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ABSTRACT

Cardiorenal syndrome (CRS) concerns the interconnection between heart and kidneys 
in which the dysfunction of one organ leads to abnormalities of the other. The main 
clinical challenges associated with cardiorenal syndrome are the lack of tools for early 
diagnosis, prognosis and evaluation of therapeutic effects. Ultrasound, computed 
tomography, nuclear medicine and magnetic resonance imaging are increasingly used 
for clinical management of cardiovascular and renal diseases. In the recent decade, 
rapid development of imaging techniques provides a number of promising biomarkers 
for functional evaluation and tissue characterization. This review summarizes the 
applicability as well as the future technological potential of each imaging modality in the 
assessment of CRS. Furthermore, opportunities for a comprehensive imaging approach 
for the evaluation of CRS are defined.
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INTRODUCTION

Cardiorenal syndrome (CRS) is an umbrella term describing the interactions between 
concomitant cardiac and renal dysfunctions, in which acute or chronic dysfunction of one 
organ may induce or precipitate dysfunction of the other (1). CRS has been associated 
with increased morbidity and poor clinical outcomes, leading to high economic and 
societal burden (2). The estimated incidence of acute kidney injury is 24%-45% in 
acute decompensated heart failure and 9%-19% in acute coronary syndrome (3). The 
prevalence of impaired renal function is high in chronic cardiovascular diseases, and 
around 40%-60% in chronic heart failure (4). The combination of renal dysfunction 
with chronic heart failure is predictive of adverse clinical outcomes (5). Nearly 50% of 
deaths in all age groups of patients with chronic kidney disease (CKD) can be attributed 
to cardiovascular causes (6). CRS is also frequently observed in acute or chronic 
systemic conditions such as sepsis and diabetes mellitus, and is associated with worse 
outcomes (7).

Despite the existing literature on the classification and management of CRS, the clinical 
diagnosis and treatment evaluation remains difficult due to the lack of clinical practice 
guidelines (8). This has led to increased research interests, including studies focused 
on the early diagnosis and clinical management of CRS. The potential value of imaging 
biomarkers for the early detection of cardiac abnormalities in CRS has been underlined 
in the scientific statement from the American Heart Association (8). Ultrasonography 
is currently the first-line imaging modality for structural and functional assessment 
of the heart, and structural assessment of the kidneys. Computed tomography (CT), 
nuclear imaging and magnetic resonance imaging (MRI) have been widely used for 
various purposes in clinical management of cardiovascular diseases and kidney 
diseases. Recent technological advancements in medical imaging provides a number 
of promising biomarkers for the diagnosis and prognosis of CRS, and opportunities for 
personalized medicine. In this review we will summarize the cardiovascular and renal 
imaging techniques related to CRS and the potential utility of these techniques for the 
diagnosis and follow-up of acute and chronic CRS (Figure 7.1). Finally, comprehensive 
imaging protocols that can be incorporated into future research studies and clinical 
trials will be proposed.
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CLASSIFICATION, PATHOPHYSIOLOGY & CLINICAL MANAGEMENT OF CRS

Classification of CRS

Cardio-renal syndrome can be classified into five subtypes (1), with type 1 and 2 
describing renal dysfunction sequent to initial acute and chronic cardiac insults, type 
3 and 4 describing renocardiac syndrome after the initial insult of kidney disease, and 
type 5 representing secondary CRS in systemic diseases (Table 7.1). Although this 
classification simplifies the clinical concept of CRS, overlap between different subtypes 
and progression from one subtype to another have frequently been observed (9). 
For example, it is challenging to differentiate type 2 CRS from type 4 CRS as chronic 
heart diseases and chronic kidney diseases frequently co-exist (10, 11). Moreover, 
the development of CRS is often complicated by several interconnected conditions, 
such as diabetes, hypertension, atherosclerosis, endothelial cell dysfunction, chronic 
inflammation and anemia, rendering difficulties in defining the temporal progression 
patterns of CRS (8). An alternative classification of CRS was proposed by Hatamizadeh 
et al based on clinical manifestations rather than the organ that initiates the process 
(12), but has not received wide acceptance.

