{C} 3 \beta$ anomer), 72.0, 72.4 ($\mathrm{C}-5 / \mathrm{CH}_{2}-\mathrm{CH} \alpha$ anomer), 72.4, 74.7 (C-2/C-3 α anomer), 81.8 ($\mathrm{C}-4 \alpha$ anomer), 83.6 (C-4 β anomer), 102.9 (C-1 β anomer), 108.2 ($\mathrm{C}-1 \alpha$ anomer), 117.5 ($\mathrm{CH}=\mathrm{CH}_{2}$), 134.4 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; $\mathrm{HRMS}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na} 227.0895$, found 227.0895.

5-O-allyl-2,3-O-benzyl-D-ribitol (11)

Compound 10 ($24.1 \mathrm{~g} ; 118 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was co-evaporated twice with toluene before use and was dissolved in a mixture of THF/DMF ($590 \mathrm{ml} ; 0.30 \mathrm{M} ; \mathrm{v} / \mathrm{v}=7: 1$). The solution was cooled to $0^{\circ} \mathrm{C}$ and NaH ($7.1 \mathrm{~g} ; 177 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) was added, followed by dropwise addition of $\mathrm{BnBr}(21.0 \mathrm{ml}$; $177 \mathrm{mmol} ; 1.5 \mathrm{eq}$.). The remaining $\mathrm{NaH}(7.1 \mathrm{~g} ; 177 \mathrm{mmol} ; 1.5 \mathrm{eq}$.$) was added followed$ by the dropwise addition of BnBr ($21.0 \mathrm{ml} ; 177 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) and the mixture was allowed to warm up to rt and was stirred overnight. Then the mixture was quenched with MeOH at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed 5 x with $\mathrm{H}_{2} \mathrm{O}$. The organic layer dried over MgSO_{4}, filtrated and concentrated in vacuo. Purification by column chromatography pentane/EtOAc 9:1 to 1:1 pentane/EtOAc yielded the crude (63.2 g) with benzyl alcohol traces. The crude was dissolved in a mixture of $4 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ /dioxane ($800 \mathrm{ml}, 0.15 \mathrm{M} \mathrm{v} / \mathrm{v}=1: 1$) and the mixture was heated at $80^{\circ} \mathrm{C}$ for 2.5 h and was then left stirring overnight at rt . The mixture was reheated at $80^{\circ} \mathrm{C}$ for 1.5 h and was then poured into 200 ml sat aq. NaHCO_{3} after cooling down. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to neutralize the mixture and the mixture was diluted with EtOAc. The organic layer was washed with
water and brine, dried over MgSO_{4}, filtrated and concentrated in vacuo. Purification by column chromatography pentane/EtOAc 8:2 to 4:6 pentane/EtOAc yielded a mixture of product and starting material. The mixture was dissolved in $\mathrm{MeOH}(375 \mathrm{ml} ; 0.20 \mathrm{M}$) and NaBH_{4} ($3.7 \mathrm{~g} ; 98.0 ; 1.3$ eq.) was added at $0^{\circ} \mathrm{C}$ in 2 portions and the mixture was stirred 4 days at rt . Then the reaction was quenched with EtOAc, concentrated under reduced pressure and co-evaporated with toluene. Purification by column chromatography pentane/EtOAc 1:0 to 2:8 pentane/EtOAc yielded the product 11 in 50% over 3 steps (21.7 g; 58.3 mmol$).[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{C} 1\right)$:+ 19.4; IR (neat, cm^{-1}): 3383, 2924, 2872, 1717, 1506, 1456, 1096, 1070, 1028, 737, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=2.86$ (bs, 1H, OH), 3.22 (bs, 1H, OH), 3.49-3.56 (m, 2H, H-C-OH, CHH), 3.74-3.87 (m, 4H, CH $-\mathrm{OH}, 2 \mathrm{CH}-\mathrm{Rbo}$), 3.91-4.00 (m, 3H, CHH, CH-CH2), 4.58-4.66 (m, 3H, CH2-Bn), $4.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}$, CHH-Bn), 5.14-5.27 (m, 2H, CH=CH $)_{2}$, 5.82-5.92 (m, 1H, CH=CH2), 7.24-7.35 (m, 10H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=60.9\left(\mathrm{CH}_{2}-\mathrm{OH}\right), 70.5(\mathrm{CH}-\mathrm{OH}), 71.171 .9,72.2$, $73.9\left(\mathrm{CH}_{2}-\mathrm{Rbo} / \mathrm{CH}_{2}-\mathrm{CH}, 2 \times \mathrm{CH}_{2}-\mathrm{Bn}\right), 79.4$ ($2 \mathrm{xH} \mathrm{CH}-\mathrm{Rbo}$), $117.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.8,127.9,128.0$, 128.4, 128.4 (C-arom), 134.5 ($\mathrm{CH}=\mathrm{CH}_{2}$), 138.1, 138.1 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na} 395.1834$, found 395.1831 .

5-O-allyl-2,3-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (12)

Compound 11 ($17.8 \mathrm{~g} ; 47.8 \mathrm{mmol} ; 1.0$ eq.) was dissolved in DCM ($480 \mathrm{ml} ; 0.1 \mathrm{M}$) and the solution was cooled to $0^{\circ} \mathrm{C}$. TEA ($40 \mathrm{ml} ; 6.0$ eq.) was added followed by dropwise addition of TBDPSCI (13.7 $\mathrm{ml} ; 52.6 \mathrm{mmol}: 1.1 \mathrm{eq}$.$) . The mixture was allowed to warm up to \mathrm{rt}$ and was stirred overnight. The reaction was quenched by the addition of MeOH at $0^{\circ} \mathrm{C}$ and was concentrated under reduced pressure. Purification by column chromatography pentane/EtOAc 1:0 to 6:4 pentane/EtOAc yielded the product in 95% yield ($27.7 \mathrm{~g} ; 45.3 \mathrm{mmol}$). $[\alpha]_{D}^{20}\left(\mathrm{CHCl}_{3} \mathrm{C}\right.$ 1): + 26.7; IR (neat, cm- ${ }^{-1}$): 3545, 2930, 2884, 1717, 1506, 1456, 1111, 1028, 824, 739, 700; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.07(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 2.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{OH}), 3.52-3.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4$), 3.81-3.82 (m, 2H, H-2, H-3), 3.89-4.03 (m, 6H, CH2-CH, 2x CH2-Rbo), 4.53 (d, 1H, J= $11.6 \mathrm{~Hz}, \mathrm{CHH} \mathrm{Bn}), 4.60-4.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CHH} \mathrm{Bn}), 5.13-5.26$ (m, 2H, CH=CH2), 5.84-5.91 (m, 1H, CH=CH2), 7.19-7.42 (m, 15H, H-arom), 7.68-7.72 (m, 5H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.3(\mathrm{Cq} t \mathrm{Bu}), 26.7,26.9,27.0\left(\mathrm{CH}_{3}\right.$ $t \mathrm{Bu}), 63.3\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right)$, $71.2(\mathrm{C} 4-\mathrm{OH}), 71.3,72.3,72.6,73.8\left(\mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{CH}\right)$, 78.9, 80.7 (C-2, C-3), $117.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.6,127.7,127.8,127.8,128.0,128.4,129.7,129.8$ (CHarom), 133.3, 133.4 (Cq-arom), 134.8, 134.9, 135.6, 135.8, 135.8, 138.4 ($\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{C}$-arom), 138.5 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SiNa}$ 633.3012, found 633.3015.

O-(3,4,6-tri-O-benzyl-2-azido-2-deoxy- β-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (27)

Alcohol 12 ($1.83 \mathrm{~g} ; 3.00 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was co-evaporated with toluene under a N_{2} atmosphere and dissolved in dry ACN (30.0 $\mathrm{ml} ; 0.10 \mathrm{M}$). Activated molecular sieves ($3 \AA ̊$) were added and the solution was stirred for 30 minutes under N_{2} atmosphere. The mixture was cooled to $-40^{\circ} \mathrm{C}$ and TMSTOTf ($55 \mu \mathrm{l} ; 0.30 \mathrm{mmol}$; 0.1 eq.) was added. Imidate $\mathbf{2 6}$ ($2.79 \mathrm{~g} ; 4.5 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) was co-evaporated with toluene under a N_{2} atmosphere and dissolved in dry ACN (30 ml ; 0.15 M). The donor was added to the reaction mixture and the mixture was stirred from $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ in a timeframe of 3 hours. Subsequently, 3 drops TEA were added and the mixture was diluted in DCM. The organic phase was washed with sat. aq. $\mathrm{NaHCO}_{3} ; \mathrm{NaCl}$ ($\mathrm{v} / \mathrm{v}=1: 1$) and the water layer was extracted with DCM. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. Purification by column chromatography $\mathrm{Et}_{2} \mathrm{O} /$ pentane 2:98 to $14: 86 \mathrm{Et}_{2} \mathrm{O} /$ pentane yielded compound 27 in 85% yield (2.71 g ; $2.54 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{C} 1\right):+6.6$; IR (neat, cm^{-1}): 2931, 2858, 2109, 1454, 1361, 1089, 1075, 1029, 737, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.05(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{x} \mathrm{CH} 3-\mathrm{tBu}), 3.34-4.01(\mathrm{~m}$, 14H, H-2, 2x CH2-Rbo, CH ${ }_{2}$-CH, 3x CH-Rbo, H-3, H-4, H-6', H-6"), 4.38 (d, $1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}$, CHH-Bn), 4.43 (m, 1H, H-5), 4.48-4.60 (m, 4H, CH ${ }_{2}-\mathrm{Bn}$), $4.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1), 4.72$ - $4.91\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 5.10-5.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.13-7.42(\mathrm{~m}$, $30 \mathrm{H}, \mathrm{H}$-arom $), 7.68\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}-A P T$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3(\mathrm{Cq}-\mathrm{tBu}), 27.0$ $\left(\mathrm{CH}_{3}-\mathrm{tBu}\right), 63.8\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 66.8(\mathrm{C}-2), 68.8(\mathrm{C}-6), 71.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.4,72.7,73.9,74.1,75.1$ $\left(\mathrm{CH}_{2}-\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, 75.2 (CH-Rbo, $\left.\mathrm{C}-3, \mathrm{C}-4\right), 75.5\left(\mathrm{CH}_{2}-\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 79.5(\mathrm{C}-5), 79.8,83.2$ (CH-Rbo, C-3, C-4), $102.5(\mathrm{C}-1), 116.8\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.5,127.5,127.5,127.6,127.6,127.8$, 127.8, 127.9, 127.9, 127.9, 128.0, 128.1, 128.1, 128.3, 128.4, 128.4, 128.5, 128.5, 128.5, 128.5, 129.7, 129.7 (CH-arom), 133.4, 133.6 (Cq-arom), $135.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.8,135.9$ (CHarom), 138.2, 138.2, 138.3, 138.3, 138.7, 138.8 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{65} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{Si} 1090.5014$, found 1090.5023.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (28)

Compound 27 ($1.65 \mathrm{~g} ; 1.55 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was dissolved in pyridine $/ \mathrm{H}_{2} \mathrm{O}(27 \mathrm{ml} ; 0.058 \mathrm{M} ; \mathrm{v} / \mathrm{v}=5: 1)$. TEA (0.1 ml) and propanedithiol ($0.78 \mathrm{ml} ; 7.75 \mathrm{mmol} ; 5.0$ eq.) were added and the mixture was stirred overnight at rt . Then the mixture was concentrated under reduced pressure and was 3 x co-evaporated with toluene. The mixture was dissolved in pyridine $/ \mathrm{Ac}_{2} \mathrm{O}(27 \mathrm{ml} ; \mathrm{v} / \mathrm{v}=2: 1)$ and the mixture was stirred overnight at rt . The mixture was then quenched with MeOH , concentrated under reduced pressure and purified by column chromatography 1:0 pen-
tane/EtOAc to 1:1 pentane/EtOAc affording the title compound $\mathbf{2 8}$ in 59% yield over 2 steps ($1.00 \mathrm{~g} ; 0.92 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{C} \mathrm{1}\right)$: + 11.8; IR (neat, cm^{-1}): 2929, 2858, 1653, 1454, 1362, 1112, 1070, 1029, 738, 698; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.06(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{xCH}-\mathrm{CBu})$, 1.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 3.49 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Rbo} / \mathrm{H}-3$), $3.54-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Rbo}\right), 3.64-3.81$ (m, 7H, H-2, H-4, CH 2 -Rbo, 2 x CH-Rbo), 3.83 (m, 2H, CH2-CH), 3.88 (dd, $1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}$, $\left.5.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$, $3.93-4.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ ", CH-Rbo/H-3), $4.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.42$ (d, J= 12.1 Hz , 1H, CHH-Bn), 4.46-4.83 (m, 10H, CH $\left.\mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1\right), 5.08-5.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.59(\mathrm{~d}, 1 \mathrm{H}$, $J=7.0 \mathrm{~Hz}, \mathrm{NH}$), $5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.08-7.38(\mathrm{~m}, 30 \mathrm{H}, \mathrm{H}$-arom), 7.69 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-$ APT NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3(\mathrm{Cq}-t \mathrm{Bu}), 23.6\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 27.0\left(\mathrm{CH}_{3}-\mathrm{tBu}\right), 56.4(\mathrm{C}-2)$, $63.8(\mathrm{C}-6), 69.1\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 71.3\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.1,72.3,73.6,74.0,74.5,74.8,75.0\left(\mathrm{CH}_{2}-\mathrm{CH}\right.$, $\mathrm{CH}_{2}-\mathrm{Bn}$), 75.3 (CH-Rbo/C-3), 78.3, 79.5, 79.5, 82.1 (C-5, CH-Rbo/C-3, C-4, 2x CH-Rbo), 101.6 (C-1), $116.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.5,127.5,127.6,127.7,127.8,127.8,127.8,127.9,128.0,128.1$, 128.1, 128.3, 128.3, 128.3, 128.4, 128.5, 128.5, 129.7 (CH-arom), 133.4, 133.6 (Cq-arom), $134.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 135.8,135.8$ (CH-arom), 138.3, 138.4, 138.6, 138.7, 138.7 (Cq-arom), $170.3(\mathrm{C}=\mathrm{O})$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{67} \mathrm{H}_{77} \mathrm{NNaO}_{10} \mathrm{Si} 1106.5214$, found 1106.5231.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-d-ribitol (17)

Compound 28 ($0.93 \mathrm{~g} ; 0.85 \mathrm{mmol} ; 1.0$ eq.) was dissolved in THF (5.0 $\mathrm{ml} ; 0.17 \mathrm{M}$). TBAF (1 M in THF: $1.7 \mathrm{ml} ; 1.70 \mathrm{mmol} ; 2.0$ eq.) was added and the mixture was stirred at rt . After 1 h TBAF (1 M in THF: 2.6 ml ; 2.60 mmol; 3.0 eq.) was added and stirring was continued until the starting material was completely converted. The mixture was concentrated under reduced pressure and purified by column chromatography pentane/EtOAc 1:0 to 4:6 pentane/EtOAc yielding the title compound 17 in 68% yield ($0.49 \mathrm{~g} ; 0.58 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{c} 1\right):+14.4$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$: 3288, 3064, 2923, $2868,1653,1454,1371,1069,1029,736,697 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.42-3.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{CH}_{2}-\mathrm{Rbo}\right), 3.61-3.80(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-2$, H-6', CH2-Rbo, CH-Rbo), 3.81 - 3.97 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{6}^{\prime \prime}, \mathrm{CH}_{2}-\mathrm{CH}, 2 \mathrm{CH}$ CRbo), 4.07 (td, 1H, J= 7.2 $\mathrm{Hz}, 2.4 \mathrm{~Hz}, \mathrm{H}-5), 4.43-4.55\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.55-4.82\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1\right), 5.11-5.25(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$), $5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{NH}), 5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.16$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}$-arom), 7.28 (m, 23H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=23.5\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 56.3(\mathrm{C}-2), 61.4(\mathrm{C}-6)$, $68.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 71.4,71.8,72.1,73.4,73.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 74.5(\mathrm{C}-3 / \mathrm{C}-4), 74.6$, 74.7 ($\mathrm{CH}_{2}-\mathrm{Bn}$), 78.3 (C-3/C-4), 78.4, 78.7, 79.3, 82.0 (C-5, 3x CH-Rbo), 101.2 (C-1), 117.0 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.5,127.6,127.7,127.8,127.8,128.0,128.2,128.3,128.4,128.4$ (CH-arom), $134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 137.6,137.8,138.3,138.3,138.6$ (Cq-arom), 170.4 (C=O); HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{51} \mathrm{H}_{60} \mathrm{NO}_{10} 846.42117$, found 846.42055.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(4,4'-dimethoxytrityl)-D-ribitol (18)

Compound 17 ($0.47 \mathrm{~g} ; 0.55 \mathrm{mmol} ; 1.0$ eq.) was dissolved in DCM $(5.5 \mathrm{ml} ; 0.10 \mathrm{M})$ followed by the addition of TEA ($0.12 \mathrm{ml} ; 0.83$ mmol; 1.5 eq.) and the mixture was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{DMTrCl}(0.23$ $\mathrm{g} ; 0.67 \mathrm{mmol} ; 1.2$ eq.) was added and the mixture was allowed to warm up to rt and stirring was continued for 2 days. The reaction was then quenched with MeOH at $0^{\circ} \mathrm{C}$, diluted with DCM and washed with sat. aq. $\mathrm{NaHCO}_{3} / \mathrm{NaCl}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Purification by TEA neutralized column chromatography pentane/EtOAc 1:0 to 1:1 pentane/EtOAc yielded the title $\mathbf{1 8}$ compound in 53% yield ($0.34 \mathrm{~g} ; 0.30 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{20}$ (DCM c 1): + 2.7; IR (neat, cm^{-1}): 2928, 2869, 1653, $1454,1364,1251,1069,1029,751,737,698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.85$ ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}-NAc), 3.24 (d, 1H, J= 10.4 Hz, H-6'), 3.42-3.55 (m, 2H, H-6", CH-Rbo), 3.55-3.75 (m, 12H, H-3, 2x CH 2 -Rbo, CH-Rbo, $2 x \mathrm{CH}_{3} \mathrm{O}$), 3.75-3.91 (m, 2H, H-5, H-2), 3.91-4.02 (m, 3H, $\mathrm{H}-4, \mathrm{CH}_{2}-\mathrm{CH}$), $4.30-4.33$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Rbo}$), $4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}$, $\mathrm{CHH}-\mathrm{Bn}$), $4.60\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.70-4.86\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1\right), 5.12-5.33(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$), $5.90-6.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{NH}), 6.73-6.83(\mathrm{~m}, 4 \mathrm{H}$, H-arom), 7.11 (m, 2H, H-arom), 7.16-7.54 (m, 32H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=23.6\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.5(\mathrm{C}-2), 64.2(\mathrm{C}-6), 70.1\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 71.2,72.7$, 73.2, 74.0, 74.3, 75.3, 75.5, ($\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{Bn}$), 75.8 (CH-Rbo), 79.4, 79.5, 79.5, 80.5 (C-3, C-4, C-5, CH-Rbo), 83.6 (CH-Rbo), 86.8 (Cq-DMTr), 102.1 (C-1), 114.0 (CH-arom), $116.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.7,128.3,128.4,128.4,128.5,128.6,128.7,128.7,128.8,128.9,128.9$, 129.0, 129.0, 129.2, 129.3, 129.3, 131.1, 131.1 (CH-arom), $136.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 137.0,137.1$, 139.5, 139.6, 139.8, 139.8, 139.9, 146.5, 159.5 (Cq-arom), 170.6 (C=O).

