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ABSTRACT

Objectives: There is a growing interest in fast and reliable assessment of abdominal
visceral adipose tissue (VAT) volume for risk stratification of metabolic disorders.
However, imaging based measurement of VAT is costly and limited by scanner
availability. Therefore, we aimed to develop equations to estimate abdominal VAT
volume from simple anthropometric parameters and to assess whether linear regression
based equations differed in performance from artificial neural network (ANN) based
equations.

Methods: MRI-measured abdominal VAT volumes and anthropometric parameters of
5772 subjects (White ethnicity, age 45-76 years, 52.7% females) were obtained from
the UK Biobank. Subjects were divided into the derivation sample (n=5195) and the
validation sample (n=577). Basic models (age, sex, height, weight) and expanded
models (basic model + waist circumference and hip circumference) were constructed
from the derivation sample by linear regression and ANN respectively. Performance of
the linear regression and ANN based equations in the validation sample were compared
and estimating accuracies were evaluated by receiver-operating characteristic curves
(ROQO).

Results: The basic and expanded equations based on linear regression and ANN
demonstrated the adjusted coefficient of determination (R?) ranging from 0.71 to 0.78,
with bias ranging from less than 0.001L to 0.07L in comparison with MRI-measured
VAT. Both basic and expanded ANN based equations demonstrated slightly higher
adjusted R? and lower error measurements than linear regression equations. However,
no statistical difference was found between linear regression equations and their ANN
based counterparts in ROC analysis. Both linear regression and ANN based expanded
equations presented higher estimating accuracies (76.9%-90.1%) than the basic
equations (74.5%-87.5%) in ROC analysis.

Conclusions: We present equations based on linear regression and artificial neural
networks to estimate abdominal VAT volume by simple anthropometric parameters for
middle-aged and elderly White population. These equations can be used to estimate
VAT volume in general practice as well as population-based studies.
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INTRODUCTION

The disease burden related to obesity has increased significantly over the last decades,
making excess body weight one of the most challenging public health problems of
our time (1). Body mass index (BMI) is the most widely used tool to estimate obesity-
related risks. However, previous studies suggested that people with similar BMI may
have heterogeneous obese status, with remarkably different comorbidities and health
risks (2, 3). It has been reported that relying on BMI as a measure of obesity could lead
to misclassification of cardiometabolic health risks (4, 5).

Several studies have shown that abdominal or central obesity, measured by visceral
adipose tissue (VAT) is a superior marker of cardio-metabolic risk and mortality than
anthropometric indices of obesity such as BMI and waist-to-hip ratio (WHR) (6). There
is a growing interest in fast and reliable assessment of VAT volume for improved risk
stratification in obese individuals (7). Volumetric VAT derived from magnetic resonance
imaging (MRI) or computer tomography (CT) is generally accepted as a gold standard
for VAT estimation (8). Cross-sectional VAT area measured in a single CT or MRI
slice at a predefined lumbar level (e.g. L3-L4 or L4-L5) is widely used as the proxy of
volumetric VAT in a number of studies. However, CT or MRI quantifications of VAT are
costly, and dependent on scanner availability, limiting their application in clinical and
epidemiologic settings. The need for a simple and clinically applicable tool to monitor
visceral fat is emphasized in the latest position statement (7).

Previous studies have developed a number of equations consisting of several
anthropometric variables to predict VAT area based on linear regression models
(Supplementary Table S$3.1). However, population-based utility of these equations
were limited by small sample size (up to N=1410), and the lack of internal or external
validation. In addition, the VAT estimation was based on cross-sectional VAT area rather
than whole abdominal VAT volume (9, 10), which could lead to estimation errors up to
14% (10). Also, the need for information on diverse combinations of anthropometric
parameters such as skinfold, thigh circumference and sagittal diameter limited the
use of these equations in clinical practice. Moreover, predictive capacity varied among
previous equations, explaining 50% to 80% of the variance in VAT areas in both sex
(Supplementary Table S3.1).

