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Chapter 7

Cardiorenal Syndrome:
Emerging Role of Medical
Imaging for Clinical Diagnosis
and Management
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ABSTRACT

Cardiorenal syndrome (CRS) concerns the interconnection between heart and kidneys
in which the dysfunction of one organ leads to abnormalities of the other. The main
clinical challenges associated with cardiorenal syndrome are the lack of tools for early
diagnosis, prognosis and evaluation of therapeutic effects. Ultrasound, computed
tomography, nuclear medicine and magnetic resonance imaging are increasingly used
for clinical management of cardiovascular and renal diseases. In the recent decade,
rapid development of imaging techniques provides a number of promising biomarkers
for functional evaluation and tissue characterization. This review summarizes the
applicability as well as the future technological potential of each imaging modality in the
assessment of CRS. Furthermore, opportunities for a comprehensive imaging approach
for the evaluation of CRS are defined.
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Chapter 7

INTRODUCTION

Cardiorenal syndrome (CRS) is an umbrella term describing the interactions between
concomitant cardiac and renal dysfunctions, in which acute or chronic dysfunction of one
organ may induce or precipitate dysfunction of the other (1). CRS has been associated
with increased morbidity and poor clinical outcomes, leading to high economic and
societal burden (2). The estimated incidence of acute kidney injury is 24%-45% in
acute decompensated heart failure and 9%-19% in acute coronary syndrome (3). The
prevalence of impaired renal function is high in chronic cardiovascular diseases, and
around 40%-60% in chronic heart failure (4). The combination of renal dysfunction
with chronic heart failure is predictive of adverse clinical outcomes (5). Nearly 50% of
deaths in all age groups of patients with chronic kidney disease (CKD) can be attributed
to cardiovascular causes (6). CRS is also frequently observed in acute or chronic
systemic conditions such as sepsis and diabetes mellitus, and is associated with worse
outcomes (7).

Despite the existingliterature on the classification and management of CRS, the clinical
diagnosis and treatment evaluation remains difficult due to the lack of clinical practice
guidelines (8). This has led to increased research interests, including studies focused
on the early diagnosis and clinical management of CRS. The potential value of imaging
biomarkers for the early detection of cardiac abnormalities in CRS has been underlined
in the scientific statement from the American Heart Association (8). Ultrasonography
is currently the first-line imaging modality for structural and functional assessment
of the heart, and structural assessment of the kidneys. Computed tomography (CT),
nuclear imaging and magnetic resonance imaging (MRI) have been widely used for
various purposes in clinical management of cardiovascular diseases and kidney
diseases. Recent technological advancements in medical imaging provides a number
of promising biomarkers for the diagnosis and prognosis of CRS, and opportunities for
personalized medicine. In this review we will summarize the cardiovascular and renal
imaging techniques related to CRS and the potential utility of these techniques for the
diagnosis and follow-up of acute and chronic CRS (Figure 7.1). Finally, comprehensive
imaging protocols that can be incorporated into future research studies and clinical
trials will be proposed.
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Chapter 7

CLASSIFICATION, PATHOPHYSIOLOGY & CLINICAL MANAGEMENT OF CRS

Classification of CRS

Cardio-renal syndrome can be classified into five subtypes (1), with type 1 and 2
describing renal dysfunction sequent to initial acute and chronic cardiac insults, type
3 and 4 describing renocardiac syndrome after the initial insult of kidney disease, and
type 5 representing secondary CRS in systemic diseases (Table 7.1). Although this
classification simplifies the clinical concept of CRS, overlap between different subtypes
and progression from one subtype to another have frequently been observed (9).
For example, it is challenging to differentiate type 2 CRS from type 4 CRS as chronic
heart diseases and chronic kidney diseases frequently co-exist (10, 11). Moreover,
the development of CRS is often complicated by several interconnected conditions,
such as diabetes, hypertension, atherosclerosis, endothelial cell dysfunction, chronic
inflammation and anemia, rendering difficulties in defining the temporal progression
patterns of CRS (8). An alternative classification of CRS was proposed by Hatamizadeh
et al based on clinical manifestations rather than the organ that initiates the process

(12), but has not received wide acceptance.

