
Completeness and complexity of reasoning about call-by-
value in Hoare logic
Boer, F.S. de; Hiep, H.A.

Citation
Boer, F. S. de, & Hiep, H. A. (2021). Completeness and complexity of
reasoning about call-by-value in Hoare logic. Acm Transactions On
Programming Languages And Systems, 43(4). doi:10.1145/3477143

Version: Publisher's Version
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/3264278

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3264278

17

Completeness and Complexity of Reasoning about

Call-by-Value in Hoare Logic

FRANK S. DE BOER and HANS-DIETER A. HIEP, University of Leiden, The Netherlands and CWI,

The Netherlands

We provide a sound and relatively complete Hoare logic for reasoning about partial correctness of recursive

procedures in presence of local variables and the call-by-value parameter mechanism and in which the cor-

rectness proofs support contracts and are linear in the length of the program. We argue that in spite of the

fact that Hoare logics for recursive procedures were intensively studied, no such logic has been proposed in

the literature.

CCS Concepts: • Theory of computation→ Semantics and reasoning;

Additional Key Words and Phrases: Recursive procedures, call-by-value, Hoare logic, completeness,

soundness

ACM Reference format:

Frank S. de Boer and Hans-Dieter A. Hiep. 2021. Completeness and Complexity of Reasoning about Call-by-

Value in Hoare Logic. ACM Trans. Program. Lang. Syst. 43, 4, Article 17 (October 2021), 35 pages.

https://doi.org/10.1145/3477143

1 INTRODUCTION

1.1 Background and Motivation

Hoare logic was originally introduced by C. A. R. Hoare [23]. It is the most widely used approach
to program verification. Since the early 1970s, it has been successfully extended to several classes
of programs, including parallel and object-oriented ones, see, e.g., the textbook [4]. The recent
survey on Hoare logic [6] by K. R. Apt and E.-R. Olderog traces these historical developments.
Also, formalization of Hoare logic in various interactive theorem provers, for example Coq (see,
e.g., References [9, 31]), led to a computer aided verification of several programming languages.

One of the crucial features of Hoare logic is its syntax-oriented style. It makes it possible to for-
mally justify annotations of programs at relevant places (for example at the entrance of each loop)
with invariants. Such annotations crucially increase programmer’s confidence in the correctness
of the program. In turn, intended behaviour of procedures can be described by means of pre- and
postconditions, which simplifies program development and supports the crucial “Design by Con-
tract” methodology [26] employed by many large-scale software artifacts. The basic idea of this
methodology is that a pre- and postcondition together form a contract between the user (client)
of a procedure and the procedure itself: If the user ensures that whenever the procedure is used

Authors’ address: F. S. de Boer and H.-D. A. Hiep, Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB,

Amsterdam, The Netherlands and Leiden Institute of Advanced Computer Science (LIACS), University of Leiden, P.O. Box

9512, 2300 RA, Leiden, The Netherlands; emails: {frb, hdh}@cwi.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0164-0925/2021/10-ART17 $15.00

https://doi.org/10.1145/3477143

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

https://doi.org/10.1145/3477143
mailto:permissions@acm.org
https://doi.org/10.1145/3477143

17:2 F. S. de Boer and H.-D. A. Hiep

(called) the precondition holds, then the procedure ensures the corresponding postcondition. In
this manner, correct use of procedures does not require knowledge of the implementation details,
which is of crucial importance in mastering both the complexity of software development and soft-
ware verification. For example, one of the state-of-the-art theorem provers for the verification of
Java programs, the KeY system [1], is based on the Java Modeling Language [7] that supports the
specification of contracts for method definitions in Java. Instead of verifying the correctness of a
procedure (or method) definition for each call separately, contracts are verified only once, which
reduces the total verification effort (for example, in the verification of OpenJDK’s sort method for
generic collections, see Reference [16]).

The developments that further motivate the subject of the present article passed through a
number of crucial stages. Already in Reference [24] a proof system for recursive procedures with
parameters was proposed by Hoare that was subsequently used in Reference [18], where Hoare
and M. Foley establish the correctness of the Quicksort program. This research was furthered
by S. A. Cook [11], who proposed a by-now-standard notion of relative completeness, since then
called completeness in the sense of Cook, and established relative completeness of a proof system
for non-recursive procedures. Cook’s result was extended by G. A. Gorelick [21], where a proof
system for recursive procedures was introduced and proved to be sound and relatively complete.
This line of research led to the seminal paper of E. M. Clarke [10], who exhibited a combination
of five programming features, the presence of which makes it impossible to obtain a Hoare-like
proof system that is sound and relatively complete.

