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Gysin sequences and SU(2)-symmetries of C∗-algebras

Francesca Arici and Jens Kaad

Abstract

Motivated by the study of symmetries of C∗-algebras, as well as by multivariate operator theory,
we introduce the notion of an SU(2)-equivariant subproduct system of Hilbert spaces. We analyse
the resulting Toeplitz and Cuntz–Pimsner algebras and provide results about their topological
invariants through Kasparov’s bivariant K-theory. In particular, starting from an irreducible
representation of SU(2), we show that the corresponding Toeplitz algebra is equivariantly KK-
equivalent to the algebra of complex numbers. In this way, we obtain a six-term exact sequence
of K-groups containing a noncommutative analogue of the Euler class.
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Motivated by the study of symmetries of C∗-algebras, as well as by multivariate operator theory,
in this paper we introduce the notion of an SU(2)-equivariant subproduct system of Hilbert
spaces. Starting from a unitary representation of the Lie group SU(2) on a finite-dimensional
Hilbert space, we give an algorithm for constructing such an equivariant subproduct system
and describe the associated Toeplitz–Pimsner and Cuntz–Pimsner algebras.

In the spirit of noncommutative topology, we compute topological invariants through
Kasparov’s bivariant K-theory [24]. In particular, we provide, for our class of algebras, a
partial answer to Open Question 3 in [40, Section 6] concerning the computation of the K-
theory groups of the Cuntz–Pimsner and Toeplitz–Pimsner algebras of a subproduct system.
Note in this respect that the paper [16] also contains valuable computations of K-theory
groups relating to Viselter’s question. The present text offers a completely new approach,
which exploits topological features like the existence of higher dimensional Gysin sequences.
More precisely, our main result, Theorem 6.1, concerns the-equivalence between the Toeplitz
algebra of the subproduct system of an irreducible SU(2)-representation and the C∗-algebra of
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complex numbers. We further use this equivalence result to prove that the defining extension
for the Cuntz–Pimsner algebra of a subproduct system induces an exact sequence in operator
K-theory which contains a noncommutative Euler class and hence resembles a Gysin sequence.
Using the exact sequence, we are able to compute the K-theory groups of the Cuntz–Pimsner
algebra of our SU(2)-subproduct system.

Our work fits into the framework of noncommutative topology, building on representation
theoretic techniques, as well as Kasparov’s bivariant K-theory. One of our driving motivations
lies in the noncommutative description of principal fibre bundles through Hopf–Galois
extensions, a theory which works both algebraically and topologically [6]. This approach allows
one to extend the scope to consider symmetries implemented by compact quantum groups.

It is natural to try to extend this analogy to bundles with fibres other than quantum groups,
as described in [10], where the authors initiated the development of an algebraic framework
for noncommutative bundles with quantum homogeneous fibres. Here, however, we still focus
on the group case and set the basis for an operator theoretic approach to the study of sphere
bundles with fibre the three-dimensional sphere. We are following the bottom-up approach
offered by both the classical construction of the associated principal G-bundle to a fibre
bundle with structure group G, and the construction of the sphere bundle of a Hermitian
vector bundle.

We build on the earlier work [4], where we observed how the Cuntz–Pimsner algebra
[32] of a noncommutative line bundle can be interpreted as the algebra of functions on a
noncommutative circle bundle. This analogy also works at the level of topological invariants:
Pimsner’s construction naturally yields an exact sequence in K-theory, which mimics the
classical Gysin sequence for circle bundles [19, 23].

The generalisation of this construction to structure groups different from U(1) is not so
straightforward and has, to our knowledge, escaped a satisfactory treatment. For instance, when
applying Pimsner’s construction to the module of sections of a complex n-dimensional vector
bundle, possibly carrying the action of a compact group G, the resulting C∗-algebra has the
structure of a bundle of algebras with fibres the Cuntz algebra On [38], a very different object
from the algebra of functions of the associated principal G-bundle. Nevertheless, understanding
the properties and symmetries of such C∗-algebras is an interesting question, which was recently
addressed in [13], where the author studied the Cuntz–Pimsner algebras constructed starting
from the action of a compact group G on a complex Hermitian vector bundle and their crossed
products by G.

Inspired by the representation theory of the group SU(2), in particular by the Clebsch–
Gordan theory, we adopt a novel approach, which relies on the theory of subproduct systems
of C∗-correspondences. Subproduct systems were first described by Shalit and Solel in [36],
inspired by the dilation theory of semigroups of completely positive maps, and independently
by Bhat and Mukherjee [7] in the Hilbert space setting, under the name of inclusion systems.
Motivated by examples in quantum electrodynamics, the related notion of interacting Fock
spaces was investigated in [1, 2]. The theory of subproduct systems was further developed
by Viselter, who extended the notions of covariant representation and of Cuntz–Pimsner
algebras of a C∗-correspondence to this more general framework [39, 40]. More recently,
Dor-On and Markiewicz [15, 16] applied the theory of subproduct systems to the study of
stochastic matrices.

Another motivation for our work can be found in the question of understanding operator
and C∗-algebras arising from zeros of polynomials in noncommutative variables. This relates
to the programme of studying noncommutative domains initiated by Popescu [33, 34]. In [36,
Section 7], Shalit and Solel established a noncommutative Nullstellensastz: every homogeneous
ideal I in the algebra of noncommutative polynomials corresponds to a unique subproduct
system, and vice versa. In our case, for every n ∈ N, we consider noncommutative varieties
whose defining ideal in the free algebra C〈X0, . . . , Xn〉 is generated by a single degree-two
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homogeneous polynomial arising from the determinant of an SU(2)-representation. From a
purely algebraic perspective, our setting is closely related to the one-relator quadratic regular
Koszul algebras of global dimension two studied in [41, 42].

The outline of the paper is as follows. Section 1 is devoted to preliminaries on the theory
of subproduct systems: we introduce the notion of G-equivariant subproduct system of C∗-
correspondences, which we then specialise to the Hilbert space case. At the end of the section,
we recall the one-to-one correspondence between subproduct systems of Hilbert spaces and
ideals in the algebra of noncommutative polynomials.

In Section 2, we show how, starting from a unitary representation of the Lie group SU(2) on
a finite-dimensional Hilbert space, one can construct an SU(2)-equivariant subproduct system
of Hilbert spaces over the semi-group N0. An essential ingredient in our construction is what
we call the determinant of the representation. This determinant will resurface later in our
computations in KK-theory as one of the summands in the Euler class of the representation.

We proceed to studying the fusion rules of our equivariant SU(2)-subproduct system
in Section 3. This section contains several lemmas containing explicit computations and
showcasing interesting combinatorial properties, on which our later analysis relies. In particular,
the structural properties of our subproduct systems naturally lead us to the commutation
relations in the Toeplitz algebras, described in Section 4.

Finally, we focus on K-theoretic invariants: Section 6 is dedicated to the proof of KK-
equivalence between the Toeplitz algebra of an irreducible SU(2)-representation and the algebra
of complex numbers C. In Section 7, we present our main application: we establish a Gysin
sequence in operator K-theory and employ it to compute the K-theory groups of the Cuntz–
Pimsner algebra of the subproduct system. In the final section, we conclude the paper by
mentioning a few open questions that we would like to address in the future.

1. Preliminaries on subproduct systems

In this section, we review the theory of subproduct systems of correspondences, specialising
to the Hilbert space case. From the point of view of multivariate operator theory, subproduct
systems of Hilbert space provide the natural framework for the study of row-contractive tuples
of operators subject to polynomial constraints. We shall elaborate on this analogy in the last
part of the section.

For a pair of C∗-correspondences X and Y over the same C∗-algebra B, we let X⊗̂BY
denote their interior tensor product, which is again a C∗-correspondence over the C∗-algebra
B (see, for instance, [28, Section 4]). In the case where G is a locally compact group and both
X and Y are G-C∗-correspondences over the same G-C∗-algebra B, we turn X⊗̂BY into a
G-C∗-correspondence as well by equipping it with the diagonal action g(ξ ⊗ η) := g(ξ) ⊗ g(η).

We recall that a G-C∗-correspondence for a locally compact group G consists of a C∗-
correspondence X from a G-C∗-algebra A to a G-C∗-algebra B such that X is furthermore
equipped with a strongly continuous group homomorphism U : G → Isom(X) (where Isom(X)
denotes the group of invertible isometries on X). This data has to be compatible in the sense
that

U(g)(ξ · b) = U(g)(ξ) · g(b) U(g)(a · ξ) = g(a) · U(g)(ξ) and

〈U(g)(ξ), U(g)(η)〉 = g(〈ξ, η〉)
for all ξ, η ∈ X, a ∈ A, b ∈ B and g ∈ G. Remark that U(g) is in general not adjointable (since
it is in general not even linear over B). For more details on these matters, we refer to [25].

We say that a C∗-correspondence X over B is faithful when the left action B → L(X) is an
injective ∗-homomorphism and essential when B ·X is a norm-dense B-submodule of X.
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Definition 1.1 [36, 40]. Suppose that {Em}m∈N0 is a sequence of essential and faithful
C∗-correspondences over a C∗-algebra B and that ιk,m : Ek+m → Ek⊗̂BEm is a bounded
adjointable isometry for every k,m ∈ N0. We say that (E, ι) is a subproduct system over B
when the following holds for all k, l,m ∈ N0.

(i) E0 = B.
(ii) ι0,m : Em → E0⊗̂BEm and ιm,0 : Em → Em⊗̂BE0 are the canonical identifications (so

that the adjoints are induced by the bimodule structure on Em).
(iii) The two bounded adjointable isometries (1k ⊗ ιl,m) ◦ ιk,l+m and (ιk,l ⊗ 1m) ◦ ιk+l,m :

Ek+l+m → Ek⊗̂BEl⊗̂BEm agree, where 1k and 1m denote the identity operators on Ek and
Em, respectively.

We refer to the bounded adjointable isometries ιk,m : Ek+m → Ek⊗̂BEm, k,m ∈ N0, as the
structure maps of our subproduct system.

Note that for every k,m ∈ N0, we have the orthogonal projection

pk,m = ιk,mι∗k,m : Ek⊗̂BEm → Ek⊗̂BEm. (1.1)

Clearly the image of pk,m is then unitarily isomorphic to Ek+m via the bounded adjointable
isometry ιk,m : Ek+m → Ek⊗̂BEm, see also [36, Lemma 6.1].

Definition 1.2. Let G be a locally compact group and let (E, ι) be a subproduct system
over a C∗-algebra B. We say that (E, ι) is a G-subproduct system when B is a G-C∗-algebra
and Em is a G-C∗-correspondence for all m ∈ N, such that the structure maps ιk,m : Ek+m →
Ek⊗̂BEm are G-equivariant for all k,m ∈ N0.

Example 1. If (X,φ) is an essential and faithful C∗-correspondence over a C∗-algebra B,
then the sequence {X ̂⊗Bm}∞m=0 defines a subproduct system over B, where the structure maps
are given by the canonical identifications X ̂⊗B(m+k) ∼= X ̂⊗Bm⊗̂BX

̂⊗Bk.

Definition 1.3. Given a subproduct system (E, ι), one defines its Fock correspondence as
the infinite Hilbert C∗-module direct sum F := ⊕∞

m=0Em.

In the case where G is a locally compact group and (E, ι) is a G-subproduct system, it holds
that the Fock correspondence F is a G-Hilbert C∗-module where the action of G on F is given
by

g({ξm}∞m=0) := {g(ξm)}∞m=0

for all g ∈ G and {ξm}∞m=0 ∈ F .
For each ξ ∈ Ek, we define the creation operator Tξ ∈ L(F ) as

Tξ : F → F Tξ(ζ) := ι∗k,m(ξ ⊗ ζ), ζ ∈ Em ⊆ F.

Definition 1.4. Let (E, ι) be a subproduct system. We define the Toeplitz algebra of the
subproduct system E, denoted TE , as the smallest C∗-subalgebra of L(F ) that contains all the
creation operators, that is,

Tξ ∈ TE for all ξ ∈ Ek , k ∈ N0.

Lemma 1.5. Let G be a locally compact group and suppose that (E, ι) is a G-subproduct
system. Then there is a strongly continuous action of G on the Fock correspondence, which
induces a strongly continuous action of G on the Toeplitz algebra TE satisfying g(Tξ) := Tg(ξ).
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Proof. Since Ek is a G-C∗-correspondence for each k ∈ N0, we obtain that the Fock
correspondence F is also a G-C∗-correspondence. For every ξ ∈ Ek, we record that the map
G → Ek given by g �→ g(ξ) is continuous.

Let us now consider the Toeplitz algebra TE . Since the structure maps of our subproduct
system are G-equivariant, we have that

gTξg
−1(η) = gι∗k,m(ξ ⊗ g−1η) = ι∗k,m(gξ ⊗ η) = Tg(ξ)(η),

so we have a well-defined action of G on TE .
Note that since ‖Tξ‖ � ‖ξ‖, we obtain that the map G → TE given by g �→ Tg(ξ) is continuous

for every ξ ∈ Ek. Strong continuity of our G-action follows since the Toeplitz algebra is
generated by the creation operators Tξ, ξ ∈ Ek. �

Covariant representations of subproduct systems of C∗-correspondences inducing a C∗-
representation of the Toeplitz algebra were studied in [39]. In the subsequent work [40],
the author described how one can associate a Cuntz–Pimsner algebra to every subproduct
system. Due to [40, Theorem 2.5], one can define the Cuntz–Pimsner algebra of a subproduct
system as the quotient of the Toeplitz algebra by a suitable gauge-invariant ideal. We recall
the construction here.

For each m ∈ N0, we let Qm : F → F denote the orthogonal projection with image Em ⊆ F .

Definition 1.6. Let (E, ι) be a subproduct system. The Cuntz–Pimsner algebra of the
subproduct system (E, ι), denoted OE , is the unital C∗-algebra obtained as the quotient of the
Toeplitz algebra TE by the ideal

IE :=
{
x ∈ TE | lim

m→∞ ‖Qmx‖ = 0
}
.

Thus, OE := TE/IE .

In the case where G is a locally compact group acting on a subproduct system (E, ι), we
obtain that our strongly continuous action of G on the Toeplitz algebra TE descends to a
strongly continuous action of G on the Cuntz–Pimsner algebra. Indeed, for g ∈ G, let U(g) :
F → F denote the invertible isometry implementing the ∗-automorphism g : TE → TE . Remark
that U(g) is in general not adjointable since it can fail to be linear over the base algebra
B. For each x ∈ IE and each m ∈ N0, we then have that ‖Qmg(x)‖ = ‖QmU(g)xU(g−1)‖ =
‖U(g)QmxU(g−1)‖ = ‖Qmx‖ and hence that g(x) ∈ IE as well.

Viselter furthermore proved that, if (E, ι) is a subproduct system of finite-dimensional Hilbert
spaces, then the ideal IE is isomorphic to K(F ) (cf. [40, Corollary 3.2]). Thus, in this case, we
have that OE = TE/K(F ).

1.1. Subproduct systems and zeros of polynomials in noncommutative variables

We conclude this section by recalling how subproduct systems offer a framework for studying
row-contractive tuples of operators satisfying relations given by homogeneous polynomials.
Our main reference is [36, Section 7]. In what follows, we will restrict our attention to the
finite-dimensional case.

Let X := {x0, . . . , xn} be a finite set of n + 1 variables. We shall denote the free monoid
generated by X by 〈X〉, with unit the empty word, denoted by 1. We denote by Xm the set of
all words of length m in 〈X〉, so that the free monoid 〈X〉 is naturally graded by length.

Let C〈X〉 := C〈x0, . . . , xn〉 denote the complex free associative unital algebra generated
by X. Similarly to the free monoid, the free associative unital algebra C〈X〉 is also graded
by length. An element of C〈X〉 is called a noncommutative polynomial. A noncommutative
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polynomial f ∈ C〈X〉 is homogeneous of degree m if f ∈ CXm. By a homogeneous ideal in
C〈X〉, we mean a two-sided ideal which is generated by a set of homogeneous polynomials.

Let T = (T0, T1, . . . , Tn) be an (n + 1)-tuple of operators acting on a Hilbert space H. If
α = (α1, . . . , αm) ∈ Xm is a word of length m, then we shall use the multi-index notation to
indicate the product

Tα := Tα1 . . . Tαm
,

with the convention that T 1 = 1H .
If p(x) =

∑
cαx

α ∈ C〈X〉 is a noncommutative polynomial, then p(T ) refers to the linear
combination of operators p(T ) :=

∑
cαT

α.
We recall that a standard subproduct system (in the case where the base C∗-algebra agrees

with C) is a subproduct system satisfying that Ek+m ⊆ Ek⊗̂Em for all k,m ∈ N and where
the corresponding linear isometry ιk,m : Ek+m → Ek⊗̂Em agrees with the inclusion. We refer
the reader to [36, Lemma 6.1] for more details.

Proposition 1.7 [36, Proposition 7.2]. Let H be an (n + 1)-dimensional Hilbert space with
orthonormal basis {ei}ni=0. Then there is a bijective inclusion-reversing correspondence between
proper homogeneous ideals J ⊆ C〈x0, . . . , xn〉 and standard subproduct systems {Em}m∈N0

with E1 ⊆ H (all structure maps are given by canonical inclusions).

The correspondence works as follows: for a noncommutative polynomial p =
∑

cαx
α ∈

C〈X〉, we write p(e) =
∑

cαeα1 ⊗ . . . ⊗ eαm
. To any proper homogeneous ideal J ⊆ C〈X〉,

we associate the standard subproduct system with fibres EJ
m := H⊗m � {p(e)|p ∈ J (m)}, for

every m � 0, where J (m) denotes the degree m component of the ideal J .
Conversely, given a standard subproduct system of Hilbert spaces {Em}m∈N0 with E1 ⊆

H, we associate to it the proper homogeneous ideal JE = spanC{p ∈ C〈X〉 | ∃m > 0 : p(e) ∈
H⊗m � Em}.

The fact that the two maps are inverses to each other follows from the properties of the
structure maps of a subproduct system outlined in Definition 1.1.

Following [36, Definition 7.3], we refer to EJ and JE as the subproduct system associated
to the ideal J , and the ideal associated to the subproduct system E, respectively.

Note that, while the subproduct system EJ associated to a proper homogeneous ideal J ⊆
C〈X〉 depends on the choice of orthonormal basis for the Hilbert space H, different choices
give rise to isomorphic subproduct systems (cf. [36, Proposition 7.4]).

In this work, we will be considering subproduct systems arising from a homogeneous ideal
generated by a single degree two homogeneous polynomial. From an algebraic viewpoint, these
ideals are examples of the defining ideals for the one-relator quadratic regular Koszul algebras
of global dimension two studied in [41, 42].

2. Subproduct systems from SU(2)-actions

Let τ : SU(2) → U(H) be a unitary representation of the Lie group SU(2) on a finite-
dimensional Hilbert space H.

We shall in this section see how every such representation τ : SU(2) → U(H) gives rise to
an SU(2)-subproduct system of finite-dimensional Hilbert spaces. These subproduct systems
and their associated Cuntz–Pimsner algebras are the main focus of the present paper. To our
knowledge, these Cuntz–Pimsner algebras have so far only been studied in the particular case
where the representation agrees with the fundamental representation of SU(2) on C

2.
In that case, our procedure recovers the symmetric subproduct system on C

2 (cf. [36,
Example 1.3; 40, Example 2.3]).
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Definition 2.1. We define the determinant of H with respect to the representation τ as
the subspace of invariant elements with respect to the diagonal action τ ⊗ τ on the tensor
product H ⊗H:

det(τ,H) = {ξ ∈ H ⊗H | (τ(g) ⊗ τ(g))ξ = ξ ∀g ∈ SU(2)}.

For each m ∈ {2, 3, . . .} and each i ∈ {1, 2, . . . ,m− 1}, we define the unitary representation

Δm(i) : SU(2) → U(H⊗m) Δm(i) := 1⊗(i−1) ⊗ (τ ⊗ τ) ⊗ 1⊗(m−i−1).

We then have the subspace Km(i) ⊆ H⊗m of invariant elements given by

Km(i) := {ξ ∈ H⊗m | Δm(i)(g)(ξ) = ξ, ∀g ∈ SU(2)}, (2.1)

and we consider the vector space span:

Km := spanC

{
ξ | ξ ∈ Km(i) for some i ∈ {1, 2, . . . ,m− 1}} =

m−1∑
i=1

Km(i) ⊆ H⊗m. (2.2)

In particular, we remark that K2 = K2(1) = det(τ,H).
Note that we have the following isomorphisms of vector spaces:

Km = K2 ⊗H⊗(m−2) + H ⊗K2 ⊗H⊗(m−3) + · · · + H⊗(m−2) ⊗K2 ⊆ H⊗m. (2.3)

For each m ∈ N0, we put

Em(τ,H) :=

⎧⎨⎩
K⊥

m ⊆ H⊗m for m � 2
H for m = 1
C for m = 0

.