While linear regression equation is simple and interpretable, its estimation capacity
could be compromised by potential nonlinear association between volumetric VAT and
anthropometric parameters. Deep learning by artificial neural network (ANN) has been
widely used in medical fields and is theoretically advantageous over traditional linear

regression for complex medical problems. An ANN is an emulation of biological neural
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network, which contains input, hidden and output layers, with each layer consisting of
multiple neurons. The neurons are computing nodes that operate as nonlinear summing
devices (11). Each neuron is connected by weighted lines to all the neurons in adjacent
layers. An ANN gains functions by “training” process, during which multiple densely
connected layers and neurons are activated by input variables and the activations are
propagated in a non-linear way through multiple computational stages, to make the ANN
exhibit desired behaviour (12). ANN has been increasingly applied to various medical
fields, performing a wide range of tasks, such as clinical classification and prediction,
image analysis and postprocessing, biochemical analysis and drug development (13).
ANN based estimation equations have been developed for other medical interests (14,
15), and can yield higher accuracy than the linear regression equation when applied
to estimate maximal oxygen uptake in adolescents (15). No ANN based equation for
estimation of VAT has been reported yet.

The aim of this study was to develop equations to estimate abdominal VAT volume
(eVAT) based on simple anthropometric parameters using large dataset of individuals
with MRI-based measurements of VAT volume. Linear regression and ANN were utilized
respectively in equation derivation and the performance of the estimating equations
were compared. We intended to involve a basic and an expanded combination of
anthropometric parameters that adapt to different circumstances in clinical and

epidemiologic settings.

METHODS

Subjects

The UK Biobank Study (see www.ukbiobank.ac.uk for more information) is a large
population-based prospective cohort that includes 503,325 individuals aged 40
to 69 years old (16). The participants were recruited across the United Kingdom
for participation in the UK Biobank over a 5-year period beginning in 2006. The
study protocol was approved by the National Health Service Research Ethics Service
(reference 16/NW/0274). All participants gave informed consent for data provision
and linkage. Access to the UK Biobank data was provided by the UK Biobank under
application number 20666. For the current study, we only included individuals with
MRI-measured VAT volume (n=5995) available at the release date of 30th January 2018.
We selected the subjects with White background including “White”, “British”, “Irish”
and “Any other White background”. Then 90% of the female and male subjects were

randomly selected to form the derivation sample, while the rest 10% subjects consisted
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of the validation sample. The process of subjects selection and sampling is shown in the
flow chart. (Figure 3.1)

UKB total subjects
n=502,616

Select subjects with VAT

A 4

Select ethnicity: “White”, “British”,

“Irish”, “Any other White background”
—_—
n=5801
—
Exclude those with missing values of WC

or HC (n=28), and outliers (n=1)
Y

n=5772

—

A 4 A 4

[ Female n = 3039 ] [ Male n=2733 ]

90% 10%

\

[ Derivation n = 5195 [ Validation n =577 ]

J

Figure 3.1 Flow chart of subjects selection and random selection of the derivation and
validation sample using the UK biobank.

Anthropometric Measurements

Anthropometric measurements were obtained by trained research clinic staff. Weight
(without shoes and outdoor clothing) was measured using the Tanita BC 418 body
composition analyzer, and height (without shoes) was measured using the wall-
mounted SECA 240 height measure. Waist circumference (WC) was measured at a
midway between the lowest rib margin and the iliac crest, and hip circumference (HC)
was measured just over the hips at the maximum circumference. Waist-hip ratio (WHR)
was calculated by dividing the WC by the HC.

57



Volumetric VAT based on MRI

The body composition scan was made according to a protocol described previously (17,
18). During the imaging visit participants underwent a dual-echo Dixon Vibe protocol
on a clinical wide bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform VD134,
Siemens Healthcare, Erlangen, Germany). The six minute protocol covered neck to
knees by six 3D axial slabs. Using the integrated scanner software, fusion of the axial
slabs provided a volumetric dataset containing isolated water and fat images. VAT
volume was calculated by automatic segmentation using AMRA Profiler (AMRA Medical
AB, Linké6ping, Sweden) (18). All images were inspected and if required corrected by an

analysis engineer.
Analysis in the derivation sample

Considering that the expediency and simplicity of the equation is crucial for clinical
application, we developed a basic model that can estimate VAT with the knowledge of
age, sex, height and weight, and an expanded model requiring WC and HC in addition to
the four basic parameters. Both linear regression and artificial neural network (ANN)
were used to develop the basic model and the expanded model.

Derivation of linear regression equation

Multivariable linear regression models were built using anthropometric parameters
as the predictor variables, and MRI-measured VAT volume as the response variable,
within the derivation sample. Age, sex, height, weight, BMI and BSA were involved in
the stepwise procedure for the basic model, while WC, HC and WHR were involved
additionally for the expanded model. Stepwise Akaike information criterion was adopted
to select variables for the final models (19). Coefficients in the final models were used to
construct the equations. The goodness-of-fit between estimated VAT (eVAT) and MRI-
measured VAT volumes was evaluated by Bland-Altman plot, mean difference (bias),
adjusted coefficient of determination (R?), root mean squared errors (RMSE) and mean
absolute error (MAE) for each model. All the analyses were carried out by RStudio (20),
version 1.1.463.

