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Abstract

Background

Histotype specific neoadjuvant therapy response data is scarce in soft tissue 

sarcomas. This study aimed to assess the impact of a moderate radiotherapy (RT) 

dose on resectability and to correlate MRI parameters to pathological treatment 

response in Myxoid Liposarcoma (MLS).

Methods

This prospective, multicenter, single-arm, phase 2 trial assessed the radiological 

effects of 36 Gy of preoperative radiotherapy in primary non-metastatic MLS. 

Distance of the tumor to the neurovascular bundle, tumor dimensions, fat fraction, 

enhancing fraction were determined on repeat MRI scans at baseline, 8 fractions, 

16 fractions and preoperatively. Extensiveness of pathological response was 

established by central pathology review.

Results

Preoperative radiotherapy resulted in a median increase of 2 mm (IQR 0 – 6) of the 

distance of the tumor to the neurovascular bundle. As compared to baseline, the 

median change of the tumor volume, craniocaudal diameter and axial diameter 

at preoperative MRI were -60% (IQR -74 – -41), -19% (IQR -23– -7) and -20% (IQR 

-29 – -12), respectively. The median fat fraction of 0.1 (IQR 0.0 – 0.1) and enhancing 

fraction of 0.8 (IQR 0.6 – 0.9) at baseline, changed to 0.2 (IQR 0.1 – 0.5) and to 

0.5 (IQR 0.4 – 0.9) preoperatively, respectively. Radiological signs of response in 

terms of volume, enhancing fraction and fat fraction were correlated with specific 

pathological expresses of response like hyalinization, necrosis and fatty maturation.

Conclusions

A moderate dose of preoperative radiotherapy may improve resectability in MLS 

and could facilitate achievement of clear margins and function preservation. MRI 

features which were predictive for signs of pathological response, can play a role 

in further personalization of neoadjuvant treatment strategies in order to improve 

outcome in MLS.



Moderate dose preoperative RT may render borderline or inoperable MLS resectable

7

119   

Introduction
Response evaluation is important in clinical trials investigating novel 

neoadjuvant treatment strategies. It is frequently used as a surrogate short-term 

endpoint to assess efficacy of neoadjuvant regimens in Soft Tissue Sarcoma 

(STS) including the myxoid liposarcoma (MLS) subtype.43–46 The major limitation 

of pathological response is that it can only be assessed after surgery once 

neoadjuvant treatment already has been completed. In contrast, radiological 

response evaluations can be performed once or multiple times during neoadjuvant 

therapy. Provided clear correlations between radiological and histopathological 

parameters can be established, this could ultimately offer an opportunity to adapt 

neoadjuvant therapies on a personalized basis of actual treatment response.

Although the relationship between radiological and histopathological parameters 

in STS has been subject of previous investigations,47–50 histotype specific data is 

scarce. For MLS, this would be particularly of interest given its distinctive clinical 

behavior. In sharp contrast to other STS subtypes, substantial volumetric reductions 

and even partial responses according to RECIST are frequently observed following 

preoperative radiotherapy in MLSs.39,41,48,50–52 The reported association between 

tumor shrinkage and pathological response in a small and heterogeneous group of 

STS,48 is likely to reflect at least partly the well-established high radiosensitivity of 

the MLS subtype in this series.9,41,46,50 However, the question can be raised whether 

shrinkage is also predictive for pathological response in a cohort with only MLS 

patients. Furthermore, the clinical benefit of tumor shrinkage for the patient in 

terms of resectability, is currently unclear. Particularly for tumors in close proximity 

of the neurovascular bundle (NVB), function preservation could be facilitated by a 

radiotherapy induced increase of the distance from tumor to the NVB.