When the representation τ : SU(2) → U(H) is clear from the context we will suppress it from
the notation and put Em := Em(τ,H).

We record the following:

Lemma 2.2. Let m ∈ {2, 3, . . .}. The diagonal representation

τ⊗m : SU(2) → U(H⊗m)

restricts to a unitary representation of SU(2) on the subspace Em ⊆ H⊗m.

Proof. Since τ⊗m is a unitary representation, it suffices to show that each Km(i) ⊆ H⊗m

is an invariant subspace for τ⊗m. Thus, let ξ ∈ Km(i) for some i ∈ {1, 2, . . . ,m− 1} and let
g, h ∈ SU(2). We then have that

Δm(i)(h)τ(g)⊗m(ξ) =
(
τ(g)⊗(i−1) ⊗ 1⊗2 ⊗ τ(g)⊗(m−i−1)

)
Δm(i)(h)Δm(i)(g)(ξ)

=
(
τ(g)⊗(i−1) ⊗ 1⊗2 ⊗ τ(g)⊗(m−i−1)

)
(ξ) = τ(g)⊗m(ξ).

This proves the lemma. �

For each m � 2, we denote the representation of SU(2) on Em by

τm : SU(2) → U(Em).

Clearly, SU(2) also acts on E1 = H (via the representation τ) and on C (via the trivial
representation).

We consider the sequence E = {Em}∞m=0 of finite-dimensional SU(2)-Hilbert spaces together
with the structure maps ιk,m : Ek+m → Ek ⊗ Em, k,m ∈ N0, induced by the canonical
identification H⊗(k+m) ∼= H⊗k ⊗H⊗m.
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Proposition 2.3. The pair (E, ι) is an SU(2)-subproduct system.

Proof. Consider k,m ∈ N0, we need to verify that Ek+m ⊆ Ek ⊗ Em. We assume that k,m �
2 and leave the remaining (easier) cases to the reader. We recall that El = K⊥

l for all l ∈
{2, 3, . . .}, so we need to show that

K⊥
k+m ⊆ K⊥

k ⊗K⊥
m,

but this is equivalent to showing that

Kk ⊗H⊗m + H⊗k ⊗Km = (K⊥
k ⊗K⊥

m)⊥ ⊆ Kk+m.

The inclusion Kk ⊗H⊗m + H⊗k ⊗Km ⊆ Kk+m is an immediate consequence of the definition
of Kl for l ∈ {2, 3, . . .}, see (2.1) and (2.2).

By definition of the involved SU(2)-actions, we obtain that the inclusions ιk,m : Ek+m →
Ek ⊗ Em are SU(2)-equivariant. �

Remark 1. Note that our subproduct system is by construction isomorphic to the maximal
subproduct system with prescribed fibres E1 = H and E2 := det(τ,H)⊥, as defined in [36,
Section 6.1]. However, the context in [36, Section 6.1] does not in general yield the extra
structure of an SU(2)-subproduct system.

We denote the Fock space of our SU(2)-equivariant subproduct system by

F := F (τ,H) := ⊕∞
m=0Em(τ,H) = ⊕∞

m=0Em

and the associated strongly continuous action of SU(2) on F by

τ∞ := ⊕∞
m=0τm : SU(2) → U(F ). (2.4)

For each m ∈ N0, we recall that the orthogonal projection onto Em ⊆ F is denoted by Qm :
F → F .

We apply the notation

T := T(τ,H) ⊆ L(F ) and O := O(τ,H) := T/K(F ).

for the associated Toeplitz algebra and Cuntz–Pimsner algebra. By the observations carried
out in Section 1, we see that both the Toeplitz algebra and the Cuntz–Pimsner algebra carry
a gauge action of SU(2).

We let Falg ⊆ F denote the algebraic direct sum of the subspaces Em ⊆ F :

Falg := Falg(τ,H) := span{ξ ∈ F | ξ ∈ Em for some m ∈ N0

}
.

We also define F+ ⊆ F as the Hilbert space direct sum

F+ := ⊕∞
m=1Em

and denote the vacuum vector by ω := 1 ∈ E0 = C ⊆ F , so that F+ identifies with the
orthogonal complement (Cω)⊥ ⊆ F . In particular, we have that

F+ = (1 −Q0)F and Cω = Q0F.

Remark 2. Since the Hilbert space H is finite dimensional, it follows from the definition of
the determinant as a subspace of H ⊗H that the correspondence from Proposition 1.7 maps the
generators of det(τ,H) to a finite number of quadratic polynomials. Therefore, our subproduct
system corresponds to an ideal generated by a finite collection of quadratic polynomials, and
this ideal in turn corresponds to a quadratic algebra (through the correspondence described,
for instance, in [30, Chapter 4]).
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It is therefore not surprising that we make use of the identity (2.3) when inductively
constructing our subproduct system: the same formula is used in algebra for realising any
given quadratic algebra as a quotient of the tensor algebra.

2.1. Example: the case of the fundamental representation

We are now going to describe the subproduct system coming from the fundamental
representation ρ : SU(2) → U(C2). We let {f0, f1} denote the standard basis for C

2.
We have that

det(ρ,C2) = C · (f0 ⊗ f1 − f1 ⊗ f0) ⊆ C
2 ⊗ C

2

and thus that

Km(i) = (C2)⊗(i−1) ⊗ C · (f0 ⊗ f1 − f1 ⊗ f0) ⊗ (C2)⊗m−i−1

for all m ∈ {2, 3, . . .} and all i ∈ {1, 2, . . . ,m− 1}. Remark in particular that det(ρ,C2) agrees
with the usual determinant of C

2 namely the wedge-product C
2 ∧ C

2 ⊆ C
2 ⊗ C

2.
Let now m ∈ N. We recall that the m-fold symmetric tensor product of a finite-dimensional

Hilbert space H may be defined as the invariant subspace

H⊗Sm :=
{
ξ ∈ H⊗m | σ(ξ) = ξ ∀σ ∈ Sm

}
,

where the symmetric group Sm acts unitarily on H⊗m via the rule

Φσ(ξ1 ⊗ ξ2 ⊗ . . .⊗ ξm) := ξσ−1(1) ⊗ ξσ−1(2) ⊗ . . .⊗ ξσ−1(m).

In particular, we have the identity of vector spaces

(C2)⊗Sm = Em(ρ,C2).

This follows from the Clebsch–Gordan theory for the representations of SU(2) (cf. [20,
Appendix C]) and from the properties of the symmetric subproduct system [36, Examples
1.3, 6.4].

For each m ∈ N, we define the vectors

fk
0 f

m−k
1 := pm(f⊗k

0 ⊗ f
⊗(m−k)
1 ), k = 0, . . . ,m,

where pm : (C2)⊗m → (C2)⊗m denotes the orthogonal projection onto the symmetric tensor
product (C2)⊗Sm ⊆ (C2)⊗m. The vectors {fk

0 f
m−k
1 , k = 0, . . . ,m} form an orthogonal vector

space basis for Em(ρ,C2) and their norm is given by the combinatorial expression

‖fk
0 f

m−k
1 ‖2 =

k!(m− k)!
m!

(2.5)

as described in [5, Lemma 3.8].
Due to the identification between symmetric tensors and homogeneous polynomials, we

obtain a unitary isomorphism between the resulting Fock space F (ρ,C2) and the Drury–
Arveson space H2

2 , see [5, 17, 35].
On our Fock space, we introduce the unbounded selfadjoint operator N : Dom(N) →

F (ρ,C2) defined by N(ξ) = m · ξ for every homogeneous ξ ∈ Em. The domain of N is given
explicitly by

Dom(N) :=
{{ξm}∞m=0 ∈ F | {m · ξm}∞m=0 ∈ F

}
.

The unbounded selfadjoint operator N is referred to as the number operator.
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Theorem 2.4 (cf. [5, Proposition 5.3; 36, Example 6.4]). The Toeplitz algebra T(ρ,C2)
associated to the fundamental representation is the C∗-subalgebra of L(F ) generated by the
two operators T0 := Tf0 and T1 := Tf1 . These satisfy the commutation relations

T0T1 = T1T0, (2.6)

T ∗
0 T0 + T ∗

1 T1 = (2 + N)(1 + N)−1, (2.7)

T ∗
i Tj − TjT

∗
i = (1 + N)−1(δij1 − TjT

∗
i ). (2.8)

In other words, the pair of operators (T0, T1) is a commuting, essentially normal row
contraction. We remark that the two operators also satisfy T0T

∗
0 + T1T

∗
1 = 1 −Q0, that is,

the contraction is pure.

Theorem 2.5 [5, Theorem 5.7]. The Toeplitz algebra T(ρ,C2) contains the algebra of
compact operators on the Drury–Arveson space H2

2 , and we have an exact sequence of C∗-
algebras

(2.9)

where C(S3) is the commutative C∗-algebra of continuous functions on the 3-sphere S3 ⊆ C
2.

In particular, we have that the Cuntz–Pimsner algebra O(ρ,C2) is isomorphic to C(S3).

The above Toeplitz extension is well studied and understood (see, for instance, [29] for an
index-theoretic perspective on Toeplitz extensions). Moreover, the Toeplitz algebra is known
to be KK-equivalent to the complex numbers. We are going to prove that this is a general
feature of the Toeplitz algebras of the SU(2)-subproduct systems constructed from irreducible
SU(2)-representations.

2.2. Computation of determinants

We now provide a computation of the subspace det(τ,H) ⊆ H ⊗H, starting with the case
where the representation τ : SU(2) → U(H) is irreducible. Recall from [20, Example 4.10,
Proposition 4.11] that for every fixed positive integer, there exists a unique irreducible
representation of the group SU(2) on an complex vector space of that dimension. Uniqueness
follows from the orthogonality relations for characters of representations [9, Proposition 5.3].

In what follows, we will disregard the case where τ is (unitarily equivalent to) the trivial
representation on C. We put n := dim(H) − 1 ∈ N and we let Ln = (C2)⊗Sn denote the n-fold
symmetric tensor product C

2. We let ρn : SU(2) → U(Ln) denote the irreducible representation
obtained by restriction of the n-fold tensor product of the fundamental representation. For each
k ∈ {0, 1, . . . , n}, we define the unit vector

ek :=

√
n!

k!(n− k)!
· fk

0 f
n−k
1 ∈ Ln, (2.10)

so that {ek}nk=0 is an orthonormal basis for Ln, see Subsection 2.1.

Proposition 2.6. Suppose that τ : SU(2) → U(H) is irreducible and let V : Ln → H be
a unitary operator intertwining τ with ρn. Then the determinant det(τ,H) ⊆ H ⊗H is a
one-dimensional vector space spanned by the vector

(V ⊗ V )

(
(n + 1)−1/2

n∑
k=0

(−1)n−kek ⊗ en−k

)
.
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Proof. Using the representation theory for SU(2), we know that we may find a unitary
operator W from ⊕n

m=0L2m to Ln ⊗ Ln intertwining the representations ⊕n
m=0ρ2m and ρn ⊗ ρn.

The structure of this unitary operator is determined by the Clebsch–Gordan coefficients and
on L0 = C, it is given by

W (1) = (n + 1)−1/2
n∑

k=0

(−1)n−kek ⊗ en−k =
n∑

k,l=0

C0,0
n/2,k−n/2,n/2,l−n/2 · ek ⊗ el,

with C0,0
n/2,k−n/2,n/2,l−n/2 denoting the Clebsch–Gordan coefficients, as described, for instance,

in [37]. �

Remark 3. Going back to the correspondence described in Subsection 1.1, the homo-
geneous ideal associated to the subproduct system of the irreducible representation ρn :
SU(2) → U(Ln) is the proper homogeneous ideal in the free algebra on (n + 1) generators
C〈x0, . . . , xn〉 generated by the single degree two homogeneous polynomial p(x0, . . . , xn) =∑n

i=0(−1)ixixn−i.

In the more general case where τ : SU(2) → U(H) need not be irreducible, we choose a
unitary operator V :

⊕∞
m=0 L

⊕km
m → H intertwining the representations

⊕∞
m=0 ρ

⊕km
m and τ ,

where km ∈ N0 for all m ∈ N0 and we identify L⊕0
n with {0}. Of course, since H is finite

dimensional, there exists an M ∈ N0 such that km = 0 for all m � M .

Proposition 2.7. The determinant det(τ,H) ⊆ H ⊗H has dimension
∑∞

m=0 k
2
m and is

unitarily isomorphic to the Hilbert space

∞⊕
m=0

det(ρm, Lm)⊕k2
m ⊆

∞⊕
m=0

(Lm ⊗ Lm)⊕k2
m

via the isometry ⊕∞
m=0(Lm ⊗ Lm)⊕k2

m ∼= ⊕∞
m=0(L

⊕km
m ⊗ L⊕km

m ) ι−→ H ⊗H,

where ι is defined in degree m by ι(ξm ⊗ ηm) := V (ξmδm) ⊗ V (ηmδm).

Proof. Using the unitary operator V : ⊕∞
m=0L

⊕km
m → H. we identify H ⊗H with(⊕∞

m=0L
⊕km
m

)⊗ (
⊕∞

l=0L
⊕kl

l

) ∼= ⊕∞
m,l=0(Lm ⊗ Ll)⊕km·kl .

Under this unitary isomorphism the representation τ ⊗ τ identifies with the representation
⊕∞

m,l=0(ρm ⊗ ρl)⊕km·kl . Since the tensor product of representations ρm ⊗ ρl contains no
copy of the trivial representation for m �= l, the determinant in question identifies with
⊕∞

m=0 det(ρm, Lm)⊕k2
m . The claim concerning the dimension of the determinant now follows

immediately from Proposition 2.6. �

3. Fusion rules for an SU(2)-equivariant subproduct system

From now on, we fix a strictly positive integer n ∈ N and consider the irreducible representation
ρn : SU(2) → U(Ln). We write {ek}nk=0 for the orthonormal basis for the Hilbert space Ln =
(C2)⊗Sn introduced in (2.10). We put

D := det(ρn, Ln) ⊆ Ln ⊗ Ln
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so that D is a one-dimensional vector space spanned by the unit vector

δ :=
1√
n + 1

·
n∑

k=0

(−1)kek ⊗ en−k ∈ D, (3.1)

as shown in Proposition 2.6.
We have an associated sequence of finite-dimensional Hilbert spaces {Em}∞m=0 :=

{Em(ρn, Ln)}∞m=0 defined as in Section 2. Each of these Hilbert spaces carries a unitary
representation of SU(2) which in degree m ∈ N0 is induced by the tensor product ρ⊗m

n : L⊗m
n →

L⊗m
n . We emphasise that these representations are in general not irreducible (unless n = 1, in

which case each Em agrees with the unique irreducible (m + 1)-dimensional representation
space Lm).

The main result of this section is the following orthogonal decomposition of the tensor
products:

Theorem 3.1. For each k, l ∈ N0, there exists an explicit SU(2)-equivariant unitary
isomorphism

Ek ⊗ El
∼= Ek+l ⊕ Ek+l−2 ⊕ . . .⊕ E|k−l|.

We view Theorem 3.1 as an expression of the fusion rules for our SU(2)-equivariant
subproduct system. Moreover, for n > 1, one may interpret Theorem 3.1 as a non-irreducible
solution to the fusion rules of SU(2). For n = 1, we exactly recover the (irreducible) fusion
rules of SU(2) (see, for instance [14]). The fusion rules presented in Theorem 3.1 play a key
role in our later computation of the K-theory of the Toeplitz algebra T(ρn, Ln).

For every k,m ∈ N0, we remind the reader of the notation

ιk,m : Ek+m → Ek ⊗ Em and pk,m := ιk,mι∗k,m : Ek ⊗ Em → Ek ⊗ Em

for the inclusion and the associated orthogonal projection.

3.1. Preliminaries on integer sequences

We consider the sequence of strictly positive integers {dm}∞m=0 defined recursively by the
formula:

d0 := 1, d1 := n + 1, dm := d1 · dm−1 − dm−2, m � 2. (3.2)

We furthermore put d−1 := 0. These sequences are well studied and understood and we refer
the reader to the Online Encyclopaedia of Integer Sequences [31], where examples are given.

Later on, in Lemma 3.6, we shall see that dm = dim(Em) for all m ∈ N0. Towards this goal,
we start out by summarising various identities involving the numbers dm ∈ N, m ∈ N0.

Lemma 3.2. Let m, k, l ∈ N0. We have the identities

d2
m − dm−1dm+1 = 1 and

l∑
i=0

dk+m+2i = dk+ldm+l − dk−1dm−1.

Proof. For the convenience of the reader, we provide a proof of the second of the two
identities. The proof runs by induction on l ∈ N0 but the only tricky part is the induction
start. So suppose that l = 0. We shall prove by induction on m ∈ N0 that

dk+m = dkdm − dk−1dm−1, (3.3)
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whenever k ∈ N0 is fixed. For m = 0, 1, there is nothing to prove, so supposing that the identity
in (3.3) is verified for all m ∈ {0, 1, . . . ,m0} for some m0 ∈ N, we compute that

dk+m0+1 = dk+m0d1 − dk+m0−1 = (dkdm0 − dk−1dm0−1)d1 − dkdm0−1 + dk−1dm0−2

= dk(dm0d1 − dm0−1) − dk−1(dm0−1d1 − dm0−2) = dkdm0+1 − dk−1dm0 .

This proves the lemma. �

We remind the reader that n ∈ N, that is, we are excluding the case of the trivial
representation. This is essential for our results, which do not hold for n = 0.

Lemma 3.3. The sequence of quotients {dm−1/dm}∞m=0 is strictly increasing and converges
to the limit γn = (n + 1 −√

(n + 1)2 − 4)/2 ∈ (0, 1].

Proof. We first remark that dm+1 > dm for all m ∈ N0, and hence that dm+1 � m + 1
(because d0 = 1). Indeed, assuming that dm > dm−1 for some m ∈ N, we obtain that

dm+1 − dm = dm · n− dm−1 > dm−1 · (n− 1) � 0,

since n ∈ N by our standing assumptions. The claimed result now follows by induction (remark
that the assumption n ∈ N translates into the strict inequality d1 > d0.

We also observe that Lemma 3.2 implies

dm−1

dm
=

m∑
j=1

(
dj−1

dj
− dj−2

dj−1

)
=

m∑
j=1

1
dj−1dj

.

This shows that our sequence is strictly increasing and moreover, our lower bound on the
dimensions imply that the infinite sum

∑∞
j=1 1/(dj−1dj) converges.

In order to compute the limit γn, we apply (3.2) to see that

dm−1

dm
=

dm + dm−2

dmd1
=

1
d1

+
dm−2

d1dm
=

1
n + 1

+
1

n + 1
· dm−2

dm
,

for all m ∈ N, implying by taking limits that

γn =
1

n + 1
+

1
n + 1

· γ2
n.

The above quadratic equation has only one solution in the interval (0,1], which yields

γn =
n + 1 −√

(n + 1)2 − 4
2

. (3.4)

This proves the claim. �

Remark 4. Note that dm agrees with the number of length m words in the alphabet
{0, 1, 2, . . . , n} that do not contain the string (0, n) (cf. [21, Corollary 37]). In particular, our
sequences are an example of cardinality sequences of word systems: due to [18, Proposition 3.2],
for every finite-dimensional subproduct systems of Hilbert spaces {Hm}m∈N0 , there exists a
word system {Xm}m∈N0 such that dim(Hm) = |Xm| for all m ∈ N0 (see also [3, Lemma 1.1] for
a noncommutative algebraic version of this claim). However, the subproduct system associated
to the word system described above is, in general, not isomorphic to the original one.

For n � 2, the constant γn in (3.4) equals the Perron–Frobenius eigenvalue of the (n + 1) ×
(n + 1)-matrix with all entries equal to 1 and except for a single 0 in position (1, n + 1). See,
for instance, [27, Observation 1.4.2]. For n = 1, we cannot use the Perron–Frobenius theory
because the matrix associated to the set of words in the alphabet is not an irreducible one.
Still the above ratio converges to the highest eigenvalue of said 2 × 2-matrix.
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To end this subsection, we define the strictly positive integers

μm :=
dmdm−1

d1
, m ∈ N. (3.5)

Using the recursive definition (3.2), it can be verified that the sequences {μm}∞m=1 and
{dm}∞m=0 are connected via the identity

d2
m = μm + μm+1 , m ∈ N. (3.6)

This can be used to prove that the sequence {μm}∞m=1 can also be obtained using the recurrence
relation

μm+1 = ((n + 1)2 − 2)μm − μm−1 + 1, μ1 = 1, μ2 = (n + 1)2 − 1. (3.7)

For n = 1, 2, 3, we recover known combinatorial sequences, see [31], but at the moment of
writing this paper, the sequences {μm}∞m=1 for n � 4 were not listed in the OEIS.