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-4)-2,3-di-O-benzyl-1-O-(4,4'-dimethoxytrityl)-d-ribitol (19)

A solution of compound $\mathbf{1 8}$ ($0.27 \mathrm{~g} ; 0.21 \mathrm{mmol})$ in destilled THF (2.1 $\mathrm{ml} ; 0.10 \mathrm{M}$) was degassed with $\mathrm{N}_{2} . \operatorname{Ir}(\mathrm{COD})\left(\mathrm{Ph}_{2} \mathrm{MeP}\right)_{2} \mathrm{PF}_{6}(6 \mathrm{mg} ; 0.03$ eq.) was added and the solution was degassed with N_{2}. Then the red solution was purged with H_{2} until the color became yellow (~ 5 seconds) and hereafter the solution was degassed with argon to remove traces of H_{2} from the solution and stirring was continued under N_{2} atmosphere until complete conversion of the substrate occured according to TLC analysis. The mixture was diluted with THF (2.0 ml) and aq. sat. $\mathrm{NaHCO}_{3}(2.0 \mathrm{ml})$ followed by the addition of $\mathrm{I}_{2}(0.08 \mathrm{~g} ; 0.31 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) and stirred for +/-30 mins. The reaction was quenched by the addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, diluted with EtOAc and the organic layer was washed with sat. aq. NaHCO_{3}. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtrated and concentrated under reduced pressure. Purification by TEA neutralized column chromatography DCM/aceton 96:4 to 9:1 DCM/aceton yielded the title compound 19 in 79% yield. $[\alpha]_{D}{ }^{20}$ (DCM c 1): + 3.6; IR (neat, cm^{-1}): 3288, 3064, 2929, 2870, 1653, 1508, $1453,1362,1251,1070,1029,736,698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}\right.$ NAc), 3.25 (dd, $1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), $3.47-3.50$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ ", CH-Rbo), $3.58-3.67$ (m, 2H, CHH-Rbo, CH-Rbo), 3.67-3.77 (m, 10H, $2 x \mathrm{CH}_{3} \mathrm{O}, \mathrm{CHH}-\mathrm{Rbo}, \mathrm{H}-3, \mathrm{CH}_{2}-\mathrm{Rbo}$), 3.77 - 3.90 (m, 2H, H-5, H-2), 4.03 (dd, 1H, J= $7.4 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, \mathrm{H}-4$), $4.09-4.13$ (m, 1H, CH-Rbo), 4.39 (dd, J= 11.6, 3.6 Hz, 2H, CH2-Bn), 4.48 (d, J= $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}-\mathrm{Bn}$), 4.59 (dd, 2H, J= 11.2, $5.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Bn}$), $4.70-4.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1\right), 6.72-6.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}$-arom), 6.85 (d, 1H, J= $9.0 \mathrm{~Hz}, \mathrm{NH}$), $7.09-7.12$ (m, 2H, J= $6.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{arom}), 7.17-7.44$ (m, 30H, H-arom), 7.47-7.53 (m, 2H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=23.6\left(\mathrm{CH}_{3}-\mathrm{NAc}\right)$, $55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.9(\mathrm{C}-2), 62.2\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 64.1(\mathrm{C}-6), 70.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 73.3,74.0,74.5,75.3$, 75.5 ($\mathrm{CH}_{2}-\mathrm{Bn}$), 75.7 (CH-Rbo), 79.3, 79.5 (CH-Rbo, C-5), 80.4 (C-4), 82.0 (C-3), 83.4 (CH-Rbo), 86.9 (Cq-DMTr), 102.4 (C-1), 114.0, 127.7, 128.3, 128.4, 128.5, 128.5, 128.6, 128.6, 128.8, 128.9, 128.9, 128.9, 129.0, 129.1, 129.2, 129.2, 129.3, 131.1, 131.1 (CH-arom), 137.0, 137.1, 139.4, 139.5, 139.7, 139.8, 146.4, 159.5 (Cq-arom), 171.6 (C=O); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{69} \mathrm{H}_{73} \mathrm{NNaO}_{12} 1130.5030$ found, 1130.5049 .

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-(1-4)-2,3-di-O-benzyl-5-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-1-O-(4,4'-dimethoxytrityl)-d-ribitol (20)

To a solution of compound 19 ($0.19 \mathrm{~g} ; 0.15 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) in DCM ($1.5 \mathrm{ml} ; 0.10 \mathrm{M}$) was added DIPEA ($43 \mu \mathrm{l} ; 0.25 \mathrm{mmol} ; 1.6$ eq.). The mixture was stirred over activated MS $4 \AA$ for $+/-15$ min. N, N^{\prime}-di-isopropylamino-2-cyanoethyl-chlorophosphite ($45 \mu \mathrm{l} ; 0.20 \mathrm{mmol} ; 1.3$ eq.) was added and the mixture was stirred for 1 h . Water was added, the mixture was diluted with DCM and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}: \mathrm{NaCl}(\mathrm{v} / \mathrm{v}=1: 1)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. Purification by TEA neutralized column chromatography pentane/EtOAc 1:0 to 6:4 pentane/EtOAc yielded phosphoramidite 20 in 61% yield ($0.13 \mathrm{~g} ; 0.09 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.08-1.23(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{x}$ CH_{3}-isopropylamine), 1.83 (bs, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.54-2.64$ (m, 2H, CH C_{2}-cyanoethyl), 3.19 (ddd, 1H, J= $10.0 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.45 (m, 2H, H-6", CH-Rbo), $3.51-3.75$ (m, 15H, $2 x \mathrm{CH}$-isopropylamine, $2 \times \mathrm{CH}_{2}$-cyanoethyl, $2 \times \mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{2}$-Rbo, CH -Rbo, $\mathrm{CH}-\mathrm{Rbo} / \mathrm{H}-3 / \mathrm{H}-4$), 3.75-4.02 (m, 5H, H-2, H-5, CH2-Rbo, CH-Rbo/H-3/H-4), 4.23-4.34 (m, 1H, CH-Rbo/H-3/H-4), 4.34-4.81(m, 11H, 5x CH2-Bn, H-1), $6.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{NH}), 6.74-6.78(\mathrm{~m}$, 4H, H-arom), 7.07-7.11 (m, 2H, H-arom), 7.12-7.49 (m, 32H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=21.1,21.1\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $23.7\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.9,25.0,25.1,25.2\left(\mathrm{CH}_{3}-\right.$ isopropylamine), 43.7, 43.7, 43.8, 43.8 (CH-isopropylamine), $55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.4(\mathrm{C}-2), 59.2$,
59.4, $59.6\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 63.5, 63.6, 64.0, 64.2, 64.3, $64.4\left(\mathrm{CH}_{2}\right.$-Rbo, C-6), 70.0, 70.0 (CH_{2}-Rbo), 73.3, 73.9, 74.0, 74.2, 75.3, 75.4 ($\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.8$ (CH-Rbo), 79.3, 79.3, 79.4, 79.5, 79.6, 79.7, 80.1, 80.1, 83.6, 83.6 (C-3, C-4, C-5, 2x CH-Rbo), 86.8 (Cq-DMTr), 101.8, 101.8 (C-1), 113.9 (CH-arom), 126.2, 127.6, 128.3, 128.3, 128.3, 128.5, 128.6, 128.6, 128.7, 128.7, 128.7, 128.9, 128.9, 129.0, 129.2, 129.2, 129.9, 131.1 (CH-arom), 137.1, 137.2, 139.5, 139.6, 139.7, 139.7, 139.9, 140.0, 140.0, 146.5, 159.5 (Cq-arom), 170.6 (C=O); ${ }^{31}$ P NMR (162 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=148.3,147.9$.

O-(3,4,6-tri-O-acetyl-2-trichloroacetylamino-2-deoxy- β-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (15)

Donor 14 ($3.86 \mathrm{~g} ; 6.48 \mathrm{mmol} ; 1.2 \mathrm{eq}$.$) and acceptor 12$ (3.29 g; $5.39 \mathrm{mmol} ; 1.0$ eq.) were co-evaporated with toluene twice under a N_{2} atmosphere in 1 pot. The mixture was dissolved in dry DCM ($65.0 \mathrm{ml} ; 0.10 \mathrm{M}$) and stirred on activated MS $4 \AA$ and cooled to $0^{\circ} \mathrm{C}$. TMSOTf ($125.0 \mu \mathrm{l} ; 0.69 \mathrm{mmol} ; 0.1 \mathrm{eq}$.) was added and the reaction was quenched with TEA after complete conversion of the acceptor according to TLC analysis. The mixture was diluted with DCM and was washed with water and brine. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. Purification by column chromatography pentane/EtOAc 9:1 to 7:3 pentane/EtOAc. The combined eluate was concentrated in vacuo and purified by size exclusion chromatography affording the title compound 15 in 92% yield ($5.44 \mathrm{~g} ; 5.93$ mmol). $[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{C} 1\right):-0.5$; IR (neat, cm^{-1}): 2931, 2858, 1749, 1723, 1457, 1368, 1232, 1112, 1039, 701; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{tBu}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}\right)$, 2.02 ($\mathrm{d}, 6 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{Ac}$), $3.52-3.71$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{CH}$), 3.77-3.97 (m, $5 \mathrm{H}, 2 \mathrm{CH}$-Rbo, CH-Rbo), 4.04 (dd, 1H, J= $12.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 4.14 (q, $1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}$, $\mathrm{H}-2), 4.26$ (dd, J= $\left.12.2 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 4.36-4.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.48$ (dd, 2H, J=14.3 $\left.\mathrm{Hz}, 11.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.73\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=15.2 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-1)$, 5.10-5.26 (m, 4H, CH $=$ CH, H-3, CH-Rbo), 5.79-5.89 (m, 1H, CH $=$ CH), $7.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.8 \mathrm{~Hz}, \mathrm{NH}$), 7.16-7.44 (m, 16H, H-arom), 7.66-7.68 (m, 4H, H-arom); ${ }^{13} \mathrm{C}-$ APT NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3(\mathrm{Cq}-\mathrm{tBu}), 20.7,20.7\left(\mathrm{CH}_{3}-\mathrm{Ac}\right) 26.9\left(\mathrm{CH}_{3}-\mathrm{tBu}\right), 56.0(\mathrm{C}-2), 62.2(\mathrm{C}-6), 63.3$ ($\mathrm{CH}_{2}-\mathrm{Rbo}$), 68.5 (C-3/CH-Rbo), 71.4 ($\left.\mathrm{CH}_{2}-\mathrm{Rbo} / \mathrm{CH}_{2}-\mathrm{CH} / \mathrm{CH}_{2}-\mathrm{Bn}\right)$, 72.1 (C-3/CH-Rbo), 72.2, $72.3\left(\mathrm{CH}_{2}-\mathrm{Rbo} / \mathrm{CH}_{2}-\mathrm{CH} / \mathrm{CH}_{2}-\mathrm{Bn}\right)$, $72.7(\mathrm{C}-3 / \mathrm{CH}-\mathrm{Rbo}), 74.2\left(\mathrm{CH}_{2}-\mathrm{Rbo} / \mathrm{CH}_{2}-\mathrm{CH} / \mathrm{CH}_{2}-\mathrm{Bn}\right), 79.2$, 79.4, 79.5 (C-4, C-5, CH-Rbo), $92.5\left(\mathrm{CCl}_{3}\right), 101.3(\mathrm{C}-1), 117.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.6,127.6,127.6$, 127.7, 127.7, 127.7, 127.7, 127.8, 128.2, 128.2, 128.3, 128.3, 128.3, 129.8 (CH-arom), 133.2, 133.5 (Cq-arom), $134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.7,135.8$ (CH-arom), 138.3, 138.5 (Cq-arom), 162.1, 169.4, 170.8, 171.0 (C=O); HRMS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{Cl}_{3} \mathrm{NNaO}_{13} \mathrm{Si} 1064.2954$, found 1064.2965.

O-(2-trichloroacetylamino-2-deoxy- β-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (16)

To a solution of Compound 15 ($4.23 \mathrm{~g} ; 3.90 \mathrm{mmol} ; 1.0 \mathrm{eq}$. in $\mathrm{MeOH}(39.0 \mathrm{ml} ; 0.10 \mathrm{M})$ was added $\mathrm{NaOMe}(21.0 \mathrm{mg} ; 0.39$ mmol; 0.1 eq.) and the mixture was stirred overnight. A small piece of Na was added and the mixture was stirred for 3 h . Then the mixture was quenched with amberlite H^{+}resin, filtrated and concentrated in vacuo. Purification by column chromatography pentane/EtOAc 9:1 to 0:1 pentane/ EtOAc afforded fractions of the starting compound and the product. The fractions of the starting compound were combined, concentrated in vacuo and treated for deacetylation according to the described procedure above. The crude was purified using column chromatography pentane/EtOAc 7:3 to 3:7 pentane/ EtOAc affording the title compound 16 in a total yield of $73 \%(2.63 \mathrm{~g} ; 2.86 \mathrm{mmol}) .[\alpha]_{D}{ }^{20}$ (CHCl_{3} c 1): + 5.0; IR (neat, cm^{-1}): 3348, 2931, 2858, 1701, 1457, 1112, 1076, 1028, 701; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.35$ (ddd, 1H, J= $9.1 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo}$), 3.47 (dd, 1H, J= 10.7, 2.5 Hz, H-6'), 3.52-3.97 (m, 12H, 2x CH2-Rbo, CH ${ }_{2}-\mathrm{CH}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4,2 x \mathrm{CH}-\mathrm{Rbo}$), 4.22 (dt, J= $9.2 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.48$ (dd, 2H, J= 29.1, 11.6 Hz, CH2-Bn), 4.65 (dd, 2H, J= $\left.14.5,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-1)$, 5.12-5.22 (m, 2H, CH $\left.2=\mathrm{CH}\right), 5.77-5.86$ (m, 1H, CH ${ }_{2}=\mathrm{CH}$), 7.13-7.17 (m, 2H, H-arom), 7.22-7.35 (m, 11H, H-arom), 7.37-7.44 (m, 2H, H-arom), 7.49 (d, $1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{H}$-arom), $7.65-7.48$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3(\mathrm{Cq}-\mathrm{tBu})$, $27.0\left(\mathrm{CH}_{3}-t \mathrm{Bu}\right)$, $59.1(\mathrm{C}-2)$, 62.4, $63.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right)$, 71.2 (C-6), 71.8 (C-3/C-4/CH-Rbo), 72.1, 72.4, $74.1\left(\mathrm{CH}_{2}-\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 75.7,76.1(\mathrm{C}-3 / \mathrm{C}-4 /$ CH-Rbo), 78.7, 79.3, 79.5 (C-3/C-4/C-5/CH-Rbo), 101.3 (C-1), 117.6 ($\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 127.8,127.8$, 127.8, 128.0, 128.1, 128.4, 128.5, 129.8, 129.9 (CH-arom), 133.3, 133.4 (Cq-arom), 134.4 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.8,135.9$ (CH-arom), 138.2 (Cq-arom), 164.3 (C=O); HMRS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{Cl}_{3} \mathrm{NNaO}_{10} \mathrm{Si} 938.2637$, found 938.2653.

O-(2-azido-2-deoxy- α-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (31)

Donor 29 ($11.5 \mathrm{~g} ; 24.1 \mathrm{mmol} ; 1.0 \mathrm{eq}$.$) and acceptor 12$ (17.7 g ; 29.0 mmol; 1.2 eq.) were co-evaporated together twice with toluene under an N_{2} atmosphere. The mixture was dissolved in DCM ($240 \mathrm{ml} ; 0.10 \mathrm{M}$) and stirred on activated MS 4Å for $+/-30$ min . TMSOTf ($0.44 \mathrm{ml} ; 2.41 \mathrm{mmol} ; 0.1 \mathrm{eq}$.) was added at rt and the reaction was stirred until full conversion of the donor was achieved according to TLC analysis. The reaction was quenched with TEA, concentrated under reduced pressure and purified by column chromatography pentane/EtOAc 1:0 to $8: 2$ pentane/EtOAc yielding the product as an α / β mixture ($7: 1$). The mixture was dissolved in $\mathrm{MeOH}(165 \mathrm{ml} ; 0.13 \mathrm{M}$) followed by addition of $4.3 \mathrm{M} \mathrm{NaOMe}(0.82 \mathrm{ml} ; 0.15$
eq.) and the mixture was stirred for 2 h . The reaction was neutralized with amberlite H^{+}, filtrated and concentrated under reduced pressure. Purification by column chromatography pentane/EtOAc 85:15 to 30:70 pentane/EtOAc yielded the product in 64% over 2 steps as the a anomer ($12.3 \mathrm{~g} ; 15.4 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3} \mathrm{C} 4.2\right)$: +57.1 ; IR (neat, cm^{-1}): $3352,2930,2857,2108,1454,1362,1103,1024,741,700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 1.05 (s, 9H, CH ${ }_{3}-t \mathrm{Bu}$), 2.87 (bs, 1H, OH), 3.32 (dd, $1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{H}-2$), 3.52 (dd, $1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.60-4.00 (m, 12H, H-3, H-4, H-6", 3x CH-Rbo, $2 x \mathrm{CH}_{2}$-Rbo, $\left.\mathrm{CH}_{2}-\mathrm{CH}\right), 4.17$ (bs, 1H, OH), 4.23-4.25 (m, 1H, H-5), 4.31 (bs, 1H, OH), 4.47 (d, 1H, J= 11.6 $\mathrm{Hz}, \mathrm{CHH}-\mathrm{Bn}$), 4.58 (d, 1H, J=11.2 Hz, CHH-Bn), 4.67 (d, 1H, J= $11.6 \mathrm{~Hz}, C H H-B n$), 4.82 (d, $1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn}), 5.09-5.19\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.77-5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 7.19-7.40 (m, 15H, H-arom), 7.65-7.69 (m, 5H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.3$ (Cq-tBu), $27.0\left(\mathrm{CH}_{3}-t \mathrm{tBu}\right), 61.8,62.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{CH}\right), 63.6(\mathrm{C}-2), 70.4(\mathrm{C}-6), 70.7$ (C-4), 71.2 (C-3/CH-Rbo), 72.1 ($\left.\mathrm{CH}_{2} \mathrm{Bn} / \mathrm{CH}_{2}-\mathrm{Rbo}\right)$, 72.3 , (C-3/CH-Rbo), $72.3\left(\mathrm{CH}_{2} \mathrm{Bn} / \mathrm{CH}_{2}-\right.$ Rbo), 74.0 ($\mathrm{CH}_{2} \mathrm{Bn} / \mathrm{CH}_{2}$-Rbo), 77.6 (C-5), 78.8, 78.9 (CH-Rbo), $96.8(\mathrm{C}-1), 117.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 127.6, 127.8, 127.8, 127.8, 127.9, 128.1, 128.4, 129.8 (CH-arom), 133.3, 133.6 (Cq-arom), $134.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 135.7,135.9$ (CH-arom), 138.4, 138.5 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{Si} 820.3605$, found 820.3616 .