Pathophysiology of CRS

The exact pathophysiological mechanisms of each type of CRS have not been fully 
elucidated. Previously, decreased cardiac output and arterial underfilling induced 
neurohumoral activations were believed to be the sole pathogenesis of CRS (13). However, 
studies in the past decades demonstrated that decreased arterial flow does not fully 
explain the worsening renal function in CRS (60-63). Elevated central venous pressure 
has closer association with the reduction of renal perfusion than decreased cardiac 
output (61). Moreover, increasing evidence indicates that multiple pathophysiological 
processes contribute to the evolution of CRS (14).  Hemodynamic alterations, renin-
angiotensin-aldosterone system (RAAS), sympathetic nervous system, inflammatory 
and oxidative stress are considered as key connectors between heart and kidneys (15, 
16). Other contributing factors such as biochemical perturbations, immune responses, 
atherosclerosis and anemia-inflammation-bone mineral axis, can also accelerate the 
development of CRS, especially in chronic heart failure and CKD (8, 15, 17). These 
pathways are interconnected and exhibit varied clinical importance across different 
subtypes of CRS (3, 18). 
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Hemodynamic alterations, especially right-sided heart dysfunction is believed to 
be of critical importance in the development of acute CRS (type 1 and type 3) (19). 
In type 1 CRS, increased central venous pressure results in renal venous congestion, 
which may lead to impaired glomerular filtration, tissue hypoxia and renal fibrogenesis. 
These pathological changes induce or aggravate renal dysfunction, which in return 
exacerbates fluid overload leading to further deterioration of cardiac function (4, 15). 
In type 3 CRS, acute heart injury can be caused by excessive cytokines due to AKI, and 
by indirect mechanisms including neurohumoral activation, electrolytes disturbances, 
uremia, and acidemia (20, 21). 

Non-hemodynamic pathways play a more critical role in chronic CRS (type 2 and 
type 4). Activation of RAAS and stimulation of sympathetic nervous system are features 
of both heart failure and CKD. Persistent activation of RAAS leads to peripheral 
vasoconstriction, exacerbated fluid overload, and sympathetic nervous system 
overactivation (16, 22). Sympathetic overactivation in return can stimulate RAAS 
via renin release, resulting in a vicious circle (16). Chronically increased release of 
aldosterone is the major deleterious component of RAAS and has been associated with 
both myocardial and renal interstitial fibrosis (23). Increased oxidative stress due to 
chronic RAAS activation has also been associated with renal injury and fluid retention 
(24). Inflammation cascade can be triggered by and potentiate the other cardiorenal 
connectors, including the overactivation of RAAS and sympathetic nervous system, and 
increased oxidative stress. Systemic inflammation is associated with myocardial and 
renal dysfunction and interstitial fibrosis (19, 25). 

Fibrosis has been considered as a key driver in the pathophysiology of chronic CRS 
(18). Fibrogenic responses have short-term adaptive features in the early phases of 
cardiac and renal diseases. However, when it progresses chronically, fibrosis can lead to 
myocardial and renal parenchymal scarring, cellular dysfunction and ultimately organ 
failure (26). Fibrosis of heart and kidneys has also been found in a number of CRS risk 
factors, including aging, hypertension, diabetes mellitus and obesity (27). Based on 
these findings, a new pragmatic and dynamic cardiorenal integrative concept of CRS 
has been proposed, in which patients may be categorized according to the predominant 
pathophysiological mechanism, rather than clinical presentation (18). This strategy has 
the potential to facilitate clinical interventions for CRS in the future. 

Current difficulties in diagnosis and management of CRS

In most circumstances, the complex interconnected pathways between heart and 
kidneys have already been activated by the time clinical manifestations are detectable. 
Both heart and kidneys have substantial functional reserve, which makes it difficult to 
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prevent or reverse the adverse impacts of CRS at an early phase. While all types of CRSs 
face with difficulties in early diagnosis and prognosis, the dominant clinical challenges 
distinguish between acute CRS and chronic CRS. (Table 7.2)

Table 7.2 Current difficulties in diagnosis and management of cardiorenal syndrome

Main challenges in all types of CRS
•	 Early diagnosis and prognosis
•	 Preventing or reversing the adverse impacts of CRS
•	 Difficulties in distinguishing CRS from other cardiovascular and renal 

comorbidities
Specific difficulties in acute and chronic CRS

•	 Acute CRS •	 Chronic CRS
•	 Current diagnostic criteria 

hinders early detection of AKI
•	 Difficult to differentiate 

between true kidney injury 
and pseudo-worsening of 
kidney function

•	 Lack of sensitive tools to 
assess treatment effects and 
to track the progression from 
AKI to CKD 

•	 Lack of overt symptoms of 
cardiovascular diseases in CKD

•	 Lack of sensitive tools to identify 
and monitor the progression of 
cardiovascular involvement when 
conventional assessments remain 
normal

•	 Standard treatment is less effective 
in reducing cardiovascular 
mortality in CKD patients than in 
the general population.