In addition to dimensional changes on Magnetic Resonance Imaging (MRI), other 

changes visible on MRI during and following preoperative radiotherapy may be 

interpreted as therapy effect in MLS.53 Radiotherapy has been reported to potentially 

result in an increase of fat content on MRI in MLS,47,50,54 with corresponding fatty 

maturation on histopathological examination of 13 MLS resection specimens.50 

Finally, MLSs frequently show radiotherapy associated decreases of enhancing 

fraction on MRI. However, this feature may not reliably predict pathological response 

in STS.47,50 
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The goal of the current study is (I) to determine the correlation of MRI parameters 

established during and after preoperative radiotherapy to pathological treatment 

response in MLS and (II) to assess the impact of a moderate radiotherapy dose on 

resectability.

Methods

Trial design and patients

In this study, the MRI data of MLS patients, included in the DOREMY (DOse REduction 

in MYxoid liposarcoma) trial (NCT02106312), were evaluated. This prospective, 

multicenter, single-arm, phase 2 trial was open for enrollment from 24 November, 

2010, until 14 May, 2020. The study was designed to assess efficacy and morbidity 

of a reduced dose of 36 Gy of preoperative radiotherapy in 18 fractions in MLS.46,52 

Three trial centers participated in this complementary and voluntary part of the 

study investigating repeat MRI examinations before, during, and after preoperative 

radiotherapy. All patients provided a written informed consent. The protocol and 

all amendments thereon were approved by the ethics committee of the initiating 

center.

Eligible patients were adults (≥18 years) with a translocation confirmed MLS (either 

t(12;16)(q13,p11) or t(12;22)(q13q12) reciprocal translocation). Exclusion criteria were 

any other prior or concurrent malignancy, pregnancy, ECOG performance status >2, 

and prior radiotherapy to the target area.

Procedures

Staging consisted of MRI of the primary site followed by image guided biopsies and 

CT scans of the chest, abdomen, and pelvis.27,28 Histopathological and molecular 

confirmation of the MLS diagnosis of the original primary tumor was mandatory. 

The comprehensive radiotherapy protocol has been published elsewhere and 

a summary is presented in the Supplementary material.46 The interval between 

radiotherapy and resection was 4-8 weeks. Central pathology review of the resected 

specimen was performed and the percentage of vital tumor cells, hyalinization, 

fatty maturation, and necrosis were scored systematically,55,56 together mounting 

to 100%. The cumulative percentage of hyalinization, fatty maturation, and necrosis, 

was considered as pathological treatment response. The cut-off value for an 

extensive pathological response was set at 90% (median % in this dataset). 
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Patients underwent MRI scans according to the study protocol within one week 

before the 1st fraction (baseline) and at the day of the 8th and 16th fraction. From 2015 

onwards the study imaging protocol was also performed preoperatively. The study 

MRI protocol included conventional T1- and T2-weighted MRI sequences, followed 

by fat suppressed T1-weighted sequences pre- and post-gadolinium contrast 

administration. The tumors were imaged in at least two planes (axial and sagittal or 

axial and coronal). If the study MRI at baseline was missing, the same sequence of 

the diagnostic MRI (similar protocol) was used as a surrogate. If the MRI data at 8 

fractions, 16 fractions or preoperative was missing, patients were excluded from the 

analysis at those respective time points.

MRI evaluation consisted of an estimation of the tumor’s fat fraction on the T1-

weighted sequence and enhancing fraction on post-contrast T1-weighted images. 

Both fat and enhancing fractions were graded visually for the complete tumor 

volume using all available scan planes (i.e. 0-9%, 10-19%, etcetera). Additionally, to 

express the impact of preoperative radiotherapy on resectability in a quantitative 

parameter, the shortest distance from the tumor to the NVB was measured on 

the axial T1-weighted images. The MRI evaluations were performed at all available 

time points by a musculoskeletal oncology radiologist (K.v.L.). Furthermore, the 

tumors were delineated and reviewed on post-contrast T1-weighted images by 

respectively a resident radiation oncology (J.L.) and sarcoma radiation oncologist 

(R.L.H.). Subsequently, tumor volumes and axial and craniocaudal tumor dimensions 

were automatically extracted.