Pathophysiology of CRS

The exact pathophysiological mechanisms of each type of CRS have not been fully
elucidated. Previously, decreased cardiac output and arterial underfilling induced
neurohumoral activations were believed to be the sole pathogenesis of CRS (13). However,
studies in the past decades demonstrated that decreased arterial flow does not fully
explain the worsening renal function in CRS (60-63). Elevated central venous pressure
has closer association with the reduction of renal perfusion than decreased cardiac
output (61). Moreover, increasing evidence indicates that multiple pathophysiological
processes contribute to the evolution of CRS (14). Hemodynamic alterations, renin-
angiotensin-aldosterone system (RAAS), sympathetic nervous system, inflammatory
and oxidative stress are considered as key connectors between heart and kidneys (15,
16). Other contributing factors such as biochemical perturbations, immune responses,
atherosclerosis and anemia-inflammation-bone mineral axis, can also accelerate the
development of CRS, especially in chronic heart failure and CKD (8, 15, 17). These
pathways are interconnected and exhibit varied clinical importance across different
subtypes of CRS (3, 18).
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Chapter 7

Hemodynamic alterations, especially right-sided heart dysfunction is believed to
be of critical importance in the development of acute CRS (type 1 and type 3) (19).
In type 1 CRS, increased central venous pressure results in renal venous congestion,
which may lead to impaired glomerular filtration, tissue hypoxia and renal fibrogenesis.
These pathological changes induce or aggravate renal dysfunction, which in return
exacerbates fluid overload leading to further deterioration of cardiac function (4, 15).
In type 3 CRS, acute heart injury can be caused by excessive cytokines due to AKI, and
by indirect mechanisms including neurohumoral activation, electrolytes disturbances,
uremia, and acidemia (20, 21).

Non-hemodynamic pathways play a more critical role in chronic CRS (type 2 and
type 4). Activation of RAAS and stimulation of sympathetic nervous system are features
of both heart failure and CKD. Persistent activation of RAAS leads to peripheral
vasoconstriction, exacerbated fluid overload, and sympathetic nervous system
overactivation (16, 22). Sympathetic overactivation in return can stimulate RAAS
via renin release, resulting in a vicious circle (16). Chronically increased release of
aldosterone is the major deleterious component of RAAS and has been associated with
both myocardial and renal interstitial fibrosis (23). Increased oxidative stress due to
chronic RAAS activation has also been associated with renal injury and fluid retention
(24). Inflammation cascade can be triggered by and potentiate the other cardiorenal
connectors, including the overactivation of RAAS and sympathetic nervous system, and
increased oxidative stress. Systemic inflammation is associated with myocardial and
renal dysfunction and interstitial fibrosis (19, 25).

Fibrosis has been considered as a key driver in the pathophysiology of chronic CRS
(18). Fibrogenic responses have short-term adaptive features in the early phases of
cardiac and renal diseases. However, when it progresses chronically, fibrosis can lead to
myocardial and renal parenchymal scarring, cellular dysfunction and ultimately organ
failure (26). Fibrosis of heart and kidneys has also been found in a number of CRS risk
factors, including aging, hypertension, diabetes mellitus and obesity (27). Based on
these findings, a new pragmatic and dynamic cardiorenal integrative concept of CRS
has been proposed, in which patients may be categorized according to the predominant
pathophysiological mechanism, rather than clinical presentation (18). This strategy has
the potential to facilitate clinical interventions for CRS in the future.

Current difficulties in diagnosis and management of CRS

In most circumstances, the complex interconnected pathways between heart and
kidneys have already been activated by the time clinical manifestations are detectable.
Both heart and kidneys have substantial functional reserve, which makes it difficult to
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prevent or reverse the adverse impacts of CRS at an early phase. While all types of CRSs
face with difficulties in early diagnosis and prognosis, the dominant clinical challenges
distinguish between acute CRS and chronic CRS. (Table 7.2)

Table 7.2 Current difficulties in diagnosis and management of cardiorenal syndrome

Main challenges in all types of CRS

e Early diagnosis and prognosis
e Preventing or reversing the adverse impacts of CRS
o Difficulties in distinguishing CRS from other cardiovascular and renal

comorbidities

Specific difficulties in acute and chronic CRS

e Acute CRS e Chronic CRS

e Current diagnostic criteria e Lack of overt symptoms of
hinders early detection of AKI cardiovascular diseases in CKD

o Difficult to differentiate e Lack of sensitive tools to identify
between true kidney injury and monitor the progression of
and pseudo-worsening of cardiovascular involvement when
kidney function conventional assessments remain

e Lack of sensitive tools to normal
assess treatment effects and e Standard treatment is less effective
to track the progression from in reducing cardiovascular
AKI to CKD mortality in CKD patients than in

the general population.