However, often overlooked is that all these papers assumed the by now obsolete call-by-name
parameter mechanism. Our claim is that no paper so far provided a sound and relatively complete
Hoare-like proof system for a programming language with the following programming features:

• a system of mutually recursive procedures with explicit parameter declarations,
• global and local variables,
• call-by-value parameter mechanism,
• both dynamic and static scope,1

and in which

• reasoning about contracts is supported, and thus,
• correctness proofs are linear in the length of the programs.

Given the above research and the fact that in many programming languages call-by-value is
the main parameter mechanism, this claim may sound surprising. Of course, there were several
contributions to Hoare logic concerned with recursive procedures, but none of them provided a
proof system that met the above criteria. The aim of this article is to provide such a Hoare-like
proof system and thus establish a link between the practice and theory of software verification
by a formal justification of the use of contracts in the verification of mainstream programming
languages like Java.

1.2 Related Work

The origin of recursive procedures in the context of programming languages is studied in Reference
[33].

The first sound and relatively complete proof system for programs with local variables and
recursive procedures was provided in the thesis of Gorelick [21]. But that paper assumed the call-
by-name parameter mechanism and, as explained in Reference [3, pp. 459–460], dynamic scope was
assumed. The relative completeness result also assumed some restrictions on the actual parameters

1Both notions are explained in Section 2. Almost all programming languages assume static scope.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:3

in the procedure calls that were partly lifted by R. Cartwright and D. C. Oppen [8]. However, the
restriction that global variables do not occur in the actual parameters is still present there.

In Reference [14] and in more detail in Reference [15, Section 9.4], J.W. de Bakker proposed a
proof system concerned with the recursive procedures with the call-by-value and call-by-variable
(present in Pascal) parameter mechanisms in presence of static scope and its proof of soundness
and relative completeness. However, the correctness of each procedure call had to be proved sep-
arately, that is, each procedure call requires a separate correctness proof of the corresponding
procedure body. As a result correctness proofs are only quadratic in the length of the programs,
even in the presence of just one recursive procedure. As already stated above, in practice, how-
ever, procedures (or methods in object-oriented languages) are specified by contracts that provide
a generic specification for each procedure call and allow for correctness proofs that are linear in
the length of the programs.

Further, the relative completeness was established only for the special case of a single recursive
procedure with a single recursive call. For the case of two recursive calls a list of 14 cases was
presented in Reference [15, Section 9.4] that should be considered, but without the corresponding
proofs. The main ideas of this proof were discussed in Reference [3]. The case of a larger number
of recursive calls and a system of mutually recursive procedures were not analyzed because of the
complications resulting from an accumulation of cases generated by the use of several variable
substitutions.

In previous work [4, 5] (both co-authored by F. S. de Boer), a proof system was proposed for the
programming language here considered and shown to be sound and relatively complete. However,
also here correctness of each procedure call has to be dealt with separately, even in the presence of
just one recursive procedure. An attempt was made to circumvent this inefficiency by proposing a
proof rule for the instantiation of contracts [4, pp. 159–160] by replacing the formal parameters in
both the pre- and postcondition of the contract by the actual parameters. However, this requires,
among others, that the variables appearing in the actual parameters cannot be changed by the
execution of the call. This is rather restrictive in practice (see Example 4.3 of Section 4).

D. von Oheimb [34] discusses a sound and relatively complete proof system for a program-
ming language with mutually recursive procedures and a call-by-value parameter mechanism. The
proofs were certified in the Isabelle theorem prover instantiated with Church’s higher-order logic
(Isabelle/HOL). The formalization of the proof system itself abstracts from the syntactical repre-
sentation of assertions, as stated as follows in Reference [34]:

Central to any axiomatic semantics is the notion of assertions, which describe prop-
erties of the program state before and after executing commands. Semantically speak-
ing, assertions are just predicates on the state. We adopt this abstract view (similarly
to our semantic view of expressions) and thus avoid talking explicitly on a syntactic
level about terms and substitution and their interpretation.