The main challenges in acute CRS are related to AKI (Table 7.2). Currently AKI is 
diagnosed based on serum creatinine (SCr) level and oliguria (28). However, SCr cannot 
detect early kidney dysfunction, since it remains within normal range before half the 
kidney function is lost, resulting in a lag between kidney insult and the elevation of 
SCr (29). On the other hand, pseudo-worsening of kidney function may occur due to 
hemodynamic changes in patients with heart failure, which is difficult to be differentiated 
from true kidney injury (30). Apart from the inability to prevent or early identify AKI, 
the lack of sensitive tools to track the progression from AKI to CKD also challenges the 
clinical management of AKI. It has been reported that AKI is independently associated 
with higher rates of incident CKD (31). Moreover, kidney dysfunction may decrease the 
efficiency of diuretics in patients with heart failure, resulting in diuretic resistance and 
worsening of congestion, which in return deteriorates the heart and kidney functions 
(19). Strategies to prevent AKI or early interventions in the course of AKI remain to be 
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investigated to reduce the risk of future adverse renal and cardiac outcomes. In addition, 
there is a demanding need of guidance on cardiac- and reno-protective therapies in 
acute CRS. 

In chronic CRS, however, the main difficulties lie in the cardiac aspect (Table 
7.2). Patients with CKD suffer from a high risk of cardiovascular diseases that is 
disproportionate to the risk expected in the general population (32). In early-stage 
CKD, the risk of cardiovascular death far exceeds the risk of progressing to dialysis (33). 
Previous studies suggested that subtle alterations in cardiac structure and function 
could occur very early in the progression of CKD, even when SCr is still within the 
normal range (34). In addition, nonatheromatous processes appear to predominate 
the progression of cardiovascular disease in CKD, which could explain the lower effect 
of standard treatment on decreasing cardiovascular mortality in CKD patients than in 
the general population (35). Early detection of cardiovascular abnormality in CKD is 
challenging due to the lack of overt symptoms and preserved left ventricular systolic 
function (36). 

Despite the amount of efforts in research studies of novel serum and urinary 
biomarkers, it remains unclear whether and to what extent these biomarkers can 
be involved in clinical management of CRS (37). Moreover, the global availability of 
biomarker technology is another obstacle upon implementing this strategy in clinical 
practice. Imaging techniques that provide quantitative information on blood flow, 
perfusion, diffusion, tissue oxygenation and interstitial fibrosis without radiation 
or potential risks of contrast agents offer possibilities of noninvasive assessment of 
preclinical pathophysiological changes in the heart and kidneys at the early phase of 
CRS.

CARDIOVASCULAR AND RENAL IMAGING TECHNIQUES RELATED TO CRS

Different imaging modalities can be applied in relation to CRS that enabling 
comprehensive assessment of both morphology and function (Table 7.3). Although 
further validations are needed for some of these techniques, a number of promising 
imaging biomarkers that might be valuable for the clinical management of CRS are 
discussed below. 
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Cardiovascular imaging techniques

1. Transthoracic echocardiography

Transthoracic echocardiography (TTE) is the most available non-invasive imaging 
technique to measure the dimensions of cardiac chambers and to estimate ventricular 
functions. TTE-measured left ventricular ejection fraction is the first-line tool to 
differentiate between heart failure with reduced ejection fraction and heart failure with 
reserved ejection fraction (38). TTE can rapidly identify wall motion abnormalities, 
valvular diseases and pericardial effusion. Various hemodynamic markers can be 
estimated by Doppler imaging, such as mitral inflow and mitral annulus motion, 
left atrial volume and pressure, left ventricular filling pressure, systolic pulmonary 
artery pressure, pulmonary capillary wedge pressure, and right ventricular function 
(39). Myocardial strain based on speckle tracking technique can be used to quantify 
ventricular wall deformation, with

global longitudinal strain more sensitive to subtle impairment of ventricular systolic 
function than ejection fraction (40). Fast and cost-effective as it is, TTE-derived imaging 
biomarkers can be limited by inadequate acoustic window, poor Doppler signals and 
operator-dependent variations. The utility of ultrasonic enhancing agent improves 
structural and functional evaluations of various cardiovascular diseases (41). Enhanced 
TTE also enables the assessment of myocardial perfusion at rest or with vasodilator-
induced stress (41).

2. Cardiovascular magnetic resonance 

Over the recent decade, cardiovascular magnetic resonance (CMR) has gained 
increasing acknowledgement in the clinical management of cardiovascular diseases 
(42, 43). CMR-measured biventricular volumes, systolic function and myocardial mass 
are gold-standard imaging biomarkers (44), particularly right ventricular geometry 
and function. Myocardial strain parameters can also be generated from CMR using 
feature/tissue tracking post-processing algorithms, free from the suboptimal acoustic 
window and dropouts in TTE (45) (Figure 7.2). Velocity encoding using phase contrast 
technique enables quantitative evaluation of valvular diseases and shunt evaluation by 
CMR. Using gadolinium-based contrast agents, myocardial perfusion and myocardial 
fibrosis or infiltration can be assessed and quantified. Late gadolinium enhancement 
is the best non-invasive technique to visualize focal fibrosis (46). Extracellular volume 
fraction (ECV) calculated by pre- and post-contrast T1 relaxation time is useful for 
detecting diffused myocardial fibrosis (47). However, the application of contrast-
enhanced CMR in CRS is limited in patients with severely decreased renal function 
(eGFR < 30 mL/min/1.73m2), considering the potential increased risk of gadolinium 
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retention and nephrogenic systemic fibrosis in patients with renal dysfunction (48, 49), 
but these risks are less clear for the more modern macrocyclic contrast agents (48). 