ANN modelling procedure

The ANN modelling was performed in RStudio using the keras package (21). The
estimation models for VAT were built and trained by several steps: 1. Data pre-
processing. The derivation sample was used to train the neural network. All the
variables for the construction of ANN were recorded in their original units. VAT was
coded as the training target, and the anthropometric variables formed the input dataset.
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2. Neural network design. In construction of the neural network, we used a sequential
model with several densely connected hidden layers. The input layer contained four
neurons (age, sex, height and weight) for the basic model, and six neurons (age, sex,
height, weight, WC and HC) for the expanded model. The output layer returned a single
continuous value of VAT volume. Each hidden layer could be activated by different
activation function, which was decided in training process. 3. Learning algorithm. The
loss function for learning algorithm was “MSE” (mean squared error), and the metrics
as “MAE” (mean absolute error), which were in concordance with the goodness-of-fit
evaluation for the regression models. The optimizer and learning rate for each model
were decided in training process. 4. Training of the network. Tuning of each model
was based on the shape of the learning curve and the value of adjusted R?, RMSE and
MAE. The numbers of hidden layers and neurons, the activation functions, the learning
algorithms, and several parameters of the training process, including epochs, batch size
and validation split, were tuned to achieve the highest possible adjusted R? as well as
the lowest possible RMSE and MAE.

The neural network model with the highest adjusted R? and the lowest RMSE and
MAE in the derivation sample was selected as the final model. Bland-Altman plot and
mean difference (bias) were also evaluated for the final ANN models. We developed an
interactive webpage based on the final ANN models for the estimation of VAT, using the
shiny package in RStudio.

Analysis in the validation dataset

The linear regression equations and the ANN models were applied in the validation
sample. Bland-Altman plots, bias, adjusted R?, RMSE and MAE were demonstrated to
evaluate the performances. The eVATs by different models were compared using the
paired Student t test.

Receiver-operating characteristics (ROC) curves were computed for measured-VAT
volume less than 2 L, 2 L < VAT < 5 L, and VAT = 5 L. Sensitivity, specificity and accuracy
(percentage of the concordance of eVAT and measured-VAT) were calculated to present
how well each model can predict eVAT that falls in the same interval of the measured-
VAT. Accuracy was calculated by the following formula: Accuracy = (number of correct
estimations/number of cases) x 100%. The area under the ROC (AUC) were compared
among all the equations using the DeLong’s test.

The characteristics of the derivation sample and the validation sample were
presented as mean * standard deviation with ranges in parentheses. Correlations
between VAT volume and anthropometric parameters were assessed by Pearson’s

correlation coefficient. Overview of the methods in this study is shown Figure 3.2.
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Figure 3.2 Overview of the methods in this study. The image with colored overlay is
adopted from an open access publication (17), and shows the central coronal MRI slice
of a subject from UK Biobank. Both linear regression and ANN were utilized to estimate
abdominal VAT volume from anthropometric parameters, based on MRI-measured VAT.
The eVATs generated by regression equations and ANN models were then compared
and evaluated in the validation sample.

RESULTS

The demographic and anthropometric characteristics and MRI-measured VAT volumes
for the whole dataset were shown in Table 3.1. There was no statistic difference
between the derivation sample and the validation sample in age, height, weight, BMI,
BSA, WC, HC, WHR and VAT. The total study population had a mean age of 61.9 years
(range 45 to 76), mean VAT of 3.73 L (ranging from 0.12 to 14.41) and 52.7% (n=3039)
was female.

Pearson’s correlation coefficients between VAT and main anthropometric parameters
were: weight (r=0.80), BMI (r=0.68), WC (r=0.83), HC (r=0.53), and WHR (r=0.73), all
with p<0.001.