O-(2-azido-3,4,6-tri-O-benzyl-2-deoxy- α-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (32)

To a solution of compound 31 ($12.7 \mathrm{~g} ; 15.9 \mathrm{mmol} ; 1.0 \mathrm{eq}$.$) in$ THF/DMF ($160 \mathrm{ml} ; 0.1 \mathrm{M} ; \mathrm{v} / \mathrm{v}=7: 1$) at $0^{\circ} \mathrm{C}$ was added NaH (2.50 $\mathrm{g} ; 63.6 \mathrm{mmol} ; 4.0$ eq.) in portions followed by BnBr ($9.5 \mathrm{ml} ; 79.5$ mmol; 5.0 eq.) and the mixture was allowed to warm up to $r t$ and stirred for 2 days. The mixture was then quenched with MeOH at $0^{\circ} \mathrm{C}$, diluted with EtOAc (260 ml), washed with water ($5 \times 150 \mathrm{ml}$) and brine. Column chromatography afforded the product and partly benzylated intermediate (3.00 mmol) that was recovered and dissolved in THF/DMF ($30.0 \mathrm{ml} ; 0 / 1 \mathrm{M} ; \mathrm{v} / \mathrm{v}=7: 1$) followed by addition of NaH ($0.16 \mathrm{~g} ; 4.1 \mathrm{mmol} ; 1.4 \mathrm{eq}$.) and $\mathrm{BnBr}(0.46 \mathrm{ml} ; 3.8 \mathrm{mmol} ; 1.3 \mathrm{eq}$.$) at 0^{\circ} \mathrm{C}$ and the reaction was allowed to warm up to rt and was stirred overnight. The mixture was quenched with MeOH at $0^{\circ} \mathrm{C}$ and worked up as described above leading to a total yield of the title compound in 73% ($12.36 \mathrm{~g} ; 11.57 \mathrm{mmol}$). $[\alpha]_{D}^{20}\left(\mathrm{CHCl}_{3} \mathrm{c} 4.2\right)$: + 48.3; IR (neat, cm- ${ }^{1}$): 2928, 2857, 2106, 1454, 1362, 1105, 1074, 1028, 737, 698; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t \mathrm{Bu}\right), 3.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{H}-2), 3.59-3.65(\mathrm{~m}, 3 \mathrm{H}$, H-6', CH2-Rbo), 3.77-3.84 (m, CH ${ }_{2}-\mathrm{CH}, \mathrm{H}-6$ ", $2 x \mathrm{CH}-\mathrm{Rbo}$), 3.91 (dd, $1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, 4.4 \mathrm{~Hz}$, CHH-Rbo), 3.98-4.03 (m, 3H, CHH-Rbo, H-3, H-4), 4.17-4.20 (m, 1H, CH-Rbo), 4.25-4.27 (m, 1H, H-5), 4.44-4.88 (m, 10H, CH - -Bn), 7.18-7.39 (m, 30H, H-arom), 7.67-7.71 (m, 5H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3(\mathrm{Cq}-\mathrm{tBu}), 26.9\left(\mathrm{CH}_{3}-t \mathrm{tBu}\right), 62.9\left(\mathrm{CH}_{2}\right.$-Rbo), 64.3 (C-2), 68.4 (C-6), $70.3\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right)$, 70.7 ($\left.\mathrm{CH}-\mathrm{Rbo}\right), 72.0,72.2\left(\mathrm{CH}_{2}-\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 73.6$,
73.9, 74.9, $75.4\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 77.8,78.5,78.8,79.1,80.6$ (C-5, C-3, C-4, $\left.2 \times \mathrm{CH}-\mathrm{Rbo}\right)$, 97.2 (C-1), $116.8\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.4,127.5,127.7,127.8,127.9,127.9,128.0,128.2,128.3,128.4,128.4$, 128.5, 128.8, 129.1, 129.7 (CH-arom), 133.3, 133.6 (Cq-arom), $134.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 135.7, 135.7, 135.9 (Cq-arom), 138.1, 138.3, 138.6, 138.6 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{65} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{Si} 1090.5014$, found 1090.5040.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- α-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(tert-butyldiphenylsilyl)-D-ribitol (33)

Compound 32 ($12.4 \mathrm{~g} ; 11.6 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was dissolved in pyridine $/ \mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml} ; 0.058 \mathrm{M} ; \mathrm{v} / \mathrm{v}=5: 1)$ followed by the addition of TEA (0.93 ml) and 1,3-propaandithiol ($5.80 \mathrm{ml} ; 57.8 \mathrm{mmol} ; 5.0$ eq.) and the mixture was stirred overnight at rt . Then the mixture was concentrated under reduced pressure, co-evaporated with toluene (3x), dissolved in pyr/Ac $\mathrm{Cl}_{2} \mathrm{O}(200 \mathrm{ml} ; \mathrm{v} / \mathrm{v}=2: 1)$ and stirred overnight. The mixture was then quenched with MeOH , concentrated under reduced pressure and purified by column chromatography pentane/EtOAc 1:0 to 1:1 pentane/ EtOAc affording the title compound 27 in 92% yield ($11.66 \mathrm{~g} ; 10.8 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{C}\right.$ 2.6): + 53.3; IR (neat, cm^{-1}): 2930, 2857, 1684, 1454, 1271, 1111, 1070, 1028, 741, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{tBu}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 3.54-5.06(\mathrm{~m}, 14 \mathrm{H}$, 3x CH-Rbo, $2 x$ CH $_{2}$-Rbo, H-3, H-4, H-5, H-6', H-6", CH ${ }_{2}-\mathrm{CH}$), 4.19-4.25 (m, 1H, H-2), 4.41 (d, 1H, J= $11.6 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn}), 4.64-4.67\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn})$, $4.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{H}-1), 5.08-5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{NH}), 5.77$ - 5.84 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 7.17-7.38 (m, 30H, H-arom), 7.62-7.68 (m, 5H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.2(\mathrm{Cq}-t \mathrm{Bu}), 22.9\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 26.8\left(\mathrm{CH}_{3}-t \mathrm{Bu}\right), 52.8(\mathrm{C}-2), 63.2$ $\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 68.6,69.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 71.4(\mathrm{CH}-\mathrm{Rbo}), 71.9,72.4,73.4,74.7,74.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}, 5 \mathrm{x}\right.$ $\mathrm{CH}_{2}-\mathrm{Bn}$), 78.1, 78.2, 79.3, 79.4, 80.6 (2x CH-Rbo, C-3, C-4, C-5), 99.3 (C-1), $116.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 127.6, 127.7, 127.7, 127.8, 127.9, 128.0, 128.2, 128.3, 128.4, 128.5, 128.9 129.8, 129.8 (Carom), 133.0, 133.2 (Cq-arom), 134.7 ($\mathrm{CH}=\mathrm{CH}_{2}$), 135.5, 135.6 (C-arom), 138.0, 138.0, 138.1, 138.4 (Cq-arom), 169.7 (C=O); HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{67} \mathrm{H}_{78} \mathrm{NO}_{10} \mathrm{Si}$ 1084.5395, found 1084.5394.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- α-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-d-ribitol (34)

Compound 33 (11.2 g; 10.4 mmol; 1.0 eq.) was dissolved in THF (61 $\mathrm{ml} ; 0.17 \mathrm{M}$) and to this solution was added TBAF ($15.5 \mathrm{ml} ; 15.5 \mathrm{mmol}$; 1.5 eq.) and the mixture was stirred at rt. When TLC analysis showed a small amount of starting material, TBAF ($5.2 \mathrm{ml} ; 5.2 \mathrm{mmol} ; 0.5 \mathrm{eq}$.) was added and the reaction was stirred for 40 min , after which the mixture was concentrated under reduced pressure. Purification
by column chromatography pentane/EtOAc 1:0 to 3:7 pentane/EtOAc yielded the title compound 34 in 86% yield ($7.93 \mathrm{~g} ; 8.9 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{20}\left(\mathrm{CHCl}_{3} \mathrm{C} 1.6\right)$: + 42.4; IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $3447,3420,2920,2862,1684,1558,1456,1097,1070,1047,1028,737,698 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.59(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.48(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}$, $\left.\mathrm{H}-6^{\prime}\right), 3.57$ (dd, $1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}$), $3.62-3.83$ (m, 9H, 2x CH2-Rbo, CH 2 -CH, H-3, 2x CH-Rbo), 3.92-3.95 (m, 2H, H-4, CH-Rbo), 4.01 (q, 1H, J=3.6 Hz, H-5), 4.22 (ddd, J = $10.5 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{H}-2), 4.48-4.68\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.82(\mathrm{dd}, \mathrm{J}=11.2 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Bn}$), $4.94(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.09-5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.86(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.17-7.38\left(\mathrm{~m}, 25 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $22.9\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 52.9(\mathrm{C}-2), 61.9\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 68.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 69.3(\mathrm{C}-6), 71.6(\mathrm{CH}-\mathrm{Rbo}), 71.7$, 72.2, 73.6, 74.2, 74.8, 75.2 (CH_{2}-Rbo, $5 \mathrm{x} \mathrm{CH}_{2}-\mathrm{Bn}$), 78.0, 78.4, 78.9, 79.2, 80.1, (2 xCH -Rbo, $\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5), 100.1(\mathrm{C}-1), 117.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.8,127.8,127.9,127.9,128.0,128.0,128.0$, 128.0, 128.1, 128.1, 128.2, 128.2, 128.5, 128.5, 128.5, 128.6, 128.6, 128.7, 128.7 (C-arom), $134.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 137.7, 137.9, 138.1, 138.2, 138.4 (Cq-arom), 170.3 (C=O); HRMS: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{51} \mathrm{H}_{60} \mathrm{NO}_{10} 846.4217$, found 846.4230 .

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- α-D-glucopyranosyl)-(1-4)-5-O-allyl-2,3-di-O-benzyl-1-O-(4,4'-dimethoxytrityl)-D-ribitol (35)

To a solution of compound $\mathbf{3 4}$ ($7.61 \mathrm{~g} ; 9.0 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) in DCM ($60.0 \mathrm{ml} ; 0.15 \mathrm{M}$) was added DMTrCl ($3.66 \mathrm{~g} ; 10.8 \mathrm{mmol} ; 1.2 \mathrm{eq}$.) and TEA ($2.0 \mathrm{ml} ; 13.5 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) and the reaction was stirred for 2 h at rt . The reaction was then quenched with MeOH at $0^{\circ} \mathrm{C}$, diluted with DCM and washed with sat. aq. $\mathrm{NaHCO}_{3} / \mathrm{NaCl}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Purification by TEA neutralized column chromatography pentane/EtOAc 1:0 to 1:1 pentane/EtOAc yielded the title compound 35 in 78% yield ($8.05 \mathrm{~g} ; 7.00 \mathrm{mmol}$). [$\alpha]_{\mathrm{D}}{ }^{20}$ (DCM c 1): + 44.1; IR (neat, cm- ${ }^{1}$): 2909, 2868, 1684, 1508, 1454, 1250, 1088, 1072, 1029, 829, 737,$698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.69$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 3.21 (dd, $1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}, 4.9$ Hz, CHH-Rbo), 3.47 (dd, 1H, J= $10.2 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, \mathrm{CHH}-R b o$), $3.59-3.77$ (m, 13H, H-6', H-6", $\mathrm{H}-3,2 \mathrm{xCH} \mathrm{CH}_{3}, \mathrm{CH}_{2}$-Rbo, 2 x CH -Rbo), 3.87 (ddt, $2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}$), 3.95 (dd, 1H, J=7.2, 2.6 Hz, H-4), 4.01-4.10 (m, 2H, H-2, CH-Rbo), 4.14-4.17 (m, 1H, H-5), 4.42 (d, 1H, J= $11.1 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn}$), 4.49 (d, 1H, J= $12.0 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn}$), 4.53-4.85 (m, 8H, CH2-Bn), 4.93 (d, 1H, J= $3.6 \mathrm{~Hz}, \mathrm{H}-1$), $5.05-5.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.30(\mathrm{~d}, 1 \mathrm{H}$, $J=9.0 \mathrm{~Hz}, \mathrm{NH}), 6.74-6.83(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{arom}), 7.08-7.50(\mathrm{~m}, 34 \mathrm{H}, \mathrm{H}-\mathrm{arom}))^{13} \mathrm{C}-A P T$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=23.3\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 54.1(\mathrm{C}-2), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 63.6\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 70.0,70.7(\mathrm{C}-6$, CH_{2}-Rbo), 71.8 (CH-Rbo), 72.5, 73.3, 73.9, 74.4, 75.4, $75.5\left(\mathrm{CH}_{2}-\mathrm{CH}, 5 x \mathrm{CH}_{2}-\mathrm{Bn}\right), 77.8(\mathrm{C}-5)$, 79.2, 79.2, 79.6, 81.2 ($2 \times \mathrm{CH}-\mathrm{Rbo}, \mathrm{C}-3, \mathrm{C}-4$), 86.8 (Cq-DMTr), 97.7 (C-1), 114.0 (CH-arom), $116.8\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.7,128.5,128.5,128.5,128.6,128.8,128.8,128.8,128.9,129.2,129.3$, 129.3, 131.0, 131.0 (CH-arom), 136.2 ($\mathrm{CH}=\mathrm{CH}_{2}$), 137.0, 137.1 (Cq-arom), 139.5, 139.5,
139.6, 139.7, 139.9, 146.4, 159.5 (Cq-arom), 170.3 (C=O); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{72} \mathrm{H}_{77} \mathrm{NNaO}_{12} 1170.5343$, found 1170.5337.

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- α-D-glucopyranosyl)-(1-4)-2,3-di-O-benzyl-1-O-(4,4'-dimethoxytrityl)-D-ribitol (36)

A solution of compound $\mathbf{3 5}$ ($0.85 \mathrm{~g} ; 0.74 \mathrm{mmol} ; 1.0$ eq.) in destilled THF ($7.4 \mathrm{ml} ; 0.10 \mathrm{M}$) was degassed with N_{2}. $\mathrm{Ir}(\mathrm{COD})\left(\mathrm{Ph}_{2} \mathrm{MeP}\right)_{2} \mathrm{PF}_{6}(14$ $\mathrm{mg} ; 0.02$ eq.) was added and the solution was degassed with N_{2}. Then the red solution was purged with H_{2} until the color became yellow (~ 25 seconds) and hereafter the solution was degassed with argon to remove traces of H_{2} from the solution and the reaction was warmed up to $30^{\circ} \mathrm{C}$ for 5 mins under argon atmosphere. The mixture was diluted with THF (7.4 ml) and aq. sat. $\mathrm{NaHCO}_{3}(7.4 \mathrm{ml})$ followed by the addition of $\mathrm{I}_{2}(0.28 \mathrm{~g} ; 1.12 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) and stirred for $+/-30 \mathrm{~min}$. The reaction was quenched by the addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, diluted with EtOAc and the organic layer was washed with sat. aq. NaHCO_{3}. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Purification by TEA neutralized column chromatography pentane/EtOAc 1:0 to 1:1 pentane/EtOAc yielded the title compound 36 in 77% yield ($0.70 \mathrm{~g} ; 0.63 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{20}$ (DCM c 1):+31.7; IR (neat, cm- ${ }^{1}$): 3567, 3064, 3031, 2931, 1668, 1508, 1454, 1368, 1251, 1069, 1029, 737, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 3.25(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{OH}), 3.30$ (dd, $1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.50 (dd, $1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, \mathrm{H}-6$ "), 3.58 (dd, $1 \mathrm{H}, J=$ 10.1, $8.9 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo}$), $3.64-3.81$ ($\mathrm{m}, 11 \mathrm{H}, 2 \mathrm{CH}_{2}$-Rbo, $2 \mathrm{xCH}_{3} \mathrm{O}, \mathrm{H}-3$), 3.87 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 3.93-4.02 (m, 2H, H-4, CH-Rbo), 4.09 (ddd, 1H, J= $10.2 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo}$), 4.16 (ddd, $1 \mathrm{H}, \mathrm{J}=10.7 \mathrm{~Hz}, 9.1 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, \mathrm{H}-2$), $4.45-4.86$ (m, 10H, CH2-Bn), 4.94 (d, 1H, J= $3.7 \mathrm{~Hz}, \mathrm{H}-1), 6.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{NH}), 6.77-6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{arom}), 7.14-7.23(\mathrm{~m}, 3 \mathrm{H}$, H-arom), 7.24 (s, 27H, H-arom), 7.46 (dt, 2H, J=6.5 Hz, $1.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{arom}$), $7.49-7.54$ (m, 2H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=23.3\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 54.0(\mathrm{C}-2), 55.8,55.8\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $62.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 64.2(\mathrm{C}-6), 70.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.1(\mathrm{CH}-\mathrm{Rbo}), 73.4,73.9,74.2,75.5,75.6\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Bn}), 79.3,79.5,79.7$ (C-4, C-5, CH-Rbo), 81.4 (C-3), 82.3 (C-4, C-5, CH-Rbo), 86.9 (Cq-DMTr), 98.8 (C-1), 114.0 (CH-arom), 127.7, 128.5, 128.5, 128.5, 128.6, 128.6, 128.7, 128.8, 128.8, 128.9, 129.0, 129.2, 129.2, 129.3, 129.4, 131.0, 131.1 (CH-arom), 137.0, 137.1, 139.2, 139.4, 139.4, 139.5, 139.8, 146.4, 159.5 (Cq-arom), 170.4 (C=O); HRMS: [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{69} \mathrm{H}_{73} \mathrm{NNaO}_{12} 1130.50250$, found 1130.50183 .

O-(2-acetylamino-3,4,6-tri-O-benzyl-2-deoxy- α-D-glucopyranosyl)-(1-4)-2,3-di-O-benzyl-5-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-1-O-(4,4'-dimethoxytrityl)-d-ribitol (37)

To a solution of alcohol 36 ($0.70 \mathrm{~g} ; 0.63 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) in DCM ($6.3 \mathrm{ml} ; 0.10 \mathrm{M}$) was added DIPEA ($0.16 \mathrm{ml} ; 0.94 \mathrm{mmol} ; 1.5$ eq.). The mixture was stirred over activated MS $4 \AA \AA$ for $+/-30$ min. N, N^{\prime}-di-isopropylamino-2-cyanoethyl-chlorophosphite ($0.17 \mathrm{ml} ; 0.75 \mathrm{mmol} ; 1.2$ eq.) was added and the mixture was stirred for 1 h . Water was added, the mixture was diluted with DCM and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}: \mathrm{NaCl}(v / v=1: 1)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. Purification by TEA neutralized column chromatography pentane/ EtOAc 1:0 to 1:1 pentane/EtOAc yielded phosphoramidite 37 in 81% yield ($0.67 \mathrm{~g} ; 0.51$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.07-1.18\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{x} \mathrm{CH}_{3}\right.$-isopropylamine), 1.72 (d, 3H, J= 14.7 Hz, CH - NAc), 2.37-2.51 (m, 2H, CH ${ }_{2}$-cyanoethyl), 3.22 (dt, 1H, J=9.8 Hz, 4.7 Hz, H-6'), 3.45 (dd, 1H, J= $10.3 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}$), 3.52 - 3.96 (m, 15H, 2x CH30, 2x CH_{2}.Rbo, $2 x \mathrm{CH}$-isopropylamine, $\mathrm{H}-5, \mathrm{H}-3, \mathrm{CH}-\mathrm{Rbo}$), $3.98-4.22$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4,2 x \mathrm{CH}-$ Rbo), 4.45 (dd, $1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn}$), 4.52 (dd, $1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Bn}$), 4.56-4.67 (m, 4H, CH2-Bn), 4.70-4.84 (m, 4H, CH -Bn), 4.98 (dd, 1H, J=9.8 Hz, 3.6 Hz, $\mathrm{H}-1), 6.36$ (dd, $1 \mathrm{H}, \mathrm{J}=16.4 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, \mathrm{NH}), 6.74-6.83$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}$-arom), $7.11-7.22$ (m, $3 \mathrm{H}, \mathrm{H}$-arom), 7.22-7.51 (m, 31H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.8,20.9$, 21.0, $21.0\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 23.3, $23.3\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.9,25.0,25.1,25.2,25.2,25.3\left(\mathrm{CH}_{3}-\right.$ isopropylamine), 43.7, 43.7, 43.8, 43.8, 43.9 (CH -isopropylamine), $54.1(\mathrm{C}-2), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 59.3, 59.4, 59.5, 59.6 (CH_{2}-cyanoethyl), 63.6, 63.7, 63.7, 63.8, 63.9, $64.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right)$, 69.8, $69.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 71.8$ (CH-Rbo), 73.3, 73.3, 73.9, 74.0, 74.3, 74.5, 75.4, 75.5, 75.5, 75.6 $\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 78.1,78.1,78.4,78.5,78.6,79.0,79.3,79.4,79.6,79.7,81.0$ (2x CH-Rbo, C-3, C-4, C-5), 86.9 (Cq-DMTr), 97.6, 97.7 (C-1), 114.0 (CH-arom), 127.7, 128.5, 128.5, 128.6, 128.6, 128.6, 128.7, 128.7, 128.7, 128.8, 128.9, 128.9, 129.0, 129.0, 129.2, 129.2, 129.3, 129.3, 131.0, 131.0, 131.0 (CH-arom), 137.0, 137.1, 137.1, 139.5, 139.5, 139.6, 139.6, 139.8, 139.9, 140.0, 146.4, 159.5, 159.5 (Cq-arom), 170.3, 170.4 (C=O); ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=$ 148.9 .