Figure 7.2 Example of myocardial strain analysis using MRI in a patient with CKD. 
Quantification of left ventricular strain (a, b, c) and right ventricular strain (d, e) 
parameters is visualized by colored overlay on cine images. (f) is an example of strain-
time curve of the left ventricular global longitudinal strain within one cardiac cycle. 

Non-contrast tissue characterization techniques including T1 mapping, T2 
mapping and diffusion weighted imaging (DWI) provide unique opportunities to 
identify microstructural changes in myocardium (Figure 7.3). T1 and T2 mapping are 
increasingly used in clinical settings. T1 mapping quantifies the longitudinal and T2 
mapping transverse magnetization relaxation times of the hydrogen nucleus proton per 
voxel, which can reflect the presence of fibrosis, fat, edema and iron deposition (50). 
Myocardial T1 and T2 values have been applied to detect abnormalities in myocardial 
tissue composition in various diseases that related to CRS, including heart failure, 
ischemic heart diseases, hypertensive cardiomyopathy, diabetic cardiomyopathy and 
uremic cardiomyopathy (51, 52). DWI characterizes the motion of water molecules 
in microstructural changes, and quantifies it as apparent diffusion coefficient (ADC). 
Previous studies suggested that DWI was able to detect and quantify the degree of 
myocardial fibrosis, with the minimum amount of fibrosis larger than 20% (53-55).
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Figure 7.3 Myocardial tissue characterization by multiparametric MRI. Mid-cavity 
short-axis T1 map (a) and T2 map (b) of a patient with CKD. Myocardial T1 and T2 
values can be quantified and compared with local references. ADC (c) and ECV (d) 
images demonstrated diffused “pepper like” hyper intensity texture in a patient with 
hypertrophic cardiomyopathy. Image c and d were adapted from published article (53) 
under a Creative Commons license.

3. Cardiac computed tomography 

Computed tomography (CT) coronary angiography is the most widely used non-
invasive imaging technique for anatomical assessment of coronary artery disease 
(CAD). CT angiography with additional perfusion imaging allows for characterization 
of atherosclerosis in relation to myocardial ischemia, which has great potential clinical 
value (56). CT-based fractional flow reserve allows for the quantification of the impaired 
maximal coronary flow induced by a stenosis, which is adapted from invasive coronary 
pressure measurement (57). CT can also be used to estimate myocardial ECV, and is an 
attractive alternative to CMR to evaluate diffused myocardial fibrosis (58). However, 
major challenges of CT are the limited temporal resolution, presence of beam hardening 
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and scatter artifacts, radiation dose and low contrast-to-noise ratios (59-61). Moreover, 
these CT techniques rely on iodinated contrast agent, which is associated with the risk 
of post-contrast AKI in patients with impaired renal function (62). Without contrast 
agent, CT can be used to calculate coronary artery calcium score, which is a prognostic 
biomarker for CAD. 

4. Nuclear cardiac imaging 

Nuclear cardiac imaging has played an important role in evaluating myocardial 
perfusion in ischemic heart diseases. Single-photon emission computed tomography 
(SPECT) is commonly employed for the diagnosis of CAD in patients with CKD (63). 
However, SPECT only provides semi-quantitative assessment of myocardial perfusion, 
and has a wide range of sensitivity, specificity and accuracy (64). Quantitative positron 
emission tomography (PET), on the other hand, measures absolute myocardial blood 
flow and has shown greater prognostic value than SPECT in evaluation of patients 
with known or suspected CAD (65). Currently four different tracers are used for 
clinical assessment of myocardial blood flow, which are 82Rb, 13N-ammonia, 15O-water 
and 18F-flurpiridaz. 15O-water-PET is considered the clinical reference standard for non-
invasive quantification of myocardial perfusion; however important challenges include 
high-cost, limited visual assessment, and the lower spatial resolution of PET compared 
with CT or MRI perfusion imaging (66). Myocardial metabolism alterations such as 
increased glucose utility and fatty acid oxidation can also be evaluated by 18F-fluoro-
2-deoxyglucose (18F-FDG)-PET and β-Methyl-p-[123I]-iodophenyl-pentadecanoic acid 
(BMIPP)-SPECT (64). Hybrid imaging such as SPECT-CT, PET-CT and PET-MRI can 
generate multiple imaging biomarkers by single examination.