Statistical analysis

Median values are presented with an interquartile range (IQR). For the analysis of 

the fat fractions and enhancing fractions, the lower boundary of the estimated 

range was used (i.e. 10% was used when the range was estimated to be 10-

19%). Wilcoxon matched-pair signed rank tests were used to assess differences 

between measurements at different time points. Binary logistic regression and 

linear regression were used to test associations between MRI parameters and 

dichotomized and continuous pathology examination outcome measures, 

respectively. The standardized beta (β) ranges from 0 to 1 or 0 to -1, depending on 

the direction of the correlation. The closer the value is to 1 or -1, the stronger the 

correlation. Resection specimens not available for central pathology review were 

not taken into account for the pathology response analysis. P-values are considered 



Chapter 7

122

statistically significant when p≤0.05. Statistical analyses were conducted by using 

IBM SPSS statistics (version 25, Chicago, Illinois, Unites States).

Results
A total of 34 patients were included in the study population, consisting of 22 males 

(65%) and 12 females (35%). The median age was 45 years (IQR 37–52). Tumor 

locations included lower extremity (n=27), upper extremity (n=5), and the trunk 

(n=2). The Round Cell Component in diagnostic biopsies was estimated to be 

≥5% in 4/34 (12%), <5% in 27/34 (79%), and unknown in 3/34 (9%) of the patients. 

At baseline MRI, the tumor was marginally resectable (≤2 mm distance of the 

tumor to the NVB) in 15/34 (44%) of the patients. The tumor was found in very close 

proximity (<1 mm) to the NVB in 11/34 (32%) of the patients. All patients underwent 

radiotherapy according to the protocol and subsequent surgery was with one 

exception performed in all patients. The reason for omitting surgery in this patient 

was development of intercurrent metastatic disease. Clear surgical margins were 

achieved in 32/33 (97%). One patient (3%) had microscopically positive resection 

margins. Neither major blood vessels nor nerves were sacrificed and function was 

preserved in all patients with a extremity tumor location.

Resection specimens were not available for central pathology review in four 

patients. The pathologic response percentages as determined in central pathology 

review were 25% in 1/29 (3%), 60% in 1/29 (3%), 75% in 1/29 (3%), 80% in 1/29 (3%), 

85% in 6/29 (21%), 90% in 8/28 (28%), 95% in 9/29 (31%), and 99% in 2/29 (7%) of the 

patients.

MRI evaluation

MRIs were available at baseline (n=34), after 8 fractions of radiotherapy (n=28), after 

16 fractions of radiotherapy (n=30), and preoperatively (n=28). Figure 1 shows an 

illustrative example of a tumor responding on radiotherapy. The boxplots in Figure 

2 depict change of MRI characteristics over time on a study population level. As 

compared to baseline MRI, the median change of the tumor volume, craniocaudal 

diameter, and axial diameter at preoperative MRI are -60% (IQR -74 – -41), -19% (IQR 

-23 – -7), and -20% (IQR -29 – -12), respectively. The median fat fraction of 0.1 (IQR 

0.0–0.1) and enhancing fraction of 0.8 (IQR 0.6–0.9) at baseline MRI, increased to 0.2 

(IQR 0.1–0.5) and decreased to 0.5 (IQR 0.4–0.9) preoperatively, respectively. 
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Figure 1A T1-weigthed post contrast images of an illustrative example of a patient with a 
radiologically responding tumor 

Caption Figure 1A. Axial T1-weigthed post contrast images (above) of an example of a radiologically 
responding intramuscular tumor in the proximal lower extremity. The tumor is delineated with a 
blue line. In comparison to baseline (left), the decreases in enhancing fraction and tumor volume 
(modest decrease of tumor volume) observed at fraction 8 (middle) and fraction 16 (right). 