2,3,4,5-tetra-O-benzyl-1-O-(4,4'-dimethoxytrityl)-D-ribitol (39)

To a solution of compound 38 (887 mg ; $1.16 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) in a mixture of THF/DMF ($10.0 \mathrm{ml} ; 0.12 \mathrm{M}: \mathrm{v} / \mathrm{v}=7: 1$) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(100 \mathrm{mg} ; 2.32 \mathrm{mmol}, 2.0 \mathrm{eq}$.) followed by the addition of BnBr ($0.20 \mathrm{ml} ; 1.74 \mathrm{mmol} ; 1.5 \mathrm{eq}$.) and the mixture was allowed to warm up to rt and was stirred overnight. The mixture was quenched with MeOH at $0^{\circ} \mathrm{C}$, was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with 4 x water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. Purification by column chromatography
pentane/EtOAc 1:0 to 8:2 pentane/EtOAc yielded compound 39 in 84% yield (836 mg ; $0.98 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}$ (DCM c 1): +11.9; IR (neat, cm^{-1}): 3567, 2931, 2355, 1608, 1508, 1454, 1251, 1176, 1093, 829, 736, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=3.25-3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{-}\right.$ Rbo), 3.66 (dd, $1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Rbo}$), 3.71 (d, $6 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{O}$), 3.76 (dd, 1 H , $J=10.6 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{Rbo}$), $3.84-3.95$ (m, 3H, CH-Rbo), 4.46 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), 4.48-4.61 (m, 3H, CH 2 -Bn), 4.61-4.67 (m, 2H, CH2-Bn), 4.72 (d, 1H, J=11.6 Hz, CHH-Bn), 6.77 (dd, 4H, $J=9.0 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, \mathrm{H}$-arom), $7.09-7.48$ (m, 29H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 64.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 71.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.9,73.3,73.7,74.2\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 79.6,79.8$ (CH-Rbo), 86.8 (Cq-DMTr), 113.9 (CH-arom), 127.6, 128.3, 128.4, 128.6, 128.6, 128.7, 128.8, 129.0, 129.1, 129.2, 129.3, 129.3, 131.0, 131.0 (CH-arom), 137.1, 137.2, 139.6, 139.7, 139.9, 146.4, 159.5 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Na} 837.3767$, found 837.3784.

2,3,4,5-tetra-O-benzyl-D-ribitol (40)

Compound 39 ($1.04 \mathrm{~g}, 1.27 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was dissolved in a solution of 3% DCA in DCM ($23 \mathrm{ml}, 0.18 \mathrm{M}, 3.3 \mathrm{eq}$.) and the reaction mixture was stirred for 1 h at rt . A mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(23 \mathrm{ml} ; \mathrm{v} / \mathrm{v}=1: 1)$ was added, and the reaction mixture was stirred for 45 minutes. The mixture was diluted in DCM, and the organic phase was washed with sat. aq. NaHCO_{3} :brine (1:1) (v/v). The water layer was extracted with DCM (3x), and the combined organic layers were dried over MgSO_{4}, filtrated and concentrated in vacuo. Column chromatography pentane/EtOAc 1:0 to $8: 2$ pentane/EtOAc yielded title compound $\mathbf{4 0}(0.56 \mathrm{~g}, 1.08 \mathrm{mmol})$ in 87% yield. [α] ${ }^{25}\left(\mathrm{CHCl}_{3}\right.$ c 1.0): -9.8; IR (neat, cm^{-1}): 3031, 2866, 2354, 1507, 1454, 1098, 1029, 736, 697; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.61-3.79(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-5), 3.88$ (td, $1 \mathrm{H}, \mathrm{J}=5.1,3.7 \mathrm{~Hz}, \mathrm{H}-4), 3.94(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{H}-2), 4.37-4.85(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}-\mathrm{Bn}), 7.23-7.47$ (m, 20H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=61.5(\mathrm{C}-1), 69.8(\mathrm{C}-5), 72.0-74.1$ (4 x $\mathrm{CH}_{2}-\mathrm{Bn}$), 78.3 (C-4), 78.9 (C-3), 79.2 (C-2), 127.8-128.5 (C-arom), 138.2-138.4 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na} 535.2460$, found 535.2435 .

2,3,4,5-tetra-O-benzyl-1-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-D-ribitol (41)

To a solution of alcohol 40 ($388 \mathrm{mg} ; 0.76 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) in DCM ($7.6 \mathrm{ml} ; 0.10 \mathrm{M}$) was added DIPEA ($0.20 \mathrm{ml} ; 1.14 \mathrm{mmol} ; 1.5 \mathrm{eq}$.$) .$ The mixture was stirred over activated MS $4 \AA$ for $+/-30 \mathrm{~min}$. N, N^{\prime}-di-isopropylamino-2-cyanoethyl-chlorophosphite ($0.20 \mathrm{ml} ; 0.91 \mathrm{mmol} ; 1.2 \mathrm{eq}$.) was added and the mixture was stirred for 1 h . Water was added, the mixture was diluted with DCM and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}: \mathrm{NaCl}(\mathrm{v} / \mathrm{v}=1: 1)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. Purification by TEA neutralized column chromatography pentane/EtOAc 1:0 to 8:2 pentane/EtOAc yielded phosphoramidite 41 in 82% yield ($442 \mathrm{mg} ; 0.62 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.15-1.19(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{x}$
CH_{3} isopropylamino), 2.53-2.60 (m, 2H, CH_{2}-cyanoethyl), $3.59-4.04(\mathrm{~m}, 11 \mathrm{H}, 2 \mathrm{CH}-$ isopropylamino, $2 \mathrm{xCH}_{2}$-Rbo, 3 xCH - $\mathrm{Rbo}, \mathrm{CH}_{2}$-cyanoethyl), 4.49-4.74 (m, $8 \mathrm{H}, 4 \mathrm{x} \mathrm{CH} 2-\mathrm{Bn}$), $7.28-7.38\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}\right.$-arom) ; ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=21.0,21.0\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 24.9, 25.0, 25.0, 25.1 (CH_{3}-isopropylamino), 59.2, $59.3,59.4,59.5\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 63.7, $63.8\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 71.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.8,72.8,72.9,73.7,74.5\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 79.4,79.6,80.0$, 80.1 (CH-Rbo), 119.5 (Cq-cyanoethyl), 128.3-129.2 (CH-arom), 139.7-139.9 (Cq-arom 4x); ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=149.1,149.0$.

1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose (22)

Glucosamine $\cdot \mathrm{HCl}(17.8 \mathrm{~g}, 82.8 \mathrm{mmol} ; 1.0$ eq.) was dissolved in $\mathrm{MeOH}(410 \mathrm{~mL}, 0.2 \mathrm{M}) . \mathrm{K}_{2} \mathrm{CO}_{3}\left(30.8 \mathrm{~g}, 223 \mathrm{mmol}, 2.7 \mathrm{eq}\right.$.), $\mathrm{CuSO}_{4} \cdot 5$ $\mathrm{H}_{2} \mathrm{O}(0.21 \mathrm{~g}, 1.32 \mathrm{mmol}, 0.02 \mathrm{eq}$.), and the stick reagent ($31.3 \mathrm{~g}, 99.3$ $\mathrm{mmol}, 1.2$ eq.) were added at rt . The reaction mixture was stirred for 3 hours, and the mixture was filtrated over celite. The mixture was concentrated in vacuo, co-evaporated with toluene (2x), and continued without purification to give the crude glucoseazide. The crude compound (17.0 g) was dissolved in pyridine ($410 \mathrm{~mL}, 0.2 \mathrm{M}$). $\mathrm{Ac}_{2} \mathrm{O}(62.6 \mathrm{~mL}$, $662 \mathrm{mmol}, 8.0 \mathrm{eq}$.) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight, followed by the addition of MeOH at $0^{\circ} \mathrm{C}$. The mixture was diluted in EtOAc , and washed with $3 \mathrm{M} \mathrm{HCl}(3 x)$, sat. aq. $\mathrm{NaHCO}_{3}(2 x)$, and brine (1 x). The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo to give title compound $\mathbf{2 2}$ (30.6 g , 81.9 mmol) as an $\alpha: \beta$ mixture with a ratio of $1: 2.3$ in 99% yield over 2 steps. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.97-2.25(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{xCH}$-Acetyl), $3.63-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.88$ (ddd, $J=9.8,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \beta), 4.01-4.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 4.97-5.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 \beta, \mathrm{H}-4), 5.45$ (dd, J=10.6, 9.4 Hz, 0.44H, H-3 α), 5.62 (d, J= $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \beta$), 6.31 (d, J= $3.6 \mathrm{~Hz}, 0.44 \mathrm{H}$, $\mathrm{H}-1 \alpha) ;{ }^{13} \mathrm{C}$-APT NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=20.2-20.6\left(4 \mathrm{x} \mathrm{CH}_{3}\right.$ - Acetyl $\alpha, 4 \mathrm{x} \mathrm{CH} 3$-Acetyl β), 59.9 (C-2 2α), 61.2 (C-6), 62.3 (C-2 $), 67.6$ (C-4, $\mathrm{C}-4 \alpha$), 69.5 (C-5 α), 70.5 (C-3 α), 72.3 (C-3 , C-5 β), 89.7 (C-1a), $92.2(C-1 \beta), 168.3-170.2$ ($4 \times \mathrm{C}=\mathrm{O}-\alpha, 4 \times \mathrm{C}=\mathrm{O}-\beta$); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na} 396.1019$, found 396.1021 .

Phenyl 2-azido-2-deoxy-thio-D-glucopyranose (23)

Compound 22 ($30.6 \mathrm{~g}, 81.9 \mathrm{mmol} ; 1.0$ eq.) was dissolved in dry DCM ($275 \mathrm{~mL}, 0.3 \mathrm{M}$). Thiophenol ($8.35 \mathrm{~mL}, 81.9 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and BF_{3}. OEt_{2} ($31.1 \mathrm{~mL}, 246 \mathrm{mmol}, 3.0$ eq.) were added and the reaction mixture was refluxed for 7 days. TEA was added, and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}(3 x), 1 \mathrm{M} \mathrm{NaOH}(3 x)$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100% toluene to 32% $\mathrm{Et}_{2} \mathrm{O}$ in toluene) yielded the crude product. The crude compound (25.0 g) was dissolved in MeOH ($300 \mathrm{~mL}, 0.2 \mathrm{M}$), followed by the dropwise addition of $\mathrm{NaOMe}(5.4 \mathrm{M})$ in MeOH $(4.4 \mathrm{~mL}, 23.6 \mathrm{mmol}, 0.4$ eq.). The reaction mixture was stirred at rt overnight, followed
by the addition of H^{+}amberlite. The H^{+}amberlite was filtered off, and the mixture was concentrated in vacuo. Column chromatography (100% DCM to $9 \% \mathrm{MeOH}$ in DCM) yielded triol $23(13.7 \mathrm{~g}, 46.0 \mathrm{mmol})$ as an $\alpha: \beta$ mixture with a ratio of $2.9: 1$ in 56% yield over 2 steps. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta=3.30-3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \alpha), 3.53-3.60(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-5 \alpha$), 3.62 - $3.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \alpha, \mathrm{H}-6), 3.99(\mathrm{dt}, \mathrm{J}=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha), 4.43(\mathrm{~d}, \mathrm{~J}=10.1$ $\mathrm{Hz}, 0.34 \mathrm{H}, \mathrm{H}-1 \beta), 5.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 6.95-7.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$-APT NMR (101 MHz , MeOD) $\delta=62.2$ (C-6 $)$, 65.5 (C-2 α), 71.9 (C-4 α), $74.8-75.0(\mathrm{C}-3 \alpha, \mathrm{C}-5 \alpha), 87.3$ (C-1 β), 89.2 (C-1 α), 128.8 - 133.9 (C-arom), 135.5 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SNa} 320.0681$, found 320.0685 .

Phenyl 3,4,6-tri-O-benzyl-2-azido-2-deoxy-thio-D-glucopyranose (24)

Triol 23 ($13.7 \mathrm{~g}, 46.0 \mathrm{mmol} ; 1.0$ eq.) was co-evaporated with toluene, and dissolved in a ($\mathrm{v} / \mathrm{v}=1: 1$) mixture of DMF/THF ($130 \mathrm{~mL}, 0.35 \mathrm{M}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(8.3 \mathrm{~g}, 207 \mathrm{mmol}, 4.5 \mathrm{eq}$., 60% in mineral oil) was added portion wise. $\mathrm{BnBr}(21.3 \mathrm{~mL}, 180 \mathrm{mmol}, 3.9$ eq.) was added dropwise, and the reaction was stirred from $0^{\circ} \mathrm{C}$ to rt overnight, followed by the slow addition of a small amount of MeOH at $0^{\circ} \mathrm{C}$. The mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}$, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{x})$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. Column chromatography (100% pentane to 12% EtOAc in pentane) yielded title compound 24 ($25.7 \mathrm{~g}, 45.2 \mathrm{mmol}$) as an α / β mixture with a ratio of 2:3 in 98% yield. IR (neat, cm^{-1}): 3595, 3064, 2550, 2108, 1457, 1054, 1027, 738,$697 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.29-3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \beta), 3.41-3.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 \beta$, $\mathrm{H}-5 \beta$), 3.55 - 3.67 ($\mathrm{m}, 2.3 \mathrm{H}, \mathrm{H}-4 \beta, \mathrm{H}-6 \alpha$), 3.68 - 3.87 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-6 \beta, \mathrm{H}-3 \alpha, \mathrm{H}-4 \alpha, \mathrm{H}-5 \alpha$), 3.94 (dd, J=10.1, 5.3 Hz, 1H, H-2 α), $4.40(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \beta), 4.33-4.95(\mathrm{~m}, 10 \mathrm{H}$, $3 \times \mathrm{CH}_{2}-\mathrm{Cq} \alpha, 3 \times \mathrm{CH}_{2}-\mathrm{Cq} \beta$), $5.60(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 6.81-7.88$ ($\mathrm{m}, 33 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-$ APT NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=64.1(\mathrm{C}-2 \alpha), 65.1(\mathrm{C}-2 \beta), 68.4(\mathrm{C}-6 \alpha), 68.8(\mathrm{C}-6 \beta), 71.9$ (C-3 $\alpha / C-3 \beta / C-5 \alpha / C-5 \beta), 77.6$ (C-4 3), 78.3 (C-4 $)$, 79.4 (C-3 $\alpha / C-3 \beta / C-5 \alpha / C-5 \beta), 81.9$ (C$3 \alpha / C-3 \beta / C-5 \alpha / C-5 \beta), 85.1$ (C-3 $\alpha / C-3 \beta / C-5 \alpha / C-5 \beta), 86.0(C-1 \beta), 87.3(C-1 \alpha), 127.6-133.7$ (C-arom), 131.2 - 138.3 (Cq-arom); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SNa}$ 590.2089, found 590.2094.

3,4,6-tri-O-benzyl-2-azido-2-deoxy-D-glucopyranose (25)

Compound 24 ($17.9 \mathrm{~g}, 31.5 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was dissolved in acetone $(650 \mathrm{~mL}, 0.05 \mathrm{M})$, followed by the addition of NBS $(22.5 \mathrm{~g}, 126 \mathrm{mmol}$, 4.0 eq.). The reaction mixture was stirred for 3 hours, and after full conversion a small amount of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added. The mixture was concentrated under reduced pressure and diluted in EtOAc. The organic phase was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{x})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, and brine (1x). The organic layer was dried over MgSO_{4}, filtrated, and concentrated in vacuo. Column chromatography (100\% pentane
to 30% EtOAc in pentane) yielded hemiacetal $25(9.31 \mathrm{~g}, 19.6 \mathrm{mmol})$ as an α / β mixture with a ratio of $1.3: 1$ in 62% yield. IR (neat, cm^{-1}): $3410,2345,2106,1457,1120,1052,1027$, 736,697 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=2.96$ (dd, J=3.4, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $3.33-3.53(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-2 \alpha, \mathrm{H}-2 \beta, \mathrm{H}-3 \beta, \mathrm{H}-5 \beta$), $3.54-3.74$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-4 \alpha, \mathrm{H}-4 \beta, \mathrm{H}-6 \alpha, \mathrm{H}-6 \beta$), 4.02 (dd, J= 10.2, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha$), 4.08 (ddd, J= 10.0, 4.4, 2.2 Hz, 1H, H-5 $), 4.41-4.95$ (m, 12, H-1 $\beta, 3 \mathrm{x}$ $\mathrm{CH}_{2}-\mathrm{Bn} \alpha, 3 \times \mathrm{CH}_{2}-\mathrm{Bn} \beta$), $5.33(\mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 6.94-8.16$ ($\mathrm{m}, 25 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=64.1(\mathrm{C}-2 \alpha), 68.6(\mathrm{C}-6 \alpha), 70.8(\mathrm{C}-5 \alpha), 73.6-75.7\left(3 \mathrm{CH}_{2}-\mathrm{Bn}\right)$, 78.6 (C-4 α), 80.2 (C-3 α), 92.2 (C-1 α), 96.3 (C-1 β), 127.9 - 128.6 (C-arom), 137.8 - 137.9 (Cq-arom); HRMS: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na} 498.2005$, found 498.1999.