3.2. Decomposing tensor products by E1 from the right

We start out by proving the decomposition result in Theorem 3.1 in the case where the second
representation space is just E1. Thus, for every m ∈ N, we are going to show that Em ⊗ E1

∼=
Em+1 ⊕ Em−1 via an SU(2)-equivariant unitary.

We recall that K2 = C · δ and for every m � 2, we have that

Km =
m−2∑
i=0

L⊗i
n ⊗K2 ⊗ L⊗(m−2−i)

n .

We also put K1 = K0 := {0} and define Em = K⊥
m ⊆ L⊗m

n for all m ∈ N0. As in Definition 1.1,
we denote the identity operator on the Hilbert space Em, with the symbol 1m.

We recursively define a linear map Gm : Em−1 → Km+1 for each m ∈ N:

G1(1) := δ , Gm := Gm−1 ⊗ 1 + (−1)(n+1)(m−1)dm−1 · 1m−1 ⊗G1 for m � 2, (3.8)

where we are suppressing the inclusion ιm−2,1 : Em−1 → Em−2 ⊗ E1 and the obvious identifi-
cation ιm−1,0 : Em−1

∼=−→ Em−1 ⊗ E0.

Lemma 3.4. Let m ∈ N. The linear map Gm : Em−1 → Km+1 is equivariant meaning that

ρ⊗(m+1)
n (g)Gm = Gmρ⊗(m−1)

n (g) for all g ∈ SU(2).

Proof. The proof runs by induction on m ∈ N. The case where m = 1 holds since
ρn(g)⊗2(δ) = δ = G1(1). Suppose now that the equivariance condition holds for some m ∈ N.
For ξ ∈ Em, the recursive definition of the maps Gm in (3.8) implies

ρ⊗(m+2)
n (g)Gm+1(ξ) = ρ⊗(m+2)

n (g)(Gm ⊗ 1)(ξ) + (−1)(n+1)mdm · ρ⊗(m+2)
n (g)(ξ ⊗ δ)

= (Gm ⊗ 1)ρ⊗m
n (g)(ξ) + (−1)(n+1)mdm · ρ⊗m

n (g)(ξ) ⊗ δ

= Gm+1ρ
⊗m
n (g)(ξ).

This proves the lemma. �

Lemma 3.5. Let m ∈ N. We have:

(i) 〈(Gm ⊗ 1)(ξ), η ⊗ δ〉 = (−1)(n+1)m+1 dm−1
d1

· 〈ξ, η〉 for all ξ ∈ Em−1 ⊗ E1, η ∈ Em;
(ii) 〈Gm(ξ), Gm(η)〉 = μm · 〈ξ, η〉 for all ξ, η ∈ Em−1;
(iii) 〈(Gm ⊗ 1)(ξ), Gm+1(η)〉 = 0 for all ξ ∈ Em−1 ⊗ E1, η ∈ Em.
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Proof. (1) We focus on the case where m � 2. Let ξ =
∑n

j=0 ξj ⊗ ej ∈ Em−1 ⊗ E1 and η ∈
Em be given. We compute that

〈
(Gm ⊗ 1)(ξ), η ⊗ δ

〉
=

n∑
j=0

〈
Gm(ξj) ⊗ ej , η ⊗ δ

〉

=
n∑

j=0

〈
(Gm−1 ⊗ 1)(ξj) ⊗ ej , η ⊗ δ

〉

+ (−1)(n+1)(m−1)dm−1 ·
n∑

j=0

〈ξj ⊗ δ ⊗ ej , η ⊗ δ〉

= (−1)(n+1)(m−1)dm−1 ·
n∑

j=0

(−1)n

n + 1
· 〈ξj ⊗ ej ⊗ en−j ⊗ ej , η ⊗ en−j ⊗ ej〉

= (−1)(n+1)m+1 dm−1

d1
· 〈ξ, η〉,

where the third identity follows from the structure of the vector δ = 1√
n+1

·∑n
j=0(−1)jej ⊗

en−j and from the inclusion Im(Gm−1) ⊆ Km = E⊥
m.

(2) The proof runs by induction on m ∈ N. For m = 1, the result follows since 〈δ, δ〉 = 1.
Next, given m � 1 we assume that (2) holds and for ξ, η ∈ Em, we then compute that〈

Gm+1(ξ), Gm+1(η)
〉

=
〈
(Gm ⊗ 1)(ξ), (Gm ⊗ 1)(η)

〉
+ d2

m · 〈ξ ⊗ δ, η ⊗ δ〉

+ (−1)(n+1)mdm ·
(〈

(Gm ⊗ 1)(ξ), η ⊗ δ
〉

+
〈
ξ ⊗ δ, (Gm ⊗ 1)(η)

〉)
= μm · 〈ξ, η〉 + d2

m · 〈ξ, η〉

+ (−1)(n+1)mdm · (−1)(n+1)m+1 dm−1

d1
· 2〈ξ, η〉

= μm · 〈ξ, η〉 + d2
m · 〈ξ, η〉 − 2

dmdm−1

d1
· 〈ξ, η〉

= (d2
m − μm) · 〈ξ, η〉 = μm+1 · 〈ξ, η〉,

where the second identity follows from the induction hypothesis and (1) and the fifth identity
follows from (3.6).

(3) Let ξ ∈ Em−1 ⊗ E1 and η ∈ Em be given. Using (1) and (2), we compute that〈
(Gm ⊗ 1)(ξ), Gm+1(η)

〉
=

〈
(Gm ⊗ 1)(ξ), (Gm ⊗ 1)(η)

〉
+ (−1)(n+1)mdm · 〈(Gm ⊗ 1)(ξ), η ⊗ δ

〉
= μm · 〈ξ, η〉 − dmdm−1

d1
· 〈ξ, η〉 = 0.

This proves the lemma. �
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Lemma 3.6. The vector space sum yields a unitary isomorphism of Hilbert spaces

(Km ⊗ E1) ⊕Gm(Em−1) ∼= Km+1,

for all m � 1.

Proof. For m = 1, the vector space decomposition follows immediately from the identities
G1(E0) = C · δ = K2 and K1 = {0}.

Suppose thus that m � 2. We start out by proving that the vector space sum yields a
surjective map from (Km ⊗ E1) ⊕Gm(Em−1) to Km+1 or, in other words, that Km+1 = (Km ⊗
E1) + Gm(Em−1). Let thus ξ ∈ Km+1 be given. Remark that

Km+1 = Km ⊗ E1 + E
⊗(m−1)
1 ⊗K2 = Km ⊗ E1 + Km−1 ⊗K2 + Em−1 ⊗K2

= Km ⊗ E1 + Em−1 ⊗K2.

We may therefore choose η ∈ Km ⊗ E1 and ζ ∈ Em−1 such that ξ = η + ζ ⊗ δ. Using (3.8), we
then obtain that

ξ = η +
(−1)(n+1)(m−1)

dm−1
· (Gm(ζ) − (Gm−1 ⊗ 1)(ζ))

Since Im(Gm−1) ⊆ Km, this proves the surjectivity claim.
To prove that the Hilbert space direct sum in question is isometrically isomorphic to Km+1,

we apply induction on m � 1. The case m = 1 has already been discussed, so suppose that
the vector space sum yields an isometry for some m � 1 and let η ∈ Km+1 ⊗ E1 and ζ ∈ Em

be given. We need to show that 〈η,Gm+1(ζ)〉 = 0. By the surjectivity part, we may find ξ ∈
Km ⊗ E1 ⊗ E1 and ρ ∈ Em−1 ⊗ E1 such that η = ξ + (Gm ⊗ 1)(ρ). By Lemma 3.5 part (3),
the induction hypothesis, and the fact that Km = E⊥

m, we then have the identities〈
η,Gm+1(ζ)

〉
=

〈
ξ,Gm+1(ζ)

〉
+
〈
(Gm ⊗ 1)(ρ), Gm+1(ζ)

〉
=

〈
ξ,Gm+1(ζ)

〉
=

〈
ξ, (Gm ⊗ 1)(ζ)

〉
+ (−1)(n+1)mdm · 〈ξ, ζ ⊗ δ

〉
= 0.

This proves the lemma. �

Lemma 3.7. We have dim(Em) = dm for all m ∈ N0.

Proof. This is a consequence of Lemma 3.6, yielding the following identities of dimensions:

dim(Em+1) = (n + 1)m+1 − dim(Km+1)

= (n + 1)m+1 − (n + 1) · dim(Km) − dim(Em−1)

= (n + 1) · dim(Em) − dim(Em−1).

Since d0 = dim(E0) and d1 = dim(E1) and since the sequences {dm}∞m=0 and {dim(Em)}∞m=0

satisfy the same recursion formula, they must necessarily agree. �

Remark 5. Note that a subproduct system of Hilbert spaces {Em}m∈N0 is called
commutative if the corresponding Fock space is a subspace of the symmetric Fock space on E1

or, equivalently, if Em ⊆ E⊗Sm
1 for all m ∈ N0. It follows from Lemma 3.7 that our subproduct

systems are noncommutative for every n > 1, as we have dim(E2) = (n + 1)2 − 1 >
(
n+2

2

)
=

dim((Cn+1)⊗S2).
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Lemma 3.6 has the important consequence that the image of Gm : Em−1 → Km+1 is in fact
equal to the intersection Km+1 ∩ (Em ⊗ E1). Moreover, Lemma 3.5 implies that the induced
SU(2)-equivariant linear map

Vm :=
(−1)(n+1)(m−1)

√
μm

·Gm : Em−1 → Em ⊗ E1 (3.9)

is an isometry for all m � 1. We have therefore established the announced main result of this
subsection:

Proposition 3.8. Let m ∈ N. The linear map(
ιm,1 Vm

)
: Em+1 ⊕ Em−1 → Em ⊗ E1

is an SU(2)-equivariant unitary isomorphism.

3.3. Decomposing tensor products by E1 from the left

The result of Proposition 3.8 provides us with an SU(2)-equivariant unitary isomorphism
Em+1 ⊕ Em−1 → E1 ⊗ Em, for every m ∈ N0, obtained by composing (ιm,1 Vm) with the
flip map Em ⊗ E1 → E1 ⊗ Em. In this subsection, we shall provide an alternative SU(2)-
equivariant unitary isomorphism Em+1 ⊕ Em−1 → E1 ⊗ Em, where the relevant isometry
Em−1 → E1 ⊗ Em is given by a recursive formula which is similar to (3.8). This alternative
SU(2)-equivariant unitary isomorphism will play an essential role in the rest of our work, as
one of the building blocks for our proof of the KK-equivalence between the Toeplitz algebra
and the complex numbers.

We define the linear maps G′
m : Em−1 → Km+1, m ∈ N0, recursively by the formulae

G′
1(1) := δ , G′

m := 1 ⊗G′
m−1 + (−1)(n+1)(m−1)dm−1 ·G′

1 ⊗ 1m−1 , m � 2, (3.10)

where the vector δ ∈ K2 and the constant dm−1 are defined in (3.1) and (3.2).
Again, note that we are suppressing the inclusion ι1,m−2 : Em−1 → E1 ⊗ Em−2 (for m � 2)

and the obvious identification ι0,m−1 : Em−1

∼=−→ E0 ⊗ Em−1.

Lemma 3.9. Let m ∈ N. The linear map G′
m : Em−1 → Km+1 is equivariant meaning that

ρ⊗(m+1)
n (g)G′

m = G′
mρ⊗(m−1)

n (g) for all g ∈ SU(2).

Proof. The proof runs by induction on m ∈ N, using the same argument as in the proof of
Lemma 3.4. �

Lemma 3.10. Let m ∈ N. We have the identities:

(i) 〈(1 ⊗G′
m)(ξ), δ ⊗ η〉 = (−1)(n+1)m+1 dm−1

d1
· 〈ξ, η〉 for all ξ ∈ E1 ⊗ Em−1, η ∈ Em;

(ii) 〈G′
m(ξ), G′

m(η)〉 = μm · 〈ξ, η〉 for all ξ, η ∈ Em−1;
(iii) 〈(1 ⊗G′

m)(ξ), G′
m+1(η)〉 = 0 for all ξ ∈ E1 ⊗ Em−1, η ∈ Em.

Proof. The proof follows the proof of Lemma 3.5 verbatim. �

Lemma 3.11. For each m ∈ N, the vector space sum yields a unitary isomorphism of Hilbert
spaces

(E1 ⊗Km) ⊕G′
m(Em−1) ∼= Km+1.

Proof. The proof is mutatis mutandis the same as the proof of Lemma 3.6. �
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In analogy with the previous subsection, we obtain from Lemma 3.11 that the image of G′
m

agrees with the intersection Km+1 ∩ (E1 ⊗ Em) and, moreover, we see from Lemma 3.10 that
the induced SU(2)-equivariant linear map

V ′
m :=

(−1)(n+1)(m−1)

√
μm

·G′
m : Em−1 → E1 ⊗ Em (3.11)

is an isometry for all m � 1. We announce the following:

Proposition 3.12. Let m ∈ N. The linear map(
ι1,m V ′

m

)
: Em+1 ⊕ Em−1 → E1 ⊗ Em

is an SU(2)-equivariant unitary isomorphism.

3.4. Orthogonal decomposition of tensor products of representations

As we saw in Lemmas 3.6 and 3.11, we may change the codomains of the linear maps defined
in (3.8) and (3.10) and instead consider the SU(2)-equivariant linear maps

Gm : Em−1 → Em ⊗ E1 and G′
m : Em−1 → E1 ⊗ Em

for all m ∈ N. These linear maps then satisfy the recursive relations

(ιm−1,1 ⊗ 1) ◦Gm = (Gm−1 ⊗ 1) ◦ ιm−2,1 + (−1)(n+1)(m−1)dm−1 · 1m−1 ⊗G1 and

(1 ⊗ ι1,m−1) ◦G′
m = (1 ⊗G′

m−1) ◦ ι1,m−2 + (−1)(n+1)(m−1)dm−1 ·G′
1 ⊗ 1m−1

(3.12)

for all m � 2. We recall that G′
1(1) = G1(1) = δ, where the unit vector δ ∈ K2 was introduced

in (3.1).
For every k,m ∈ N0, we introduce the SU(2)-equivariant linear map

σk,m : Ek ⊗ Em → Ek+1 ⊗ Em+1 σk,m := (1k+1 ⊗ ι∗1,m)(Gk+1 ⊗ 1m). (3.13)

For k = −1 or m = −1, we put σk,m := 0 : {0} → Ek+1 ⊗ Em+1. These linear maps are going
to play a key role in establishing the main result of this section, namely the fusion rules for
our SU(2)-equivariant subproduct system as announced in Theorem 3.1. Before we can study
these maps in more detail, we need a few preliminary lemmas.

Lemma 3.13. Let m ∈ N. We have

Gm = (−1)(n+1)(m−1)dm−1 · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗G1) and

G′
m = (−1)(n+1)(m−1)dm−1 · (1 ⊗ ι∗1,m−1)(G1 ⊗ 1m−1).

Proof. We focus on proving the claim for Gm : Em−1 → Em ⊗ E1. To this end, we compute
that

Gm = (ι∗m−1,1ιm−1,1 ⊗ 1)Gm

= (ι∗m−1,1 ⊗ 1)(Gm−1 ⊗ 1)ιm−2,1

+ (−1)(n+1)(m−1)dm−1 · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗G1)

= (−1)(n+1)(m−1)dm−1 · (ι∗m−1,1 ⊗ 1)(1m−1 ⊗G1),

where the last identity follows from Im(Gm−1) = Km ∩ (Em−1 ⊗ E1) and from the fact
that ιm−1,1ι

∗
m−1,1 : Em−1 ⊗ E1 → Em−1 ⊗ E1 is the orthogonal projection onto the subspace

Em = K⊥
m. �
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Lemma 3.14. Let m ∈ N. We have

ι∗m−1,1 = (−1)(n+1)m+1 d1

dm−1
· (1m ⊗G∗

1)(Gm ⊗ 1) : Em−1 ⊗ E1 → Em,

ι∗1,m−1 = (−1)(n+1)m+1 d1

dm−1
· ((G′

1)
∗ ⊗ 1m)(1 ⊗G′

m) : E1 ⊗ Em−1 → Em.

Proof. We focus on proving the claim for ι∗m−1,1 : Em−1 ⊗ E1 → Em. Using Lemmas 3.10
(1) and 3.13, we obtain that

(−1)(n+1)m+1 d1

dm−1
· (1m ⊗G∗

1)(Gm ⊗ 1)

= (−1)nd1 · (1m ⊗G∗
1)(ι

∗
m−1,1 ⊗ 1 ⊗ 1)(1m−1 ⊗G1 ⊗ 1)

= (−1)nd1 · ι∗m−1,1(1m−1 ⊗ 1 ⊗G∗
1)(1m−1 ⊗G1 ⊗ 1) = ι∗m−1,1. �

Lemma 3.15. Let m ∈ N. We have

pm−1,1 = 1m−1 ⊗ 1 + (−1)(n+1)m+1 d1

dm−1
· (Gm−1 ⊗G∗

1)(ιm−2,1 ⊗ 1)

: Em−1 ⊗ E1 → Em−1 ⊗ E1 and

p1,m−1 = 1 ⊗ 1m−1 + (−1)(n+1)m+1 d1

dm−1
(G∗

1 ⊗G′
m−1)(1 ⊗ ι1,m−2)

: E1 ⊗ Em−1 → E1 ⊗ Em−1.

Proof. We focus on the orthogonal projection pm−1,1 : Em−1 ⊗ E1 → Em−1 ⊗ E1. Using
Lemma 3.5 (1), Lemma 3.14, and the recursive relation from (3.12), we compute that

pm−1,1 = ιm−1,1ι
∗
m−1,1

= (−1)(n+1)m+1 d1

dm−1
· (1m−1 ⊗ 1 ⊗G∗

1)(ιm−1,1 ⊗ 1 ⊗ 1)(Gm ⊗ 1)

= (−1)(n+1)m+1 d1

dm−1
· (Gm−1 ⊗G∗

1)(ιm−2,1 ⊗ 1)

+ (−1)(n+1)m+1 d1

dm−1
· (−1)(n+1)(m−1)dm−1 · (1m−1 ⊗ 1 ⊗G∗

1)(1m−1 ⊗G1 ⊗ 1)

= (−1)(n+1)m+1 d1

dm−1
· (Gm−1 ⊗G∗

1)(ιm−2,1 ⊗ 1) + 1m−1 ⊗ 1.
�

Proposition 3.16. Let k,m ∈ N0. We have the identity

σ∗
k,mσk,m =

dkdk+m+1

d1dm
· 1k ⊗ 1m +

dkdm−1

dk−1dm
· σk−1,m−1σ

∗
k−1,m−1

: Ek ⊗ Em → Ek ⊗ Em.

(3.14)
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Proof. We focus on the case where k,m ∈ N. Using Lemmas 3.5 and 3.15, we see that

σ∗
k,mσk,m = (Gk+1 ⊗ 1m)∗(1k+1 ⊗ p1,m)(Gk+1 ⊗ 1m)

= μk+1 · 1k ⊗ 1m

+ (−1)(n+1)m+n d1

dm
· (Gk+1 ⊗ 1m)∗(1k+1 ⊗G∗

1 ⊗G′
m)(Gk+1 ⊗ ι1,m−1).

We continue by analysing the second term in this sum by applying Lemma 3.13 and the
recursive relation from (3.12):

(−1)(n+1)m+n d1

dm
· (Gk+1 ⊗ 1m)∗(1k+1 ⊗G∗

1 ⊗G′
m)(Gk+1 ⊗ ι1,m−1)

= (−1)(n+1)(m+k)+n d1dk
dm

· (1k ⊗G∗
1 ⊗ 1m)(1k ⊗ 1 ⊗G∗

1 ⊗G′
m)

◦ (ιk,1 ⊗ 1 ⊗ ι1,m−1)(Gk+1 ⊗ 1m)

= (−1)(n+1)(m+k)+n d1dk
dm

· (1k ⊗G∗
1 ⊗ 1m)(Gk ⊗G∗

1 ⊗G′
m)(ιk−1,1 ⊗ ι1,m−1)

+ (−1)(n+1)m+n d1d
2
k

dm
· (1k ⊗G∗

1 ⊗ 1m)(1k ⊗ 1 ⊗G∗
1 ⊗G′

m)(1k ⊗G1 ⊗ ι1,m−1).