Figure 1B T1-weigthed images of the same illustrative example of a patient with a radiologically 
responding tumor 

Caption Figure 1B. Axial T1-weigthed images of the same example as presented in Figure 1B. In 
comparison to baseline (left), tumor dimensions decrease and the distance of the tumor to the 
neurovascular bundle increases (in this example the distance from the tumor to the artery is 
marked with the orange line) over time. Furthermore, the fat fraction on MRI gradually increases 
between baseline and preoperative. The white star in the preoperative image (r ight) marks a new 
fat-containing area, as a sign of radiological response.



Chapter 7

124

Figure 2. Boxplots represent relative changes of tumor volume (A), craniocaudal tumor diameter 
(B) and axial tumor diameter (C), as compared with baseline. Other boxplots represent fat fraction 
(D), enhancing fraction (E) and distance of the tumor to the neurovascular bundle (F) over time.

A Tumor volume

B Craniocaudal tumor diameter
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C Axial tumor diameter

D Fat fraction
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E Enhancing fraction

F Distance of the tumor to neurovascular bundle

Caption Figure 2. The horizontal black line in the gray box represents the median value. The gray 
box displays the interquartile range (IQR). Any value outside the whiskers is considered as an 
outlier and is represented with a circle.
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An overview of individual distances between tumor and NVB as measured on 

MRI at the different time points, sorted by distance of the tumor to the NVB at the 

baseline measurement, is given in Table 1. The median difference in distance of the 

tumor to the NVB between the MRI at baseline and preoperative is +2mm (IQR 0–6). 

Although the large benefits in terms of increased distance of the tumor to the NVB 

are generally observed in patients who initially had resectable disease already, 

smaller but still relevant benefits are also observed in cases with preexistent smaller 

distances of the tumor to the NVB. At preoperative MRI, but not earlier, relative 

dimensional tumor changes as compared to baseline, are inversely associated 

with the distance of the tumor to the NVB (volume β =-.506, p=0.012; craniocaudal 

diameter β =-.457, p=0.021; axial diameter β =-.512, p=0.011). The “chart of benefit” in 

Figure 3 visualizes the correlation between change in tumor volume and change in 

distance of the tumor to the NVB. 

Table 1. Distance on MRI from tumor to the neurovascular bundle before, during and after 
radiotherapy and the minimal margin at pathology examination, in millimeters assessed in 31 
patients.

MRI 
Baseline

MRI 
Fraction 8

MRI 
Fraction 16

MRI 
Preoperative

Pathology 
minimal margin

Radiological 
Difference

0 NA 1 NA 0 +1*

0 NA NA 0 1 0

0 0 0 0 + 0

0 0 0 0 0 0

0 0 0 0 0 0

0 NA NA 0 1 0

0 NA 0 0 1 0

0 0 0 0 0.1 0

0 0 0 1 1 +1

0 1 2 2 1 +2

0 3 3 3 2 +3

1 2 3 3 0.1 +2

2 2 2 NA 2 0*

2 2 3 3 1 +1

2 2 2 5 1 +3

3 5 7 NA 1 +4*

3 4 6 8 1 +5
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MRI 
Baseline

MRI 
Fraction 8

MRI 
Fraction 16

MRI 
Preoperative

Pathology 
minimal margin

Radiological 
Difference

6 5 6 NA 4 0*

6 5 4 4 0.3 -2

7 7 8 NA 0.2 +1*

7 8 12 9 2 +2

7 7 7 10 2 +3

10 9 11 14 3 +4

11 NA NA 22 3 +11

14 16 17 26 2 +12

15 20 16 24 3 +9

16 20 29 20 1 +4

16 16 19 22 1 +6

18 13 24 26 3 +8

22 27 34 39 3 +17

23 26 27 NA 3 +4*

3 (0-15) 4 (1-15) 4 (1-17) 5 (2-21) 1 (0.28-2.25) 2 (0-6)