Description of the estimation models

The final basic linear regression model of the stepwise analysis included all the tested
variables, which were age, sex, height, weight, BMI and BSA (F=2152, p<0.001). The final
expanded linear regression model of the stepwise analysis also included all the tested
variables, which were age, sex, height, weight, BMI, BSA, WC, HC and WHR (F=1872,
p<0.001). Table 3.2 shows the equations generated from the final models.
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Table 3.1 Characteristics of the included participants of the UK biobank, all values are

presented as mean * standard deviation

Characteristics Total Derivation sample  Validation sample
(n=5772) (n=5195) (n=577)
Age (year) 619+74 62.0+7.4 61.2+72
Height (cm) 163.5+6.5 169.9 £+ 9.4 170.1+9.8
Weight (kg) 68.6 +12.7 75.7 £15.0 76.7 £ 15.6
BMI (kg/m?) 26.2+4.3 26.1+4.3 264+44
Females 25.7+4.6 25.7+4.6 25.7+4.6
Males 26.7+3.8 26.6 3.8 27.2+39
BSA (m?) 1.88 +0.22 1.88 +0.22 1.90 +0.23
Females 1.76 £ 0.17 1.76 £ 0.17 1.75+0.17
Males 2.03+0.18 2.02+0.18 2.06+0.17
WC (cm) 87.5+12.1 87.4+12.0 88.4+12.4
Females 82.1+11.4 82.1+11.3 82.4+11.6
Males 93.6+9.8 93.4+9.8 95.0+9.7
HC (cm) 101.4+8.5 101.3+85 102.2+8.38
Females 101.1+9.7 101.1+£9.7 101.6 £9.7
Males 101.7+7.1 101.6+7.0 1029+ 7.7
WHR 0.86 + 0.08 0.86 +0.08 0.86 + 0.08
Females 0.81+0.07 0.81 £ 0.07 0.81 £ 0.06
Males 0.92 £ 0.06 0.92 +0.06 0.92 £ 0.05
VAT (L) 3.73+£2.25 3.72 £ 2.25 3.76 £ 2.26
Females 2.63 +1.50 2.63+1.50 2.61+1.52
Males 495+ 231 494+ 232 5.04 £ 2.26

BMI: body mass index; BSA: body surface area; WC: waist circumference;

HC: hip circumference; WHR: waist-hip ratio; VAT: visceral adipose tissue.

Similar to linear regression models, we also developed a basic model and an
expanded model by ANN. The final basic ANN model was constructed by six hidden
layers containing 120, 80, 50, 24, 12, 6 neurons respectively. The final expanded ANN
model was constructed by five hidden layers containing 100, 50, 24, 12, 6 neurons
respectively. The activation function for each hidden layer and the output layer was
rectified linear unit (ReLU) in both two models. The optimizer and learning rate was
“optimizer_adm (Ir=0.001)" for the basic model and “optimizer_rmsprop (Ir=0.001)"
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for the expanded model. The final basic model was trained with epochs = 100, batch size
= 32, and validation split = 0.1, while the final expanded model was trained with epochs
= 200, batch size = 32, and validation split = 0.1. Based on the ANN models trained in
our study, we built an webpage, in which the estimation volume of VAT can be obtained
interactively (Table 3.2).

Table 3.2 The regression equations and the webpage based on ANN models for
estimating VAT (L)

Linear Regression Equation

Basic 0.04-age+1.22-sex-0.32-height+ 0.17-weight - 5846-weight/
height? + 0.21-(height-weight)®> + 33.15

Expanded 0.03-age +0.40-sex-0.26-height + 0.09-weight-4518-weight/

height? + 0.22-(height-weight)®> + 0.24-WC - 0.20-HC -
15.16-WC/HC + 37.74

ANN See webpage for automatic estimation using the basic and

expanded models

https://radi-evat.lumc.nl

Units for the variables: age (year), sex (female=0, male=1), height (cm), weight (kg),
WC (cm), HC (cm)
ANN: artificial neural network; VAT: visceral adipose tissue

The performance parameters including adjusted R?, RMSE, MAE and bias are
presented in Table 3.3. The scatter plots and Bland-Altman plots of the eVAT and
measured-VAT are shown in Figure 3.3, 3.4.

Model performance in the validation sample

The performance parameters of the four equations in the validation sample were
also demonstrated in Table 3.3. There was no statistical difference between basic
and expanded linear regression eVATs. The basic and expanded ANN based eVATs
were statistically different with mean difference = -0.17 L (p<0.001). The basic linear
regression eVAT was different from basic ANN based eVAT with mean difference = 0.04
L (p=0.003). The expanded linear regression eVAT was different from expanded ANN
based eVAT with mean difference = -0.12 L (p=0.003).