(3.15)

Using Lemmas 3.13 and 3.14, we then obtain that the first term in the above sum is given by

(−1)(n+1)(m+k)+n d1dk
dm

· (1k ⊗G∗
1 ⊗ 1m)(Gk ⊗G∗

1 ⊗G′
m)(ιk−1,1 ⊗ ι1,m−1)

= (−1)(n+1)(k+1) dkdm−1

dm
· (1k ⊗ ι∗1,m−1)(Gk ⊗G∗

1 ⊗ 1m−1)(ιk−1,1 ⊗ ι1,m−1)

=
dkdm−1

dmdk−1
· σk−1,m−1σ

∗
k−1,m−1,

corresponding to the second term in (3.14) (in the case where k,m ∈ N). We continue with the
remaining term in (3.15) and apply Lemma 3.10, Lemma 3.14:

(−1)(n+1)m+n d1d
2
k

dm
· (1k ⊗G∗

1 ⊗ 1m)(1k ⊗ 1 ⊗G∗
1 ⊗G′

m)(1k ⊗G1 ⊗ ι1,m−1)

= (−1)(n+1)m d2
k

dm
· (1k ⊗G∗

1 ⊗ 1m)(1k ⊗ 1 ⊗G′
m)(1k ⊗ ι1,m−1)

= −d2
kdm−1

d1dm
· 1k ⊗ 1m.

The result of the proposition now follows by an application of Lemma 3.2 in the case where
l = 0, yielding that

μk+1 − d2
kdm−1

d1dm
=

dkdk+m+1

d1dm
. �

The following lemmas contain further properties of the operators σk,m : Ek ⊗ Em → Ek+1 ⊗
Em+1, k,m ∈ N0. For ease of notation, we omit the subscripts.
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Lemma 3.17. Let k,m ∈ N0 and j ∈ N. We have the identity

σ∗σj = μk+j ·
(

1 − dkdm−1

dk+jdm+j−1

)
· σj−1 +

dm−1dk+j−1

dk−1dm+j−1
· σjσ∗

: Ek ⊗ Em → Ek+j−1 ⊗ Em+j−1.

Proof. Applying Proposition 3.16, we obtain by induction on j ∈ N that

σ∗σj =
dk+j−1(dk+m+2j−1 + dk+m+2j−3 + · · · + dk+m+1)

d1dm+j−1
σj−1

+
dk+j−1dm−1

dk−1dm+j−1
σjσ∗.

The result of the present lemma then follows by an application of Lemma 3.2:

dk+j−1(dk+m+2j−1 + dk+m+2j−3 + · · · + dk+m+1)
d1dm+j−1

=
dk+j−1(dk+jdm+j−1 − dkdm−1)

d1dm+j−1
= μk+j ·

(
1 − dkdm−1

dk+jdm+j−1

)
. �

Lemma 3.18. Let k,m ∈ N0 and j ∈ N. We have the identities

σ∗ιk,m = 0 : Ek+m → Ek−1 ⊗ Em−1 and

(σ∗)jσjιk,m =
j∏

i=1

μk+i

(
1 − dkdm−1

dk+idm+i−1

)
· ιk,m : Ek+m → Ek ⊗ Em.

Proof. By Lemma 3.17, it suffices to show that σ∗
k−1,m−1ιk,m = 0. This is a triviality for

k = 0 or m = 0 and for k,m ∈ N, we have that σ∗
k−1,m−1ιk,m = (G∗

k ⊗ 1m−1)(1k ⊗ ι1,m−1)ιk,m :
Ek+m → Ek−1 ⊗ Em−1. However, by Lemma 3.13, this linear map is a scalar multiple of the
inclusion Ek+m → Ek−1 ⊗ E1 ⊗ E1 ⊗ Em−1 composed with 1k−1 ⊗ 〈δ, ·〉 ⊗ 1m−1. Since Ek−1 ⊗
D ⊗ Em−1 lies in the orthogonal complement of Ek+m ⊆ Ek−1 ⊗ E1 ⊗ E1 ⊗ Em−1, we have
proved the lemma. �

Our computations culminate in the following important result concerning the decomposition
of the tensor product of two elements of our subproduct system of Hilbert spaces.

Theorem 3.19. Let k,m ∈ N0 and put l := min{k,m}. We have an SU(2)-equivariant
unitary isomorphism

Wk,m =
(
W 0

k,m W 1
k,m . . . W l

k,m

)
:

l⊕
j=0

Ek+m−2j → Ek ⊗ Em

defined component-wise by

W j
k,m =

j∏
i=1

1√
μk−j+i

(
1 − dk−jdm−j−1

dk−j+idm−j+i−1

)−1/2

· σjιk−j,m−j

: Ek+m−2j → Ek ⊗ Em

for all j ∈ {1, . . . , l} and W 0
k,m := ιk,m : Ek+m → Ek ⊗ Em.
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Proof. By Lemma 3.18, we have that W j
k,m : Ek+m−2j → Ek ⊗ Em is an isometry

for all j ∈ {0, 1, . . . , l}. Moreover, it follows from Lemma 3.18 that (W i
k,m)∗W j

k,m = 0 :
Ek+m−2j → Ek+m−2i whenever 0 � j < i � l. These two observations establish that Wk,m :⊕l

j=0 Ek+m−2j → Ek ⊗ Em is an isometry. The fact that Wk,m is surjective now follows by

dimension considerations since Lemma 3.2 implies dkdm =
∑l

j=0 dk+m−2l+2j . The SU(2)-
equivariance of Wk,m is a consequence of the SU(2)-equivariance of the structure maps of
our subproduct system and the definition in (3.13) together with Lemma 3.4. �

4. Commutation relations for the Toeplitz algebra

Throughout this section, we fix an n ∈ N and consider the Toeplitz algebra coming from the
irreducible representation ρn : SU(2) → U(Ln). We let {ej}nj=0 denote the orthonormal basis
for Ln introduced in (2.10). In particular, we have the associated Toeplitz operators

Tj := Tej : F → F j ∈ {0, 1, . . . , n}.
For each j ∈ {0, 1, 2, . . . , n}, we also introduce the bounded operator T ′

j : F → F defined by

T ′
j(ξ) := ι∗m,1(ξ ⊗ ej) for all ξ ∈ Em.

In other words, T ′
j is the right creation operator associated to the vector ej ∈ E1 = Ln.

We define the SU(2)-equivariant bounded operators ιL : F → E1 ⊗ F and ιR : F → F ⊗ E1

by ιL(ξ) := ι1,m−1(ξ) and ιR(ξ) := ιm−1,1(ξ) for homogeneous elements ξ ∈ Em with m � 1
and for ξ ∈ E0 we put ιL(ξ) = 0 and ιR(ξ) = 0.

Lemma 4.1. We have the identities

ι∗L =
n∑

j=0

〈ej , ·〉 ⊗ Tj : E1 ⊗ F → F and

ι∗R =
n∑

j=0

T ′
j ⊗ 〈ej , ·〉 : F ⊗ E1 → F.

Proof. Let ξ ∈ Em and i ∈ {0, 1, . . . , n} be given. We compute that

ι∗L(ei ⊗ ξ) = ι∗1,m(ei ⊗ ξ) = Ti(ξ) =
n∑

j=0

(〈ej , ·〉 ⊗ Tj)(ei ⊗ ξ).

The identity involving ι∗R : F ⊗ E1 → F is proved in the same way. �

We are now going to further analyse the structural properties of the SU(2)-equivariant
isometries Vm : Em−1 → Em ⊗ E1 and V ′

m : Em−1 → E1 ⊗ Em defined in (3.9) and (3.11).

Lemma 4.2. Let m ∈ N. For every ξ ∈ Em−1, we have the identities

V ′
m(ξ) =

√
dm−1/dm ·

n∑
j=0

(−1)j · ej ⊗ Tn−j(ξ) and

Vm(ξ) =
√

dm−1/dm ·
n∑

j=0

(−1)n−j · T ′
n−j(ξ) ⊗ ej .
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Proof. By definition of V ′
m : Em−1 → E1 ⊗ Em and by Lemma 3.13, it holds that

V ′
m(ξ) =

(−1)(n+1)(m−1)

√
μm

·G′
m(ξ) =

dm−1√
μm

(1 ⊗ ι∗1,m−1)(δ ⊗ ξ)

=
dm−1√

μm · (n + 1)
·

n∑
j=0

(−1)j · ej ⊗ Tn−j(ξ) =
√

dm−1

dm
·

n∑
j=0

(−1)j · ej ⊗ Tn−j(ξ),

where the last equality follows from the definition of the constant μm in (3.5).
The proof of the second identity follows mutatis mutandis the proof of the first one. �

4.1. The dimension operator

Recall that Falg ⊆ F denotes the algebraic Fock space defined as the vector space direct sum
of the vector spaces Em, m ∈ N0.

Definition 4.3. We define the dimension operator D : Dom(D) → F as the closure of the
unbounded operator D : Falg → F , given by D(ξ) = dm · ξ for ξ ∈ Em.

Observe that the dimension operator is positive and invertible and that the inverse D−1 :
F → F is an SU(2)-equivariant compact operator. In particular, D−1 ∈ T.

In the special case of the fundamental representation, the operator D equals N + 1, where
N is the number operator.

We further define the SU(2)-equivariant bounded positive invertible operator

Φ : F → F Φξ =
dm

dm+1
ξ for all ξ ∈ Em. (4.1)

Lemma 4.4. The bounded invertible operator Φ : F → F belongs to the Toeplitz algebra
T.

Proof. Let γn ∈ (0, 1] be the constant defined in Lemma 3.3. Since Φ − γn · 1F is a compact
operator on F and K(F ) ⊆ T, we obtain the result of the lemma. �

We define the SU(2)-equivariant isometries VR : F → F ⊗ E1 and VL : F → E1 ⊗ F by

VR(ξ) = Vm(ξ) and VL(ξ) = V ′
m(ξ)

for all ξ ∈ Em−1 ⊆ F . We may then restate the result of Lemma 4.2 as follows:

Proposition 4.5. For every ξ ∈ F , we have the identities

VL(ξ) =
n∑

j=0

(−1)j · ej ⊗ Tn−jΦ1/2(ξ) and

VR(ξ) =
n∑

j=0

(−1)n−j · T ′
n−jΦ

1/2(ξ) ⊗ ej .

4.2. Commutation relations

We now present the commutation relations for our Toeplitz algebras in the general case of
an irreducible representation ρn : SU(2) → U(Ln) for n � 1. These commutation relations can
be used to recover the commutation relations in Theorem 2.4 in the case of the fundamental
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representation. For the time being, we do not know whether there are any further relations in
the Toeplitz algebra T(ρn, Ln).

We start out by remarking that
n∑

i=0

TiT
∗
i = ι∗LιL = 1F −Q0. (4.2)

Theorem 4.6. Let n ∈ N, and consider the irreducible representation ρn : SU(2) → U(Ln).
Then the Toeplitz operators Ti, with i = 0, . . . , n satisfy the following commutation relations:

n∑
i=0

(−1)iTiTn−i = 0, (4.3)

T ∗
i Tj = δij ·1F + (−1)i+j+1

(
(n + 1)·1F − Φ−1

)
Tn−iT

∗
n−j (4.4)

n∑
i=0

T ∗
i Ti = Φ−1. (4.5)

Proof. The relation in (4.3) follows from our computation of the determinant in Proposi-
tion 2.6 (cf. [36, § 10]).

We now move on to establishing the relation in (4.4). Consider i, j ∈ {0, 1, . . . , n}. By
Proposition 3.12, we have that ιLι

∗
L + VLV

∗
L = 1 ⊗ 1F : E1 ⊗ F → E1 ⊗ F and hence that

T ∗
i Tj = (〈ei, ·〉 ⊗ 1F )ιLι∗L(ej ⊗ 1F ) = δij · 1F − (〈ei, ·〉 ⊗ 1F )VLV

∗
L (ej ⊗ 1F ).

Then, on using Proposition 4.5, we obtain that (〈ei, ·〉 ⊗ 1F )VL = (−1)iTn−iΦ1/2 and hence
that

T ∗
i Tj = δij · 1F + (−1)i+j+1Tn−iΦT ∗

n−j .

The relation in (4.4) now follows by the definition of Φ : F → F from (4.1) on noting that
Tn−i(Em) ⊆ Em+1 and d1 − dm+2/dm+1 = dm/dm+1 for all m ∈ N0.

We are now left with proving the relation in (4.5). From the identities in (4.2) and (4.4), we
obtain that

n∑
i=0

T ∗
i Ti = (n + 1)·1F − (

(n + 1)·1F − Φ−1
) n∑
i=0

Tn−iT
∗
n−i

= (n + 1)·1F − (
(n + 1)·1F − Φ−1

)
(1F −Q0) = Φ−1.

This ends the proof of the theorem. �

5. A quasi-homomorphism from the Toeplitz algebra to the complex numbers

Let n ∈ N be given and consider the irreducible representation ρn : SU(2) → U(Ln). We denote
the corresponding Toeplitz algebra by T ⊆ L(F ), where F =

⊕∞
m=0 Em denotes the Fock space.

In this section, we start relating the K-theory of the Toeplitz algebra to the K-theory of the
complex numbers using the quasi-isomorphism picture introduced by Cuntz [12]: We shall
construct an SU(2)-equivariant quasi-homomorphism (ψ+, ψ−) from T to C. Such an SU(2)-
equivariant quasi-homomorphism from T to C consists of a Hilbert space H which is equipped
with a strongly continuous action U : SU(2) → U(H) together with two ∗-homomorphisms
ψ+, ψ− : T → L(H). These data have to satisfy that ψ+(x) − ψ−(x) is a compact operator for
all x ∈ T and that both ψ+ and ψ− are SU(2)-equivariant in the sense that U(g)ψ±(x)U(g−1) =
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ψ±(g(x)) for all x ∈ T and all g ∈ SU(2). For more information on KK-theory we refer to the
standard text books on the subject, [8, 22].

In our specific case, both of the ∗-homomorphisms ψ+ and ψ− act on the Hilbert space direct
sum F ⊕ F and we define ψ+ : T → L(F ⊕ F ) by ψ+(x) := x⊕ x for all x ∈ T. The construction
of ψ− : T → L(F ⊕ F ) uses the representation theoretic considerations from Section 3.

Recall that VR : F → F ⊗ E1 denotes the SU(2)-equivariant isometry defined by

VR(ξ) := Vm+1(ξ) =
(−1)(n+1)m

√
μm+1

·Gm+1(ξ) ∈ Em+1 ⊗ E1 ⊆ F ⊗ E1

for every homogeneous ξ ∈ Em ⊆ F , m ∈ N0. Moreover, we have the SU(2)-equivariant linear
map ιR : F → F ⊗ E1 defined by

ιR(ξ) := ιm−1,1(ξ) ∈ Em−1 ⊗ E1 ⊆ F ⊗ E1

for every homogeneous ξ ∈ Em ⊆ F , m ∈ N and ιR(ξ) = 0 for ξ ∈ E0. It follows from
Proposition 3.8 that the SU(2)-equivariant linear map

WR : F ⊗ E1 → F ⊕ F WR =
(
ι∗R
V ∗
R

)
(5.1)

is an isometry and that the image agrees with the subspace F+ ⊕ F ⊆ F ⊕ F . We may thus
define the ∗-homomorphism

ψ− : T → L(F ⊕ F ) ψ−(x) := WR(x⊗ 1)W ∗
R.

We also recall that we have the SU(2)-equivariant linear map ιL : F → E1 ⊗ F defined by
the formula

ιL(ξ) := ι1,m−1(ξ) ∈ E1 ⊗ Em−1 ⊆ E1 ⊗ F

for homogeneous elements ξ ∈ Em ⊆ F with m ∈ N ad ιL(ξ) = 0 for ξ ∈ E0.
We announce the following result:

Proposition 5.1. The pair of ∗-homomorphisms (ψ+, ψ−) defines an SU(2)-equivariant

quasi-homomorphism from T to C and hence a class [ψ+, ψ−] ∈ KK
SU(2)
0 (T,C).

Proof. The SU(2)-equivariance of the two ∗-homomorphisms follows from the SU(2)-
equivariance of WR : F ⊗ E1 → F ⊕ F together with the observation that the action of SU(2)
on the Toeplitz algebra is obtained via conjugation with the corresponding action on the Fock
space F , see Lemma 1.5.

For each x ∈ T, we have to show that the difference ψ+(x) − ψ−(x) = x⊕ x−WR(x⊗ 1)W ∗
R

is a compact operator on F ⊕ F . Since T is generated as a C∗-algebra by the operators T ∗
j : F →

F , j ∈ {0, 1, . . . , n} together with the unit 1F : F → F , it suffices to prove compactness when
x ∈ T agrees with one of these operators. For the case of the unit 1F : F → F we have that 1F ⊕
1F −WRW

∗
R agrees with the orthogonal projection onto the one-dimensional subspace (F+ ⊕

F )⊥ ∼= C so we focus on the operator T ∗
j : F → F for a fixed j ∈ {0, 1, . . . , n}. We compute

that

WR(T ∗
j ⊗ 1)W ∗

R =
(
ι∗R(T ∗

j ⊗ 1)ιR ι∗R(T ∗
j ⊗ 1)VR

V ∗
R(T ∗

j ⊗ 1)ιR V ∗
R(T ∗

j ⊗ 1)VR

)
.

Applying the identities (T ∗
j ⊗ 1)ιR = ιRT

∗
j , V ∗

RιR = 0 (see Proposition 3.8), and using the fact
that ι∗RιR is the orthogonal projection onto F+ ⊆ F , we obtain that

WR(T ∗
j ⊗ 1)W ∗

R ∼
(
T ∗
j ι∗R(T ∗

j ⊗ 1)VR

0 V ∗
R(T ∗

j ⊗ 1)VR

)
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modulo compact operators. Now, by Proposition 5.4 here below in Subsection 5.1 we have that
the operator (T ∗

j ⊗ 1)VR agrees with VRT
∗
j modulo compact operators. But this implies the

result of this proposition, using that V ∗
RVR = 1F and ι∗RVR = 0. �

We are eventually going to show that the Toeplitz algebra T is KK-equivalent to C and the
class [ψ+, ψ−] ∈ KK

SU(2)
0 (T,C) provides us with one of the two relevant morphisms. The other

morphism is given by the unital inclusion i : C → T, which defines a class [i] ∈ KK
SU(2)
0 (C,T).

Proposition 5.2. The interior Kasparov product [i]⊗̂T[ψ+, ψ−] agrees with the unit 1C ∈
KK

SU(2)
0 (C,C).

Proof. The interior Kasparov product [i]⊗̂T[ψ+, ψ−] is represented by the SU(2)-equivariant
quasi-homomorphism (ψ+ ◦ i, ψ− ◦ i). The ∗-homomorphism ψ+ ◦ i : C → L(F ⊕ F ) is unital,
whereas (ψ− ◦ i)(1) = WRW

∗
R : F ⊕ F → F ⊕ F . Since 1F⊕F −WRW

∗
R : F ⊕ F → F ⊕ F is

the orthogonal projection onto the one-dimensional subspace Cω ⊕ {0} ⊆ F ⊕ F , this proves
the proposition. �

5.1. Compactness of commutators

In this subsection, we provide the remaining ingredient for the proof of Proposition 5.1. More
precisely, we shall see in Proposition 5.4 that the difference VRT

∗
j − (T ∗

j ⊗ 1)VR : F → F ⊗ E1

is indeed a compact operator.

Lemma 5.3. For each m � 2, we have the identity

ι∗1,m−2(1 ⊗ Vm−1)∗(ι1,m−1 ⊗ 1)Vm =
(

1 − 1
d2
m−1

)1/2

· 1m−1.

Proof. Using Lemma 3.13 and (3.9), we see that

(1 ⊗ Vm−1)∗ =
(−1)(n+1)m

√
μm−1

· (1 ⊗G∗
m−1)

=
dm−2√
μm−1

· (1 ⊗ 1m−2 ⊗G∗
1)(1 ⊗ ιm−2,1 ⊗ 1).

(5.2)

Next, by associativity of the subproduct system, we have

(1 ⊗ ιm−2,1)ι1,m−1 = (ι1,m−2 ⊗ 1)ιm−1,1 : Em → E1 ⊗ Em−2 ⊗ E1,

which combined with (5.2) yields that

ι∗1,m−2(1 ⊗ Vm−1)∗(ι1,m−1 ⊗ 1)Vm

=
dm−2√
μm−1

· ι∗1,m−2(1 ⊗ 1m−2 ⊗G∗
1)(ι1,m−2 ⊗ 1 ⊗ 1)(ιm−1,1 ⊗ 1)Vm

=
dm−2√
μm−1

· (1m−1 ⊗G∗
1)(ιm−1,1 ⊗ 1)Vm.
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Using Lemmas 3.2 and 3.13, the identity (5.2), and the fact that Vm : Em−1 → Em ⊗ E1 is an
isometry, we then get that

dm−2√
μm−1

· (1m−1 ⊗G∗
1)(ιm−1,1 ⊗ 1)Vm

=
dm−2 · √μm√
μm−1 · dm−1

· V ∗
mVm =

√
dm−2dm

dm−1
· 1m−1 =

(
1 − 1

d2
m−1

)1/2

· 1m−1. �

Proposition 5.4. The difference

(T ∗
j ⊗ 1)VR − VRT

∗
j : F → F ⊗ E1

is a compact operator.