Caption Table 1. Tumors are sorted from small to large distance from the tumor to the 
neurovascular bundle (NVB) at baseline. The second, third and fourth column represent the 
distance of the tumor to the NVB after 8 fractions, 16 fractions and prior to surgery, respectively. 
The fifth column shows the minimal pathology margin in mm as reported by the pathologist at 
pathology examination and the sixth column represents the difference in distance of the tumor to 
the NVB between the measurement at baseline and the latest available MRI scan. The row below 
in bold represents the median value with the inter quartile range (IQR) between the parentheses. 
In cases with a thoracic wall localization (n=1) and subcutaneous mass (n=2) distance of the 
tumor to NVB were deemed irrelevant and excluded from this table. * = represents the difference 
in distance of the tumor to the NVB between baseline and fraction 16, because no preoperative 
MRI was performed in these patients. Given the possible underestimation of the difference in 
distance of the tumor to the NVB, these values are not taken into account for further descriptive 
analysis including the presented median difference at the bottom of the right column. + =this 
patient had microscopically positive surgical margins.
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Figure 3. “Chart of benefi t”

Caption Figure 3. Scatterplot shows the correlation between change of tumor volume and change 
in distance of the tumor to the neurovacular bundle (NVB). Change is defi ned as the diff erence 
between the measured value at preoperative MRI, as compared to the MRI at baseline. Patients 
without preoperative MRI are excluded from this scatterplot. Each asterisk (*) represents a tumor 
deemed resectable at baseline, with a distance of the tumor to the NVB of >2mm. Each circle 
represent a tumor deemed marginally resecable at baseline, with a distance of the tumor to the 
NVB smaller or equal to 2mm.

MRI and pathological outcome

Associations were tested between clinical MRI parameters and pathological 

outcome. No associations were found between clinical MRI parameters 

and comprehensive pathological response at any of the time points; neither 

dichotomized with a 90% pathological response cut-off  value, nor as a continuous 

variable. However, when the particular pathological treatment eff ects were 

tested separately, several associations were identifi ed. Firstly, at all time points, 

fat fraction on MRI was associated with fatty maturation and inversely associated 

with hyalinization at pathology examination. In addition, relative volumetric change 

at 16 fractions and preoperatively, as compared to baseline, was associated with 

necrosis and inversely associated with hyalinization at pathology. Lastly, also from 

fraction 16 onwards, enhancing fraction was associated with hyalinization and 

inversely associated with necrosis at pathology examination. An overview of all 

tested associations is provided in the Supplementary table 1.
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Discussion

This prospective study shows that preoperative radiotherapy, even after a relatively 

low dose of 36 Gy in 2 Gy fractions, increases the distance from tumor to NVB with a 

median of 2 mm. This may improve resectability in MLS and facilitate achievement 

of clear surgical margins and function preservation. Furthermore, radiological signs 

of response in terms of tumor volume, enhancing fraction and fat fraction were 

correlated with specific pathological signs of response like hyalinization, necrosis, 

and fatty maturation.

To the best of our knowledge, this investigation is the first to suggest an impact of 

preoperative radiotherapy on the resectability in the setting of MLS. Although the 

exceptional volumetric response on preoperative radiotherapy of MLS has been 

subject of several other investigations,39,41,48,51 none of them addressed this surgically 

relevant question. We have attempted to parametrize this issue by measuring the 

shortest distances from tumor to NVB pre- and post-radiotherapy in 31 patients. 

Although the largest tumor to NVB distance increases were observed in patients 

with already resectable MLS, preoperative radiotherapy also appeared to be 

beneficial in terms of increased distance of the tumor to the NVB in roughly half of 

the patients with marginally resectable (≤2 mm distance to the NVB) or borderline 

resectable (<1 mm distance to the NVB) MLS. For 15 patients with a shortest 

distance from tumor to NVB of less than or equal to 2 mm before radiotherapy, 

this distance increased in 7 patients after radiotherapy (Table 1), implying improved 

resectability in these cases. Due to the lack of preoperative imaging in 2 of these 

15 patients, this measurement was performed in these 2 cases on the MRI at 16 

fractions of radiotherapy. Hence, this is a possible underestimation of the effect of 

preoperative radiotherapy on the distance from the tumor to the NVB, given the 

fact that a substantial part of the volumetric reduction takes place after 16 fractions 