Renal imaging techniques

1. Renal ultrasonography

Renal ultrasonography is routinely used to assess renal morphology such as renal 
length, corticomedullary differentiation, and to identify obstruction. The usefulness 
of ultrasonography to identify the underlying cause of renal diseases is limited. 
Furthermore, no distinction between inflammation and fibrosis can be identified 
by echogenicity (67). Renal Doppler sonography enables the quantification of renal 
blood flow and intrarenal hemodynamic changes, which are suggestive of renal 
dysfunction and/or microstructural alterations. Elevated values of renal resistive index 
are associated with poorer prognosis in various renal disorders and renal transplant 
(68). Renal venous flow is one of the biomarkers for right-sided congestion, which 
is fundamental to the management of CRS. Contrast-enhanced ultrasonography has 
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showed the ability to quantify regional renal perfusion and microvascular function in 
rat models, and is potentially feasible for early detection and monitoring of AKI (69, 70).

2. Renal magnetic resonance imaging

Initial applications of renal MRI have been focused on the visualization of renal and 
urogenital anatomy. Conventional renal MRI sequences can be used to measure total 
kidney volume, which is a FDA-approved prognostic biomarker (71), with higher 
accuracy compared with sonography. Recent research interest has been focused on 
the application of sequences that provide functional (BOLD, ASL) and microstructural 
(DWI, DTI, T1 mapping, T2 mapping) information without the need for gadolinium-
based contrast agents (72-76) (Figure 7.4). 

Figure 7.4 Multiparametric kidney MRI in healthy volunteers. BOLD R2* map is used 
to evaluate parenchyma oxygenation. Renal blood flow can be quantified from ASL 
perfusion weighted image. ADC and FA maps generated from DWI and DTI can be used 
to assess renal fibrosis. IVIM imaging evaluates true parenchyma diffusion by separate 
modeling. Renal T1 maps showing clear cortico-medullary differentiation in a healthy 
volunteer and T2 mapping are promising techniques to evaluate renal microstructure. 
The BOLD R2* map, ADC map, FA maps and IVIM images were adapted from the articles 
of Bane et al. (72), Adams et al. (77) and de Boer et al. (78) under Creative Commons 
licenses.   
    

Renal parenchymal oxygenation is of paramount importance in the pathophysiology 
of AKI and CKD (79). Blood oxygen level dependent (BOLD) imaging can demonstrate 
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tissue oxygen level using multi-echo T2*-weighted sequence based on the paramagnetic 
properties of deoxyhemoglobin. The strong correlation between renal T2* (R2*) and the 
invasive gold-standard tissue oxygen partial pressure has been validated in rat model 
(80). The outer layer of medulla has higher sensitivity to hypoxia than the cortex, which 
is the physiological basis of the susceptibility to hypoxia injury. 

Arterial spin labeling (ASL) assesses tissue perfusion by labeling the water protons 
in the blood before they enter the tissue of interest, and subtracting the labeled image 
from a control image without labeling blood water. The signal intensity of the subtracted 
perfusion-weighted image is proportionate to perfusion. ASL has been widely used to 
calculate cerebral perfusion in various brain diseases (81). Renal perfusion quantified by 
ASL has been validated by comparison with para-aminohippuric-acid clearance, which 
is the gold standard measurement of renal plasma flow, and with renal scintigraphy, 
demonstrating reproducible perfusion measurements (82, 83). High interstudy and 
interrater reproducibility of ASL in the quantification of cortical and medullary renal 
perfusion has been showed in healthy volunteers (84).

Renal DWI, diffusion tensor imaging (DTI), T1 and T2 mapping have been studied 
to assess interstitial fibrosis (85). Renal cortex has higher ADC than medulla in healthy 
kidneys. As ADC is largely influenced by tubular flow and capillary perfusion, intravoxel 
incoherent motion (IVIM) is used to measure the true diffusion, alongside the pseudo-
diffusion and flow fraction. DTI is a variation to DWI which measures the fractional 
anisotropy (FA), that is, the percentage of a tissue that displays oriented diffusion axes. 
Increased ADC and decreased FA can be biomarkers of fibrosis in CKD. Recent studies 
suggest that renal T1 mapping technique can be used to assess tissue changes in AKI 
and renal fibrosis in CKD in rat models (86-88) as well as in human (89), with good 
reproducibility. 