The AUCs and accuracies of each equation in estimating VAT <2 L, 2L<VAT <5 Land
VAT =5 L were presented in Table 3.4. The ROC curves of the basic ANN based equation
to estimate 2 L < VAT < 5 L and VAT = 5 L were statistically different from those of the
expanded ANN equation (p=0.01, P<0.001), while the ROC curves to VAT less
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Figure 3.3 Scatter plots of the MRI-measured VAT and estimated VAT (eVAT) by
different equations. (a-d) Scatter plots for the derivation sample. (e-h) Scatter plots for
the validation sample. (a, €) The basic linear regression equation. (b, f) The expanded
linear regression equation. (c, g) The basic ANN equation. (d, h) The expanded ANN
equation.
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Figure 3.4 Bland-Altman plots of the MRI-measured VAT and estimated VAT (eVAT) by
different equations. (a-d) Bland-Altman plots for the derivation sample. (e-h) Bland-
Altman plots for the validation sample. (a, e) The basic linear regression equation. (b,
f) The expanded linear regression equation. (¢, g) The basic ANN equation. (d, h) The
expanded ANN equation.
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than 2 L did not differ between the two ANN based equations (p=0.464). The ROC curves
to estimate VAT = 5 L were also different between the basic and the expanded linear
regression equations (p=0.04). There was no statistical difference in the ROC curves
to estimate VAT less than 2 L and 2 L < VAT < 5 L between the two linear regression
equations (p=0.883, p=0.57). Comparisons between linear regression equations and
their ANN based counterparts did not reveal statistical significance.

Table 3.4 Areas under the ROC curves (AUC), sensitivities, specificities and accuracies

of the four equations in the validation sample

VAT < 2 L (n=147) AUC Sensitivity Specificity Accuracy
(%) (%) (%)

Linear Regression  Basic 0.80 64.6 95.1 87.3
Expanded 0.80 64.6 95.6 87.7

ANN Basic 0.80 66.0 94.4 87.2
Expanded 0.84 70.7 96.7 90.1

2L<VAT <5L (n=277)

Linear Regression  Basic 0.75 78.3 71.7 74.9
Expanded 0.77 79.8 74.3 76.9

ANN Basic 0.75 79.1 70.3 74.5
Expanded 0.80 83.4 76.3 79.7

VAT 25 L (n=153)

Linear Regression  Basic 0.85 78.4 90.8 87.5
Expanded 0.87 83.7 91.3 89.3

ANN Basic 0.83 74.5 92.0 87.3
Expanded 0.87 81.7 92.5 89.6

ROC: receiver-operating characteristic; AUC: area under ROC curve; VAT: visceral
adipose tissue; ANN: artificial neural network

DISCUSSION

In the current study, we developed and validated new equations to estimate abdominal
visceral adipose tissue from simple anthropometric parameters in 5772 of the UK
Biobank. We compared the performances of linear regression with artificial neural
network based equations for estimating abdominal VAT volume.

Both the basic and the expanded linear regression and ANN based equations in this
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study yielded favourable performances in both the derivation sample and the validation
sample. Although the eVATs generated by ANN based equations were statistically
different from those based on linear regression, the mean differences were minor.
Considering the adjusted R? and error measurements, ANN based equations exhibited
moderately improved performances over the linear regression equations, with higher
adjusted R?, lower RMSE and MAE. However, the moderately superior performance of
the ANN models over regression equations were not evident enough to demonstrate
statistical significance in comparisons of ROC curves. ANN models demonstrated limited
increases in estimating accuracies with similar AUCs compared with linear regression
equations. Similar phenomenon was reported in a recently published systematic review
showing no performance benefit of machine learning over logistic regression for clinical
prediction models (22). Therefore, based on adjusted R? and error measurements, the
ANN based equations might provide the theoretically best estimation of VAT, whereas
regression equations could yield competent estimation according to ROC analysis.
Taken this into account, we suppose either equation can be adopted in clinical practice.

Although ANN-based equations did not demonstrate substantial improvement in
accuracy when compared with linear regression in this study, this does not undermine
the potential value of applying ANN to other medical purposes. An ANN-based equation
developed in a previous study to estimate maximal oxygen uptake demonstrated
higher accuracy than the conventional linear regression equation (15). The extent of
improvements generated by ANN model in comparison with linear regression is largely
determined by the proportion of non-linearity in the association between the dependent
and independent variables, as well as the characteristics of the training data. For clinical
parameters that lack sufficient estimation accuracy by linear regression, ANN might
serve as a promising alternative.