(Figure 2, A). Moreover, the achievement of clear surgical margins in 97% of the 

patients supports the claim of a benefit in terms of resectability of preoperative 

radiotherapy.57 Whether these data are also applicable in the setting of primary 

unresectable MLS remains to be established, as this study population consisted of 

patients with tumors considered formally resectable. However, we strictly cannot 

rule out that anticipated radiotherapy-induced responses have affected these initial 

decisions on resectability status.
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Obviously, resectability is more complex than just this distance of the tumor to the 

NVB, as other parameters also affect resectability such as the location of the tumor 

and its relation to other adjacent anatomical structures. It should be acknowledged 

that preoperative radiotherapy can also has its downside, since radiotherapy 

can induce fibrotic changes to the tissue potentially hampering resections and 

moreover results in higher rates of wound complications.34

The volumetric changes in our MLS cohort are consistent with other reports.39,41,48,50,51 

In our study, volumetric change was inversely associated with hyalinization and 

necrosis from fraction 16 onwards, which is in line with the observations in 13 and 

7 MLS patients as reported by Wortman and Roberge, respectively.48,50 Similar 

to Wortman, we observed increases of fat fraction and decreases of enhancing 

fraction following radiotherapy. Most likely these observations are read-outs of 

therapy response. However, one should realize that an increase of enhancing 

fraction on MRI does not necessarily mean tumor progression, but can also reflect 

treatment induced vascular disruption.53 The observed association between fat 

fraction, as visually graded on T1 weighted sequences, with fatty maturation at 

pathological examination, is in line with to the findings with respect to a cohort 

of 30 retroperitoneal STS using Dixon.49 According to the authors, the radiological 

equivalent of hyalinization at pathology remains yet to be established in future 

research. 

Importantly, the MRI at 8 fractions of radiotherapy did not yield additional predictive 

value above the MRI performed at baseline. However, the MRI at 16 fractions of 

radiotherapy predicted all three forms of pathological treatment response and 

therefore might play a role in the individualized adaptation of preoperative 

radiotherapy. Although in the currently used radiotherapy schedule the number 

of remaining fractions at this point is only two in the currently used radiotherapy 

schedule, this still provides opportunity to remit these last two fractions in case of an 

excellent MRI response. Contrarily, if a tumor does not show any radiological signs 

of response in terms of volume, enhancing fraction, and fat fraction, a prolongation 

of the schedule to for instance the conventional 25 fractions realizing 50 Gy might 

be considered.

With respect to the limitations of the association of MRI parameters with pathological 

response, visual grading of fat fraction and enhancing fraction is subject to a certain 
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extent of subjectivity. Previous reports suggest that quantitative Dixon techniques 

to be preferable in fat content estimation and indicate that radiologists tend to 

overestimate fat fractions above 50%,54,58 and albeit this was the case in only eight 

patients, this possibly could have biased our findings. Another potential limitation 

of the study is the uncertainty regarding the predictive value of the pathological 

response for outcome in STS. Although the correlation of pathological treatment 

response with oncological survival outcomes in STS is well-established,22,56,59–62 the 

evidence for the correlation of pathological treatment response with local control 

is less solid. Of note, given the demonstrated benefit of perioperative radiotherapy 

in terms of local control,24,25 local control is in the end the most important outcome 

in radiotherapy trials regarding STS. Whereas associations between pathological 

response and local control were shown in the three largest series reporting on this 

topic,22,59,62, others failed to establish this correlation in smaller study samples.56,63,64 

Sample size appears to play an important role in this controversy. As a consequence 

of the low local recurrence rates in recent years, very large sample sizes are required 

to reach sufficient numbers of events and therewith statistical power to possibly 

demonstrate a possible correlation. Single institution series hardly ever meet these 

patient numbers in the setting of rare cancers such as STS. Hence, it is expected that 

– in line with other malignancies –65–68 treatment induced pathological response is 

an independent prognostic marker for local control in STS. 