Usually, in Hoare logic the formal language of predicate logic is used to represent syntactically
the semantic relations between the values of the program variables. One of the main challenges
of designing a Hoare-like logic is then to formalize the semantics of programs declaratively in
predicate logic, at an abstraction level that coincides with that of the programming language. The
abstract view of assertions blurs the clear distinction between the declarative nature of assertions
and the operational semantics of programs. For example, in Reference [34] the assertions used in
the proof rules for block statements and recursive procedure calls assume operations that are used
to define operationally the program semantics, but that are not part of the programming language
itself. Further, in Reference [34] assertions assume a program-independent distinction between
local and global variables. In our work, we use assertions in the formal language of predicate logic.
As such, we make no program-independent distinction between local and global variables within

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:4 F. S. de Boer and H.-D. A. Hiep

the assertion language: There is only the syntactical notion of free and bound variable occurrences.
Further, our work allows the assertion language to have as interpretation an arbitrary underlying
structure, e.g., the integers and Booleans. Thus, we are limited in how to formalize proof rules for
dealing with local variables and parameters. This leaves us with the only logical possibilities of
either restricting variable occurrences, or by renaming variables, in assertions.

We conclude that the relative completeness result presented here is new. It is useful to discuss
how we dealt with the complications encountered in the reported papers.

One of the notorious problems when dealing with the above programming features is that vari-
ables can occur in a program both as local and global. The way this double use of variables is dealt
with has direct consequences on what is being formalized. Additionally, variables can be used as
formal parameters and can occur in actual parameters. This multiple use of variables can lead to
various subtle errors and was usually dealt with by imposing some restrictions on the actual pa-
rameters, notably that the variables of the actual parameters cannot be changed by the call. In our
approach no such restrictions are present but these complications explain the seemingly excessive
care we exercise when dealing with this matter.

In the relative completeness proofs of Cook [11], Gorelick [21], and De Bakker [15], the main
difficulties had to do with the local variables, the use of which led to some variable renamings, and
the clashes between various types of variables, for example formal parameters and global variables,
that led to some syntactic restrictions.

In fact, the original paper of Cook [11] contains an error that was corrected in Reference [12]. It
is useful to discuss it (it was actually pointed out by Apt) in some detail. In the semantics adopted
in Reference [11] local variables were modelled using a stack in which the last used value was
kept on the stack and implicitly assigned to the next local variable. As a result, we have that y = 1
holds after

begin local x ; x := 1 end; begin local x ; y := x end

is executed. However, there is no way to prove it. In Gorelick’s thesis [21] this error does not arise,
since all local variables are explicitly initialized to a given-in-advance value, both in the semantics
and in the proof theory (by adjusting the precondition of the corresponding declaration rule).

However, this problem does arise in the framework of Cartwright and Oppen [8], where the
authors write on p. 371:

As Apt (personal communication) has observed, this rule [for local variables] is incom-
plete because it does not allow one to deduce the values of new variables on block entry.
There are several possible solutions to this technical problem but they are beyond the
scope of this paper.

In our framework this problem cannot occur because of the explicit initialization of the local
variables in the block statement. However, our initialization is more general than that of Gorelick.
For example, in the statement begin local u := u; S end the local variable u is initialized to the
value of the global variable u. Consequently, according to our semantics, and also the semantics
used in Reference [11], x = y holds after execution of the statement

begin local u := u; x := u end; begin local u := u; y := u end.

This cannot be proved in the proof system used in Reference [11]. However, we can prove it in our
proof system (as shown in Example 4.2).

1.3 Summary of Our Approach

We prove relative completeness for our programming language that allows for dynamic scoping
of local variables. However, for a natural syntactically defined subset of programs that avoid name

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:5

clashes between global and local variables, static scoping of local variables is ensured. By the
general nature of our completeness result (which holds for all programs), we also obtain relative
completeness for this sub-language. This class of programs was first considered in Reference [8],
where it is introduced on p. 372 in a somewhat informal way:

[...] we assume that our PASCAL subset [...] requires that the global variables accessed
by a procedure be explicitly declared at the head of the procedure and that these vari-
ables be accessible at the point of every call.

Let us discuss now how we succeeded to circumvent the complications reported above. We
achieved it by various design decisions concerning the syntax and semantics, which resulted in a
simple proof system. Some of these decisions were already taken in the textbook [4] and used in
Reference [5] (both co-authored by F. S. de Boer). More precisely, the block statement that declares
local variables must include explicit expressions used for initialization. This, in conjunction with
the parallel assignment, allows one to model procedure calls in a simple way, by inlining.