The main challenges in acute CRS are related to AKI (Table 7.2). Currently AKI is
diagnosed based on serum creatinine (SCr) level and oliguria (28). However, SCr cannot
detect early kidney dysfunction, since it remains within normal range before half the
kidney function is lost, resulting in a lag between kidney insult and the elevation of
SCr (29). On the other hand, pseudo-worsening of kidney function may occur due to
hemodynamic changesin patients with heart failure, which is difficult to be differentiated
from true kidney injury (30). Apart from the inability to prevent or early identify AKI,
the lack of sensitive tools to track the progression from AKI to CKD also challenges the
clinical management of AKI. It has been reported that AKI is independently associated
with higher rates of incident CKD (31). Moreover, kidney dysfunction may decrease the
efficiency of diuretics in patients with heart failure, resulting in diuretic resistance and
worsening of congestion, which in return deteriorates the heart and kidney functions
(19). Strategies to prevent AKI or early interventions in the course of AKI remain to be
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investigated to reduce the risk of future adverse renal and cardiac outcomes. In addition,
there is a demanding need of guidance on cardiac- and reno-protective therapies in
acute CRS.

In chronic CRS, however, the main difficulties lie in the cardiac aspect (Table
7.2). Patients with CKD suffer from a high risk of cardiovascular diseases that is
disproportionate to the risk expected in the general population (32). In early-stage
CKD, the risk of cardiovascular death far exceeds the risk of progressing to dialysis (33).
Previous studies suggested that subtle alterations in cardiac structure and function
could occur very early in the progression of CKD, even when SCr is still within the
normal range (34). In addition, nonatheromatous processes appear to predominate
the progression of cardiovascular disease in CKD, which could explain the lower effect
of standard treatment on decreasing cardiovascular mortality in CKD patients than in
the general population (35). Early detection of cardiovascular abnormality in CKD is
challenging due to the lack of overt symptoms and preserved left ventricular systolic
function (36).

Despite the amount of efforts in research studies of novel serum and urinary
biomarkers, it remains unclear whether and to what extent these biomarkers can
be involved in clinical management of CRS (37). Moreover, the global availability of
biomarker technology is another obstacle upon implementing this strategy in clinical
practice. Imaging techniques that provide quantitative information on blood flow,
perfusion, diffusion, tissue oxygenation and interstitial fibrosis without radiation
or potential risks of contrast agents offer possibilities of noninvasive assessment of
preclinical pathophysiological changes in the heart and kidneys at the early phase of
CRS.

CARDIOVASCULAR AND RENAL IMAGING TECHNIQUES RELATED TO CRS

Different imaging modalities can be applied in relation to CRS that enabling
comprehensive assessment of both morphology and function (Table 7.3). Although
further validations are needed for some of these techniques, a number of promising
imaging biomarkers that might be valuable for the clinical management of CRS are
discussed below.
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Cardiovascular imaging techniques
1. Transthoracic echocardiography

Transthoracic echocardiography (TTE) is the most available non-invasive imaging
technique to measure the dimensions of cardiac chambers and to estimate ventricular
functions. TTE-measured left ventricular ejection fraction is the first-line tool to
differentiate between heart failure with reduced ejection fraction and heart failure with
reserved ejection fraction (38). TTE can rapidly identify wall motion abnormalities,
valvular diseases and pericardial effusion. Various hemodynamic markers can be
estimated by Doppler imaging, such as mitral inflow and mitral annulus motion,
left atrial volume and pressure, left ventricular filling pressure, systolic pulmonary
artery pressure, pulmonary capillary wedge pressure, and right ventricular function
(39). Myocardial strain based on speckle tracking technique can be used to quantify
ventricular wall deformation, with

global longitudinal strain more sensitive to subtle impairment of ventricular systolic
function than ejection fraction (40). Fast and cost-effective as it is, TTE-derived imaging
biomarkers can be limited by inadequate acoustic window, poor Doppler signals and
operator-dependent variations. The utility of ultrasonic enhancing agent improves
structural and functional evaluations of various cardiovascular diseases (41). Enhanced
TTE also enables the assessment of myocardial perfusion at rest or with vasodilator-
induced stress (41).