In conclusion, this cohort suggests that preoperative radiotherapy is beneficial in 

terms of resectability in approximately half of the at best marginally resectable 

tumors and that the distance from the tumor to the NVB on MRI increases in two-

thirds of MLS patients. Tumor shrinkage following a modest dose of preoperative 

radiotherapy in MLS results in a 2 mm median increase of the distance between 

the tumor and the NVB. Both volumetric change and enhancing fraction were 

correlated with hyalinization and necrosis at pathology examination. Furthermore, 

fat fraction on MRI was associated with the pathological response parameters fatty 

maturation and hyalinization. Given the negligible predictive value of the MRI at 8 

fractions, we do not recommend to routinely perform MRI response assessments 

before the end of the second week of preoperative radiotherapy outside clinical 

trials in MLS.
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Supplementary material

Radiotherapy protocol

The RT protocol, conform to the ICRU 50/62 guidelines, required standardized 

target volume delineation. Mirada DBx 1.2.0. delineation software (Mirada Medical, 

Oxford, United Kingdom) was used for target volume delineation. The gross tumor 

volume (GTV) was defined on the gadolinium-enhanced, T1-weighted MRI. The 

clinical target volume (CTV) was constructed by expanding the GTV with 3 cm in 

the longitudinal axis, and 1.5 cm in all other directions. Subsequently, if applicable, 

the GTV was manually edited to encompass any on T2-weighted MRI identified 

peritumoral edema in order to construct the CTV. The planning target volume was 

produced by expanding the CTV by 1 cm isotropically in all directions. The total 

prescribed dose was 36Gy, given in once-daily 2Gy fractions in a total treatment 

time of 24 days. IMRT or VMAT planning techniques were used. Dose distributions 

were calculated using Pinnacle with collapsed cone algorithm and inhomogeneity 

corrections (Pinnacle versions 9.2–9.10, Philips, Best, The Netherlands). The dose 

inhomogeneity within the PTV was between the 90% and 107%. Position verification 

at treatment was performed prior to every fraction with an online cone beam CT 

scan set-up correction protocol.
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Supplementary Table

Supplementary Table 1. Overview of tested correlations between clinical MRI parameters and 
specific pathology treatment response effects

MRI 
parameter

Pathology 
outcome

Baseline Fraction 8 Fraction 16 Preoperative

Volumetric 
change*
Enhancing 
fraction
Fat fraction

Hyalinization NA

β =.376, p=.044

β =-.584, p=.001

NS

NS

β =-.557, p=.009

β =-.663, p=.000

β =.578, p=.002 

β =-.588, p=.005

β =-.588,p=.003

β =.622, p=.001 

β =-.775, p=.000

Volumetric 
change* 
Enhancing 
fraction
Fat fraction

Necrosis NA

NS

NS

NS
 
NS

NS

β =.514, p=.009
 
β =-.565, p=.003
 
NS

β =.570, p=.005
 
β =-.536, p=.007
 
NS

Volumetric 
change*
Enhancing 
fraction
Fat fraction

Fatty 
maturation

NA 

NS

β =.664, p=.000

NS

NS

β =.526, p=.014

NS

NS

β =.632, p=.002

NS

NS

β =.672, p=.000

Caption Supplementary Table 1. Correlations between MRI parameters and pathology treatment 
response effects are tested by logistic regression. A significant correlation exists between the 
MRI parameter and the pathology treatment response effect if the presented p-value meets the 
predefined level of statistical significance of p≤0.05. β -values below and above zero represent 
negative and positive correlations for high pathology treatment response effects, respectively. *= 
As this parameter is a relative value (as compared to the baseline measurement) and therefore 
only tested at fraction 8, fraction 16 and preoperative. Abbreviations: NA= not assessed, NS= not 
significant, β = standardized coefficient Beta, p= level of significance



Moderate dose preoperative RT may render borderline or inoperable MLS resectable
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