3. CT and nuclear medicine for renal imaging

CT and nuclear imaging are the most frequently used modalities after ultrasonography 
to assess renal morphology and function in clinical settings. However, the utility of 
renal CT in clinical management of CRS is limited due to radiation and the risk of post-
contrast acute kidney injury in patients with impaired renal function (eGFR<30 ml/
min/1.73m2). Dual-energy CT might offer opportunities to assess renal parenchyma 
without contrast agent. Renal nuclear imaging such as renal scintigraphy, SPECT and 
PET have been used for quantification of GFR and renal perfusion. However, they are 
not ideal for frequent assessments due to radiation, thus not suitable for longitudinal 
surveillance of CRS.
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APPLICATION OF IMAGING BIOMARKERS IN ACUTE CRS

Echocardiographic and CMR biomarkers for diagnosis and prognosis

Echocardiography not only is essential for diagnosing cardiovascular dysfunction in 
acute CRS, but also provides prognostic biomarkers. In a retrospective study of 30681 
patients, at least one type of CRS was detected in 8% patients, in whom decreased left 
ventricular ejection fraction, increased pulmonary artery pressure and larger right 
ventricular diameter derived by TTE were independent risk factors of the development 
of CRS (9). This study also found that acute CRS is associated with the worst prognosis 
in comparison with chronic CRS and no CRS (9). In a study of 1879 critical ill patients, 
right ventricular dysfunction assessed by TTE was an important determinant of AKI 
and AKI-related mortality (90). 

CMR has been increasingly used in acute cardiovascular diseases such as acute 
coronary syndrome and acute myocarditis, facilitating risk stratification with myocardial 
tissue characterization (91, 92). In the context of acute CRS, one study demonstrated an 
association between microvascular myocardial injury assessed by contrast-enhanced 
CMR and increased risk of AKI in patients with ST-elevation myocardial infarction (93). 
The value of CMR in the clinical management of acute CRS is yet to be unraveled by 
further studies.

Kidney sonographic biomarkers for prognosis 

Renal resistive index and intrarenal venous flow pattern evaluated by Doppler imaging 
have demonstrated potential values in prognosis of acute CRS. Increased resistive 
index of the renal artery was found to be helpful in predicting AKI in patients after 
major cardiac surgery (type 1 CRS), and in patients with septic shock or in critical 
conditions (type 5 CRS) (94-96). Since the key role of renal venous congestion has 
been recognized, intrarenal venous flow has attracted increasing interests (97-99). 
The patterns of intrarenal venous flow were applied to identify renal hemodynamic 
disturbances in heart failure (100, 101). The discontinuous patterns of intrarenal 
venous flow were found to be associated with increased right atrial pressure and had 
independent prognostic values in patients with non-ischemic heart failure (101). A case 
report observed the change of intrarenal venous flow from a monophasic to a biphasic 
pattern in parallel with improvement in symptoms and renal function (102). Results of 
a recent clinical trial suggested that both renal arterial resistive index and intrarenal 
venous flow might offer guidance on the diagnosis and treatment of type 1 CRS (103).
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Preclinical kidney MRI biomarkers of AKI

Multiparametric kidney MRI has been studied to characterize microstructural changes 
in AKI in recent years. Although the value of MRI biomarkers of AKI in the context of CRS 
remains to be investigated, there have been studies detecting the pathophysiological 
alterations in AKI. These techniques may facilitate early identification of AKI, which is 
one of the most challenging issues in clinical management of acute CRS. It has been 
well accepted that renal parenchymal hypoperfusion and hypoxia are closely associated 
with the development of all forms of AKI (104). BOLD technique by MRI has been used 
to evaluate intrarenal oxygenation in animal models and patients with AKI (105, 106). 
Renal hypoxia detected by BOLD MRI has been reported in contrast-induced AKI, renal 
allografts with acute tubular necrosis, sepsis-associated AKI and other nephrotoxin-
induced AKI (106). Significantly lower perfusion of the renal cortex and medulla detected 
by ASL has been reported in AKI patents in comparison with healthy volunteers (107). 
ASL was studied as an alternative to dynamic contrast-enhanced MRI for quantitative 
renal perfusion measurements in a rat model of AKI (108). Moreover, the combination of 
BOLD and ASL techniques may help to achieve a better characterization of the primary 
cause of AKI, as the tissue oxygenation assessed by BOLD is significantly influenced 
by renal perfusion (109). A study of 15 healthy volunteers demonstrated that ASL is 
capable of detecting renal hemodynamic change after a single-dose pharmacological 
intervention with captopril, highlighting the potential of ASL to provide mechanistic 
insights into the pharmacotherapy of kidney diseases (84). DWI and T1 mapping 
techniques are potentially beneficial for the evaluation of AKI in acute CRS. Decreased 
ADC, alterations in IVIM parameters and diffusion anisotropy demonstrated by DTI 
have been showed in animal models of AKI (106). Prolonged renal cortical T1 relaxation 
time and decreased corticomedullary difference was found in AKI and the cortical T1 
values were positively correlated with stages of renal function (110).