2. Cardiovascular magnetic resonance

Over the recent decade, cardiovascular magnetic resonance (CMR) has gained
increasing acknowledgement in the clinical management of cardiovascular diseases
(42, 43). CMR-measured biventricular volumes, systolic function and myocardial mass
are gold-standard imaging biomarkers (44), particularly right ventricular geometry
and function. Myocardial strain parameters can also be generated from CMR using
feature/tissue tracking post-processing algorithms, free from the suboptimal acoustic
window and dropouts in TTE (45) (Figure 7.2). Velocity encoding using phase contrast
technique enables quantitative evaluation of valvular diseases and shunt evaluation by
CMR. Using gadolinium-based contrast agents, myocardial perfusion and myocardial
fibrosis or infiltration can be assessed and quantified. Late gadolinium enhancement
is the best non-invasive technique to visualize focal fibrosis (46). Extracellular volume
fraction (ECV) calculated by pre- and post-contrast T1 relaxation time is useful for
detecting diffused myocardial fibrosis (47). However, the application of contrast-
enhanced CMR in CRS is limited in patients with severely decreased renal function

(eGFR < 30 mL/min/1.73m?), considering the potential increased risk of gadolinium
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retention and nephrogenic systemic fibrosis in patients with renal dysfunction (48, 49),

but these risks are less clear for the more modern macrocyclic contrast agents (48).

Figure 7.2 Example of myocardial strain analysis using MRI in a patient with CKD.
Quantification of left ventricular strain (a, b, c) and right ventricular strain (d, e)
parameters is visualized by colored overlay on cine images. (f) is an example of strain-

time curve of the left ventricular global longitudinal strain within one cardiac cycle.

Non-contrast tissue characterization techniques including T1 mapping, T2
mapping and diffusion weighted imaging (DWI) provide unique opportunities to
identify microstructural changes in myocardium (Figure 7.3). T1 and T2 mapping are
increasingly used in clinical settings. T1 mapping quantifies the longitudinal and T2
mapping transverse magnetization relaxation times of the hydrogen nucleus proton per
voxel, which can reflect the presence of fibrosis, fat, edema and iron deposition (50).
Myocardial T1 and T2 values have been applied to detect abnormalities in myocardial
tissue composition in various diseases that related to CRS, including heart failure,
ischemic heart diseases, hypertensive cardiomyopathy, diabetic cardiomyopathy and
uremic cardiomyopathy (51, 52). DWI characterizes the motion of water molecules
in microstructural changes, and quantifies it as apparent diffusion coefficient (ADC).
Previous studies suggested that DWI was able to detect and quantify the degree of
myocardial fibrosis, with the minimum amount of fibrosis larger than 20% (53-55).
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Figure 7.3 Myocardial tissue characterization by multiparametric MRI. Mid-cavity
short-axis T1 map (a) and T2 map (b) of a patient with CKD. Myocardial T1 and T2
values can be quantified and compared with local references. ADC (c) and ECV (d)
images demonstrated diffused “pepper like” hyper intensity texture in a patient with
hypertrophic cardiomyopathy. Image c and d were adapted from published article (53)
under a Creative Commons license.

3. Cardiac computed tomography

Computed tomography (CT) coronary angiography is the most widely used non-
invasive imaging technique for anatomical assessment of coronary artery disease
(CAD). CT angiography with additional perfusion imaging allows for characterization
of atherosclerosis in relation to myocardial ischemia, which has great potential clinical
value (56). CT-based fractional flow reserve allows for the quantification of the impaired
maximal coronary flow induced by a stenosis, which is adapted from invasive coronary
pressure measurement (57). CT can also be used to estimate myocardial ECV, and is an
attractive alternative to CMR to evaluate diffused myocardial fibrosis (58). However,
major challenges of CT are the limited temporal resolution, presence of beam hardening
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and scatter artifacts, radiation dose and low contrast-to-noise ratios (59-61). Moreover,
these CT techniques rely on iodinated contrast agent, which is associated with the risk
of post-contrast AKI in patients with impaired renal function (62). Without contrast
agent, CT can be used to calculate coronary artery calcium score, which is a prognostic
biomarker for CAD.

4. Nuclear cardiac imaging

Nuclear cardiac imaging has played an important role in evaluating myocardial
perfusion in ischemic heart diseases. Single-photon emission computed tomography
(SPECT) is commonly employed for the diagnosis of CAD in patients with CKD (63).
However, SPECT only provides semi-quantitative assessment of myocardial perfusion,
and has a wide range of sensitivity, specificity and accuracy (64). Quantitative positron
emission tomography (PET), on the other hand, measures absolute myocardial blood
flow and has shown greater prognostic value than SPECT in evaluation of patients
with known or suspected CAD (65). Currently four different tracers are used for
clinical assessment of myocardial blood flow, which are #Rb, *N-ammonia, °0-water
and 8F-flurpiridaz. *0-water-PET is considered the clinical reference standard for non-
invasive quantification of myocardial perfusion; however important challenges include
high-cost, limited visual assessment, and the lower spatial resolution of PET compared
with CT or MRI perfusion imaging (66). Myocardial metabolism alterations such as
increased glucose utility and fatty acid oxidation can also be evaluated by '®F-fluoro-
2-deoxyglucose (**F-FDG)-PET and B-Methyl-p-[*?®]]-iodophenyl-pentadecanoic acid
(BMIPP)-SPECT (64). Hybrid imaging such as SPECT-CT, PET-CT and PET-MRI can

generate multiple imaging biomarkers by single examination.