O-(3,4,6-tri-O-benzyl-2-azido-2-deoxy- α / β-D-glucopyranosyl) trichloroacetimidate (26)

Hemiacetal 25 ($4.3 \mathrm{~g}, 9.0 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was co-evaporated with toluene (2x) under a N_{2} atmosphere and dissolved in dry DCM ($45 \mathrm{~mL}, 0.2 \mathrm{M}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.7 $\mathrm{g}, 27 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and TCAN ($5.4 \mathrm{~mL}, 54 \mathrm{mmol}, 6.0$ eq.) were added. The reaction mixture was stirred from $0^{\circ} \mathrm{C}$ to rt overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off after full conversion and the mixture was concentrated in vacuo at $30^{\circ} \mathrm{C}$. Column chromatography with neutralized silica (100% pentane to 15% EtOAc in pentane) yielded title compound $26(4.9 \mathrm{~g}, 8.0 \mathrm{mmol})$ as an α / β mixture with a ratio of 1:8.3 in 89% yield. IR (neat, cm^{-1}): 3336, 2866, 2360, 2110, 1457, 1057, 1029, 737, 697; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta=3.51$ - $3.80(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5 \beta, \mathrm{H}-6), 3.88-4.00(0.13 \mathrm{H}, \mathrm{H}-5 \alpha), 4.35-$ 5.17 ($\mathrm{m}, 7 \mathrm{H}, 3 \times \mathrm{CH}_{2}-\mathrm{Bn}$), $5.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \beta), 6.37(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 0.13 \mathrm{H}, \mathrm{H}-1 \alpha), 7.06$ -7.57 ($\mathrm{m}, 19 \mathrm{H}, \mathrm{H}$-arom), $9.07(\mathrm{~s}, 0.13 \mathrm{H}, \mathrm{NH}-\alpha), 9.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\beta)$; ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=66.6(\mathrm{C}-2 \beta), 69.2(\mathrm{C}-6 \beta), 73.8-76.1\left(3 \times \mathrm{CH}_{2}-\mathrm{Bn}\right), 76.6(\mathrm{C}-5 \beta), 78.4(\mathrm{C}-4 \beta), 83.6$ (C-3 β), 95.6 (C-1 α), 97.3 (C-1 β), 128.7 - 129.4 (C-arom), 139.2 (Cq-arom), 161.1 ($\mathrm{NH}=\mathrm{Cq}$); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}$ (hydrolysed form of compound 26) 498.2005, found 498.2000.

Trimer (46)

${ }^{1}$): $3546,2931,2868,1717,1560,1453,1262,1025,1005,736,697 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.22-1.29$ (m, 4H, CH 2 -hexylspacer), 1.37-1.44 (m, 2H, CH 2 -hexylspacer), 1.53 - 1.59 (m, 2H, CH2-hexylspacer), 1.86 (d, $3 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.50-2.70\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\right.$
cyanoethyl), 2.89-2.93 (m, 1H, OH), 3.04 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}_{\mathrm{L}} \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 3.40-4.12 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{CH}_{2}$-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, 3 \mathrm{x} \mathrm{CH} 2$ cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \mathrm{x} \mathrm{H}-6, \mathrm{CH}-\mathrm{Rbo}$), 4.12 4.32 ($\mathrm{m}, 11 \mathrm{H}, 5 \mathrm{x} \mathrm{CH}_{2}$-Rbo, CH-Rbo/H-3/H-4/H-5), 4.40-4.79 (m, 23H, CH $-\mathrm{Bn}, \mathrm{H}-1$), 5.03 (s , $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 5.67$ (bs, 1H, NH), 6.72 (dd, 1H, J=9.1 Hz, 2.3 Hz, NHAc), 7.21-7.36(m, 60H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1,20.2,20.2,20.2,\left(\mathrm{CH}_{2}\right.$ cyanoethyl), 23.7 ($\mathrm{CH}_{3}-\mathrm{NAc}$), 25.7, 26.8, 30.4, 30.7, $30.8\left(\mathrm{CH}_{2}\right.$-hexylspacer), $41.4\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 56.4 (C-2), $61.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1,63.3,63.4\left(\mathrm{CH}_{2}\right.$ cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5,67.8$, 68.6, 68.9, 69.0, $70.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.6,73.1,74.0,74.5,75.3,75.5,\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.6,78.3$, 78.6, 79.3, 79.4, 79.7, 80.3, 83.6, 83.8 (CH-Rbo, C-3, C-4, C-5), 101.7, 101.8 (C-1), 118.5, 118.5, 118.6, 118.7 (Cq-cyanoethyl), 128.4, 128.5, 128.5, 128.6, 128.7, 128.7, 128.8, 128.9, 128.9, 129.2, 129.2, 129.2, 129.3, 129.3, 129.3, 129.4 (CH-arom), 139.1, 139.3, 139.4, 139.6, 139.8 (Cq-arom), $171.0(\mathrm{C}=\mathrm{O}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.2,0.2,-0.1,-0.1,-0.2,-0.2$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{123} \mathrm{H}_{144} \mathrm{~N}_{5} \mathrm{O}_{29} \mathrm{P}_{3} 1124.4591$, found 1124.4622.

Tetramer (48)

According to the general procedure above, alcohol 46 ($225 \mathrm{mg} ; 0.100 \mathrm{mmol} ;$ 1.0 eq.) was coupled with phosphoramidite 42 (109 $\mathrm{mg} \mathrm{g} ; 0.15 \mathrm{mmol} ; 1.5 \mathrm{eq}$. and the title compound was synthesized in 90% yield ($250 \mathrm{mg} ; 89.7 \mu \mathrm{~mol}$). IR (neat, cm- ${ }^{1}$): $3567,2935,2868,1717,1560,1454,1265,1092,1025,1003,734,697 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.22-1.31$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.37-1.42 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.55-1.60 (m, 2H, CH $6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 3.43-4.13 (m, 29H, CH2-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, 4 \mathrm{xCH}$-Cyanoethyl, $\mathrm{H}-2$, H-3, H-4, H-5, $2 x$ H-6, 11x CH-Rbo), 4.13-4.45 (m, 15H, 7x CH ${ }_{2}$-Rbo, H-1), 4.45-4.78 (m, $29 \mathrm{H}, 14 \mathrm{x} \mathrm{CH}-\mathrm{Bn}, \mathrm{H}-1), 5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 5.72(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{NH}), 6.80-6.86(\mathrm{~m}, 1 \mathrm{H}$, NHAc), 7.18-7.42 (m, 75H, H-arom); ${ }^{13}$ C-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.0,20.1,20.1$, 20.1, 20.2, 20.2, $20.2\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $23.7\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.7,30.8\left(\mathrm{CH}_{2}-\right.$ hexylspacer), 41.4 ($\mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 56.3, 56.5 (C-2), $61.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1,63.2$, 63.2, 63.3, 63.4, 63.5, $63.5\left(\mathrm{CH}_{2}-\mathrm{cyanoethyl}\right), 66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5,67.5,67.8,67.9,68.2$, 68.2, 68.9, 68.9, 69.0, 69.0, $70.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.7,72.9,73.0,73.0,73.1,73.1,73.2,73.9$, $74.4,74.5,74.5,74.6,75.3,75.5,75.5\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.7,75.7,78.3,78.3,78.3,78.4,78.6,78.7$, 78.8, 78.9, 78.9, 79.0, 79.1, 79.2 (CH-Rbo, C-3, C-4, C-5), 80.6 (CH-Rbo), 83.5, 83.7 (CH-Rbo, C-3, C-4, C-5), 101.3, 101.4 (C-1), 118.5, 118.5, 118.6, 118.7, 118.7 (Cq-cyanoethyl), 128.4, 128.4, 128.4, 128.5, 128.5, 128.6, 128.7, 128.7, 128.7, 128.8, 128.8, 128.8, 128.9, 129.0, 129.1, 129.2, 129.2, 129.2, 129.3, 129.3, 129.4, 129.4 (CH-arom), 138.5, 139.1, 139.2, 139.3, 139.3, 139.5, 139.7, 139.8, 139.8 (Cq-arom), 157.3, 171.1 ($\mathrm{C}=\mathrm{O}$); ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$)

Chapter 3 | Synthesis of glycosylated ribitol phosphates and their binding to human langerin
$\delta=0.5,0.3,0.3,0.0,0.0,0.0 ;$ HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{152} \mathrm{H}_{176} \mathrm{~N}_{6} \mathrm{O}_{36} \mathrm{P}_{4}$ 1393.0549, found 1393.0590.

Pentamer (50)

According to the general procedure above, alcohol 48 ($210 \mathrm{mg} ; 75.4 \mu \mathrm{~mol} ;$ 1.0 eq.) was coupled with phosphoramidite 42 (71.0 mg; $98.0 \mu \mathrm{~mol} ; 1.3$ eq.) and the title compound was synthesized in 68% yield ($171 \mathrm{mg} ; 51.5 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): $3567,2935,2868,1717,1560,1457,1262,1093,1027,1009,747,698 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.20-1.31$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), $1.38-1.42$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.55-1.60(m, 2H, CH2-hexylspacer), 1.84-1.85 (m, 3H, CH 3 -NAc), 2.46-2.70 (m, 10H, 5x CH_{2}-cyanoethyl), 3.05 (q, 2H, J=6.9 Hz, CH 2 -N hexylspacer), 3.42 (td, $1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}, 13.3$ $\mathrm{Hz}, 6.7 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo} / \mathrm{H}-3 / \mathrm{H}-4 / \mathrm{H}-5), 3.55(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo} / \mathrm{H}-3 / \mathrm{H}-4 / \mathrm{H}-5), 3.60-4.12$ (m, 35H, 1x CH2-Rbo, CH 2 -O, 5x CH 2 -cyanoethyl, H-2, H-3, H-4, H-5, 2x H-6, CH-Rbo), 4.17 - 4.45 ($\mathrm{m}, 19 \mathrm{H}, 9 \mathrm{x} \mathrm{CH} 2$-Rbo, CHH-Bn, CH-Rbo/H-3/H-4/H-5), 4.45-4.77 (m, 34H, $16.5 \times \mathrm{CH}_{2}-$ $\mathrm{Bn}, \mathrm{H}-1), 5.03$ (s, 2H, CH 2 -Cbz), 5.66 (s, 1H, NH), 6.74 (d, 1H, J= 9.3 Hz, NHAc), 7.19-7.35 (m, 90H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1,20.1,20.2,20.2,20.2,20.2$, 20.3 (CH_{2}-cyanoethyl), 23.7 ($\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.8,30.8\left(\mathrm{CH}_{2}\right.$-hexylspacer), 41.4 ($\mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 56.4, 56.4 (C-2), 61.6 ($\left.\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1,63.2,63.2,63.2,63.3,63.4$, $63.5\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5,67.9,68.2,68.3,68.9,69.0,70.1\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right.$, C-6), 72.8, 73.0, 73.0, 73.1, 73.1, 73.2, 73.2, 74.0, 74.5, 74.5, 74.6, 74.6, 75.3, 75.5, 75.5 $\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.8,75.8,78.3,78.3,78.4,78.4,78.5,78.6,78.7,78.8,78.9,78.9,79.0,79.1,79.1$, 79.1, 79.2, 79.2, 79.3, 79.3, 79.3 (CH-Rbo, C-3, C-4, C-5), 80.6, 80.6 (CH-Rbo), 83.6, 83.7 (CH-Rbo, C-3, C-4, C-5), 101.3, 101.5 (C-1), 118.4, 118.5, 118.5, 118.5, 118.6, 118.6, 118.7, 118.7 (Cq-cyanoethyl), 128.4, 128.4, 128.5, 128.5, 128.5, 128.6, 128.6, 128.7, 128.7, 128.7, 128.7, 128.8, 128.8, 128.8, 128.9, 128.9, 129.0, 129.0, 129.1, 129.2, 129.2, 129.3, 129.3, 129.4 (CH-arom), 139.1, 139.2, 139.2, 139.2, 139.3, 139.4, 139.6, 139.7, 139.8, 139.8, 139.8 (Cq-arom), 157.3, 171.0 (C=O); ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.5,0.4,0.3,0.2,0.1,0.1,0.0$, 0.0 ; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{181} \mathrm{H}_{208} \mathrm{~N}_{7} \mathrm{O}_{43} \mathrm{P}_{5} 1661.6508$, found 1661.6587.

Hexamer (52)

According to the general procedure above, alcohol 50 (150 $\mathrm{mg} ; 45.0 \mu \mathrm{~mol} ;$ 1.0 eq.) was coupled with phosphoramidite $\mathbf{2 0}$ ($75.9 \mathrm{mg} ; 58.0 \mu \mathrm{~mol} ; 1.3 \mathrm{eq}$.) and the title compound was synthesized in 79% yield ($151 \mathrm{mg} ; 35.6 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): $3567,2933,2866,1717$, $1558,1454,1262,1070,1025,1004,737,697 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.23-1.31$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.36-1.45 (m, 2H, CH ${ }_{2}$-hexylspacer), 1.55-1.61 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-$ hexylspacer), 1.86-1.89 (m, 6H, CH3 -NAc), 2.47-2.70 (m, 12H, CH - -cyanoethyl), 3.06 (q, 2H, J= $6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), $3.38-4.14\left(\mathrm{~m}, 41 \mathrm{H}, 1 \mathrm{xCH}-\mathrm{Rbo}_{2} \mathrm{CH}_{2}-\mathrm{O}, 5 \mathrm{xCH}\right.$ cyanoethyl, H-2, H-3, H-4, H-5, 2x H-6, 17x CH-Rbo), $4.14-4.41$ (m, 23H, 11x CH2-Rbo, $\mathrm{CH}-\mathrm{Rbo} / \mathrm{H}-3 / \mathrm{H}-4 / \mathrm{H}-5), 4.43-4.78\left(\mathrm{~m}, 46 \mathrm{H}, 22 \mathrm{xCH}_{2}-\mathrm{Bn}, 2 \mathrm{xH}-1\right), 5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 5.72$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 6.75-6.79 (m, 2H, NHAc), 7.21-7.35 (m, 115H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=20.0,20.1,20.1,20.1,20.2,20.2,20.2\left(\mathrm{CH}_{2}-\right.$ cyanoethyl), $23.7\left(\mathrm{CH}_{3}-\mathrm{NAc}\right)$, 25.7, 26.8, 30.4, 30.7, $30.8\left(\mathrm{CH}_{2}\right.$ hexylspacer), $41.4\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 55.8, 56.3, 56.4 (C-2), $61.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.0,63.1,63.2,63.4,63.4\left(\mathrm{CH}_{2}-\right.$ cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.4$, $67.7,67.8,68.5,68.9,69.0,70.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.6,73.0,73.1,73.0,74.5,74.5,75.3,75.5$ ($\mathrm{CH}_{2}-\mathrm{Bn}$), 75.7, 77.6, 78.2, 78.3, 78.6, 79.2, 79.4, 79.7, (CH-Rbo, C-3, C-4, C-5), 80.3 (CHRbo), 83.5, 83.6, 83.7 (CH-Rbo, C-3, C-4, C-5), 101.3, 101.6, 101.8 (C-1), 118.4, 118.5, 118.5, 118.5, 118.6, 118.6 (Cq-cyanoethyl), 127.6, 128.4, 128.5, 128.5, 128.6, 128.7, 128.7, 128.8, 128.9, 129.2, 129.3, 129.4 (CH-arom), 138.5, 139.1, 139.1, 139.2, 139.4, 139.5, 139.6, 139.7, 139.8 (Cq-arom), 157.3, 159.4, 170.9, 171.0 (C=O); ${ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(} 162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.4,0.2$, $0.2,0.1,-0.1,-0.1,-0.2,-0.2$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{232} \mathrm{H}_{265} \mathrm{~N}_{9} \mathrm{O}_{55} \mathrm{P}_{6}$ 2122.3349, found 2122.3276 .

Hexamer (57)

According to the general procedure above, alcohol 56 ($29.0 \mathrm{mg} ; 9.89 \mu \mathrm{~mol} ; 1.0$ eq.) was coupled with phosphoramidite 20 ($16.7 \mathrm{mg} ; 12.8 \mu \mathrm{~mol} ; 1.3 \mathrm{eq}$.) and the title compound was synthesized in 85% yield ($32.3 \mathrm{mg} ; 8.36 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): $3567,2935,2865,1717,1560,1457,1275,1262,1095,1027,750,698 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.23-1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer), 1.36-1.41(m,2H, CH H_{2}-hexylspacer), 1.53-1.59 (m, 2H, CH -hexylspacer), 1.83-1.85 (m,3H, CH -NAc), 2.49-2.69 (m, 12H, CH ${ }_{2}-$ cyanoethyl), 3.03 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), $3.39-4.10\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{O}, 6 \mathrm{x}\right.$
CH_{2} cyanoethyl, $\left.\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \mathrm{xH}-6,18 \mathrm{x} \mathrm{CH}-\mathrm{Rbo}\right)$, 4.12-4.34 (m, 22H, 11x CH - -Rbo), 4.40-4.77 (m, 42H, CH2-Bn, H-1, CH-Rbo/H-3/H-4/H-5), 5.02 (s, 2H, CH - -Cbz), 5.65 (bs, 1H, NH), 6.73 ($\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHAc}$), $7.18-7.35(\mathrm{~m}, 105 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1,20.1,20.2,20.2,20.2,20.3\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $23.7\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.8$, 30.8 (CH_{2}-hexylspacer), 41.4 ($\mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 56.3 (C-2), 61.5 ($\left.\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1$, 63.3, $63.4\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.7,67.7,67.7,67.7,67.8,67.8,67.8,67.8$, 67.9, 68.9, 69.0, $70.0\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.6,73.0,73.1,74.0,74.5,74.6,75.3\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.6$, 78.3, 78.6, 79.3, 79.4 (CH-Rbo, C-3, C-4, C-5), 80.3 (CH-Rbo), 83.6, 83.8 (CH-Rbo, C-3, C-4, C-5), 101.7 (C-1), 118.5, 118.5 (Cq-cyanoethyl), 128.4, 128.5, 128.6, 128.7, 128.7, 128.8, 128.8, 128.9, 129.0, 129.3, 129.3, 129.3, 129.3, 129.4 (CH-arom), 139.2, 139.2, 139.5, 139.7 (Cq-arom), 171.1 (C=O); ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.2,0.2,0.2,0.1,-0.1,-0.2,-0.2,-0.2$, $-0.2,-0.2 ; \mathrm{HRMS}:[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{210} \mathrm{H}_{240} \mathrm{~N}_{8} \mathrm{O}_{50} \mathrm{P}_{6}$ 1930.7483, found 1930.7478.