Proof. Since T ∗
j = (〈ej , ·〉 ⊗ 1F )ιL : F → F , it is enough to show that the difference

(ιL ⊗ 1)VR − (1 ⊗ VR)ιL : F → E1 ⊗ F ⊗ E1

is a compact operator.
Note first that the Hilbert space Em−1 ⊆ F is finite-dimensional for each m ∈ N and

that both (ιL ⊗ 1)VR and (1 ⊗ VR)ιL map Em−1 into E1 ⊗ Em−1 ⊗ E1. The corresponding
restrictions are given by (ι1,m−1 ⊗ 1)Vm and (1 ⊗ Vm−1)ι1,m−2 : Em−1 → E1 ⊗ Em−1 ⊗ E1. It
therefore suffices to show that the sequence of operator norms{‖(ι1,m−1 ⊗ 1)Vm − (1 ⊗ Vm−1)ι1,m−2‖

}∞
m=1

converges to zero.
Let m � 2. Using Lemma 5.3 together with the fact that (ι1,m−1 ⊗ 1)Vm and (1 ⊗

Vm−1)ι1,m−2 are isometries, we obtain that

((ι1,m−1 ⊗ 1)Vm − (1 ⊗ Vm−1)ι1,m−2)
∗((ι1,m−1 ⊗ 1)Vm − (1 ⊗ Vm−1)ι1,m−2)

= 2

(
1 −

(
1 − 1

d2
m−1

)1/2
)

· 1m−1,

which implies

‖(ι1,m−1 ⊗ 1)Vm − (1 ⊗ Vm−1)ι1,m−2‖ =
√

2 ·
(

1 −
(

1 − 1
d2
m−1

)1/2
)1/2

. (5.3)

The result of the lemma now follows since the sequence {1/d2
m−1}∞m=1 converges to zero

(using again the global assumption that n � 1). �

In fact, we can do slightly better than the above proposition:

Lemma 5.5. Let p ∈ [0, 1]. The operator

(Dp ⊗ 1)
(
(T ∗

j ⊗ 1)VR − VRT
∗
j

)
D1−p : Falg → F ⊗ E1

extends to a bounded operator.

Proof. We first remark that the unbounded operator (Dp ⊗ 1)((T ∗
j ⊗ 1)VR − VRT

∗
j )D1−p :

Falg → F ⊗ E1 maps the subspace Em into Em ⊗ E1 for each m ∈ N0. It therefore suffices to
show that the supremum over m ∈ N0 of the corresponding operator norms is finite.
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Let m ∈ N be given. We compute that

(Dp ⊗ 1)
(
(T ∗

j ⊗ 1)VR − VRT
∗
j

)
D1−p|Em

= dm · ((〈ej , ·〉 ⊗ 1m ⊗ 1)(ι1,m ⊗ 1)Vm+1 − (〈ej , ·〉 ⊗ Vm)ι1,m−1)

= dm · (〈ej , ·〉 ⊗ 1m ⊗ 1)((ι1,m ⊗ 1)Vm+1 − (1 ⊗ Vm)ι1,m−1).

The result of the present lemma then follows from (5.3) by noting that

d2
m · ‖(ι1,m ⊗ 1)Vm+1 − (1 ⊗ Vm)ι1,m−1‖2

= 2d2
m · (1 −

√
1 − 1/d2

m) � 2. �

6. The K-theory of the Toeplitz algebra

Recall from Section 5 that we have an SU(2)-equivariant isometry WR : F ⊗ E1 → F ⊕ F (cf.
(5.1)), which we use to define the ∗-homomorphism

ψ− : T → L(F ⊕ F ) ψ−(x) := WR(x⊗ 1)W ∗
R.

We clearly also have the ∗-homomorphism ψ+ : T → L(F ⊕ F ), ψ+(x) := x⊕ x.
We saw in Proposition 5.1 that the pair (ψ+, ψ−) yields an SU(2)-equivariant quasi-

homomorphism form T to C and we therefore have a class [ψ+, ψ−] ∈ KK
SU(2)
0 (T,C).

We moreover saw in Proposition 5.2 that the interior Kasparov product [i]⊗̂T[ψ+, ψ−] ∈
KK

SU(2)
0 (C,C) agrees with the unit 1C, where we recall that [i] ∈ KK

SU(2)
0 (C,T) is the class

associated with the unital inclusion i : C → T.
In this section, we are going to prove the following main result:

Theorem 6.1. The interior Kasparov product [ψ+, ψ−]⊗̂C[i] agrees with the unit 1T ∈
KK

SU(2)
0 (T,T). In particular, we have that T and C are KK-equivalent in an SU(2)-

equivariant way.

We let F ⊗̂T denote the standard module over T, defined as the exterior tensor product of
the Fock space F and the Toeplitz algebra T viewed as a right Hilbert C∗-module over itself.
The standard module becomes an SU(2)-Hilbert-C∗-module via the diagonal representation of
SU(2) on F ⊗̂T given explicitly by

g(ξ ⊗ Tη) := g(ξ) ⊗ Tg(η)

for every g ∈ SU(2), ξ ∈ F and η ∈ Ek.
We remark that the interior Kasparov product [ψ+, ψ−]⊗̂C[i] is represented by the SU(2)-

equivariant quasi-homomorphism (ψ+ ⊗ 1T, ψ− ⊗ 1T), where ψ+ ⊗ 1T : T → L((F ⊕ F )⊗̂T)
and ψ− ⊗ 1T : T → L((F ⊕ F )⊗̂T) are SU(2)-equivariant ∗-homomorphisms.

We let MT : T → L(T) denote the SU(2)-equivariant ∗-homomorphism obtained by letting
the Toeplitz algebra act as bounded adjointable operators on itself via left-multiplication. Recall
moreover that Q0 : F → F is the orthogonal projection onto the vacuum subspace E0 ⊆ F .

Our proof of Theorem 6.1 amounts to showing that the SU(2)-equivariant
quasi-homomorphism (ψ+ ⊗ 1T, ψ− ⊗ 1T) is homotopic to the SU(2)-equivariant quasi-
homomorphism (ψ− ⊗ 1T + (Q0 ⊕ 0) ⊗MT, ψ− ⊗ 1T). Indeed, we would then obtain the
following identities inside KK

SU(2)
0 (T,T):

[ψ+, ψ−]⊗̂C[i] = [ψ+ ⊗ 1T, ψ− ⊗ 1T] = [ψ− ⊗ 1T + (Q0 ⊕ 0) ⊗MT, ψ− ⊗ 1T] = 1T.
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The proof of the SU(2)-equivariant homotopy

(ψ+ ⊗ 1T, ψ− ⊗ 1T) ∼h (ψ− ⊗ 1T + (Q0 ⊕ 0) ⊗MT, ψ− ⊗ 1T)

is divided into three steps and occupies the remainder of this section.
It will sometimes be convenient to view the standard module F ⊗̂T as a closed subspace of

bounded operators from F to the Hilbert space tensor product F ⊗̂F . Indeed, for every ξ ∈ F
and x ∈ T, we have the bounded operator

ξ ⊗ x : F → F ⊗̂F (ξ ⊗ x)(η) := ξ ⊗ x(η)

and F ⊗̂T does in fact agree with the smallest closed subspace of L(F, F ⊗̂F ) containing the
bounded operators of the form ξ ⊗ x for all ξ ∈ F and x ∈ T. The inner product on F ⊗̂T then
agrees with the operation

〈ξ, η〉 := ξ∗ · η ξ, η ∈ F ⊗̂T

using only products and adjoints of bounded operators. Moreover, the right action of T on
F ⊗̂T is simply induced by the composition of bounded operators L(F, F ⊗̂F ) and L(F ). Any
bounded operator T : F ⊗̂F → F ⊗̂F acts on the operator space L(F, F ⊗̂F ) via the composition
of bounded operators in L(F ⊗̂F ) and L(F, F ⊗̂F ). In this fashion, the unital C∗-algebra of
bounded adjointable operators on F ⊗̂T identifies with the unital C∗-subalgebra of L(F ⊗̂F )
consisting of those bounded operators T : F ⊗̂F → F ⊗̂F with the property that both T and
T ∗ preserves the closed subspace F ⊗̂T ⊆ L(F, F ⊗̂F ). To wit,

L(F ⊗̂T) ∼= {
T ∈ L(F ⊗̂F ) | T · (F ⊗̂T) , T ∗ · (F ⊗̂T) ⊆ F ⊗̂T

}
.

6.1. Intertwining representations of the Toeplitz algebra

Before we can construct our homotopy we need some preliminaries, explaining better the
relationship between the SU(2)-equivariant ∗-homomorphisms ψ+ ⊗ 1T and ψ− ⊗ 1T + QT

0 ⊗
MT : T → L((F ⊕ F )⊗̂T).

We are in this respect particularly interested in the SU(2)-equivariant bounded operator

W : (F ⊗̂F )⊕2 → (F ⊗̂F )⊕2

defined as the composition

We express this bounded operator in the following matrix form:

W =
(
vTT vTB

vBT vBB

)
=

(
(1 ⊗ ι∗L)(ιR ⊗ 1) (1 ⊗ ι∗L)(VR ⊗ 1)
(1 ⊗ V ∗

L )(ιR ⊗ 1) (1 ⊗ V ∗
L )(VR ⊗ 1)

)
, (6.1)

where all the entries belong to L(F ⊗̂F ).
We moreover let Σ : F ⊗̂F → F ⊗̂F denote the flip map Σ(ξ ⊗ η) = η ⊗ ξ and remark that Σ

is an SU(2)-equivariant unitary operator.
Using Propositions 3.8 and 3.12, we see that the SU(2)-equivariant operators

WR :=
(
ι∗R
V ∗
R

)
: F ⊗ E1 → F ⊕ F and

WL :=
(
ι∗L
V ∗
L

)
: E1 ⊗ F → F ⊕ F,
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are isometric with WRW
∗
R and WLW

∗
L both being the orthogonal projection onto F+ ⊕ F . It

moreover holds that

W = (1F ⊗WL)(W ∗
R ⊗ 1F ) ∈ L

(
(F ⊗̂F ) ⊕ (F ⊗̂F )

)
.

Lemma 6.2. The SU(2)-equivariant operator W is a partial isometry with

1 −WW ∗ =
(

1F ⊗Q0 0
0 0

)
and 1 −W ∗W =

(
Q0 ⊗ 1F 0

0 0

)
.

Moreover, we have

W ∗(ψ+(x) ⊗ 1F )W = ψ−(x) ⊗ 1F

for all x ∈ T.

Proof. The first claim follows immediately from the above remarks and the computations

WW ∗ = (1F ⊗WL)(W ∗
R ⊗ 1F )(WR ⊗ 1F )(1F ⊗W ∗

L) = 1F ⊗WLW
∗
L and

W ∗W = (WR ⊗ 1F )(1F ⊗W ∗
L)(1F ⊗WL)(W ∗

R ⊗ 1F ) = WRW
∗
R ⊗ 1F .

Let now x ∈ T be given. The second claim follows from the computations

W ∗(ψ+(x) ⊗ 1F )W = (WR ⊗ 1F )(1F ⊗W ∗
L)(x⊗ 1F⊕F )(1F ⊗WL)(W ∗

R ⊗ 1F )

= (WR ⊗ 1F )(x⊗ 1 ⊗ 1F )(W ∗
R ⊗ 1F ) = ψ−(x) ⊗ 1F ,

using that WL : F ⊗ E1 → F ⊕ F is an isometry. �

Lemma 6.3. The operator

H0 := −W +
(

Σ(Q0 ⊗ 1F ) 0
0 0

)
∈ L

(
(F ⊗̂F ) ⊕ (F ⊗̂F )

)
is an SU(2)-equivariant unitary operator and we have the identity

H∗
0 (ψ+(x) ⊗ 1F )H0 = ψ−(x) ⊗ 1F +

(
Q0 ⊗ x 0

0 0

)
∈ L

(
(F ⊗̂F ) ⊕ (F ⊗̂F )

)
for all x ∈ T.

Proof. The fact that H0 is a unitary operator follows by noting that both W and
(Σ(Q0 ⊗ 1F ) 0

0 0) are partial isometries satisfying

WW ∗ +
(

Σ(Q0 ⊗ 1F )(Q0 ⊗ 1F )Σ 0
0 0

)

= 1 = W ∗W +
(

(Q0 ⊗ 1F )ΣΣ(Q0 ⊗ 1F ) 0
0 0

)
.

Since all the involved operators are SU(2)-equivariant, it holds that H0 is SU(2)-equivariant
as well.
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Let now x ∈ T be given. Using that WR : F ⊗ E1 → F ⊕ F is an isometry together with the
definitions of the involved operators, we compute that

(ψ+(x) ⊗ 1F )H0 = −(x⊗ 1F⊕F )W +
(

(x⊗ 1F )Σ(Q0 ⊗ 1F ) 0
0 0

)

= −(x⊗ 1F⊕F )(1F ⊗WL)(W ∗
R ⊗ 1F ) +

(
Σ(Q0 ⊗ x) 0

0 0

)

= −W (ψ−(x) ⊗ 1F ) +
(

Σ(Q0 ⊗ x) 0
0 0

)
.

This computation and the first part of the present proof imply the intertwining identity stated
in the lemma. �

Let us apply the notation j : T → L(F ) for the inclusion T ⊆ L(F ) so that j becomes a
unital ∗-homomorphism. The above lemma then shows that the two SU(2)-equivariant ∗-
homomorphisms

ψ+ ⊗ 1F and ψ− ⊗ 1F + (Q0 ⊕ 0) ⊗ j : T → L
(
(F ⊗̂F ) ⊕ (F ⊗̂F )

)
are unitarily equivalent via the SU(2)-equivariant unitary operator H0 ∈ L((F ⊗̂F ) ⊕ (F ⊗̂F )).
We emphasise that H0 does not define a bounded adjointable operator on (F ⊗̂T) ⊕ (F ⊗̂T)
(because of the part containing the flip map). The two ∗-homomorphisms

ψ+ ⊗ 1T and ψ− ⊗ 1T + (Q0 ⊕ 0) ⊗MT : T → L
(
(F ⊗̂T) ⊕ (F ⊗̂T)

)
are therefore most likely not unitarily equivalent.

In any case, we now start analysing the unitary operator H0 ∈ L((F ⊗̂F ) ⊕ (F ⊗̂F )) in more
details, paying particular attention to the partial isometry W ∈ L((F ⊗̂F ) ⊕ (F ⊗̂F )).

Recall that the invertible element Φ ∈ T was introduced in (4.1).

Lemma 6.4. The partial isometry W defines a bounded adjointable operator on (F ⊗̂T) ⊕
(F ⊗̂T). In fact, we explicitly have that

W =
(
vTT vTB

vBT vBB

)

=
n∑

j=0

(
(T ′

j)
∗ ⊗ Tj (−1)n−jT ′

n−jΦ
1/2 ⊗ Tj

(−1)j(T ′
j)

∗ ⊗ Φ1/2T ∗
n−j (−1)nT ′

n−jΦ
1/2 ⊗ Φ1/2T ∗

n−j

)
.

Proof. This follows from Lemma 4.4 and the matrix description of W from (6.1) together
with the formulae provided in Lemma 4.1 and Proposition 4.5. �

Remark that it follows from Lemma 6.4 that

vBT = (Φ−1/2 ⊗ Φ1/2) · (vTB)∗ and

vBB = (−1)n(1F ⊗ Φ1/2) · (vTT )∗ · (Φ1/2 ⊗ 1T).
(6.2)

For later use, we now relate the bounded operator vTB : F ⊗̂F → F ⊗̂F to the bounded
operators σk,m : Ek ⊗ Em → Ek+1 ⊗ Em+1 introduced in (3.13) for k,m ∈ N0.
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Lemma 6.5. We have the identity

vTB(ξ) =
(−1)(n+1)k

√
μk+1

· σk,m(ξ) =
(−1)(n+1)k

√
n + 1√

dkdk+1

· σk,m(ξ).

for all ξ ∈ Ek ⊗ Em.

Proof. This follows immediately from the definition of the involved operators, see (3.9),
(3.13) and (6.1). Recall also from (3.5) that μk+1 = (dkdk+1)/d1 for all k ∈ N0. �

Proposition 6.6. For every x ∈ T, we have that the commutator [ψ+(x) ⊗ 1T,W ] belongs
to the algebra M2(K⊗̂T).

Proof. Let x ∈ T be given. We know from Proposition 5.1 that the difference

ψ−(x) − ψ+(x) : F ⊕ F → F ⊕ F

is a compact operator. Note also that it follows from Lemma 6.2 that WW ∗(ψ+(x) ⊗ 1T) =
(ψ+(x) ⊗ 1T)WW ∗. Using these facts together with one more application of Lemmas 6.2
and 6.4, we may compute the above commutator modulo compact operators in the following
way:

[ψ+(x) ⊗ 1T,W ] ∼ (ψ+(x) ⊗ 1T)W −W (ψ−(x) ⊗ 1T)

= (ψ+(x) ⊗ 1T)W −WW ∗(ψ+(x) ⊗ 1T)W = 0.

This proves the present proposition. �

We now present a more refined estimate on the commutator between the generator T ∗
j : F →

F and the intertwining partial isometry W ∈ M2(L(F ⊗̂T)).

Proposition 6.7. Let p ∈ [0, 1] and j ∈ {0, 1, . . . , n}. The unbounded operators

(Dp ⊗ 1C2⊗T)[ψ+(T ∗
j ) ⊗ 1T,W ](D1−p ⊗ 1C2⊗T) and

(Dp ⊗ 1C2⊗T)[ψ+(T ∗
j ) ⊗ 1T,W ∗](D1−p ⊗ 1C2⊗T) : (Falg ⊗ C

2 ⊗ T) → (F ⊗ C
2)⊗̂T

both extend to elements in M2(L(F ⊗̂T)).

Proof. We start with the claim regarding the commutator with W : (F ⊕ F )⊗̂T → (F ⊕
F )⊗̂T. By the identity in (6.1) and the fact that (T ∗

j ⊗ 1)ιR = ιRT
∗
j , we have that

[ψ+(T ∗
j ) ⊗ 1T,W ] =

(
0 (1F ⊗ ι∗L)

((
(T ∗

j ⊗ 1)VR − VRT
∗
j

)⊗ 1T
)

0 (1F ⊗ V ∗
L )

((
(T ∗

j ⊗ 1)VR − VRT
∗
j

)⊗ 1T
)) . (6.3)

Now, from Lemma 4.1 and Proposition 4.5, we obtain that the bounded operators

1F ⊗ ι∗L and 1F ⊗ V ∗
L : F ⊗̂(E1 ⊗ F ) → F ⊗̂F

both define elements in L((F ⊗ E1)⊗̂T, F ⊗̂T). It therefore suffices to show that

(Dp ⊗ 1)((T ∗
j ⊗ 1)VR − VRT

∗
j )D1−p : Falg → F ⊗ E1

extends to a bounded operator. But this was already proved in Lemma 5.5.
We continue with the claim regarding the commutator with W ∗ : (F ⊕ F )⊗̂T → (F ⊕ F )⊗̂T.

We are going to suppress the extra ‘⊗1C2⊗T’ from the notation, for example, writing Dp instead
of Dp ⊗ 1C2⊗T. Note first that the unbounded operator

DrW ∗D−r : (Falg ⊗ C
2 ⊗ T) → (F ⊗ C

2)⊗̂T
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extends to a bounded adjointable operators on (F ⊕ F )⊗̂T for all r ∈ R. To see this, we remark
that

Drι∗R(D−r ⊗ 1)(ξ) = ι∗R(Φ−r ⊗ 1)(ξ) and

DrV ∗
R(D−r ⊗ 1)(ξ) = ΦrV ∗

R(ξ)

for all ξ ∈ Falg ⊗ E1 and hence, on using (6.1), Lemma 4.1 and Proposition 4.5, we obtain that
DrW ∗D−r extends to the bounded adjointable operator(

(vTT )∗(Φ−r ⊗ 1T) (vBT )∗(Φ−r ⊗ 1T)
(Φr ⊗ 1T)(vTB)∗ (Φr ⊗ 1T)(vBB)∗

)
∈ L

(
(F ⊕ F )⊗̂T

)
.