Renal imaging techniques
1. Renal ultrasonography

Renal ultrasonography is routinely used to assess renal morphology such as renal
length, corticomedullary differentiation, and to identify obstruction. The usefulness
of ultrasonography to identify the underlying cause of renal diseases is limited.
Furthermore, no distinction between inflammation and fibrosis can be identified
by echogenicity (67). Renal Doppler sonography enables the quantification of renal
blood flow and intrarenal hemodynamic changes, which are suggestive of renal
dysfunction and/or microstructural alterations. Elevated values of renal resistive index
are associated with poorer prognosis in various renal disorders and renal transplant
(68). Renal venous flow is one of the biomarkers for right-sided congestion, which
is fundamental to the management of CRS. Contrast-enhanced ultrasonography has
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showed the ability to quantify regional renal perfusion and microvascular function in

rat models, and is potentially feasible for early detection and monitoring of AKI (69, 70).
2. Renal magnetic resonance imaging

Initial applications of renal MRI have been focused on the visualization of renal and
urogenital anatomy. Conventional renal MRI sequences can be used to measure total
kidney volume, which is a FDA-approved prognostic biomarker (71), with higher
accuracy compared with sonography. Recent research interest has been focused on
the application of sequences that provide functional (BOLD, ASL) and microstructural
(DWI, DTI, T1 mapping, T2 mapping) information without the need for gadolinium-
based contrast agents (72-76) (Figure 7.4).

FA map Color FA map
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| T - 0.5
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IVIM
A4 mm?fs FI9
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Figure 7.4 Multiparametric kidney MRI in healthy volunteers. BOLD R2* map is used
to evaluate parenchyma oxygenation. Renal blood flow can be quantified from ASL
perfusion weighted image. ADC and FA maps generated from DWI and DTI can be used
to assess renal fibrosis. IVIM imaging evaluates true parenchyma diffusion by separate
modeling. Renal T1 maps showing clear cortico-medullary differentiation in a healthy
volunteer and T2 mapping are promising techniques to evaluate renal microstructure.
The BOLD R2* map, ADC map, FA maps and IVIM images were adapted from the articles
of Bane et al. (72), Adams et al. (77) and de Boer et al. (78) under Creative Commons
licenses.

Renal parenchymal oxygenation is of paramount importance in the pathophysiology
of AKI and CKD (79). Blood oxygen level dependent (BOLD) imaging can demonstrate
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tissue oxygen level using multi-echo T2*-weighted sequence based on the paramagnetic
properties of deoxyhemoglobin. The strong correlation between renal T2* (R2*) and the
invasive gold-standard tissue oxygen partial pressure has been validated in rat model
(80). The outer layer of medulla has higher sensitivity to hypoxia than the cortex, which
is the physiological basis of the susceptibility to hypoxia injury.

Arterial spin labeling (ASL) assesses tissue perfusion by labeling the water protons
in the blood before they enter the tissue of interest, and subtracting the labeled image
from a control image withoutlabeling blood water. The signal intensity of the subtracted
perfusion-weighted image is proportionate to perfusion. ASL has been widely used to
calculate cerebral perfusion in various brain diseases (81). Renal perfusion quantified by
ASL has been validated by comparison with para-aminohippuric-acid clearance, which
is the gold standard measurement of renal plasma flow, and with renal scintigraphy,
demonstrating reproducible perfusion measurements (82, 83). High interstudy and
interrater reproducibility of ASL in the quantification of cortical and medullary renal
perfusion has been showed in healthy volunteers (84).

Renal DW], diffusion tensor imaging (DTI), T1 and T2 mapping have been studied
to assess interstitial fibrosis (85). Renal cortex has higher ADC than medulla in healthy
kidneys. As ADC is largely influenced by tubular flow and capillary perfusion, intravoxel
incoherent motion (IVIM) is used to measure the true diffusion, alongside the pseudo-
diffusion and flow fraction. DTI is a variation to DWI which measures the fractional
anisotropy (FA), that is, the percentage of a tissue that displays oriented diffusion axes.
Increased ADC and decreased FA can be biomarkers of fibrosis in CKD. Recent studies
suggest that renal T1 mapping technique can be used to assess tissue changes in AKI
and renal fibrosis in CKD in rat models (86-88) as well as in human (89), with good
reproducibility.