Hexamer (53)

According to the general procedure above, alcohol 50 ($129 \mathrm{~g} ; 39.0 \mu \mathrm{~mol} ; 1.0 \mathrm{eq}$.) was coupled with phosphoramidite 37 ($76.6 \mathrm{mg} ; 58.5 \mu \mathrm{~mol} ; 1.5 \mathrm{eq}$.$) and the title com-$ pound was synthesized in 76% yield ($126 \mathrm{mg} ; 29.5 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): 2932, 2869, $1717,1560,1455,1274,1262,1093,1027,1007,748,698 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.22-1.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer), 1.36-1.41($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.54-1.59 (m, 2H, CH ${ }_{2}$-hexylspacer), 1.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 1.85 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.45-2.58$ (m, $12 \mathrm{H}, \mathrm{CH}_{2}$-cyanoethyl), 3.03-3.06 (m, 2H, CH -N hexylspacer), $3.41-4.41$ (m, 68H, 12x CH_{2}-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, 6 \times \mathrm{CH}_{2}$-cyanoethyl, $2 \times \mathrm{H}-2,2 \times \mathrm{H}-3,2 \times \mathrm{H}-4,2 \times \mathrm{H}-5,4 \times \mathrm{H}-6,18 \times \mathrm{CH}-\mathrm{Rbo}$), 4.42-4.79 (m, 45H, 22x CH $-\mathrm{Bn}, \mathrm{H}-1 \beta$), 4.99-5.03 (m, 3H, CH $\left.{ }_{2}-\mathrm{Cbz}, \mathrm{H}-1 \mathrm{a}\right)$, 5.68 (bs, 1H, NH), 6.40 (d, 0.6H, J= $9.0 \mathrm{~Hz}, \mathrm{NHAc}$), 6.47 (d, $0.3 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{NHAc}), 6.76$ (bs, 1H, NHAc), $7.21-7.37$ ($\mathrm{m}, 115 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-$ APT NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.1,20.2,20.2,20.2$, 20.3 (CH_{2}-cyanoethyl), 23.2, 23.7 ($\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.8,30.8$ (CH_{2}-hexylspacer), $41.4\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 54.0, $56.4(\mathrm{C}-2), 60.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1,63.2,63.2,63.4,63.5$ $\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5,67.7,67.8,68.2,68.6,69.0,69.0,69.7,70.0\left(\mathrm{CH}_{2}-\right.$ Rbo, C-6), 72.0, 72.1 (CH-Rbo/C-3/C-4/C-5), 72.7, 72.7, 73.0, 73.1,73.1, 73.9, 74.0, 74.4, $74.5,74.6,74.6,75.3,75.5,75.6,75.6\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.8,76.9,77.6,77.6,78.3,78.4,78.6,79.2$, 79.4, 79.9, 80.0, (CH-Rbo, C-3, C-4, C-5), 80.6, 81.0, 81.0 (CH-Rbo), 83.6, 83.7, (CH-Rbo, C-3, C-4, C-5), 97.3, 97.9 (C-1 a), 101.3, 101.4 (C-1 β), 118.5, 118.5, 118.6, 118.6, 118.7 (Cq-cyanoethyl), 128.4, 128.5, 128.5, 128.6, 128.6, 128.7, 128.7, 128.8, 128.8, 128.9, 128.9,
129.0, 129.0, 129.2, 129.2, 129.3, 129.3, 129.4 (CH-arom), 139.1, 139.2, 139.2, 139.3, 139.5, 139.5, 139.8, 139.9 (Cq-arom), 157.3, 170.6, 171.0 (C=O); ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=$ $0.5,0.5,0.4,0.3,0.3,0.2,0.1,0.0,0.0,0.0 ;$ HRMS: $[M+2 H]^{2+}$ calculated for $\mathrm{C}_{232} \mathrm{H}_{265} \mathrm{~N}_{9} \mathrm{O}_{55} \mathrm{P}_{6}$ 2122.3349, found 2122.3345.

Hexamer (58)

According to the general procedure above, alcohol 56 (361 mg ; $0.272 \mathrm{mmol} ; 1.0$ eq.) was coupled with phosphoramidite 37 (569 $\mathrm{mg} ; 0.435 \mathrm{mmol} ; 1.6$ eq.) and the title compound was synthesized in 53% yield ($325 \mathrm{mg} ; 0.144 \mathrm{mmol}$). IR (neat, cm^{-1}): 3580, 2933, 2865, 1717, 1560, 1454, 1262, 1093, 1025, 1002, 736, 697; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.20-1.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer), 1.36-1.41(m, 2H, CH_{2}-hexylspacer), $1.52-1.59$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 2.38 (td, 1 H , $J=6.0 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, \mathrm{CH}_{2}$-cyanoethyl), $2.45\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-cyanoethyl), 2.51-2.59 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$-cyanoethyl), 2.60-2.70 (m, 2H, CH ${ }_{2}$-cyanoethyl), $3.03\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), $3.54-4.39$ ($\mathrm{m}, 35 \mathrm{H}, 6 \times \mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{O}, 3 \mathrm{xCH} \mathrm{CH}_{2}$-cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$, H-5, 2x H-6, 9x CH-Rbo), 4.39-4.82 (m, 22H, CH - -Bn), 4.99 (d, 1H, J= $3.6 \mathrm{~Hz}, \mathrm{H}-1$), 5.02 (s, 2H, CH2-Cbz), 5.66 (s, 1H, NH), 6.43 (d, 0.5H, J= $8.9 \mathrm{~Hz}, \mathrm{NHAc}), 6.52$ (d, 0.3H, J= 9.5 Hz , NHAc), 7.20-7.37 (m, 60H, H-arom); ${ }^{13}$ C-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=19.9,20.0,20.0$, 20.1, 20.1, 20.2, 20.2, 20.2 (CH_{2}-cyanoethyl), $23.1\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.7,30.8$ (CH_{2}-hexylspacer), 41.4 ($\mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), $54.0(\mathrm{C}-2), 60.8,60.9\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1$, 63.2, 63.2, 63.2, 63.3 (CH_{2}-cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5,67.8,68.6,68.9,69.0,69.6$, 69.7 (CH2-Rbo, C-6), 72.0, 72.0 (CH-Rbo/C-3/C-4/C-5), 72.6, 72.7, 73.0, 73.0, 73.1, 73.1, $73.8,74.5,74.6,74.6,75.5,75.6,75.6\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 76.7,76.7,77.4,77.5,78.2,78.2,78.3,78.5$, $78.6,78.6,79.2,79.3,79.8,79.9,80.9,81.0$ (CH-Rbo, C-3, C-4, C-5), 97.1, 97.8 (C-1), 118.5, 118.5, 118.5, 118.6 (Cq-cyanoethyl), 128.4, 128.5, 128.5, 128.6, 128.7, 128.7, 128.7, 128.8, 128.9, 128.9, 128.9, 129.0, 129.0, 129.1, 129.3, 129.4 (CH-arom), 139.0, 139.0, 139.0, 139.1, 139.1, 139.2, 139.4, 139.4, 139.5, 139.9 (Cq-arom), 157.3, 170.6, 170.6 (C=O); ${ }^{31}$ P NMR (162 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=0.5,0.3,0.0$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{210} \mathrm{H}_{240} \mathrm{~N}_{8} \mathrm{O}_{50} \mathrm{P}_{6} 1930.7483$, found 1930.7495.

Chapter 3 | Synthesis of glycosylated ribitol phosphates and their binding to human langerin

Trimer (47)

According to the general procedure above, alcohol 45 (24.0 mg ; $8.17 \mu \mathrm{~mol} ; 1$ eq.) was coupled with phosphoramidite 37 ($21.4 \mathrm{mg} ; 16.3 \mu \mathrm{~mol} ; 2.0$ eq.) and the title compound was synthesized in 73% yield ($23.0 \mathrm{mg} ; 5.96 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): $3567,2928,2865,1717,1560,1457,1262,1093,1026,1007,738,698 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.25-1.27$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.39 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.52-1.58 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.45-2.64$ ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}$-cyanoethyl), 3.02-3.04 (m, 2H, CH - -N hexylspacer), $3.55-4.35\left(\mathrm{~m}, 62 \mathrm{H}, 12 \mathrm{xCH}_{2}-\mathrm{Rbo}^{2} \mathrm{CH}_{2}-\mathrm{O}, 6 \mathrm{XCH}_{2}-\right.$ cyanoethyl, H-2, H-3, H-4, H-5, 2x H-6, 18x CH-Rbo), 4.44-4.80 (m, 40H, CH2-Bn), 4.96 -5.02 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}, \mathrm{H}-1$), 5.63 (bs, 1H, NH), 6.35 (d, $\left.0.4 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{NHAc}\right), 6.42$ (d, 0.3 H , $J=9.0 \mathrm{~Hz}, \mathrm{NHAc}), 7.19-7.36$ (m, 105H, H-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.0$, 20.1, 20.2, 20.3, 20.3, (CH_{2}-cyanoethyl), $23.2\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.8,26.9,30.5,30.8,30.8\left(\mathrm{CH}_{2}-\right.$ hexylspacer), 41.4 ($\mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 54.0 ((-2$), 60.9,\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.2,63.2,63.3$, 63.3 (CH_{2}-cyanoethyl), $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.5,67.7,67.8,68.6,69.0,69.0,69.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right.$, C-6), 72.1 (CH-Rbo/C-3/C-4/C-5), 72.7, 73.1, 73.1, 73.2, 73.9, 74.6, 74.6, 75.5, 75.6, 75.7 ($\mathrm{CH}_{2}-\mathrm{Bn}$), 77.6, 77.7, 78.3, 78.4, 78.7, 78.7, 78.8, 79.4, 79.9, 80.0, 81.0, 81.0 (CH-Rbo, C-3, C-4, C-5), 97.4, 98.0 (C-1), 118.5, 118.6 (Cq-cyanoethyl), 128.5, 128.5, 128.6, 128.7, 128.8, 128.8, 128.8, 128.9, 129.0, 129.1, 129.2, 129.4, 129.4 (CH-arom), 139.2, 139.2, 139.5, 139.6, 139.9 (Cq-arom), 170.5 ($\mathrm{C}=\mathrm{O}$); ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.5,0.3,0.3,0.0,0.0,-0.1$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{123} \mathrm{H}_{144} \mathrm{~N}_{5} \mathrm{O}_{29} \mathrm{P}_{3} 1124.4591$ found 1124.4624.

Tetramer (49)

According to the general procedure above, alcohol 47 (298 mg ; 0.133 mmol ; 1.0 eq.) was coupled with phosphoramidite 42 (215 $\mathrm{mg} ; 0.231 \mathrm{mmol} ; 1.7$ eq.) and the title compound was synthesized in 82% yield ($302 \mathrm{mg} ; 0.108 \mathrm{mmol}$). IR (neat, cm^{-1}): 3587, 2935, 2866, 1717, 1560, 1457, 1262, 1095, 1026, 1009, 748, 698; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=1.21-1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer), 1.38-1.43(m,2H, CH -hexylspacer), 1.54-1.61 (m, 2H, CH 2 -hexylspacer), 1.74-1.75 (m, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 2.36-2.71 (m, 8H, CH2cyanoethyl), 3.06 (q, $2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), $3.64-4.40\left(\mathrm{~m}, 44 \mathrm{H}, 8 \mathrm{XH}_{2}\right.$-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, 4 \mathrm{x} \mathrm{CH}_{2}$-cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \mathrm{xH}-6,12 \mathrm{x} \mathrm{CH}-\mathrm{Rbo}$), $4.40-4.86$ ($\mathrm{m}, 28 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Bn}$), 5.04-5.09 (m, 3H, CH2-Cbz, H-1), $5.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{NH}), 6.64(\mathrm{~d}, 0.4 \mathrm{H}, \mathrm{J}=8.8$ $\mathrm{Hz}, \mathrm{NHAc}), 6.72$ ($\mathrm{d}, 0.3 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{NHAc}$), $7.22-7.38\left(\mathrm{~m}, 75 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$-APT NMR (101
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=20.0,20.0,20.1,20.1,20.1,20.2,20.2,20.2\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $23.2\left(\mathrm{CH}_{3}-\right.$ NAc), 25.7, 26.8, 30.4, 30.7, 30.8 (CH_{2}-hexylspacer), 41.4 ($\mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 54.1 (C-2), 61.5, $61.5\left(\mathrm{CH}_{2}-\right.$ Rbo $), 63.1,63.1,63.2,63.2,63.3,63.3\left(\mathrm{CH}_{2}-\mathrm{cyanoethyl}\right), 66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right)$, $67.0,67.1,67.1,67.5,67.5,67.7,67.7,67.8,67.9,67.9,68.2,68.3,68.3,68.4,68.4,68.5,68.9$, 69.0, 69.6, $69.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.1,72.1$ (CH-Rbo/C-3/C-4/C-5), 72.7, 72.9, 73.0, 73.1, 73.1, $73.8,74.4,74.5,74.5,74.6,75.5,75.6\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 77.3,77.9,77.9,78.0,78.1,78.1,78.3,78.6$, 78.6, 78.8, 78.9, 79.0, 79.1, 79.4, 80.5, 80.8, 80.8 (CH-Rbo, C-3, C-4, C-5), 97.5, 97.6, 98.2, 98.2 (C-1), 118.5, 118.5, 118.6 (Cq-cyanoethyl), 128.4, 128.5, 128.5, 128.6, 128.7, 128.7, 128.8, 128.9, 129.0, 129.1, 129.3, 129.3, 129.4, 129.4 (CH-arom), 138.5, 138.8, 138.9, 139.0, $139.0,139.1,139.1,139.2,139.3,139.4,139.5,139.5,139.5,139.7,139.9,139.9$ (Cq-arom), 157.3, 170.7, 170.7, $170.7(\mathrm{C}=\mathrm{O})$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.5,0.3,0.3,0.2,0.0,0.0$, 0.0; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{152} \mathrm{H}_{176} \mathrm{~N}_{6} \mathrm{O}_{36} \mathrm{P}_{4}$ 1393.0549, found 1393.0587.

Pentamer (51)

According to the general procedure above, alcohol 49 ($270 \mathrm{mg} ; 97.0 \mu \mathrm{~mol} ;$ 1.0 eq.) was coupled with phosphoramidite 42 (153 $\mathrm{mg} ; 0.165 \mathrm{mmol} ; 1.7$ eq.) and the title compound was synthesized in 89% yield ($287 \mathrm{mg} ; 86.4 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): $3562,2931,2865,1717,1560,1457,1274,1262,1096,1027,748,698 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.20-1.33$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.38-1.44 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.54-1.61 (m, 2H, CH - -hexylspacer), 1.74-1.75 (m, 3H, CH $\left.{ }_{3}-\mathrm{NAc}\right), 2.33-2.71\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}-\right.$ cyanoethyl), 3.06 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), $3.62-4.40\left(\mathrm{~m}, 53 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right.$-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, 5 \mathrm{x} \mathrm{CH}-$-cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \mathrm{x}$ H-6, $15 \mathrm{x} \mathrm{CH}-\mathrm{Rbo}$), $4.40-4.86$ (m, 34H, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 5.03-5.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}, \mathrm{H}-1\right), 5.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NH}), 6.58-6.67(\mathrm{~m}, 1 \mathrm{H}$, NHAc), 7.21-7.37 (m, 90H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.0,20.0,20.1$, 20.1, 20.2, 20.2, $20.3\left(\mathrm{CH}_{2}\right.$-cyanoethyl), $23.2\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.7,30.8\left(\mathrm{CH}_{2}-\right.$ hexylspacer), $41.4\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 54.1 ((-2$), 61.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 63.1,63.1,63.1,63.2$, 63.2, 63.2, 63.3, 63.3, $63.4\left(\mathrm{CH}_{2}-\mathrm{cyanoethyl}\right)$, $66.6\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.2,67.5,67.7,67.7,67.8$, 68.2, 68.2, 68.9, 69.0, $69.6\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.1,72.1$ (CH-Rbo/C-3/C-4/C-5), 72.7, 72.9, $73.0,73.0,73.1,73.1,73.9,74.5,74.5,74.5,74.6,75.5,75.5,75.5,75.6\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 78.1,78.2$, $78.3,78.6,78.6,78.6,78.8,78.9,79.0,79.1,79.1,79.1,79.4,80.5,80.6,80.8,80.8$ (CH-Rbo, C-3, C-4, C-5), 97.6, 97.7, 98.2, 98.3 (C-1), 118.5, 118.5, 118.6 (Cq-cyanoethyl), 128.4, 128.5, 128.5, 128.6, 128.6, 128.6, 128.7, 128.7, 128.7, 128.8, 128.9, 128.9, 129.0, 129.0, 129.2, 129.2, 129.3, 129.3, 129.3, 129.3, 129.4, 129.4, 129.4 (CH-arom), 138.5, 138.8, 138.9, 139.0, 139.1, 139.1, 139.1, 139.2, 139.2, 139.3, 139.4, 139.5, 139.5, 139.5, 139.7, 139.7, 139.9, 139.9 (Cq-arom), 157.3, 170.6, 170.6, 170.7 (C=O); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.7$,
$0.6,0.6,0.4,0.3,0.3,0.3,0.1,0.1,0.0,0.0 ; \mathrm{HRMS}:[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{181} \mathrm{H}_{208} \mathrm{~N}_{7} \mathrm{O}_{43} \mathrm{P}_{5}$ 1661.6508, found 1661.6509.

Hexamer (54)

According to the general procedure above, alcohol 51 ($257 \mathrm{mg} ; 77.0 \mu \mathrm{~mol} ; 1.0$ eq.) was coupled with phosphoramidite 37 ($182 \mathrm{mg} ; 0.139 \mathrm{mmol} ; 1.8 \mathrm{eq}$.) and the title compound was synthesized in 88% yield ($290 \mathrm{mg} ; 68.0 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): 3553, 2931, 2866, 1717, $1560,1454,1264,1093,1070,1024,1005,737,697 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.27$ (m, 4H, CH2-hexylspacer), 1.41-1.42 (m, 2H, CH 2 -hexylspacer), 1.58-1.59 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 1.75\left(3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.41-2.68\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}-\right.$ cyanoethyl), 3.06-3.07 (m, 2H, CH $\mathrm{C}_{2}-\mathrm{N}$ hexylspacer), $3.60-4.37\left(\mathrm{~m}, 68 \mathrm{H}, 12 \mathrm{xCH} 2-\mathrm{Rbo}_{2} \mathrm{CH}_{2}-\mathrm{O}, 6 \mathrm{XCH}_{2}-\right.$ cyanoethyl, H-2, H-3, H-4, H-5, 2x H-6, 18x CH-Rbo), 4.42-4.84 (m, 44H, CH -Bn), 5.05 -5.09 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}, 2 \times \mathrm{H}-1$), $5.75(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 6.47$ ($\left.\mathrm{d}, 0.6 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{NHAc}\right), 6.55-6.57$ (m, 0.4H, NHAc), 6.63-6.70 (m, 1H, NHAc), 7.25-7.40 (m, 115H, H-arom); ${ }^{13}$ C-APT NMR (126 MHz, CD ${ }_{3} \mathrm{CN}$) $\delta=20.0,20.1,20.1,20.1,20.2,20.2,20.3\left(\mathrm{CH}_{2}-\right.$ cyanoethyl), 23.2, 23.2 ($\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.7,26.8,30.4,30.8,30.8,\left(\mathrm{CH}_{2}\right.$-hexylspacer), $41.4\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 54.0, 54.1 (C-2), 60.9, 60.9 (CH_{2}-Rbo), 63.1, 63.1, 63.2, 63.3, 63.3, 63.4, (CH_{2}-cyanoethyl), 66.6 ($\left.\mathrm{CH}_{2}-\mathrm{Cbz}\right), 67.2,67.5,67.8,68.2,68.6,69.0,69.0,69.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 72.0,72.1,72.1,72.1$ (CH-Rbo/C-3/C-4/C-5), 72.7, 72.7, 73.0,73.1, 73.1, 73.1, 73.9, 73.9, 75.5, 75.6, 75.6, 75.5, $75.6,75.6\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 76.8,76.8,77.3,77.5,77.6,78.0,78.2,78.2,78.3,78.4,78.6,78.6,78.8$, 79.4, 79.8, 80.0, 80.1, 80.9, 81.0, 81.0 (CH-Rbo, C-3, C-4, C-5), 97.2, 97.7, 97.9, 98.3 (C-1), 118.5, 118.5, 118.6 (Cq-cyanoethyl), 128.5, 128.5, 128.5, 128.6, 128.7, 128.8, 128.8, 128.8, 128.9, 128.9, 128.9, 129.0, 129.0, 129.1, 129.3, 129.4, 129.4, 138.5, 138.8, 138.9, 139.0, 139.1, 139.2, 139.2, 139.4, 139.4, 139.5, 139.5, 139.9 (Cq-arom), 157.3, 170.6, 170.6, 170.6, 170.7 (C=O); ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.7,0.6,0.6,0.6,0.4,0.4,0.3,0.3,0.1,0.0,0.0$; HRMS: $[\mathrm{M}+3 \mathrm{H}]^{3+}$ calculated for $\mathrm{C}_{232} \mathrm{H}_{266} \mathrm{~N}_{9} \mathrm{O}_{55} \mathrm{P}_{6} 1415.22569$, found 1415.22566.