Next, remark that T ∗
j WW ∗ = WW ∗T ∗

j since 1 −WW ∗ = (1F ⊗Q0) ⊕ 0. Then, for every ξ ∈
Falg ⊗ C

2 ⊗ T, we have that

Dp[T ∗
j ,W

∗]D1−p(ξ) = (1 −W ∗W )DpT ∗
j W

∗D1−p(ξ)

+ DpW ∗WT ∗
j W

∗D1−p −DpW ∗T ∗
j D

1−p(ξ)

= (1 −W ∗W )DpT ∗
j W

∗D1−p(ξ)

+ DpW ∗D−p · (Dp[W,T ∗
j ]D1−p) ·Dp−1W ∗D1−p(ξ).

Each of the terms in this sum extends to a bounded adjointable operator on (F ⊕ F )⊗̂T. For
the first term, this follows since 1 −W ∗W = (Q0 ⊗ 1T) ⊕ 0, and for the second term this follows
from the argument carried out earlier in this proof. �

6.2. Decomposition of the standard module

We define the Hilbert space G ⊆ F ⊗̂F as the closure of the subspace

span
{
ιk,m(ξ) | k,m ∈ N0 , ξ ∈ Ek+m

} ⊆ F ⊗̂F. (6.4)

Our strategy for constructing our homotopy is to work separately on the closed subspace

(G⊕ {0}) ⊆ (F ⊗̂F ) ⊕ (F ⊗̂F )

and the orthogonal complement G⊥ ⊕ (F ⊗̂F ). In fact, it turns out that our homotopy behaves
very much like the classical U(1)-case (cf. [32, Section 4]) on the closed subspace G⊕ {0},
whereas the remaining part (taking place on G⊥ ⊕ (F ⊗̂F )) requires a separate argument. We
therefore need to understand the orthogonal projection Π : F ⊗̂F → F ⊗̂F onto the orthogonal
complement G⊥ ⊆ F ⊗̂F . We show here below that Π defines a bounded adjointable operator
on F ⊗̂T and that the commutator [x⊗ 1T,Π] is a compact operator for every x ∈ T.

It turns out that the orthogonal projection Π : F ⊗̂F → F ⊗̂F is related to the bounded
operator vTB : F ⊗̂F → F ⊗̂F and a proper description of this relationship requires a better
understanding of the polar decomposition of vTB : F ⊗̂F → F ⊗̂F .

We are going to apply Proposition A.1 with X := F ⊗̂T and y := vTB : F ⊗̂T → F ⊗̂T.
The relevant dense submodule is the algebraic tensor product X := Falg ⊗ T. We fix j ∈
{0, 1, . . . , n} and put xj := T ∗

j ⊗ 1T : X → X. We immediately remark that

xj(X ) , x∗
j (X ) , y∗(X ) ⊆ X ,

where the last inclusion follows from Lemma 6.4.
We now compute the bounded adjointable operator y∗y = (vTB)∗vTB : F ⊗̂T → F ⊗̂T. To

this end, we apply Theorem 3.19 and define positive invertible operators

Γk,m : Ek ⊗ Em → Ek ⊗ Em k,m ∈ N0
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using the prescription

Γk,m(σjιk−j,m−jξ) :=
(

1 − dk−jdm−j−1

dk+1dm

)
(σjιk−j,m−jξ), (6.5)

for all ξ ∈ Ek+m−2j and 0 � j � k,m. A quick computation shows that

‖Γk,m‖ = 1 − dk−ldm−l−1

dk+1dm
� 1, (6.6)

where l = min{k,m} and we therefore obtain a positive bounded operator

Γ : F ⊗̂F → F ⊗̂F Γ|Ek⊗Em
:= Γk,m

with dense image. We are here applying our standing convention that n ∈ N so that the
irreducible representation ρn : SU(2) → U(Ln) is non-trivial.

Lemma 6.8. We have the identity

(vTB)∗vTB = Γ : F ⊗̂F → F ⊗̂F.

Proof. Let k,m ∈ N0, let j ∈ {0, 1, . . . ,min{k,m}} and let ξ ∈ Ek+m−2j be given. Using
Theorem 3.19, it suffices to show that

(vTB)∗vTB(σjιk−j,m−jξ) = Γ(σjιk−j,m−jξ).

However, by Lemma 6.5, we have that

(vTB)∗vTB(η) =
1

μk+1
σ∗
k,mσk,m(η)

for every η ∈ Ek ⊗ Em. Hence we see from Lemmas 3.17 and 3.18 that

(vTB)∗vTB(σjιk−j,m−jξ) =
1

μk+1
σ∗σj+1ιk−j,m−jξ =

(
1 − dk−jdm−j−1

dk+1dm

)
· σjιk−j,m−jξ

= Γk,m(σjιk−j,m−jξ).

This proves the present lemma. �

It follows from Lemmas 6.4 and 6.8 that the positive bounded operator Γ : F ⊗̂F → F ⊗̂F
defines a positive bounded adjointable operator Γ : F ⊗̂T → F ⊗̂T.

Lemma 6.9. The image of the positive bounded adjointable operator Γ : F ⊗̂T → F ⊗̂T

contains the dense submodule X = Falg ⊗ T ⊆ F ⊗̂T.

Proof. Let us fix a k ∈ N0 and show that Ek ⊗ T ⊆ Im(Γ). We recall that Qk : F → F
denotes the orthogonal projection with image Ek ⊆ F . It then follows from the definition of
Γ : F ⊗̂F → F ⊗̂F that the bounded operator

Γ(Qk ⊗ 1F ) + (1F −Qk) ⊗ 1F

= (Qk ⊗ 1F )Γ(Qk ⊗ 1F ) + (1F −Qk) ⊗ 1F : F ⊗̂F → F ⊗̂F
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has a bounded inverse. Indeed, for every m ∈ N0, it holds that Γk,m : Ek ⊗ Em → Ek ⊗ Em is
invertible with

‖Γ−1
k,m‖ = sup

j=0,1,...,min{k,m}

(
1 − dk−jdm−j−1

dk+1dm

)−1

�
(

1 − dkdm−1

dk+1dm

)−1

�
(

1 − dk
dk+1

)−1

.

Now, since the invertible bounded operator Γ(Qk ⊗ 1F ) + (1F −Qk) ⊗ 1F ∈ L(F ⊗̂F ) belongs
to the unital C∗-subalgebra L(F ⊗̂T) ⊆ L(F ⊗̂F ), we obtain that the bounded adjointable
operator Γ(Qk ⊗ 1T) + (1F −Qk) ⊗ 1T : F ⊗̂T → F ⊗̂T is invertible as well. But this shows that

Ek ⊗ T = Im(Γ(Qk ⊗ 1T)) ⊆ Im(Γ). �

As a consequence of Lemma 6.9, we obtain that Γ−1 : Im(Γ) → F ⊗̂T is an unbounded
positive and regular operator on the Hilbert C∗-module F ⊗̂T. Moreover, we see from the proof
of Lemma 6.9 that the domain of Γ−1 contains the algebraic tensor product X = Falg ⊗ T.

Lemma 6.10. The closure of vTBΓ−1/2 : Im(Γ1/2) → F ⊗̂T is a bounded adjointable
isometry Θ : F ⊗̂T → F ⊗̂T and the associated orthogonal projection ΘΘ∗ ∈ L(F ⊗̂T) agrees
with Π ∈ L(F ⊗̂F ) (on suppressing the inclusion L(F ⊗̂T) ⊆ L(F ⊗̂F )).

Proof. Since Γ = (vTB)∗vTB and the domains of both vTBΓ−1/2 and (vTBΓ−1/2)∗ contain
the dense submodule Falg ⊗ T, we obtain that Θ : F ⊗̂T → F ⊗̂T is a well-defined bounded
adjointable isometry. We now compute the image of Θ considered as a bounded operator on
F ⊗̂F . This image clearly agrees with the closure of the image of vTB restricted to the algebraic
tensor product Falg ⊗ Falg. For each k,m ∈ N0, we know that the image of vTB |Ek⊗Em

: Ek ⊗
Em → Ek+1 ⊗ Em+1 agrees with the image of σk,m : Ek ⊗ Em → Ek+1 ⊗ Em+1. However, from
Theorem 3.19, we see that the image of σk,m : Ek ⊗ Em → Ek+1 ⊗ Em+1 agrees with the
orthogonal complement of ιk+1,m+1(Ek+m+2) ⊆ Ek+1 ⊗ Em+1. These observations entail that
the image of Θ : F ⊗̂F → F ⊗̂F agrees with

span{ιk,m(ξ) | k,m ∈ N0 , ξ ∈ Ek+m}⊥ ⊆ F ⊗̂F.

In other words, we have that Im(Θ : F ⊗̂F → F ⊗̂F ) = G⊥ = Im(Π). This proves the present
lemma. �

Let us introduce the compact operator

K := D−1 ⊗ 1T : F ⊗̂T → F ⊗̂T,

recalling that the dimension operator D : Dom(D) → F was introduced in Definition 4.3.
Recall that xj := T ∗

j ⊗ 1T and y := vTB : F ⊗̂T → F ⊗̂T.

Lemma 6.11. There exist bounded adjointable operators L,L,M,M : F ⊗̂T → F ⊗̂T such
that

K1/2LK1/2 = [xj , y] = MK and K1/2LK1/2 = [xj , y
∗] = KM.

Proof. This follows immediately from Proposition 6.7. Firstly, L and L are the
bounded adjointable extensions of (D1/2 ⊗ 1T)[T ∗

j ⊗ 1T, vTB ](D1/2 ⊗ 1T) and (D1/2 ⊗ 1T)[T ∗
j ⊗

1T, (vTB)∗](D1/2 ⊗ 1T), respectively. Secondly, M and M are the bounded adjointable
extensions of [T ∗

j ⊗ 1T, vTB ](D ⊗ 1T) and (D ⊗ 1T)[T ∗
j ⊗ 1T, (vTB)∗], respectively. It is here
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understood that all the involved unbounded operators are defined on the algebraic tensor
product Falg ⊗ T even though this is not properly reflected in the notation. �

In order to apply Proposition A.1, we still have to control the growth of the resolvent
Rλ := (λ + (vTB)∗vTB)−1 as the parameter λ > 0 approaches zero.

Lemma 6.12. The identity (D−1 ⊗ 1T)(vTB)∗vTB = (vTB)∗vTB(D−1 ⊗ 1T) holds. More-
over, there exists a constant C > 0 such that

‖(D−1 ⊗ 1T)Rλ‖ � C and ‖(D−1/2 ⊗ 1T)vTBRλ‖ � C

for all λ > 0.

Proof. It follows from the definitions of Γ = (vTB)∗vTB and D−1 ⊗ 1T : F ⊗̂T → F ⊗̂T that
these two operators commute. Moreover, similarly to the proof of Proposition 6.7, we obtain
that (D−1/2 ⊗ 1T)vTB(D1/2 ⊗ 1T) : Falg ⊗ T → F ⊗̂T extends to the bounded adjointable
operator vTB(Φ1/2 ⊗ 1T). This implies

(D−1/2 ⊗ 1T)vTBRλ = vTB(Φ1/2D−1/2 ⊗ 1T)Rλ = vTBRλ(D−1/2Φ1/2 ⊗ 1T). (6.7)

It therefore suffices to estimate the quantity ‖(D−1 ⊗ 1T)Rλ‖ for all λ > 0. Indeed, from (6.7)
and the fact that D−1 ⊗ 1T and Rλ commute, we obtain that∥∥(D−1/2 ⊗ 1T)vTBRλ

∥∥ =
∥∥vTBRλ(D−1/2Φ1/2 ⊗ 1T)

∥∥
� ‖vTBR

1/2
λ ‖ · ∥∥R1/2

λ (D−1/2 ⊗ 1T)
∥∥

�
∥∥R1/2

λ (D−1/2 ⊗ 1T)
∥∥ = ‖Rλ(D−1 ⊗ 1T)‖1/2.

Let λ > 0 and k,m ∈ N0 be given. We remark that Ek ⊗ Em is an invariant subspace for the
selfadjoint operator (D−1 ⊗ 1F )Rλ : F ⊗̂F → F ⊗̂F . The restriction to this subspace is given
by

d−1
k (λ + Γk,m)−1 : Ek ⊗ Em → Ek ⊗ Em.

Using the description of Γk,m : Ek ⊗ Em → Ek ⊗ Em from (6.5), we then obtain that

‖d−1
k (λ + Γk,m)−1‖ � ‖d−1

k Γ−1
k,m‖ = d−1

k ·
(

1 − dkdm−1

dk+1dm

)−1

� d−1
k ·

(
1 − dk

dk+1

)−1

=
dk+1

dk
· (dk+1 − dk)−1 � n + 1.

Remark that we are here applying the recursive definition of the sequence {dl}∞l=0 from (3.2)
together with Lemma 3.3 which ensures that dk+1 − dk � 1 for all k ∈ N0. �

We are now ready to establish the main result of this subsection:

Proposition 6.13. The unbounded operator vTB |vTB |−1 : Im(|vTB |) → F ⊗̂T extends to
a bounded adjointable isometry Θ : F ⊗̂T → F ⊗̂T satisfying that:

(i) the commutator [Θ, x⊗ 1T] : F ⊗̂T → F ⊗̂T is a compact operator for all x ∈ T;
(ii) the composition ΘΘ∗ agrees with the orthogonal projection Π : F ⊗̂T → F ⊗̂T.

In particular, we obtain that [x⊗ 1T,Π] ∈ K(F ⊗̂T) for all x ∈ T.
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Proof. The claim in (2) was already verified in Lemma 6.10. The claim regarding the
commutator with Π follows immediately from (i) and (ii) and the fact that Θ is a bounded
adjointable operator. So we focus on the claim in (i). It suffices to establish this claim for
the generators T ∗

j and Tj , j ∈ {0, 1, . . . , n}. But this is a consequence of Proposition A.1 on
applying Lemmas 6.8, 6.9, 6.11 and 6.12. �

Remark 6. For n > 1, it can be proved that Γ : F ⊗̂F → F ⊗̂F has a bounded inverse.
It then follows from Lemmas 6.4 and 6.8 that Γ−1 ∈ L(F ⊗̂F ) defines a positive bounded
adjointable operator on the standard module F ⊗̂T. We therefore immediately obtain that
the isometry Θ = vTBΓ−1/2 lies in L(F ⊗̂T) as well. Remark now that the set of bounded
adjointable operators on F ⊗̂T which commutes up to compact operators with all operators of
the form x⊗ 1T for x ∈ T form a unital C∗-subalgebra of L(F ⊗̂T). This observation together
with Lemma 6.8 and Proposition 6.6 then allow us to conclude that Θ ∈ L(F ⊗̂T) has this
property as well. The situation is more complicated for n = 1 since the inverse of Γ : F ⊗̂F →
F ⊗̂F is in fact unbounded. Our present approach treats both the (well-understood) case where
n = 1 and the novel case where n > 1 in a unified fashion.

6.3. First step: the classical part

Let inc : T → L(F ) denote the inclusion of the Toeplitz C∗-algebra into the bounded operators
on the Fock Hilbert space F . In the first step of our homotopy between the two quasi-
homomorphisms (ψ− ⊗ 1T + (Q0 ⊕ 0) ⊗MT, ψ− ⊗ 1T) and (ψ+ ⊗ 1T, ψ− ⊗ 1T), we create a
homotopy between the two ∗-homomorphisms

(Q0 ⊕ 0) ⊗MT and (inc ⊕ 0) ⊗Q0 : T → L
(
(F ⊕ F )⊗̂T

)
.

This part of the homotopy behaves very much like the classical U(1)-case corresponding to
Cuntz–Pimsner algebras associated with C∗-correspondences, see, for instance, [32, Theorem
4.4]. However, since we are working with an SU(2)-gauge action instead of a U(1)-gauge action,
it is unreasonable to expect that the U(1)-argument would entirely carry over to our situation.
Therefore, after this initial step there is still a quite complicated homotopy argument left and
this is mainly carried out in Subsection 6.4.

We recall the definition of the closed subspace G ⊆ F ⊗̂F from (6.4) and we apply the
notation

P := Π ⊕ 1F ̂⊗F ∈ L
(
(F ⊗̂F ) ⊕ (F ⊗̂F )

)
(6.8)

for the orthogonal projection onto the closed subspace G⊥ ⊕ (F ⊗̂F ). We emphasise that it
follows from the definition of the closed subspace G ⊆ F ⊗̂F that the orthogonal projection Π
onto G⊥ ⊆ F ⊗̂F is SU(2)-equivariant.

Lemma 6.14. We have that [W,P ] = 0 and the restriction W |Im(P ) : Im(P ) → Im(P ) is a
unitary operator. In fact, we have the identities

vTT (1 − Π) = (1 − Π)vTT and vBT (1 − Π) = 0 = (1 − Π)vTB (6.9)

among bounded operators on F ⊗̂F .

Proof. Let k,m ∈ N0 and ξ ∈ Ek+m be given and consider the vector ιk,m(ξ) ∈ Im(1 − P ).
Remark that this kind of vectors span a dense subspace of Im(1 − P ). Using the properties of
the structure maps for our subproduct system, we obtain that

(ιR ⊗ 1F )ιk,m(ξ) = (1F ⊗ ιL)ιk−1,m+1(ξ) and

(1F ⊗ ιL)ιk,m(ξ) = (ιR ⊗ 1F )ιk+1,m−1(ξ),
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where we apply the convention ιl,−1 = 0 = ι−1,l for all l ∈ N0. Since V ∗
L ιL = 0 = V ∗

RιR and
ι∗RιR = 1F −Q0 = ι∗LιL, we then obtain that

W

(
ιk,m(ξ)

0

)
=

(
ιk−1,m+1(ξ)

0

)
∈ Im(1 − P ) and

W ∗
(
ιk,m(ξ)

0

)
=

(
ιk+1,m−1(ξ)

0

)
∈ Im(1 − P ),

(6.10)

proving the first claim of the lemma together with the identities in (6.9). The fact that
the restriction W |Im(P ) : Im(P ) → Im(P ) is a unitary operator now follows since both
1 −W ∗W = (Q0 ⊗ 1F ) ⊕ 0 and 1 −WW ∗ = (1F ⊗Q0) ⊕ 0 restrict to the zero operator on
Im(P ) ⊆ (F ⊗̂F ) ⊕ (F ⊗̂F ). �

For ease of notation, we put

pR := 1 −W ∗W =
(
Q0 ⊗ 1T 0

0 0

)
and pL := 1 −WW ∗ =

(
1F ⊗Q0 0

0 0

)
.

For each t ∈ (0, π/2], we then define the SU(2)-equivariant bounded adjointable operator

Ut := − cos(t)W + (pL + sin(t)WW ∗)(1 − cos(t)W ∗)−1(pR + sin(t)W ∗W )

∈ M2

(
L(F ⊗̂T)

)
.

(6.11)

Note that Uπ/2 = 1. Moreover, we define the SU(2)-equivariant bounded adjointable operator

Ht := Ut(1 − P ) −WP ∈ M2

(
L(F ⊗̂T)

) ⊆ M2

(
L(F ⊗̂F )

)
.

For t = 0, we recall from Lemma 6.3 that

H0 = −W +
(

Σ(Q0 ⊗ 1F ) 0
0 0

)
∈ M2

(
L(F ⊗̂F )

)
.

Lemma 6.15. The SU(2)-equivariant bounded operator Ht ∈ M2(L(F ⊗̂F )) is unitary for
all t ∈ [0, π/2].

Proof. For t = 0, this was already proved in Lemma 6.3. Thus, let t ∈ (0, π/2] be given. We
start by noting that Ut ∈ M2(L(F ⊗̂T)) is a unitary operator. In fact, a unitary operator like
Ut can be constructed from an arbitrary partial isometry W in a unital C∗-algebra. It is in
this respect crucial that t �= 0 since (1 − cos(t)W ∗)−1 would otherwise not be a well-defined
bounded operator. Using Lemma 6.14, we then see that

H∗
t Ht = U∗

t Ut(1 − P ) + W ∗WP = 1 = UtU
∗
t (1 − P ) + WW ∗P = HtH

∗
t . �

Proposition 6.16. Let j ∈ {0, 1, . . . , n}. For each t ∈ [0, π/2], we have that

H∗
t · (ψ+(T ∗

j ) ⊗ 1F ) ·Ht(1 − P )

= (W ∗W + pR · sin(t)) · (ψ+(T ∗
j ) ⊗ 1F

) · (1 − P ) + cos(t) · (1F⊕F ⊗ T ∗
j ) · pR.