3. CT and nuclear medicine for renal imaging

CT and nuclear imaging are the most frequently used modalities after ultrasonography
to assess renal morphology and function in clinical settings. However, the utility of
renal CT in clinical management of CRS is limited due to radiation and the risk of post-
contrast acute kidney injury in patients with impaired renal function (eGFR<30 ml/
min/1.73m?). Dual-energy CT might offer opportunities to assess renal parenchyma
without contrast agent. Renal nuclear imaging such as renal scintigraphy, SPECT and
PET have been used for quantification of GFR and renal perfusion. However, they are
not ideal for frequent assessments due to radiation, thus not suitable for longitudinal
surveillance of CRS.
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APPLICATION OF IMAGING BIOMARKERS IN ACUTE CRS

Echocardiographic and CMR biomarkers for diagnosis and prognosis

Echocardiography not only is essential for diagnosing cardiovascular dysfunction in
acute CRS, but also provides prognostic biomarkers. In a retrospective study of 30681
patients, at least one type of CRS was detected in 8% patients, in whom decreased left
ventricular ejection fraction, increased pulmonary artery pressure and larger right
ventricular diameter derived by TTE were independent risk factors of the development
of CRS (9). This study also found that acute CRS is associated with the worst prognosis
in comparison with chronic CRS and no CRS (9). In a study of 1879 critical ill patients,
right ventricular dysfunction assessed by TTE was an important determinant of AKI
and AKI-related mortality (90).

CMR has been increasingly used in acute cardiovascular diseases such as acute
coronary syndrome and acute myocarditis, facilitating risk stratification with myocardial
tissue characterization (91, 92). In the context of acute CRS, one study demonstrated an
association between microvascular myocardial injury assessed by contrast-enhanced
CMR and increased risk of AKI in patients with ST-elevation myocardial infarction (93).
The value of CMR in the clinical management of acute CRS is yet to be unraveled by
further studies.

Kidney sonographic biomarkers for prognosis

Renal resistive index and intrarenal venous flow pattern evaluated by Doppler imaging
have demonstrated potential values in prognosis of acute CRS. Increased resistive
index of the renal artery was found to be helpful in predicting AKI in patients after
major cardiac surgery (type 1 CRS), and in patients with septic shock or in critical
conditions (type 5 CRS) (94-96). Since the key role of renal venous congestion has
been recognized, intrarenal venous flow has attracted increasing interests (97-99).
The patterns of intrarenal venous flow were applied to identify renal hemodynamic
disturbances in heart failure (100, 101). The discontinuous patterns of intrarenal
venous flow were found to be associated with increased right atrial pressure and had
independent prognostic values in patients with non-ischemic heart failure (101). A case
report observed the change of intrarenal venous flow from a monophasic to a biphasic
pattern in parallel with improvement in symptoms and renal function (102). Results of
a recent clinical trial suggested that both renal arterial resistive index and intrarenal
venous flow might offer guidance on the diagnosis and treatment of type 1 CRS (103).
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Preclinical kidney MRI biomarkers of AKI

Multiparametric kidney MRI has been studied to characterize microstructural changes
in AKI in recent years. Although the value of MRI biomarkers of AKI in the context of CRS
remains to be investigated, there have been studies detecting the pathophysiological
alterations in AKI. These techniques may facilitate early identification of AKI, which is
one of the most challenging issues in clinical management of acute CRS. It has been
well accepted that renal parenchymal hypoperfusion and hypoxia are closely associated
with the development of all forms of AKI (104). BOLD technique by MRI has been used
to evaluate intrarenal oxygenation in animal models and patients with AKI (105, 106).
Renal hypoxia detected by BOLD MRI has been reported in contrast-induced AKI, renal
allografts with acute tubular necrosis, sepsis-associated AKI and other nephrotoxin-
induced AKI (106). Significantly lower perfusion of the renal cortexand medulla detected
by ASL has been reported in AKI patents in comparison with healthy volunteers (107).
ASL was studied as an alternative to dynamic contrast-enhanced MRI for quantitative
renal perfusion measurements in a rat model of AKI (108). Moreover, the combination of
BOLD and ASL techniques may help to achieve a better characterization of the primary
cause of AKI, as the tissue oxygenation assessed by BOLD is significantly influenced
by renal perfusion (109). A study of 15 healthy volunteers demonstrated that ASL is
capable of detecting renal hemodynamic change after a single-dose pharmacological
intervention with captopril, highlighting the potential of ASL to provide mechanistic
insights into the pharmacotherapy of kidney diseases (84). DWI and T1 mapping
techniques are potentially beneficial for the evaluation of AKI in acute CRS. Decreased
ADC, alterations in IVIM parameters and diffusion anisotropy demonstrated by DTI
have been showed in animal models of AKI (106). Prolonged renal cortical T1 relaxation
time and decreased corticomedullary difference was found in AKI and the cortical T1

values were positively correlated with stages of renal function (110).