Hexamer (55)

According to the general procedure above, alcohol 51 ($25.0 \mathrm{mg} ; 7.5 \mu \mathrm{~mol} ; 1.0 \mathrm{eq}$.) was coupled with phosphoramidite $\mathbf{2 0}$ ($21.2 \mathrm{mg} ; 15.0 \mu \mathrm{~mol} ; 2.0 \mathrm{eq}$.) and the title compound was synthesized in 61% yield ($19.6 \mathrm{mg} ; 4.6 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): $3567,2926,2858,1717$, $1560,1457,1266,1095,1027,1009,747,698 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.26-1.28(\mathrm{~m}$, 4H, CH ${ }_{2}$-hexylspacer), 1.44 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer), 1.57-1.60 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}$-hexylspacer, $\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 2.26-2.57$ ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}$-cyanoethyl), $3.13-3.14$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 3.43 - 4.35 (m, 68H, $12 x^{2} \mathrm{CH}_{2}$-Rbo, $\mathrm{CH}_{2}-\mathrm{O}, 6 \times \mathrm{CH}_{2}$-cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \mathrm{x} \mathrm{H}-6$, 18x CH-Rbo), $4.35-4.85\left(\mathrm{~m}, 45 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1\right), 5.05-5.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}, \mathrm{H}-1\right), 5.69$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NH}), 5.82-5.83(\mathrm{~m}, 0.3 \mathrm{H}, \mathrm{NHAc}), 5.95-6.00(\mathrm{~m}, 0.1 \mathrm{H}, \mathrm{NHAc}), 6.06-6.09(\mathrm{~m}, 0.2 \mathrm{H}$, NHAc), 6.50-6.53 (m, 0.2H, NHAc), 7.12-7.35 (m, 115H, H-arom); ${ }^{13}$ C-APT NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.2,19.3,19.3,19.3,19.5,19.5,19.6,19.6\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 23.0, 23.0 $\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 25.1,26.2,29.8,29.9,30.1,30.2\left(\mathrm{CH}_{2}\right.$-hexylspacer), $41.0\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 53.1, 53.1, 53.2, 53.6 (C-2), 61.2, 61.2 ($\left.\mathrm{CH}_{2}-\mathrm{Rbo}\right), 61.8,61.8,61.8,61.9,62.0,62.0,62.0,62.1$ (CH_{2}-cyanoethyl), $66.7\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 66.8,66.9,67.0,67.1,67.1,67.2,67.3,67.4,67.4,67.5$, 67.6, 68.3, 68.4, 68.4 ($\left.\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6\right), 71.5,71.6$ (CH-Rbo/C-3/C-4/C-5), 72.2, 72.4, 72.5, $72.5,72.6,72.6,72.7,73.5,73.6,73.9,73.9,73.9,74.0,74.1,74.1,74.6,74.7,74.9,75.1,75.3$ $\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 77.3,77.5,77.6,77.7,77.7,77.8,77.9,78.0,78.1,78.2,78.2,78.9,78.9,79.6,79.7$ (CH-Rbo, C-3, C-4, C-5), 98.2, 98.2 (C-1 α), 100.8, 101.1 ($\mathrm{C}-1 \beta$), 116.5, 116.6, 116.7, 116.7, 116.9, 116.9, 116.9 (Cq-cyanoethyl), 127.8, 127.9, 128.0, 128.0, 128.0, 128.1, 128.2, 128.2, 128.3, 128.6, 128.6, 128.6, 128.7 (CH-arom), 136.8, 137.4, 137.5, 137.6, 137.7, 137.8, 137.9, 137.9, 137.9, 138.0, 138.1, 138.2, 138.3, 138.6 (Cq-arom), 156.5, 170.2, 170.2, 170.3 (C=O); ${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$) $\delta=0.1,-0.1,-0.3,-0.3,-0.3,-0.4,-0.7,-0.7,-0.8,-0.8,-0.9,-0.9$, -1.0, -1.4.

Dimer (59)

According to the general procedure above, alcohol 19 ($179 \mathrm{mg} ; 0.162 \mathrm{mmol} ; 1.0$ eq.) was coupled with phosphoramidite 41 ($162 \mathrm{mg} ; 0.227 \mathrm{mmol} ; 1.4$ eq.) and the title compound was synthesized in 46% yield ($107 \mathrm{mg} ; 74.6 \mu \mathrm{~mol}$). IR (neat, cm^{-1}): 3567, 2919, 2866, 1717, 1560, 1454, 1266, 1069, 1027, 737, 697; ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.90\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.26-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ cyanoethyl),
$3.40-3.53$ (m, 3H, CHH-Rbo, H-3/H-4/H-5/CH-Rbo), 3.56-3.76 (m, 6H, CHH-Rbo, CH 2_{2} Rbo, $2 x \mathrm{H}-6, \mathrm{H}-3 / \mathrm{H}-4 / \mathrm{H}-5 / \mathrm{CH}-\mathrm{Rbo}$), 3.76 - 3.97 (m, 10H, CH - -cyanoethyl, H-2, CH-Rbo, $\mathrm{H}-3 / \mathrm{H}-4 / \mathrm{H}-5$), 4.04-4.38 (m, 6H, CH C_{2}-Rbo, H-3/H-4/H-5/CH-Rbo), 4.41-4.78 (m, 19H, CH2$\mathrm{Bn}, \mathrm{H}-1), 6.61$ (d, 0.7H, J= $8.6 \mathrm{~Hz}, \mathrm{NHAc}$), 6.656 .61 (d, $0.5 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{NHAc}), 7.10-7.35$ (m, 45H, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.2,19.3,19.3\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 23.5, $23.5\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 55.9,56.1$ (C-2), 61.3, 61.9, 61.9, 61.9, 62.0 (C-6, CH CH_{2}-cyanoethyl), $67.8,67.8,68.2,68.2,68.4,68.4,69.1,69.1,69.4,69.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.1,72.4,72.5,72.5$, $72.6,73.4,73.5,73.5,73.8,73.8,73.9\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 74.5,74.6$ (CH-Rbo/C-3/C-4/C-5), 74.8, $74.8,75.0\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 77.0,77.0,77.2(\mathrm{CH}-\mathrm{Rbo} / \mathrm{C}-3 / \mathrm{C}-4 / \mathrm{C}-5), 77.9,78.0,78.0,78.1,78.1,78.1$, $78.2,78.2,78.3,78.9,79.1,79.2,82.8,82.9$ (CH-Rbo/C-3/C-4/C-5), 100.8, 101.0 (C-1), 116.6, 116.7 (Cq-cyanoethyl), 127.6, 127.6, 127.7, 127.7, 127.7, 127.8, 127.8, 127.8, 127.8, 127.9, 127.9, 127.9, 128.0, 128.0, 128.0, 128.1, 128.1, 128.2, 128.4, 128.4, 128.4, 128.5, 128.5, 128.5 (CH-arom), 137.6, 137.6, 137.9, 137.9, 138.0, 138.0, 138.1, 138.1, 138.2, 138.2, 138.3, 138.3, 138.4, 138.4, 138.5, 138.6 (Cq-arom), 171.0, 171.0 (C=O); ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.8,-1.4 ; \mathrm{HRMS}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{84} \mathrm{H}_{94} \mathrm{~N}_{2} \mathrm{O}_{17} \mathrm{P}$ 1433.62846, found 1433.62819.

Trimer (60)

According to the general procedure above, alcohol 59 (88.4 mg ; 61.7 $\mu \mathrm{mol} ; 1.0$ eq.) was coupled with phosphoramidite 42 ($85.7 \mathrm{mg} ; 92.6 \mu \mathrm{~mol}$; 1.5 eq.) and the title compound was synthesized in 91% yield ($111 \mathrm{mg} ; 56.3$ $\mu \mathrm{mol})$. IR (neat, cm^{-1}): 3567, 2919, 2865, 1684, 1560, 1507, 1457, 1261, 1093, 1029, 750, 698; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.87\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.18-2.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\right.$ cyanoethyl), 3.47-4.37 (m, 32H, 6x CH2-Rbo, 9x CH-Rbo, $2 x \mathrm{CH}_{2}$-cyanoethyl, H-2, H-3, H-4, H-5, H-6', H6"), 4.39-4.77 (m, 25H, CH2-Bn, H-2), 6.67 (dd, $1 \mathrm{H}, \mathrm{J}=17.3,8.8 \mathrm{~Hz}, \mathrm{NHAc}$), 7.12 - 7.34 (m, $60 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.1,19.1,19.1,19.2$, 19.2, 19.3, 19.3 (CH_{2}-cyanoethyl), 23.4 ($\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 55.8,55.9,56.0$ (C-2), 61.1, 61.2, 61.7, 61.8, 61.8, 61.9, 61.9, 62.0 (C-6, CH2-Cyanoethyl), 66.8, 67.3, 67.3, 67.5, 67.5, 67.8, 67.8, $68.2,69.2,69.2,69.3,69.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 72.1,72.4,72.4,72.4,72.5,72.5,72.5,72.5,73.3,73.4$, $73.4,73.5,73.7,73.8,73.8,73.9,74.0,74.8,74.8,74.9,74.9,74.9\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 75.2,75.2,76.3$, $76.3,77.8,77.9,78.0,78.0,78.0,78.0,78.1,78.1,78.2,78.2,78.3,78.8,78.9,82.7,82.7,83.0$, (CH-Rbo/C-3/C-4/C-5), 100.0, 100.1, 100.1 (C-1), 116.6, 116.6, 116.7, 116.7, 116.8, 116.8 (Cq-cyanoethyl), 127.6, 127.6, 127.6, 127.6, 127.7, 127.7, 127.7, 127.8, 127.8, 127.8, 127.9, 127.9, 128.0, 128.0, 128.0, 128.0, 128.1, 128.1, 128.4, 128.5, 128.5, 128.7 (CH-arom), 137.8, $137.8,137.8,137.9,137.9,138.0,138.1,138.1,138.1,138.2,138.2,138.2,138.3,138.3$, 138.3, 138.3, 138.3, 138.4, 138.5, 138.5 (Cq-arom), 170.7, 170.8 (C=O); ${ }^{31}$ P NMR (202 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta=-0.2,-0.3,-0.6,-0.6,-0.7,-0.7,-1.1 ; \mathrm{HRMS}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{113} \mathrm{H}_{126} \mathrm{~N}_{3} \mathrm{O}_{24} \mathrm{P}_{2}$ 1971.82346, found 1971.82551.

Dimer (61)

According to the general procedure above, alcohol 36 ($528 \mathrm{mg} ; 0.476 \mathrm{mmol} ; 1.0 \mathrm{eq}$.) was coupled with phosphoramidite 41 ($435 \mathrm{mg} ; 0.611 \mathrm{mmol}$; 1.3 eq .) and the title compound was synthesized in 80% yield (538 mg ; 0.375 mmol). IR (neat, cm^{-1}): 3567, 2915, 2868, 1684, 1560, 1457, 1275, 1261, 1096, 1043, 1027, 747, 697; ${ }^{1} \mathrm{H}$
NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.73$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.40\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\right.$ cyanoethyl), 2.46 (t, 1H, J=5.6 Hz, CH 2 -cyanoethyl), 2.92-2.99 (m, 1H, OH), 3.56-3.91 (m, 12H, H-6, 2x CH_{2}-Rbo, H-3/H-4/H-5, CH-Rbo), 4.03 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$-cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3 / \mathrm{H}-4 / \mathrm{H}-5 / \mathrm{CH}-\mathrm{Rbo}$), 4.18 - 4.39 ($\mathrm{m}, 5 \mathrm{H}, 2 \times \mathrm{CH}_{2}$-Rbo, H-3/H-4/H-5/CH-Rbo), $4.39-4.83$ ($\mathrm{m}, 18 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), 5.03 (dd, $J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 6.45 (dd, $J=33.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHAc}$), $7.21-7.40(\mathrm{~m}, 45 \mathrm{H}$, H-arom); ${ }^{13} \mathrm{C}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=20.0,20.1,20.1,20.1\left(\mathrm{CH}_{2}\right.$-cyanoethyl), 23.2, $23.2\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 54.0(\mathrm{C}-2), 60.9,60.9,63.2,63.2,63.2,63.3\left(\mathrm{C}-6, \mathrm{CH}_{2}-\mathrm{cy}\right.$ anoethyl), 68.0, $68.0,68.2,68.2,68.5,68.5,68.6,69.7,69.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}\right), 70.6,70.7\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 72.0,72.1(\mathrm{C}-3 / \mathrm{C}-$ 4/C-5/CH-Rbo), 72.7, 72.7, 72.9, 72.9, 73.0, 73.8, 73.9, 74.5, 74.6, 74.6, 75.5, 75.5, 75.6, 75.6 (CH2-Bn), 76.9, 76.9, 77.5, 77.6, 78.6, 78.7, 78.8, 78.9, 78.9, 78.9, 79.1, 79.2, 79.2, 79.4, 79.4, 79.9, 80.0, 81.0, 81.0 (CH-Rbo/C-3/C-4/C-5), 97.3, 97.9 (C-1), 118.5, 118.5 (Cq-cyanoethyl), 128.4, 128.5, 128.5, 128.5, 128.6, 128.6, 128.6, 128.6, 128.7, 128.7, 128.8, 128.8, 128.8, 128.9, 128.9, 129.0, 129.0, 129.1, 129.2, 129.3, 129.3, 129.3 (CH-arom), 139.2, 139.3, 139.5, 139.5, 139.5, 139.5, 139.5, 139.5, 139.6, 139.6, 139.6, 139.7, 139.8, 139.9 (Cq-arom), 170.6 (C=O); ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.5,0.3 ; \mathrm{HRMS}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{84} \mathrm{H}_{94} \mathrm{~N}_{2} \mathrm{O}_{17} \mathrm{P}$ 1433.62846, found 1433.62744 .

Trimer (62)

According to the general procedure above, alcohol 61 (508 mg ; 0.354 mmol; 1.0 eq.) was coupled with phosphoramidite 42 (426 mg ; 0.461 mmol; 1.3 eq.) and the title compound was synthesized in 91% yield (636 mg ; 0.323 mmol). IR (neat, cm^{-1}): 3567, 2928, 2866, 1684, 1560, 1457, 1265, 1093, 1070, 1027, 731,$697 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=1.71-1.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.40(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.0$ $\mathrm{Hz}, \mathrm{CH}_{2}$-cyanoethyl), 2.45 (q, 1H, J=5.6 Hz, CH ${ }_{2}$-cyanoethyl), 2.54 (td, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}, 2.4$ $\mathrm{Hz}, \mathrm{CH}_{2}$-cyanoethyl), 2.59 (td, 1H, J= $6.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, \mathrm{CH}_{2}$-cyanoethyl), 2.89 (bs, 1H, OH), 3.60-4.35 (m, 33H, 6x CH2-Rbo, 9x CH-Rbo, $2 \mathrm{xCH}_{2}$-cyanoethyl, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5,2 \times \mathrm{H}-6$),
4.40-4.83 (m, 24H, CH2-Bn), 5.01-5.07 (m, 1H, H-1), 6.56 (d, $0.5 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{NHAc}), 6.61$ (dd, $0.5 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, \mathrm{NHAc}), 7.19-7.36$ (m, 60H, H-arom); ${ }^{13} \mathrm{C}-A P T$ NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=20.0,20.1,20.1,20.2\left(\mathrm{CH}_{2}-\right.$ cyanoethyl), $23.2\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 54.1,54.1(\mathrm{C}-2), 61.6$, 61.6, 63.2, 63.3, 63.3, 63.3, 63.4 (C-6, CH_{2}-cyanoethyl), 67.1, 67.1, 67.1, 67.1, 67.2, 67.2, 67.2, 68.1, 68.2, 68.2, 68.2, 68.4, 68.4, 68.5, 68.5, 69.7, 69.7, 70.7, 70.8, (CH2-Rbo), 72.1, 72.2 (CH-Rbo/C-3/C-4/C-5), 72.8, 72.9, 73.0, 73.0, 73.0, 73.1, 73.1, 73.8, 73.9, 74.5, 74.5, 74.5, 74.6, 74.6, 74.6, 75.5, 75.5, 75.6, 75.6, $75.6\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 76.7,76.7,76.8,76.8,77.4,77.4$, $77.4,77.5,77.9,77.9,78.0,78.0,78.1,78.1,78.2,78.9,78.9,78.9,79.0,79.0,79.1,79.1,79.1$, 79.2, 79.2, 79.2, 79.4, 80.6, 80.8, 80.8, 80.9, 80.9 (CH-Rbo, C-3, C-4, C-5), 97.7, 97.8, 98.3, 98.3 (C-1), 118.5, 118.5 (Cq-cyanoethyl), 128.5, 128.5, 128.5, 128.6, 128.6, 128.7, 128.7, 128.8, 128.8, 128.9, 128.9, 128.9, 129.0, 129.0, 129.1, 129.3, 129.3, 129.3, 129.4, 129.4, 129.4 (CH-arom), 138.9, 138.9, 139.1, 139.1, 139.2, 139.3, 139.4, 139.4, 139.5, 139.5, 139.5, 139.5, 139.6, 139.6, 139.6, 139.7, 139.8, 139.8, 139.9, 140.0 (Cq-arom), 170.6, 170.7, 170.7 (C=O); ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=0.6,0.5,0.3,0.3$; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{113} \mathrm{H}_{127} \mathrm{~N}_{3} \mathrm{O}_{24} \mathrm{P}_{2} 986.41537$, found 986.41536 .

Hexamer (1)

According to the general procedure described above, compound $\mathbf{5 7}$ ($26.0 \mathrm{mg} ; 6.74$ $\mu \mathrm{mol}$) was deprotected affording the target compound in 67% yield ($8.0 \mathrm{mg} ; 4.5 \mu \mathrm{~mol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.41-1.42(\mathrm{~m}$, 4H, $2 \times \mathrm{CH}_{2}$-hexylspacer), 1.64-1.67 (m, 4H, 2x CH 2 -hexylspacer), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), 2.99 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 3.43-3.45 (m, 2H, CH-Rbo/CH-GlcNAc), 3.54-3.57 (m, 1H, CH-Rbo/CH-GlcNAc), 3.59-3.63 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHH}$), 3.71-3.76 (m, 2H, H-2, CHH), 3.78-4.14 (m, 47H, 2x CHH, 12x CH $2,2 x \mathrm{H}-6$, $17 x$ CH-Rbo/CH-GIcNAc, CH2O), 4.72 (d, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}$-APT NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.4\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.5,25.2,26.7,29.4,29.5\left(\mathrm{CH}_{2}\right.$-hexylspacer), $39.5\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 55.7 (C-2), 60.7, 62.7, 65.0, 66.2, 66.2, 66.4, 66.5, $66.5\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{C}-6, \mathrm{CH}_{2} \mathrm{O}\right), 70.0,70.9$, 70.9, 71.2, 71.3, 71.6, 71.7, 73.8, 75.8 (CH-Rbo/C-GlcNAc), 79.4, 79.5 (C-O-C-1), 101.4 (C-1), 175.1 ($\mathrm{C}=\mathrm{O}$); ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=2.0,2.0,1.8,1.7 ; \mathrm{HRMS}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{44} \mathrm{H}_{95} \mathrm{~N}_{2} \mathrm{O}_{48} \mathrm{P}_{6} 1605.3475$, found 1605.3480.