APPLICATION OF IMAGING BIOMARKERS IN CHRONIC CRS

Cardiac imaging biomarkers of CKD-associated cardiomyopathy

Echocardiography is currently recommended by the Kidney Disease Improving 
Global Outcomes (KDIGO) guidelines for all patients initiating dialysis, due to the high 
prevalence of underlying abnormalities among patients with CKD (111). Characteristic 
cardiac changes in CKD include left ventricular (LV) hypertrophy, ventricular dilatation, 
cardiac dysfunction, and myocardial fibrosis (112). However, TTE has disadvantages in 
identification and surveillance of LV myocardial mass and volumes in CKD. TTE tends to 
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overestimate LV mass in comparison with CMR, and the wider intra- and inter-operator 
variability of TTE is disadvantageous for observation of subtle and gradual cardiac 
changes in CKD (113). In addition, the impact of kidney transplantation on LV mass 
has been controversial, suggesting that the interventions to prevent type 4 CRS might 
need to be moved to earlier phase of CKD (114). LV global longitudinal strain (GLS) 
is more sensitive than LV ejection fraction as a marker of subtle LV dysfunction (115-
117), and is associated with an increased risk of mortality in predialysis and dialysis 
patients (118). Previous studies demonstrated decreased LV-GLS and diastolic strain 
rates by TTE in CKD patients (115, 119-122). LV diastolic dysfunction can be diagnosed 
and graded by TTE, based on mitral valve annular e’ velocity, average E/e’ ratio, left 
atrium volume index, and peak tricuspid regurgitation velocity (123). However, our 
recent study suggests that subclinical changes in myocardial tissue composition may 
exist even when no systolic or diastolic dysfunction is detected by TTE in patients on 
peritoneal dialysis (124).

CMR has the unique value of detecting myocardial fibrosis, which was found in more 
than 90% of patients with CKD in a postmortem study (125). Increased myocardial 
native T1 value has been observed in patients with early phase CKD and in end-stage 
CKD patients when compared with healthy controls (126-129). Two previous studies 
revealed higher myocardial T2 values in ESRD patients than those in healthy controls 
(124, 130). Decreased MR-derived LV global longitudinal strain and circumferential 
strain were also reported in patients with early CKD and in end-stage CKD patients 
(124, 126-129, 131). Increased native T1 value has been found to be associated with LV 
global strain (124, 126, 127). Most recently, a study of 134 pre-dialysis patients without 
diabetes or myocardial ischemia showed that native myocardial T1 values and serum 
biomarkers of myocardial fibrosis increased with advancing CKD stages, independent 
of left ventricular afterload (51). These findings suggest that myocardial fibrosis might 
be a pharmacological target for the treatments in CKD patients, and might improve 
prognosis by mitigating the effects of CRS.

CAD and myocardial infarction with non-obstructive coronary artery can be involved 
in both type 2 and type 4 CRS. Coexistence of CAD and CKD and with comorbidities 
such as diabetes often renders these patients “silent” ischemic heart disease without 
typical anginal chest pain. Earlier CMR study with late gadolinium enhancement 
showed a mixed pattern of subendocardial infarction and diffuse fibrosis in patients 
with advanced CKD, reflecting the dual myocardial diseases (132). Considering the 
increased risk of post-contrast acute kidney injury and nephrogenic systemic fibrosis in 
patients with severe renal dysfunction, non-contrast imaging techniques are preferred 
to identify CAD in CRS. The utility of echocardiography, nuclear cardiac imaging, CMR, 
CT and hybrid imaging for diagnosis of CAD in patients with CKD has been thoroughly 
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discussed in a most recent literature review (64). 

Preclinical kidney MRI biomarkers of CKD with potential value in CRS

Kidney imaging has scarcely been studied in the context of chronic CRS, since 
cardiovascular abnormalities are more related to mortality. However, imaging 
biomarkers of CKD in general may have potential value in clinical management of 
chronic CRS, especially in early diagnosis and monitoring disease progression. 