(6.12)

In particular, the map

t �→ H∗
t · (ψ+(T ∗

j ) ⊗ 1F ) ·Ht(1 − P )

is continuous in operator norm on the interval [0, π/2].
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Proof. We start by remarking that

(T ∗
j ⊗ 1F )ιk,m(ξ) = ιk−1,m(T ∗

j ξ) (6.13)

for all k,m ∈ N0 and all ξ ∈ Ek+m.
For the rest of this proof, we sometimes use the shorthand notation T ∗

j for ψ+(T ∗
j ) ⊗ 1F . It

follows from (6.13) that T ∗
j (1 − P ) = (1 − P )T ∗

j (1 − P ) and hence we obtain from Lemma 6.14
and (6.11) that

H∗
t · T ∗

j ·Ht(1 − P ) = U∗
t T

∗
j Ut(1 − P )

for all t ∈ (0, π/2].
Using the identities in (6.13) and (6.10), we moreover see that

T ∗
j W · (1 − P ) = WT ∗

j · (1 − P ) and

T ∗
j W

∗ · (1 − P ) = W ∗T ∗
j · (1 − P ) + (1 ⊗ T ∗

j ) · pR.
(6.14)

Indeed, for the second identity, let k,m ∈ N0 and ξ ∈ Ek+m be given. For k > 0, we then have
that

T ∗
j W

∗
(
ιk,m(ξ)

0

)
=

(
T ∗
j ιk+1,m−1(ξ)

0

)
=

(
ιk,m−1T

∗
j (ξ)

0

)
=

(
W ∗T ∗

j ιk,m(ξ)
0

)
and for k = 0, we get that

T ∗
j W

∗
(
ι0,m(ξ)

0

)
=

(
ι0,m−1T

∗
j (ξ)

0

)
=

(
(1 ⊗ T ∗

j )pR · ι0,m(ξ)
0

)
.

For t = 0, we then know from Lemmas 6.2 and 6.3 that

H∗
0 · T ∗

j ·H0(1 − P ) = (ψ−(T ∗
j ) ⊗ 1F ) · (1 − P ) + (1 ⊗ T ∗

j ) · pR
= W ∗T ∗

j W · (1 − P ) + (1 ⊗ T ∗
j ) · pR

= W ∗WT ∗
j · (1 − P ) + (1 ⊗ T ∗

j ) · pR.
This proves the identity in (6.12) for t = 0.

For t ∈ (0, π/2], we record that

T ∗
j WW ∗ = WW ∗T ∗

j and

T ∗
j (1 − cos(t)W ∗)−1 · (1 − P )

= (1 − cos(t)W ∗)−1 · (T ∗
j · (1 − P ) + cos(t)(1 ⊗ T ∗

j ) · pR
)
,

where the first identity relies on Lemma 6.2 and the second identity uses (6.14) together with
the fact that pRW

∗ = 0. We also remark that

T ∗
j · (pR + sin(t)W ∗W ) = sin(t) · T ∗

j = (pR + sin(t)W ∗W ) · (sin(t)pR + W ∗W )T ∗
j ,

where we are using that pR = 1 −W ∗W and T ∗
j pR = 0. For t ∈ (0, π/2], the identity in (6.12)

then follows from the computation

T ∗
j Ut · (1 − P ) = − cos(t)W · T ∗

j · (1 − P )

+ (pL + sin(t)WW ∗)(1 − cos(t)W ∗)−1

·(T ∗
j (1 − P ) + cos(t)(1 ⊗ T ∗

j )pR
)
(pR + sin(t)W ∗W )

= − cos(t)W · T ∗
j · (1 − P ) + Ut · cos(t)(1 ⊗ T ∗

j )pR
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+ (pL + sin(t)WW ∗)(1 − cos(t)W ∗)−1(pR + sin(t)W ∗W )

· (sin(t)pR + W ∗W )T ∗
j · (1 − P )

= Ut · (sin(t)pR + W ∗W )T ∗
j · (1 − P ) + Ut · cos(t)(1 ⊗ T ∗

j ) · pR. �

Lemma 6.17. Let K ∈ M2(K⊗̂T) ⊆ M2(L(F ⊗̂F )). The map t �→ H∗
t K is operator norm-

continuous on the interval [0, π/2].

Proof. Since the map t → Ht is operator norm-continuous on the interval (0, π/2], it is
enough to check continuity at t = 0.

We recall that

H∗
t = U∗

t (1 − P ) −W ∗P

=
(− cos(t)W ∗ + (pR + sin(t)W ∗W )(1 − cos(t)W )−1(pL + sin(t)WW ∗)

)
(1 − P )

−W ∗P

for t ∈ (0, π/2], whereas

H∗
0 = −W ∗P −W ∗(1 − P ) +

(
(Q0 ⊗ 1F )Σ 0

0 0

)
.

We remark that limN→∞(
∑N

k=0 Qk ⊗ 1F⊕F )K = K, where the convergence takes place in
operator norm. Next, we recall from Proposition 6.13 that P ∈ M2(L(F ⊗̂T)) and moreover
that M2(K⊗̂T) ⊆ M2(L(F ⊗̂T)) is an ideal. Because of the structure of the involved operators,
we may then focus on proving that

lim
t→0

(pR + sin(t)W ∗W )(1 − cos(t)W )−1(pL + sin(t)WW ∗) · (Qk ⊗ 1F⊕F ) · (1 − P )

= (Q0 ⊗ 1F )Σ(Qk ⊗ 1F ) ⊕ 0.

for every fixed k ∈ N0. However, by (6.10), we have that

lim
t→0

(pR + sin(t)W ∗W )(1 − cos(t)W )−1(pL + sin(t)WW ∗)(Qk ⊗ 1F⊕F ) · (1 − P )

= lim
t→0

(pR + sin(t)W ∗W )
k∑

j=0

(cos(t)W )j(pL + sin(t)WW ∗)(Qk ⊗ 1F⊕F ) · (1 − P )

= pR

k∑
j=0

W j(Qk ⊗ 1F⊕F )pL = pRW
k(Qk ⊗ 1F⊕F )pL

= (Q0 ⊗ 1F )Σ(Qk ⊗ 1F ) ⊕ 0.

This proves the result of the lemma. �

Proposition 6.18. Let x ∈ T. The difference

H∗
t (ψ+(x) ⊗ 1F )Ht − (ψ−(x) ⊗ 1F )

defines a compact operator on (F ⊕ F )⊗̂T for all t ∈ [0, π/2] and the map

[0, π/2] → L((F ⊕ F )⊗̂T) t �→ H∗
t (ψ+(x) ⊗ 1F )Ht
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is norm-continuous. In particular, we have the identity

1T =
[
H∗

π/2(ψ+ ⊗ 1T)Hπ/2, ψ− ⊗ 1T
]

inside KK
SU(2)
0 (T,T).

Proof. We start by proving the statement on compactness. For t = 0, we know from
Lemma 6.3 that

H∗
0 (ψ+(x) ⊗ 1F )H0 − (ψ−(x) ⊗ 1F ) = pR(1F⊕F ⊗ x),

which belongs to M2(K(F ⊗̂T)) since pR = (Q0 ⊗ 1T) ⊕ 0. For t ∈ (0, π/2], we see from
Lemma 6.4, Propositions 6.6 and 6.13 that [ψ+(x) ⊗ 1T, Ht] ∈ M2(K(F ⊗̂T)). An application
of Lemma 6.15 and Proposition 5.1 then yields that

H∗
t (ψ+(x) ⊗ 1T)Ht ∼ ψ+(x) ⊗ 1T ∼ ψ−(x) ⊗ 1T

hence proving the statement regarding compactness.
We now focus on proving norm-continuity. Using standard density arguments, we may restrict

our attention to the case where x is one of the generators x = T ∗
j for some j ∈ {0, 1, . . . , n}.

Once more, we use the shorthand notation T ∗
j := ψ+(T ∗

j ) ⊗ 1F . We already know from
Proposition 6.16 that the path t �→ H∗

t T
∗
j Ht(1 − P ) is continuous in operator norm on [0, π/2].

Now, for t ∈ [0, π/2], we have that

H∗
t T

∗
j HtP = −H∗

t T
∗
j WP = −H∗

t WPT ∗
j −H∗

t [T ∗
j ,WP ] = T ∗

j −H∗
t [T ∗

j ,WP ].

Since the commutator [T ∗
j ,WP ] belongs to M2(K⊗̂T) by Propositions 6.6 and 6.13, it follows

from Lemma 6.17 that t �→ H∗
t T

∗
j HtP is norm-continuous as well. This proves the statement

regarding continuity.
The remaining claim on classes in SU(2)-equivariant KK-theory now follows from the above

considerations on remarking that all the involved quasi-homomorphisms are SU(2)-equivariant.
Indeed, we then have the string of identities

1T = [ψ− ⊗ 1T + pR(1F⊕F ⊗MT), ψ− ⊗ 1T] = [H∗
0 (ψ+ ⊗ 1F )H0, ψ− ⊗ 1T]

= [H∗
π/2(ψ+ ⊗ 1T)Hπ/2, ψ− ⊗ 1T]

inside KK
SU(2)
0 (T,T). �

6.4. Second step: everything else

For each t ∈ [0, 1], we define the SU(2)-equivariant bounded adjointable operator

yt := 1 − P +
(

(1 − t)1/2vTT vTB

vBT (1 − t)1/2vBB

)
P : (F ⊕ F )⊗̂T → (F ⊕ F )⊗̂T.

Since the assignment t �→ yt is continuous in operator norm, we obtain a bounded adjointable
operator

y : (F ⊕ F )⊗̂C([0, 1],T) → (F ⊕ F )⊗̂C([0, 1],T),

which acts as yt on the fibre (F ⊕ F )⊗̂T associated with the evaluation at the point t ∈ [0, 1].
We shall see in this subsection that both y and y∗ have dense images and that the

corresponding unitary operator (obtained via polar decomposition)

I : (F ⊕ F )⊗̂C([0, 1],T) → (F ⊕ F )⊗̂C([0, 1],T)

yields the next step of our homotopy.
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More precisely, it is the aim of this subsection to prove the following:

Proposition 6.19. For each x ∈ T, the path t �→ I∗t (ψ+(x) ⊗ 1T)It − (ψ+(x) ⊗ 1T) is a
norm-continuous path of compact operators on (F ⊕ F )⊗̂T. In particular, we have the identity

1T = [I∗1 (ψ+ ⊗ 1T)I1, ψ− ⊗ 1T]

inside the SU(2)-equivariant KK-group, KK
SU(2)
0 (T,T).

The proof of this proposition relies on the results in the Appendix. Aligning with the notation
applied there, we define

X := (F ⊕ F )⊗̂C([0, 1],T) X := (Falg ⊕ Falg) ⊗ C([0, 1],T)

xj := P
(
ψ+(T ∗

j ) ⊗ 1C([0,1],T)

)
P K := (D−1 ⊕D−1) ⊗ 1C([0,1],T),

(6.15)

for all j ∈ {0, 1, 2, . . . , n}. Remark here that P : X → X is the orthogonal projection which
agrees with P ∈ L((F ⊕ F )⊗̂T) in each fibre (corresponding to the evaluations at the points t ∈
[0, 1]). We note that xj : X → X is a bounded adjointable operator for every j ∈ {0, 1, 2 . . . , n},
whereas K : X → X is a compact operator.

Lemma 6.20. The bounded adjointable operators y and y∗ : X → X both have norm-dense
image. Moreover, for each j ∈ {0, 1, 2 . . . , n} we have xj(X ), x∗

j (X ), y(X ), y∗(X ) ⊆ X.

Proof. We first remark that Π(Qk ⊗Qm) = (Qk ⊗Qm)Π for all k,m ∈ N0 and this implies
that Π preserves the dense submodule Falg ⊗ T ⊆ F ⊗̂T. The fact that xj , x

∗
j , y and y∗

all preserve the dense submodule X = (Falg ⊕ Falg) ⊗ C([0, 1],T) is then a consequence of
Lemma 6.4 and the definition of the Toeplitz operators Tj and T ∗

j ∈ T.
We continue by focusing on the claim regarding the images of y and y∗. Since the path t �→ yt

is norm-continuous, it suffices to verify that yt and y∗t : (F ⊕ F )⊗̂T → (F ⊕ F )⊗̂T both have
norm-dense image for each t ∈ [0, 1]. Applying Lemma 6.14, we obtain that

y∗t yt =
(

(1 − Π) + (1 − t + t · (vBT )∗vBT )Π 0
0 1 − t + t · (vTB)∗vTB

)
and

yty
∗
t =

(
(1 − Π) + (1 − t + t · vTB(vTB)∗)Π 0

0 1 − t + t · vBT (vBT )∗

) (6.16)

for all t ∈ [0, 1]. For t ∈ [0, 1), we see from these identities that yt and y∗t are in fact invertible
as bounded adjointable operators (and they are therefore in particular surjective).

For t = 1, we obtain from (6.2) that

y1 =
(

1 − Π vTB

vBT 0

)
=

(
1 − Π vTB

(Φ−1/2 ⊗ Φ1/2) · (vTB)∗ 0

)
and

y∗1 =
(

1 − Π (vBT )∗

(vTB)∗ 0

)
=

(
1 − Π vTB · (Φ−1/2 ⊗ Φ1/2)
(vTB)∗ 0

)
.

We recall that Φ : F → F is an invertible element in T ⊆ L(F ). The fact that y1 and y∗1 have
dense images then follows from an application of Lemmas 6.9 and 6.10. �
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In order to achieve a better understanding of the bounded adjointable operator y∗y : X →
X, we apply the decomposition from Theorem 3.19. This decomposition allows us for each
k,m ∈ N0 to introduce the bounded operator

Δk,m : Ek ⊗ Em → Ek ⊗ Em

Δk,m

(
σjιk−j,m−j(ξ)

)
:=

{
0 for j = 0

dkdm−1
dk−1dm

· (1 − dk−jdm−j−1
dkdm−1

) · σjιk−j,m−j(ξ) for 0 < j � k,m

defined whenever 0 � j � k,m and ξ ∈ Ek+m−2j . We note that

‖Δk,m‖ � dkdm−1

dk−1dm
� n + 1

for all k,m ∈ N and we therefore obtain a bounded operator

Δ : F ⊗̂F → F ⊗̂F Δ(ξ) := Δk,m(ξ) , k,m ∈ N0.

Remark also that Δk,m = 0 for k = 0 or m = 0.

Lemma 6.21. We have the identity (vBT )∗vBT = Δ. In particular, Δ ∈ L(F ⊗̂F ) belongs
to the unital C∗-subalgebra L(F ⊗̂T) ⊆ L(F ⊗̂F ).

Proof. The identity holds trivially on Ek ⊗ Em for k = 0 or m = 0. This may also be seen
as a consequence of Lemma 6.4. Thus, let k,m ∈ N. From the identities in (6.2), Lemma 6.5
and the definition in (4.1), we obtain that

((vBT )∗vBT )(η) = vTB(Φ−1 ⊗ Φ)(vTB)∗(η) =
dkdm−1

μk · dk−1dm
σk−1,m−1σ

∗
k−1,m−1(η) (6.17)

for all η ∈ Ek ⊗ Em. Let 0 � j � k,m and let ξ ∈ Ek+m−2j be given. Using Theorem 3.19, we
only need to verify that

((vBT )∗vBT )(σjιk−j,m−j(ξ)) = Δk,m(σjιk−j,m−j).

The case where j = 0 follows since vBT (1 − Π) = 0 and the remaining cases follow from (6.17)
by applying Lemmas 3.17 and 3.18. �

The next lemma is a straightforward consequence of Lemma 6.8, Lemma 6.21 and (6.16).

Lemma 6.22. Let t ∈ [0, 1]. We have the identity

y∗t yt =
(

1 − Π + ((1 − t) + t · Δ) · Π 0
0 1 − t + t · Γ

)
.

Lemma 6.23. The norm-dense submodule X = (Falg ⊕ Falg) ⊗ C([0, 1],T)⊆ X is contained
in the image of y∗y : X → X.

Proof. For k ∈ N0, we sometimes apply the identification Qk := Qk ⊗ 1T : F ⊗̂T → F ⊗̂T. It
follows from Lemma 6.22 and the definition of the involved operators that

y∗t yt(Qk ⊕Qk) = (Qk ⊕Qk)y∗t yt

for all t ∈ [0, 1]. In particular, on identifying Qk ∈ L(F ⊗̂T) with the constant path with value
Qk for all t ∈ [0, 1], we obtain that

Im((Qk ⊕Qk) · (y∗y(Qk ⊕Qk) + (1 −Qk) ⊕ (1 −Qk))) ⊆ Im(y∗y)
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for all k ∈ N0. Since Im(Qk ⊕Qk) = (Ek ⊕ Ek) ⊗ C([0, 1],T), it therefore suffices to show that

y∗y(Qk ⊕Qk) : (Qk ⊕Qk)X → (Qk ⊕Qk)X

is invertible. In other words, we have to show that the fibre

(y∗t yt)(Qk ⊕Qk) : Qk(F ⊗̂T) ⊕Qk(F ⊗̂T) → Qk(F ⊗̂T) ⊕Qk(F ⊗̂T)

is invertible for each t ∈ [0, 1] and that

sup
t∈[0,1]

∥∥((y∗t yt)(Qk ⊕Qk))
−1∥∥ < ∞.

As we did in Lemma 6.9, we may switch over and solve the corresponding problem on the
Hilbert space (QkF ⊗̂F ) ⊕ (QkF ⊗̂F ). We apply Lemma 6.22 and deal with each component
separately, namely

1 − Π + ((1 − t) + t · Δ) · Π and 1 − t + t · Γ : F ⊗̂F → F ⊗̂F.

Let k ∈ N0 be fixed. We saw in the proof of Lemma 6.9 that (1 − t + t · Γ)(Qk ⊗ 1F ) : Ek ⊗
F → Ek ⊗ F for all t ∈ [0, 1] is invertible and that

sup
t∈[0,1]

∥∥((1 − t + t · Γ)(Qk ⊗ 1F ))−1∥∥ < ∞.

Remark that we are here also applying that Γ : F ⊗̂F → F ⊗̂F is a positive bounded operator.
We now consider the problematic part of the other component of y∗t yt(Qk ⊕Qk):

(1 − t + tΔ)Π(Qk ⊗ 1F ) : Π(Ek ⊗ F ) → Π(Ek ⊗ F ).

Remark in this respect that (Qk ⊗Qm)Π = Π(Qk ⊗Qm) for all m ∈ N0.
For each t ∈ [0, 1] and m ∈ N0, we are interested in the invertible operator

(1 − t + tΔ)Π(Qk ⊗Qm) : Π(Ek ⊗ Em) → Π(Ek ⊗ Em).

For k = 0 or m = 0, we have that Π(Ek ⊗ Em) = {0} so suppose that k,m ∈ N. In this case,
we have that the bounded operator Δk,mΠ : Π(Ek ⊗ Em) → Π(Ek ⊗ Em) is invertible with

‖(Δk,mΠ)−1‖ =
dk−1dm
dkdm−1

(
1 − dk−1dm−2

dkdm−1

)−1

� dk−1d1

dk

(
1 − dk−1

dk

)−1

= d1 ·
(

dk
dk−1

− 1
)−1

.

(6.18)

Since this norm bound is independent of m ∈ N, we conclude that

(t + (1 − t)Δ)Π(Qk ⊗ 1F ) : Π(Ek ⊗ F ) → Π(Ek ⊗ F )

is invertible for all t ∈ [0, 1] and that

sup
t∈[0,1]

∥∥((t + (1 − t)Δ)Π(Qk ⊗ 1F ))−1∥∥ < ∞.

We are here also relying on the positivity of the bounded operator Δ : F ⊗̂F → F ⊗̂F . �

Recall the definition of the bounded adjointable operators xj , y and K : X → X from (6.15).

Lemma 6.24. Let j ∈ {0, 1, 2, . . . , n}. There exist bounded adjointable operators
L,L,M,M : X → X such that

K1/2LK1/2 = [xj , y] = MK and K1/2LK1/2 = [xj , y
∗] = KM.
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Proof. To ease the notation, we put T ∗
j := T ∗

j ⊗ 1T. For each t ∈ [0, 1], we apply Lemma 6.14
and compute that

[xj , yt] =
(

(1 − t)1/2Π · [T ∗
j , v

TT ] · Π Π[T ∗
j , v

TB ]
[T ∗

j , v
BT ] · Π (1 − t)1/2[T ∗

j , v
BB ]

)
and

[xj , y
∗
t ] =

(
(1 − t)1/2Π · [T ∗

j , (v
TT )∗] · Π Π · [T ∗

j , (v
BT )∗]

[T ∗
j , (v

TB)∗] · Π (1 − t)1/2[T ∗
j , (v

BB)∗]

)
.