Hexamer (2)

According to the general procedure described above, compound 52 ($120 \mathrm{mg} ; 28.2 \mu \mathrm{~mol})$ was deprotected affording the target compound in 78% yield ($43.0 \mathrm{mg} ; 22.3 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.39-1.40(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}$-hexylspacer), 1.61-1.65 ($\mathrm{m}, 4 \mathrm{H}$, $2 x \mathrm{CH}_{2}$-hexylspacer), 2.06 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH} \mathrm{CH}_{3}-\mathrm{NAc}$), 2.97 (t, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 3.41-3.44 (m, 4H, CH-Rbo/CH-GlcNAc), 3.51-3.53 (m, 2H, CH-Rbo/CH-GlcNAc), 3.56 3.61 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHH}$), 3.69-4.12 (m, 53H, 12x CH-Rbo, 12x CH 2 , 10x CH-GlcNAc, 4x H-6, 1x $\mathrm{CHH}, \mathrm{CH}_{2} \mathrm{O}$), 4.70 (dd, 2H, J=8.0 Hz, J=4.0 Hz, H-1); ${ }^{13} \mathrm{C}-$ APT NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.4$ ($\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.5,25.2,26.6,29.4,29.5\left(\mathrm{CH}_{2}-\right.$ hexylspacer), $39.5\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 55.7, 55.7 (C-2), 60.6, 60.7, 62.6, 65.0, 66.2, 66.2, 66.4, 66.4, 66.5, $66.7\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{C}-6\right)$, 69.9, 70.2, 70.2, 70.9, 70.9, 71.0, 71.2, 71.6, 71.7, 73.8, 73.9, 75.8, 75.8 (CH-Rbo, C-3, C-4, C-5), 79.4, 79.5, 79.7, 79.7 (C-O-C-1), 101.4, 101.6 (C-1), 175.1, 175.1 (C=O); ${ }^{31}$ P NMR (202 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=2.0,2.0,1.8,1.7 ;$ HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{108} \mathrm{~N}_{3} \mathrm{O}_{53} \mathrm{P}_{6}$ 1808.42682, found 1808.42555 .

Hexamer (3)

According to the general procedure described above, compound $\mathbf{5 8}$ (18.0 mg ; 4.66 $\mu \mathrm{mol}$) was deprotected affording the target compound in 96% yield ($7.74 \mathrm{mg} ; 4.45 \mu \mathrm{~mol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.41-1.43(\mathrm{~m}, 4 \mathrm{H}$, 2x CH_{2}-hexylspacer), 1.64-1.69 (m 4H, 2x CH_{2}-hexylspacer), 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 3.48 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo} / \mathrm{CH}-\mathrm{GlcNAc}$), 3.61-3.63 (m, 1H, CHH), 3.77-4.12 (m, 48H, 11x CH_{2}-Rbo, $1 \times \mathrm{CH}, 21 \times \mathrm{CH}$-Rbo/CH-GlcNAc, $2 \times \mathrm{H}-6, \mathrm{CH}_{2} \mathrm{O}$), $5.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1\right.$); ${ }^{13} \mathrm{C}-$ APT NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.0$ ($\left.\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.5,25.2,26.7,29.4,29.5\left(\mathrm{CH}_{2}\right.$-hexylspacer), $39.5\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 53.9 (C-2), 60.6, 62.7, 64.4, 66.2, 66.2, 66.4, 66.4, 66.5, 66.5, 66.6 (CH_{2}-Rbo, $\mathrm{C}-6, \mathrm{CH}_{2}-\mathrm{O}$), 70.1, 70.9, 70.9, 71.1, 71.2, 71.3, 72.0 (CH-Rbo/CH-GIcNAc), 77.6, 77.6 (C-O-C-1), 96.4 (C-1), 174.5 (C=O); ${ }^{31}$ P NMR (202 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta=2.0,2.0,1.8,1.6$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{44} \mathrm{H}_{95} \mathrm{~N}_{2} \mathrm{O}_{48} \mathrm{P}_{6} 1605.34745$, found 1605.34696 .

Chapter 3 | Synthesis of glycosylated ribitol phosphates and their binding to human langerin

Hexamer (4)

According to the general procedure described above, compound 54 ($145 \mathrm{mg} ; 34.0 \mu \mathrm{~mol}$ was deprotected affording the target compound in 49% yield ($34.4 \mathrm{mg} ; 16.7 \mu \mathrm{~mol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.41-1.43\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$-hexylspacer), 1.64-1.67 (m, 4H, 2x CH_{2}-hexylspacer), 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 3.49 (t, 2H, J= $9.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo} / \mathrm{CH}$), 3.63 (q, 1H, J=5.5 Hz, CHH-Rbo), 3.77 - 4.12 ($\mathrm{m}, 53 \mathrm{H}, \mathrm{CH}-\mathrm{GlcNAc}, \mathrm{CH}-\mathrm{Rbo}, \mathrm{CH}_{2}$-Rbo, CH2O), 5.03 (d, 1H, J=3.5 Hz, H-1), 5.06 (d, $1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.0,22.1\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.5,25.2,26.6$, 29.4, $29.5\left(\mathrm{CH}_{2}\right.$-hexylspacer), $39.5\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 53.9 (C-2), 60.6, 62.7, 64.4, 64.5, $66.2,66.2,66.4,66.4,66.5,66.5,66.6\left(\mathrm{CH}_{2}-\mathrm{Rbo}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{C}-6\right), 69.9,69.9,70.1,70.1,70.9$, 70.9, 71.1, 71.2, 71.2, 71.3, 72.0 (CH-Rbo, C-3/C-4/C-5), 77.6, 77.7, 77.8 (C-O-C-1 GIcNAc), 96.4, $96.5(\mathrm{C}-1), 174.5(\mathrm{C}=\mathrm{O}) ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=2.0,2.0,1.9,1.8,1.6,1.6 ;$ HRMS: $[\mathrm{M}+2 \mathrm{Na}]^{2+}$ calculated for $\mathrm{C}_{52} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{53} \mathrm{P}_{6} \mathrm{Na}_{2} 926.6990$, found 926.7034 .

Hexamer (5)

According to the general procedure described above, compound 53 ($106 \mathrm{mg} ; 25.0 \mu \mathrm{~mol})$ was deprotected affording the target compound in 88% yield ($42.5 \mathrm{mg} ; 21.9 \mu \mathrm{~mol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=1.41-1.42$ ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}$-hexylspacer), 1.63-1.68 (m, 4H, 2x CH_{2}-hexylspacer), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right), 2.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 3.45-3.50 (m, 3H, CH-Rbo/CH-GlcNAc), 3.53-3.57 (m, 1H, CH-Rbo/CHGlcNAc), 3.59-3.66 (m, 2H, CH ${ }_{2}$), 3.72-4.15 (m,52H, 14x CH 2 , 22x CH-Rbo/CH-GlcNAc, $\left.\mathrm{CH}_{2}-\mathrm{O}\right), 4.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1 \beta), 5.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1 \alpha)$) ${ }^{13} \mathrm{C}$-APT NMR (126 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=22.0$, $22.4\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 24.5,25.2,26.6,29.4,29.5\left(\mathrm{CH}_{2}\right.$-hexylspacer), $39.5\left(\mathrm{CH}_{2}-\mathrm{N}\right.$ hexylspacer), 53.9, 55.7 (C-2), 60.6, 60.6, 62.4, 62.7, 64.4, 64.5, 64.9, 66.2, 66.2, 66.4, 66.4, 66.5, $66.6\left(\mathrm{CH}_{2}\right.$-Rbo, $\left.\mathrm{C}-6, \mathrm{CH}_{2}-\mathrm{O}\right), 69.9,70.1,70.3,70.9,70.9,71.0,71.1,71.2,71.3,71.7$, 72.0, 72.1, 73.9, 75.8 (CH-Rbo/CH-GlcNAc), 77.6, 77.7 (C-O-C-1 α), 79.7, 79.7 (C-O-C-1 β),
$96.4(\mathrm{C}-1 \alpha)$, $101.6(\mathrm{C}-1 \beta), 174.5,175.1(\mathrm{C}=\mathrm{O}) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=2.0,2.0,1.8,1.7$, 1.6; HRMS: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{52} \mathrm{H}_{109} \mathrm{~N}_{3} \mathrm{O}_{53} \mathrm{P}_{6} 904.7172$, found 904.7208 .

Hexamer (6)

According to the general procedure described above, compound 55 ($19.6 \mathrm{mg} ; 4.6 \mu \mathrm{~mol}$) was deprotected affording the target compound in 16% yield ($1.4 \mathrm{mg} ; 0.73 \mu \mathrm{~mol}$). ${ }^{1} \mathrm{H}$ NMR Presat $\mathrm{D}_{2} \mathrm{O}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=1.39-1.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexylspacer), $1.61-1.69$ (m, 4H, CH 2 -hexylspacer), 2.06 (d, 6H, J= $7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{NHAc}$), $2.96-3.01$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$ hexylspacer), 3.40-4.15 (m,56H, CH ${ }_{2}$-Rbo, CH-Rbo, $2 x \mathrm{H}-2,2 x \mathrm{H}-3,2 x \mathrm{H}-4,2 x \mathrm{H}-5,2 x \mathrm{H}-6$, $2 x \mathrm{H}-6$ ", $\mathrm{CH}_{2}-\mathrm{O}$), $4.72(\mathrm{~d}, 0.25 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-1 \beta), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}, \mathrm{H}-1 \alpha) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=2.0,2.0,1.9,1.8,1.7,1.6 ; \mathrm{HRMS}:[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{52} \mathrm{H}_{109} \mathrm{~N}_{3} \mathrm{O}_{53} \mathrm{P}_{6}$ 904.7171, found 904.7202.

Trimer (7)

According to the general procedure described above, compound 62 (318 $\mathrm{mg} ; 0.161 \mathrm{mmol}$) was deprotected affording the target compound in 90% yield ($120.3 \mathrm{mg} ; 0.145 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right)$, 3.48 (dd, 1H, J= $10.1 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Rbo}$), 3.63 (dd, $2 \mathrm{H}, J=11.9 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Rbo}$), 3.73 ($\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Rbo}$), $3.75-4.12$ (m, 22H, 5 x CH- -Rbo, 6 x CH-Rbo, H-2, H-3, H-4, H-5, $2 x \mathrm{H}-6), 5.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1)$; ${ }^{13} \mathrm{C}-$ APT NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.0\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 53.8$ (C-2), 60.5, 62.3, 64.4, 64.4, 66.5, 66.6, 66.6 (CH2-Rbo, C-6), 69.8, 69.9, 70.1, 70.9, 70.9, 71.0, $71.0,71.7,71.7,72.0,72.1,72.1$ (CH-Rbo, C-3, C-4, C-5), 77.7, 77.7 (CO-C1), 96.5 (C-1), 174.5 (C=O); ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=1.9,1.6 ; \mathrm{HRMS}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{NO}_{24} \mathrm{P}_{2}$ 784.20360, found 784.20354.

Chapter 3 | Synthesis of glycosylated ribitol phosphates and their binding to human langerin

Trimer (8)

According to the general procedure described above, compound $\mathbf{6 0}$ (105 mg ; $53.2 \mu \mathrm{~mol}$) was deprotected affording the target compound in 85% yield (37.5 $\mathrm{mg} ; 45.3 \mu \mathrm{~mol})$. ${ }^{1} \mathrm{H}$ NMR presat $\mathrm{D}_{2} \mathrm{O}(400$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NAc}\right)$, 3.43-3.47 (m, 2H, CH-ribitol/CH-GlcNAc), 3.49-3.56 (m, 1H, CH-Rbo/CH-GlcNAc), 3.62 (dd, 2H, J= $11.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Rbo}$), $3.70-4.14$ (m, 24H, $5 \mathrm{xCH}_{2}$-Rbo, 11x CH-Rbo/CHGlcNAc), $4.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-1)$; ${ }^{13} \mathrm{C}$-APT NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=22.4\left(\mathrm{CH}_{3}-\mathrm{NAc}\right), 55.7$ (C-2), 60.6, 62.3, 64.9, 64.9, 66.5, 66.5, 66.6, 66.7 (CH2-ribitol/C-6), 69.8, 70.1, 70.2, 70.9, 70.9, 71.0, 71.0, 71.0, 71.7, 71.7, 72.0, 72.1, 73.9, 75.7 (CH-Rbo, C-3, C-4, C-5), 79.7, 79.7 (C-O-C-1), $101.6(\mathrm{C}-1), 175.0(\mathrm{C}=\mathrm{O}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=2.0,1.7 ;$ HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{NO}_{24} \mathrm{P}_{2} 784.2036$, found 784.2062 .

REFERENCES

1. Nestle, F. O.; Di Meglio, P.; Qin, J. Z.; Nickoloff, B. J., Skin immune sentinels in health and disease. Nat. Rev. Immunol. 2009, 9 (10), 679-91.
2. Nestle, F. O.; Nickoloff, B. J., Deepening our understanding of immune sentinels in the skin. J. Clin. Invest. 2007, 117 (9), 2382-2385.
3. Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; Caux, C.; Lebecque, S.; Saeland, S., Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000, 12 (1), 71-81.
4. de Witte, L.; Nabatov, A.; Pion, M.; Fluitsma, D.; de Jong, M. A. W. P.; de Gruijl, T.; Piguet, V.; van Kooyk, Y.; Geijtenbeek, T. B. H., Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 2007, 13 (3), 367-371.
5. van der Vlist, M.; de Witte, L.; de Vries, R. D.; Litjens, M.; de Jong, M. A.; Fluitsma, D.; de Swart, R. L.; Geijtenbeek, T. B., Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4(+) T cells but are incapable of cross-presentation. Eur. J. Immunol. 2011, 41 (9), 2619-31.
6. de Jong, M. A.; Vriend, L. E.; Theelen, B.; Taylor, M. E.; Fluitsma, D.; Boekhout, T.; Geijtenbeek, T. B., C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol. Immunol. 2010, 47 (6), 1216-25.
7. Hunger, R. E.; Sieling, P. A.; Ochoa, M. T.; Sugaya, M.; Burdick, A. E.; Rea, T. H.; Brennan, P. J.; Belisle, J. T.; Blauvelt, A.; Porcelli, S. A.; Modlin, R. L., Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 2004, 113 (5), 701-8.
8. Feinberg, H.; Taylor, M. E.; Razi, N.; McBride, R.; Knirel, Y. A.; Graham, S. A.; Drickamer, K.; Weis, W. I., Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J. Mol. Biol. 2011, 405 (4), 1027-39.
9. van Dalen R, D. L. C. D. J., Rumpret M, Fuchsberger FF, van Teijlingen NH, Hanske J, Rademacher C, GeijtenbeekTBH, van Strijp JAG, Weidenmaier C, Peschel A, Kaplan DH, van Sorge NM, Langerhans Cells Sense Staphylococcus aureus Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. mBio 2019, 10 (3).
10. Lacey, K. A.; Geoghegan, J. A.; McLoughlin, R. M., The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens. Pathogens 2016, 5 (1).
11. Wamhoff, E. C.; Schulze, J.; Bellmann, L.; Rentzsch, M.; Bachem, G.; Fuchsberger, F. F.; Rademacher, J.; Hermann, M.; Del Frari, B.; van Dalen, R.; Hartmann, D.; van Sorge, N. M.; Seitz, O.; Stoitzner, P.; Rademacher, C., A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS Cent. Sci. 2019, 5 (5), 808-820.
12. Driguez, P.-A. G.; Guillo, N; Rokbi, B.; Mistretta, N.; Talaga, P., Immunogenic compositions against S. aureus, Sanofi Pasteur, WO 2017/064190 A1 2017.
13. Jung, Y. C.; Lee, J. H.; Kim, S. A.; Schmidt, T.; Lee, W.; Lee, B. L.; Lee, H. S., Synthesis and Biological Activity of Tetrameric Ribitol Phosphate Fragments of Staphylococcus aureus Wall Teichoic Acid. Org. Lett. 2018, 20 (15), 4449-4452.
14. Urabe, D.; Sugino, K.; Nishikawa, T.; Isobe, M., A novel deprotection of trichloroacetamide. Tetrahedron Lett. 2004, 45 (51), 9405-9407.
15. Kinzy, W., \& Schmidt, R. (1985). Glycosylimidate, 16. Synthese des Trisaccharids aus der Repeating Unit des Kapselpolysaccharids von Neisseria meningitidis (Serogruppe L). Liebigs Ann. Chem. 1985, (8), 1537-1545.

Chapter 3 | Synthesis of glycosylated ribitol phosphates and their binding to human langerin
16. Goddard-Borger, E. D.; Stick, R.V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 2007, 9 (19), 3797-800.
17. Tsuda, T.; Nakamura, S.; Hashimoto, S., A highly stereoselective construction of 1,2-trans- β glycosidic linkages capitalizing on 2-azido-2-deoxy-d-glycosyl diphenyl phosphates as glycosyl donors. Tetrahedron 2004, 60 (47), 10711-10737.
18. Pougny, J.-R. S., P, Reaction d'imidates de glucopyranosyle avec l'acetonitrile. Applications synthetiques. Tetrahedron Lett. 1976, 17 (45), 4073-4076.
19. Schmidt, R. R. B., M.; Toepfer, A., Nitriles as solvents in glycosylation reactions - Highly selective Beta-glycoside synthesis. Synlett 1990, 694-697.
20. Schmidt, R. R. R., E., Stereoselective glycosidations of uronic acids. Tetrahedron Lett. 1980, 21, 1421-1424.
21. Mulani, S. K.; Hung, W. C.; Ingle, A. B.; Shiau, K. S.; Mong, K. K., Modulating glycosylation with exogenous nucleophiles: an overview. Org. Biomol. Chem. 2014, 12 (8), 1184-97.
22. Khatuntseva, E. A; Sherman, A. A; Tsvetkov, Y. E; Nifantiev, N. E., Phenyl 2-azido-2-deoxy-1selenogalactosides: a single type of glycosyl donor for the highly stereoselective synthesis of alpha- and beta-2-azido-2-deoxy-D-galactopyranosides. Tetrahedron Lett. 2016, 57 (6), 708-711.
23. A. V. Demchenko, Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; A. V. Demchenko, Ed.; Wiley-VCH Verlag GmbH \& Co. KGaA: Weinheim, Germany, 2008, pp. 10-11.
24. van der Es, D.; Groenia, N. A.; Laverde, D.; Overkleeft, H. S.; Huebner, J.; van der Marel, G. A.; Codee, J. D., Synthesis of E. faecium wall teichoic acid fragments. Bioorg. Med. Chem. 2016, 24 (17), 3893907.
25. Figueroa-Perez, I.; Stadelmaier, A.; Morath, S.; Hartung, T.; Schmidt, K. R., Synthesis of structural variants of Staphylococcus aureus lipoteichoic acid (LTA). Tetrahedron: Asymmetry 2005, 16 (2), 493-506.
26. van der Es, D.; Berni, F.; Hogendorf, W. F. J.; Meeuwenoord, N.; Laverde, D.; van Diepen, A.; Overkleeft, H. S.; Filippov, D. V.; Hokke, C. H.; Huebner, J.; van der Marel, G. A.; Codee, J. D. C., Streamlined Synthesis and Evaluation of Teichoic Acid Fragments. Chemistry 2018, 24 (16), 4014-4018.
27. van Diepen, A.; Smit, C. H.; van Egmond, L.; Kabatereine, N. B.; Pinot de Moira, A.; Dunne, D. W.; Hokke, C. H., Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray. PLoS Neglected Trop. Dis. 2012, 6 (11), e1922.

[^0]: Ali, S., Hendriks, A., van Dalen, R., Bruyning, T., Meeuwenoord, N., Overkleeft, H., Filippov, D., van der Marel, G., van Sorge, N., Codée, J.D.C., (Automated) Synthesis of Well-defined Staphylococcus Aureus Wall Teichoic Acid Fragments. Chem. Eur. J. 2021, 27 (40): 10461-10469.