As presented above, the basic linear regression and ANN based equations showed
slightly less favourable performance than the expanded ones. However, the addition of
WC and HC to the expanded equations did not substantially improve the performance
of the equations. Although WC and WHR were strongly correlated with VAT (r=0.83,
r=0.73), there were substantial differences in WC, WHR and VAT between females and
males. Therefore, the variance of VAT related to WC and WHR was mostly explained
by the larger coefficient of “sex” in the basic equation. Meanwhile, it is possible that
the performance of the expanded equations could be compromised by intra- and inter-
observer variability of WC and HC. Previous studies suggested that circumference
measurements are less reliable than weight and height indexes (23), due to tissue
composition (e.g. amount of subcutaneous fat, intestines, etc.) (24), measurement site
(25) and abdominal wall tension (26).
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Nevertheless, within ANN based equations in this study, the expanded equation
demonstrated higher accuracies than the basic one in estimating VAT 5L and 2L <
VAT < 5 L, which accounted for 75% of the validation sample. Within linear regression
equations, the expanded equation was superior to the basic one in estimating VAT =
5 L with statistical difference in ROC curves, which is potentially more important for
clinical application in obesity. Thus the expanded equation is recommended whenever
WC and HC can be obtained without disproportionate burden.

Several equations for estimation of VAT have been developed previously
(Supplementary Table S3.1), of which only one equation predicted abdominal VAT
volume based on volumetric MRI of the abdomen (adjusted R* = 0.47) (9). However,
this equation was derived from a population of 200 middle-aged Japanese obese men,
which limits the use of this equation in other populations. The majority of previous
equations were based on cross-sectional VAT areas of various measurement sites
(e.g. lumbar vertebra L3-L5). Although cross-sectional VAT area is widely used as the
proxy of volumetric VAT in a number of studies, single-slice image may not accurately
represent individual’s VAT (27, 28), and VAT volume is more strongly associated with
the risk factors of metabolic syndrome than VAT area at L4-L5 level (29, 30). Moreover,
none of the previous studies evaluated the performance of the estimation equation by
ROC analysis.

It has been revealed that the determination coefficient (R?) of cross-sectional VAT
area in estimation of whole abdominal VAT volume varies with anatomy sites, and no
concordance has been reached upon the best reference site. The R? was 0.31 for VAT area
at the level of L2-L3, and 0.58 for L4-L5 in a study of 59 healthy female volunteers(27).
In a study of 200 participants from the Framingham Heart study, R? ranged from 0.76
to 0.98 for VAT areas measured at multiple vertebral levels from L1 to S1(31). Another
study reported R? from 0.78 to 0.97 for VAT areas measured at multiple lumbar
vertebral levels from L1 to L5 in 142 healthy Caucasians(32). A study of 197 overweight
to severely obese patients reported R? from 0.58 to 0.95 for single-slice VAT volumes
and 0.63 to 0.92 for five-slice VAT volumes at multiple lumbar intervertebral levels from
L1 to S1(33). It is worth noticing that all four equations in this study demonstrated
the adjusted R? >0.71, in which 0.78 was the best, indicating that our equations might
achieve similar estimation of VAT volume with that from suboptimal cross-sectional VAT
areas measured in single CT/MRI slice. Thus for studies in which CT/MR examinations
are only for the measurement of cross-sectional VAT area, our equation could be a cost-
efficient alternative.

Our study has several limitations. Considering the age distribution and ethnicity
of the UK Biobank participants, our estimation equations are developed using data
from participants aged 45-76 years and white participants only, which compromises
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the application of our equations in other age groups and ethnicities. Due to inter- and
intra-variability of the anthropometric parameters, as well as inter-study disagreement
of MRI/CT-derived VAT volumes, it is also possible that the estimation capacity of our
equations varies in external samples, which remains area for future research. Another
limitation is that eVATs calculated by linear regression equations were below zero in
16.7% of very lean females (BMI < 20kg/m?) in the validation sample. This is inevitable
due to the nature of linear regression, and no such defect is observed in ANN based
equations. Finally, several parameters (e.g. dual-energy X-ray absorptiometry android
per cent fat, bioelectrical impedance analysis, skinfold and sagittal diameter) that might
improve the accuracy of the estimation according to previous studies were not used in
this study, due to controversial estimating capacity for VAT(34, 35), concerns regarding
their accuracies (36, 37), and requirement of dedicated equipment for measurement.

CONCLUSION

In this study, linear regression and artificial neural network-based equations were
built to estimate abdominal VAT volume by simple anthropometric parameters. The
presented equations can be used in general practice as well as population-based
studies, especially worth considering when imaging modalities are applied only for
the measurement of cross-sectional VAT area. Further investigations are required to
assess the association between eVAT and clinical outcomes, and to determine the cut-off
values of eVAT for metabolic risk.
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