APPLICATION OF IMAGING BIOMARKERS IN CHRONIC CRS

Cardiac imaging biomarkers of CKD-associated cardiomyopathy

Echocardiography is currently recommended by the Kidney Disease Improving
Global Outcomes (KDIGO) guidelines for all patients initiating dialysis, due to the high
prevalence of underlying abnormalities among patients with CKD (111). Characteristic
cardiac changes in CKD include left ventricular (LV) hypertrophy, ventricular dilatation,
cardiac dysfunction, and myocardial fibrosis (112). However, TTE has disadvantages in
identification and surveillance of LV myocardial mass and volumes in CKD. TTE tends to
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overestimate LV mass in comparison with CMR, and the wider intra- and inter-operator
variability of TTE is disadvantageous for observation of subtle and gradual cardiac
changes in CKD (113). In addition, the impact of kidney transplantation on LV mass
has been controversial, suggesting that the interventions to prevent type 4 CRS might
need to be moved to earlier phase of CKD (114). LV global longitudinal strain (GLS)
is more sensitive than LV ejection fraction as a marker of subtle LV dysfunction (115-
117), and is associated with an increased risk of mortality in predialysis and dialysis
patients (118). Previous studies demonstrated decreased LV-GLS and diastolic strain
rates by TTE in CKD patients (115, 119-122). LV diastolic dysfunction can be diagnosed
and graded by TTE, based on mitral valve annular e’ velocity, average E/e’ ratio, left
atrium volume index, and peak tricuspid regurgitation velocity (123). However, our
recent study suggests that subclinical changes in myocardial tissue composition may
exist even when no systolic or diastolic dysfunction is detected by TTE in patients on
peritoneal dialysis (124).

CMR has the unique value of detecting myocardial fibrosis, which was found in more
than 90% of patients with CKD in a postmortem study (125). Increased myocardial
native T1 value has been observed in patients with early phase CKD and in end-stage
CKD patients when compared with healthy controls (126-129). Two previous studies
revealed higher myocardial T2 values in ESRD patients than those in healthy controls
(124, 130). Decreased MR-derived LV global longitudinal strain and circumferential
strain were also reported in patients with early CKD and in end-stage CKD patients
(124,126-129, 131). Increased native T1 value has been found to be associated with LV
global strain (124, 126, 127). Most recently, a study of 134 pre-dialysis patients without
diabetes or myocardial ischemia showed that native myocardial T1 values and serum
biomarkers of myocardial fibrosis increased with advancing CKD stages, independent
of left ventricular afterload (51). These findings suggest that myocardial fibrosis might
be a pharmacological target for the treatments in CKD patients, and might improve
prognosis by mitigating the effects of CRS.

CAD and myocardial infarction with non-obstructive coronary artery can be involved
in both type 2 and type 4 CRS. Coexistence of CAD and CKD and with comorbidities
such as diabetes often renders these patients “silent” ischemic heart disease without
typical anginal chest pain. Earlier CMR study with late gadolinium enhancement
showed a mixed pattern of subendocardial infarction and diffuse fibrosis in patients
with advanced CKD, reflecting the dual myocardial diseases (132). Considering the
increased risk of post-contrast acute kidney injury and nephrogenic systemic fibrosis in
patients with severe renal dysfunction, non-contrast imaging techniques are preferred
to identify CAD in CRS. The utility of echocardiography, nuclear cardiac imaging, CMR,
CT and hybrid imaging for diagnosis of CAD in patients with CKD has been thoroughly
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discussed in a most recent literature review (64).

Preclinical kidney MRI biomarkers of CKD with potential value in CRS

Kidney imaging has scarcely been studied in the context of chronic CRS, since
cardiovascular abnormalities are more related to mortality. However, imaging
biomarkers of CKD in general may have potential value in clinical management of
chronic CRS, especially in early diagnosis and monitoring disease progression.