Conventional kidney ultrasonography and MRI can hardly identify preclinical renal 
injury in chronic CRS. Although previous studies suggest that kidney size is associated 
with glomerular filtration and kidney function reserve (133), the relationship between 
kidney volume and function is not proportional, since the kidneys have a substantial 
functional reserve and homeostatic adaptive mechanisms (134). Functional and 
tissue characterization MRI techniques may open new possibilities for future studies 
of chronic CRS. Feasibility of a multiparametric renal MRI protocol including ASL, T1 
mapping, DWI and BOLD for patients with CKD has been demonstrated (135). There 
have been studies with histological evidences demonstrating that cortical ADC values 
measured by DWI correlated well with cortical fibrosis and chronic lesions (136-139). 
Lower renal perfusion, significant higher cortical and medullary T1 value with reduced 
cortico-medullary differentiation have been observed in CKD patients compared with 
healthy volunteers (135, 140). The degree of cortical hypoxia indicated by decreased 
T2* value in BOLD was correlated with the extent of fibrosis on renal biopsy in one 
study (137). However, another study failed to identify significant associations between 
T2* and eGFR or CKD stage in 342 patients with CKD (141). A recent prospective study 
of 112 patients with CKD demonstrates that low cortical oxygenation indicated by 
BOLD-MRI is an independent predictor of renal function decline over the subsequent 
3 years (142). 

Type 5 chronic CRS secondary to diabetes is attracting increased attention these 
years, in which diabetic nephropathy has been of particular interest. Chronic hypoxia 
is one of the major contributors of parenchymal fibrosis and CKD in diabetes (143, 
144). Lower renal ADC value and higher FA have been reported in early stage of type 
2 diabetic nephropathy in comparison with healthy volunteers (145), and ADC value 
was correlated with urinary and serum biomarkers (146). Decreased renal perfusion 
quantified by ASL was seen in patients with diabetes mellitus in comparison with 
healthy controls, despite normal eGFR and absence of overt albuminuria (147). A 
multiparametric MRI study demonstrated significantly lower renal perfusion assessed 
by ASL in patients with diabetes and stage 3 CKD, and lower perfusion with lower 
response to furosemide in patients with progressive CKD (148). 
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OPPORTUNITIES FOR COMPREHENSIVE IMAGING ASSESSMENT

Ultrasonography remains the most versatile, accessible and cost-effective modality for 
the assessment of CRS. MRI, on the other hand, is the most promising one-stop modality 
for the structural and functional evaluation of both heart and kidneys. Future studies 
aiming at finding novel biomarkers for CRS may incorporate serial ultrasonography or 
non-contrast MRI scans for simultaneous evaluation of heart and kidneys in their study 
design. 

In the context of acute CRS, a combination of TTE and renal sonography can be used 
to assess the heart and kidneys synchronously. The evaluation of right-sided congestion 
and intra-renal blood flow by Doppler imaging might offer incremental diagnostic and 
prognostic value together with circulatory and urinary biomarkers. Quantification 
of global ventricular strain may have the potential of early identification of cardiac 
dysfunction in type 3 CRS. 

The unique role of MRI in the assessment of interstitial fibrosis in both the organs 
might complement the use of molecular biomarkers and provide new insights in the 
diagnosis and treatment of CRS in the future. For institutions with well-developed 
infrastructures for multiparametric MRI, a combined non-contrast protocol assessing 
the heart and kidneys in a single scan session could be considered in future studies 
for patients at risk of or with CRS. Myocardial T1 mapping and T2 mapping together 
with renal T1 mapping and DWI can provide information on the extent of fibrosis 
in heart and kidneys (149), which is postulated to be the key driver of chronic CRS. 
ASL and BOLD can reflect tissue perfusion and oxygenation in the kidneys, offering 
opportunities to detect preclinical hemodynamic alterations. Myocardial strain derived 
from CMR cine images can be used to identify early impairment of cardiac function in 
type 2 and type 4 CRS. With consistent scan parameters and the absence of ionizing 
radiation or contrast agents, non-contrast MRI is the ideal modality for longitudinal 
tracking of pathophysiological changes in CRS, as well as for monitoring of therapeutic 
response without excessive biopsies.          

SUMMARY

Despite endeavors to improve clinical outcome over the past decade, hospitalization 
rate, symptom burden and mortality in patients with dual burden of heart and kidney 
diseases are still high (8). Meanwhile the practical need for better prevention and 
management of CRS is imminent. CRS is a growing health, economical and societal 
problem as the fast increasing number of aging population lead to higher prevalence 
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of heart and kidney diseases. Due to the multiple interconnected pathophysiological 
mechanisms of CRS, it is conceivable that biomarkers or interventions targeting 
single mechanisms are inadequate. Multi-modality and multiparametric imaging 
techniques have been applied for cardiovascular diseases and kidney diseases and 
offer opportunities for the evaluation of CRS. A consecutive and synchronous imaging 
strategy tracing the natural history of CRS can be encouraging for future directions. 
We propose a multidisciplinary approach involving cardiologists, nephrologists and 
radiologists to improve the prospect of research studies and clinical management of 
cardiorenal syndrome in the future.
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