We consider the inverses K−1/2 and K−1. These positive and regular unbounded operators
both have X as a core and on this core they are given by

D1/2 ⊗ 1C2⊗C([0,1],T) and D ⊗ 1C2⊗C([0,1],T) : X → X,

respectively. The result of the lemma now follows from Proposition 6.7. Indeed, L and L are the
bounded adjointable extensions of D1/2[xj , y]D1/2 and D1/2[xj , y

∗]D1/2, respectively. Whereas
M and M are the bounded adjointable extensions of [xj , y]D and D[xj , y

∗], respectively. We
remark that all of these four unbounded operators are understood to be defined on the algebraic
tensor product X = (Falg ⊕ Falg) ⊗ C([0, 1],T). Indeed, this algebraic tensor product works
well in this respect since it is a core for both D and D1/2 and since it is invariant under xj , y
and y∗. �

For each λ > 0, we put Rλ := (λ + y∗y)−1. We remark that it follows from Lemma 6.22 that

Rλ

(
1 − Π 0

0 0

)
=

(
(λ + 1)−1(1 − Π) 0

0 0

)
.

Lemma 6.25. The identity Ky∗y = y∗yK holds. Moreover, there exists a constant such that

‖KRλ‖ � C and ‖K1/2yRλ‖ � C

for all λ > 0.

Proof. The fact that Ky∗y = y∗yK follows since y∗y leaves the submodule (Ek ⊕ El) ⊗
C([0, 1],T) invariant for all k, l ∈ N0. Moreover, writing y : X → X as a 2 × 2-matrix in the
following fashion

y =
(
yTT yTB

yBT yBB

)
∈ M2

(
L(F ⊗̂C([0, 1],T))

)
,

we see from the argument given in the proof of Proposition 6.7 that K1/2yK−1/2 : X → X
extends to the bounded adjointable operator(

1 − Π + (Φ−1/2 ⊗ 1)yTTΠ yTB(Φ1/2 ⊗ 1)
(Φ−1/2 ⊗ 1)yBT yBB(Φ1/2 ⊗ 1)

)
on X. Moreover, since each component in

Rλ =
(
RTT

λ 0
0 RBB

λ

)
=

(
(1 − Π)RTT

λ (1 − Π) + ΠRTT
λ Π 0

0 RBB
λ

)

=
(

(λ + 1)−1(1 − Π) + ΠRTT
λ Π 0

0 RBB
λ

)
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commutes with Φ ⊗ 1, we obtain that

K1/2yRλ =
(

1 − Π + (Φ−1/2 ⊗ 1)yTTΠ yTB(Φ1/2 ⊗ 1)
(Φ−1/2 ⊗ 1)yBT yBB(Φ1/2 ⊗ 1)

)
RλK

1/2

=
(

(1 − Π)(λ + 1)−1 0
0 0

)
K1/2

+
(

(Φ−1/2 ⊗ 1)yTT (RTT
λ )1/2Π yTB(RBB

λ )1/2(Φ1/2 ⊗ 1)
(Φ−1/2 ⊗ 1)yBT (RTT

λ )1/2 yBB(RBB
λ )1/2(Φ1/2 ⊗ 1)

)
R

1/2
λ K1/2.

It therefore suffices to find a constant C > 0 such that ‖KRλ‖ � C for all λ > 0. Using the
description of y∗y : X → X from Lemma 6.22, together with the definitions of Γ and Δ :
F ⊗̂F → F ⊗̂F , we may focus on showing that

sup
k,m∈N0

‖d−1
k Γ−1

k,m‖ < ∞ and sup
k,m∈N

‖d−1
k (Δk,mΠ)−1‖ < ∞,

where we consider Δk,mΠ as a bounded invertible operator on the Hilbert space Π(Ek ⊗ Em)
for k,m ∈ N. The first estimate was already established in the proof of Lemma 6.12 and the
second estimate follows from Lemma 3.3 and the estimate in (6.18). Indeed, we have that

‖d−1
k (Δk,mΠ)−1‖ � d1

dk

(
dk

dk−1
− 1

)−1

� d1 · dk−1

dk
� (n + 1) · γn

for all k,m ∈ N. �

For each t ∈ [0, 1], define It : (F ⊕ F )⊗̂T → (F ⊕ F )⊗̂T as the bounded adjointable extension
of

yt|yt|−1 : Im(|yt|) → (F ⊕ F )⊗̂T.

Note that such extension is indeed a well-defined unitary operator on (F ⊕ F )⊗̂T, since both
yt and y∗t : (F ⊕ F )⊗̂T have dense images (cf. Lemma 6.20 and [28, Proposition 3.8]).

We emphasise that

I0 = y0 = Hπ/2 and I1 =
(

1 − Π Θ
Θ∗ 0

)
: (F ⊕ F )⊗̂T → (F ⊕ F )⊗̂T, (6.19)

where the bounded adjointable isometry Θ : F ⊗̂T → F ⊗̂T was introduced in Lemma 6.10.
We are now ready to prove the main result of this subsection:

Proposition 6.26. The map t �→ It is a strictly continuous path of SU(2)-equivariant
unitary operators on (F ⊕ F )⊗̂T. Moreover, for every x ∈ T, the map t �→ I∗t (ψ+(x) ⊗ 1T)It −
ψ+(x) ⊗ 1T is a norm-continuous path of compact operators on (F ⊕ F )⊗̂T. In particular, we
have the identity

1T = [I∗1 (ψ+ ⊗ 1T)I1, ψ− ⊗ 1T]

inside KK
SU(2)
0 (T,T).

Proof. By Lemma 6.20, the operator y|y|−1 : Im(|y|) → X extends to a unitary operator
I on X = (F ⊕ F )⊗̂C([0, 1],T). The fibres of this unitary operator are exactly the unitary
operators It : (F ⊕ F )⊗̂T → (F ⊕ F )⊗̂T, t ∈ [0, 1]. This means that the path t �→ It is a strictly
continuous path of unitary operators on (F ⊕ F )⊗̂T. Moreover, since yt ∈ L((F ⊕ F )⊗̂T) is
SU(2)-equivariant, we obtain that It ∈ L((F ⊕ F )⊗̂T) is SU(2)-equivariant as well.
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Next, a combination of Proposition A.1, Lemmas 6.20, 6.23, 6.24, and 6.25 shows that the
commutators [xj , I] and [x∗

j , I] belong to the compact operators on (F ⊕ F )⊗̂C([0, 1],T) for
every j ∈ {0, 1, 2, . . . , n}. Now, put T ∗

j := ψ+(T ∗
j ) ⊗ 1C([0,1],T) and remark that

T ∗
j = xj + (1 − P )T ∗

j (1 − P ) + (1 − P )T ∗
j P.

We know from Proposition 6.13 and from the definition of P in (6.8) that

(1 − P )T ∗
j P = (1 − P )[T ∗

j , P ] =
(

1 − Π 0
0 0

)(
[T ∗

j ⊗ 1C([0,1],T),Π] 0
0 0

)
is a compact operator on (F ⊕ F )⊗̂C([0, 1],T). Indeed, applying the point evaluations at t ∈
[0, 1] yields a constant path of compact operators on F ⊗̂T:

t �→ (1 − Π)[T ∗
j ⊗ 1T,Π].

We moreover have that

[I, T ∗
j ] = [I, xj ] + [I, (1 − P )T ∗

j P ]

and similarly with I∗ instead of I. This shows that [I, T ∗
j ] and [I∗, T ∗

j ] are compact operators
on (F ⊕ F )⊗̂C([0, 1],T) for all j ∈ {0, 1, 2, . . . , n} and hence that

I∗(ψ+(x) ⊗ 1C([0,1],T))I − ψ+(x) ⊗ 1C([0,1],T)

is a compact operator on (F ⊕ F )⊗̂C([0, 1],T) for all x ∈ T. But this means that the path

t �→ I∗t (ψ+(x) ⊗ 1T)It − ψ+(x) ⊗ 1T

is a norm-continuous path of compact operators on (F ⊕ F )⊗̂T. Since ψ+(x) ⊗ 1T − ψ−(x) ⊗ 1T
is a compact operator as well (for every x ∈ T), we obtain the identity

[I∗0 (ψ+ ⊗ 1T)I0, ψ− ⊗ 1T] = [I∗1 (ψ+ ⊗ 1T)I1, ψ− ⊗ 1T]

inside the SU(2)-equivariant KK-group KK
SU(2)
0 (T,T). Since I0 = Hπ/2, we obtain the result

of the present proposition by an application of Proposition 6.18. �

Remark 7. For n > 1, it can be established that both y∗y and yy∗ are invertible as bounded
adjointable operators on X and a more straightforward proof of Proposition 6.26 can therefore
be given. For n = 1, it only holds that y∗y and yy∗ have dense images in X and this is one
of the reasons for carrying out some of the more detailed analysis presented here. Our present
approach treats both cases on an equal footing and might be applicable in a wider range
of examples.

6.5. Third step: proof of KK-equivalence

We are now ready to finish the proof of Theorem 6.1 establishing that T and C are KKSU(2)-
equivalent.

Proof of Theorem 6.1. From Proposition 6.26, we have the identity

1T = [I∗1 (ψ+ ⊗ 1T)I1, ψ− ⊗ 1T]

inside the SU(2)-equivariant KK-group KK
SU(2)
0 (T,T). Thus in order to prove the identity

1T = [ψ+, ψ−]⊗̂C[i],

we only need to show that

[I∗1 (ψ+ ⊗ 1T)I1, ψ− ⊗ 1T] = [ψ+ ⊗ 1T, ψ− ⊗ 1T]. (6.20)
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We recall from (6.19) that

I1 =
(

1 − Π Θ
Θ∗ 0

)
and hence that I1 ∈ L((F ⊕ F )⊗̂T) is an SU(2)-equivariant selfadjoint unitary operator.

For each t ∈ [0, 1], define

Jt :=
1 + I1

2
+ exp(πit) · I1 − 1

2

so that Jt ∈ L((F ⊕ F )⊗̂T) is an SU(2)-equivariant unitary operator and t �→ Jt is a norm
continuous path with J0 = I1 and J1 = 1. Moreover, for every x ∈ T, the assignment

[0, 1] � t �→ J∗
t (ψ+(x) ⊗ 1T)Jt − ψ+(x) ⊗ 1T

yields a norm continuous path of compact operators on the module (F ⊕ F )⊗̂T. Indeed, the
last claim on compactness follows immediately from Proposition 6.26.

The existence of the path t �→ Jt with the above properties establishes the identity in (6.20)
and we have proved our main theorem. �

7. The Gysin sequence

Throughout this section, we fix a strictly positive integer n and consider the irreducible
representation ρn : SU(2) → U(Ln). We apply the notation

K(F ) := K(F (ρn, Ln)) , T := T(ρn, Ln) and O := T(ρn, Ln)/K(F (ρn, Ln))

for the associated compact operators, Toeplitz algebra and Cuntz–Pimsner algebra. By
construction, we have the exact sequence

0 −→ K(F (ρn, Ln))
j−→ T(ρn, Ln)

q−→ O(ρn, Ln) −→ 0

of C∗-algebras. This exact sequence in turn results in the following six-term exact sequence of
K-groups:

We recall that the compact operators K(F ) are strongly Morita equivalent to the complex
numbers via the C∗-correspondence F = F (ρn, Ln) from K(F (ρn, Ln)) to C. In particular, this
C∗-correspondence together with its dual F (ρn, Ln)∗ implements a KK-equivalence between
K(F ) and C. We denote the corresponding classes in KK-theory by

[F ] ∈ KK0(K(F ),C) and [F ∗] ∈ KK0(C,K(F )).

Combining these observations with the KK-equivalence from Theorem 6.1, we obtain the exact
sequence
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We recall that i : C → T denotes the unital inclusion of C into the Toeplitz algebra and remark
that q ◦ i : C → O agrees with the unital inclusion of the complex numbers into O. We will
abuse notation and denote the latter inclusion with the same symbol i.

In the next proposition, we compute the composition [F ∗]⊗̂K(F )[j]⊗̂T[ψ+, ψ−], which we
identify with the Euler class of the irreducible representation ρn : SU(2) → U(Ln), that is, the
alternating sum of KK-classes 1C − [Ln] + [det(ρn, Ln)] ∈ KK0(C,C).

Proposition 7.1. We have the identity

[j]⊗̂T[ψ+, ψ−] = [F ]⊗̂C(1C − [Ln] + [det(ρn, Ln)])

in KK0(K(F ),C).

Proof. By Proposition 2.6, we have that det(ρn, Ln) is a one-dimensional complex vector
space and hence that [det(ρn, Ln)] = 1C inside KK0(C,C). Hence we have to show that

[j]⊗̂T[ψ+, ψ−] = 2 · [F ] − [F ]⊗̂C[E1]. (7.1)

Since j : K(F ) → T is the inclusion, we have that both ψ+ ◦ j and ψ− ◦ j : K(F ) → L(F ⊕ F )
factorises through the compact operators on F ⊕ F and the left-hand side of (7.1) is therefore
given by

[j]⊗̂T[ψ+, ψ−] = [ψ+ ◦ j, 0] − [ψ− ◦ j, 0].

Now, letting φ : K(F ) → L(F ) denote the inclusion of the compact operators into the bounded
operators, we have that ψ+ ◦ j = φ⊕ φ : K(F ) → L(F ⊕ F ) and hence that [ψ+ ◦ j, 0] = 2 · [F ]
inside KK0(K(F ),C).

Next, recall that ψ−(x) = WR(x⊗ 1E1)W
∗
R : F ⊕ F → F ⊕ F for all x ∈ T, where WR : F ⊗

E1 → F ⊕ F is the isometry defined in (5.1). In particular, we have that WR implements a
unitary isomorphism between F ⊗ E1 and WRW

∗
R(F ⊕ F ).

We define the ∗-homomorphism φ− : K(F ) → L(WRW
∗
R(F ⊕ F )) by

φ−(x)(ξ) = (ψ− ◦ j)(ξ)
for all ξ ∈ WRW

∗
R(F ⊕ F ). We then have that (φ−, 0) is unitarily equivalent to the quasi-

homomorphism (φ⊗ 1E1 , 0). Moreover, we see that the quasi-homomorphisms (ψ− ◦ j, 0) and
(φ−, 0) agree up to addition of a degenerate quasi-homomorphism. We therefore obtain the
identities

[ψ− ◦ j, 0] = [φ−, 0] = [φ⊗ 1E1 , 0] = [F ]⊗̂C[E1]

inside the KK-group KK0(K(F ),C). �

Combining the above results, we obtain the KK-theoretic Gysin sequence associated with
the irreducible representation ρn : SU(2) → U(Ln):

Theorem 7.2. The following sequence of K-groups is exact:

Corollary 7.3. For every n ∈ N, we have

K0(O(ρn, Ln)) ∼= Z/(n− 1)Z K1(O(ρn, Ln)) ∼=
{

Z n = 1,
{0} otherwise.

(7.2)
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7.1. Concluding remarks and open problems

The present paper raises a number of questions and open problems and we would like to
conclude by listing a few of them.

(1) It is relevant to consider the case where the representation τ : SU(2) → U(H) is no
longer irreducible, but where H remains finite dimensional. We expect, however, that a lot of the
considerations appearing in the present paper could be carried over to this more general context
without too much trouble. In this direction, we have so far only computed the determinant of
the representation, see Proposition 2.7.

(2) In the present work, we have only been studying SU(2)-subproduct systems in a Hilbert
space context, meaning that we have in some sense been looking at SU(2)-bundles with a one-
point parameter space. In order to find a noncommutative analogue of the classical K-theoretic
Gysin sequence for the sphere bundle of a complex Hermitian vector bundle of rank 2, [23,
Subsection IV.1.13], it is necessary to extend our work to SU(2)-subproduct systems with a
non-trivial parameter space. This means that an interesting starting point could be a general
SU(2)-C∗-correspondence where the left action factorises through the compact operators. In
this context, it could be relevant to compare the corresponding extension class with the class
appearing in [11].

(3) We have here been focusing on representations and subproduct systems relating to SU(2)
since this object has the nice property of being both a Lie group and an odd-dimensional sphere
at the same time. Classical results from algebraic topology (for example, the Leray–Serre
spectral sequence) suggest that we cannot expect the existence of a six-term exact sequence in
K-theory, like the Gysin exact sequence, when looking at noncommutative fibre bundles where
the fibre is not some analogue of a sphere.

(4) In analogy with the case of Cuntz–Pimsner algebras arising from a C∗-correspondence,
it is an important problem to settle the universal properties both for the Toeplitz algebras and
the Cuntz–Pimsner algebras coming from our SU(2)-equivariant data.

(5) Finally, it would be worthwhile to look for an SU(2)-gauge invariant uniqueness theorem
as obtained in the U(1)-setting by Katsura in [26, Theorem 6.4]. �

Appendix. Commutators and polar decompositions

Throughout this appendix, we let X be a countably generated Hilbert C∗-module over a
C∗-algebra B.

Proposition A.1. Suppose that x, y : X → X are bounded adjointable operator and that
there exists a norm-dense submodule X ⊆ X such that

X ⊆ Im(y∗y) and x(X ), x∗(X ), y∗(X ) ⊆ X .

Suppose moreover that K : X → X is a positive compact operator and that L,L,M,M : X →
X are bounded adjointable operators such that:

(i) K1/2LK1/2 = [x, y] and K1/2LK1/2 = [x, y∗];
(ii) MK = [x, y] and KM = [x, y∗].

Suppose finally that there exists a constant C > 0 such that

‖K1/2(λ + y∗y)−1/2‖ , ‖K(λ + y∗y)−1‖ , ‖K1/2y(λ + y∗y)−1‖ � C

for all λ > 0. Then the unbounded operator y|y|−1 : Im(|y|) → X extends to a bounded
adjointable isometry θ : X → X satisfying that [x, θ] and [x∗, θ] both lie in K(X).
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Proof. We start by recording that since |y| : X → X is positive and has dense image, we
know that |y|−1 : Im(|y|) → X is a well-defined unbounded positive and regular operator. The
unbounded operator y|y|−1 : Im(|y|) → X then extends to an isometry θ : X → X and this
isometry is adjointable since |y|−1y∗ is densely defined as well (the domain of |y|−1y∗ contains
X and the adjoint θ∗ : X → X is the unique bounded extension of |y|−1y∗).

It follows from the identities in (1) and compactness of K : X → X that both [x, y] and
[x, y∗] lie in K(X).

For each λ > 0, we put Rλ := (λ + y∗y)−1. For every ξ ∈ Im(y∗y), we have that |y|−1ξ =
1
π

∫∞
0

λ−1/2Rλξdλ where the integral converges absolutely (using the norm on X). We compute
that

[x,Rλ] = −Rλ[x, y∗y]Rλ = −Rλ[x, y∗]yRλ −Rλy
∗[x, y]Rλ

= −RλK
1/2LK1/2yRλ −Rλy

∗MKRλ.

This in particular implies that [x,Rλ] ∈ K(X). Note now that ‖y∗yRλ‖ � 1 for all λ > 0.
Combining this estimate with our assumptions, we obtain that∥∥y[x,Rλ]

∥∥ � ‖yRλK
1/2‖ · ‖L‖ · ‖K1/2yRλ‖ + ‖yRλy

∗‖ · ‖M‖ · ‖KRλ‖
� C2 · ‖L‖ + C · ‖M‖

(A.1)

for all λ > 0.
Remark now that the integral

∫∞
1

λ−1/2y[x,Rλ]dλ converges absolutely in operator norm
since ‖Rλ‖ � λ−1 for all λ > 0. Moreover, we obtain from the estimate in (A.1) that the
integral

∫ 1

0
λ−1/2y[x,Rλ]dλ converges absolutely in operator norm as well. The whole integral∫ ∞

0

λ−1/2y[x,Rλ]dλ

therefore converges absolutely in operator norm and since the integrand is a continuous map
(0,∞) → K(X), we conclude that

1
π

∫ ∞

0

λ−1/2y[x,Rλ]dλ ∈ K(X).

We may likewise show that the integral

1
π

∫ ∞

0

λ−1/2KRλdλ

converges absolutely to a compact operator.
The claim that [x, θ] is a compact operator is now verified by noting that

[x, θ]ξ = [x, y]|y|−1ξ + y[x, |y|−1]ξ

= M
1
π

∫ ∞

0

λ−1/2KRλ(ξ)dλ +
1
π

∫ ∞

0

λ−1/2y[x,Rλ](ξ)dλ,

for all ξ ∈ X .
Since our assumptions are symmetric in x and x∗, it follows immediately that [x∗, θ] is a

compact operator as well. �
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