Conventional kidney ultrasonography and MRI can hardly identify preclinical renal
injury in chronic CRS. Although previous studies suggest that kidney size is associated
with glomerular filtration and kidney function reserve (133), the relationship between
kidney volume and function is not proportional, since the kidneys have a substantial
functional reserve and homeostatic adaptive mechanisms (134). Functional and
tissue characterization MRI techniques may open new possibilities for future studies
of chronic CRS. Feasibility of a multiparametric renal MRI protocol including ASL, T1
mapping, DWI and BOLD for patients with CKD has been demonstrated (135). There
have been studies with histological evidences demonstrating that cortical ADC values
measured by DWI correlated well with cortical fibrosis and chronic lesions (136-139).
Lower renal perfusion, significant higher cortical and medullary T1 value with reduced
cortico-medullary differentiation have been observed in CKD patients compared with
healthy volunteers (135, 140). The degree of cortical hypoxia indicated by decreased
T2* value in BOLD was correlated with the extent of fibrosis on renal biopsy in one
study (137). However, another study failed to identify significant associations between
T2* and eGFR or CKD stage in 342 patients with CKD (141). A recent prospective study
of 112 patients with CKD demonstrates that low cortical oxygenation indicated by
BOLD-MRI is an independent predictor of renal function decline over the subsequent
3 years (142).

Type 5 chronic CRS secondary to diabetes is attracting increased attention these
years, in which diabetic nephropathy has been of particular interest. Chronic hypoxia
is one of the major contributors of parenchymal fibrosis and CKD in diabetes (143,
144). Lower renal ADC value and higher FA have been reported in early stage of type
2 diabetic nephropathy in comparison with healthy volunteers (145), and ADC value
was correlated with urinary and serum biomarkers (146). Decreased renal perfusion
quantified by ASL was seen in patients with diabetes mellitus in comparison with
healthy controls, despite normal eGFR and absence of overt albuminuria (147). A
multiparametric MRI study demonstrated significantly lower renal perfusion assessed
by ASL in patients with diabetes and stage 3 CKD, and lower perfusion with lower
response to furosemide in patients with progressive CKD (148).
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OPPORTUNITIES FOR COMPREHENSIVE IMAGING ASSESSMENT

Ultrasonography remains the most versatile, accessible and cost-effective modality for
the assessment of CRS. MRI, on the other hand, is the most promising one-stop modality
for the structural and functional evaluation of both heart and kidneys. Future studies
aiming at finding novel biomarkers for CRS may incorporate serial ultrasonography or
non-contrast MRI scans for simultaneous evaluation of heart and kidneys in their study
design.

In the context of acute CRS, a combination of TTE and renal sonography can be used
to assess the heart and kidneys synchronously. The evaluation of right-sided congestion
and intra-renal blood flow by Doppler imaging might offer incremental diagnostic and
prognostic value together with circulatory and urinary biomarkers. Quantification
of global ventricular strain may have the potential of early identification of cardiac
dysfunction in type 3 CRS.

The unique role of MRI in the assessment of interstitial fibrosis in both the organs
might complement the use of molecular biomarkers and provide new insights in the
diagnosis and treatment of CRS in the future. For institutions with well-developed
infrastructures for multiparametric MRI, a combined non-contrast protocol assessing
the heart and kidneys in a single scan session could be considered in future studies
for patients at risk of or with CRS. Myocardial T1 mapping and T2 mapping together
with renal T1 mapping and DWI can provide information on the extent of fibrosis
in heart and kidneys (149), which is postulated to be the key driver of chronic CRS.
ASL and BOLD can reflect tissue perfusion and oxygenation in the kidneys, offering
opportunities to detect preclinical hemodynamic alterations. Myocardial strain derived
from CMR cine images can be used to identify early impairment of cardiac function in
type 2 and type 4 CRS. With consistent scan parameters and the absence of ionizing
radiation or contrast agents, non-contrast MRI is the ideal modality for longitudinal
tracking of pathophysiological changes in CRS, as well as for monitoring of therapeutic

response without excessive biopsies.

SUMMARY

Despite endeavors to improve clinical outcome over the past decade, hospitalization
rate, symptom burden and mortality in patients with dual burden of heart and kidney
diseases are still high (8). Meanwhile the practical need for better prevention and
management of CRS is imminent. CRS is a growing health, economical and societal

problem as the fast increasing number of aging population lead to higher prevalence
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of heart and kidney diseases. Due to the multiple interconnected pathophysiological

mechanisms of CRS, it is conceivable that biomarkers or interventions targeting

single mechanisms are inadequate. Multi-modality and multiparametric imaging

techniques have been applied for cardiovascular diseases and kidney diseases and

offer opportunities for the evaluation of CRS. A consecutive and synchronous imaging

strategy tracing the natural history of CRS can be encouraging for future directions.

We propose a multidisciplinary approach involving cardiologists, nephrologists and

radiologists to improve the prospect of research studies and clinical management of

cardiorenal syndrome in the future.
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