Crucially, the semantics of such block statements does not require any variable renaming. This
leads to a simple semantics of the procedure calls, without any variable renaming either.

As a result, in contrast to all other works in the literature, our BLOCK rule dealing with local
variables uses no substitution. In contrast, in Reference [24] the substitution is applied to the pro-
gram, while in Reference [11] and Reference [21] it is applied to the assertions. Further, in contrast
to Reference [15], our RECURSION rule does not involve any substitution in the procedure body.
This allowed us to circumvent the troublesome combinatorial explosion of the cases encountered
in the relative completeness proof of Reference [15].

However, the key improvement over previous work [4, 5], is that, here, the RECURSION rule
formalizes reasoning about contracts and, crucially, the PROCEDURE CALL rule does not impose
any restrictions on the actual parameters. The latter is in contrast to all works that dealt with the
call-by-name parameter mechanism. Thanks to this improvement, in contrast to the above two
works, in our proof system the correctness proofs support contracts and as such are linear in the
length of the program.

1.4 Plan of the Paper

In the next section, we introduce a programming language that includes all the basic features of
recursive call-by-value procedures and identify a natural subset of clash-free programs for which
dynamic and static scope coincide. Next, in Section 3, we recall various aspects of semantics intro-
duced in the textbook [4] and establish some properties that are used when reasoning about the
considered proof system. Section 4 introduces and motivates the design of a proof system for rea-
soning about recursive calls by means of inlining (or body replacement) and show how we can do
better by means of contracts. Section 5 discusses the complexity of proofs and a proof normaliza-
tion procedure for obtaining linear proofs. In Section 6, we show that the proof system given in Sec-
tion 4 is sound. In Section 7, we establish relative completeness of the proof system. In Section 8, we
describe a formalization of the main semantic argument underlying the relative completeness re-
sult in the theorem prover Coq. Finally, in Section 9 we discuss future work and conclude the article.

2 SYNTAX

Throughout the article, we assume a fixed first-order language L. Expressions are terms in the
language L, Boolean expressions are quantifier-free formulas of L, while assertions are formulas of
L, which are considered equal up to alphabetic renaming of quantified variables.

We denote the set of all variables of L by Var. For a sequence x̄ of distinct variables, we denote
by {x̄ } its corresponding set. For a Boolean expression B or a sequence t̄ of expressions, we denote

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:6 F. S. de Boer and H.-D. A. Hiep

the set of all variables occurring in B or in t̄ by, respectively, var (B) and var (t̄). The set of variables
that occur free in an assertion p is defined in a standard way and denoted by free(p).

A (simultaneous) substitution of a list of expressions t̄ for a list of distinct variables x̄ of the
same length is written as [x̄ := t̄] and the result of applying it to an expression or an assertion s
as s[x̄ := t̄]. To ensure a uniform presentation, we allow the empty substitution in which the list
of variables x̄ is empty.

We now move on and introduce the syntax of the programs. For simplicity in the considered
programming language, we admit only simple variables (so no array or subscripted variables), all
of the same type. Statements are defined by the following grammar:

S ::= skip | x̄ := t̄ | P (t̄) | S ; S | if B then S else S fi |
while B do S od | begin local x̄ := t̄ ; S end,

where

• skip denotes the “empty” statement,
• x̄ := t̄ is a parallel assignment, with x̄ a (possibly empty) list of distinct variables and t̄ a list

of expressions of the same length as x̄ ; when x̄ is empty, we identify x̄ := t̄ with the skip

statement,
• P is a procedure name; each procedure P is defined by a declaration of the form

P (ū) :: S,

where ū is a (possibly empty) list of distinct variables, called formal parameters of the proce-
dure P , and S is a statement, called the body of the procedure P ,
• P (t̄) is a procedure call, with the actual parameters t̄ , which is a (possibly empty) list of

expressions of the same length as the corresponding list of formal parameters,
• B is a Boolean expression,
• begin local x̄ := t̄ ; S end is a block statement where x̄ is a (possibly empty) list of distinct

local variables, all of which are explicitly initialized by means of the parallel assignment
x̄ := t̄ .

By a program, we mean a pair (D | S), where S is a statement, called the main statement and
D is a set of procedure declarations such that each procedure (name) that appears in S or D has
exactly one procedure declaration in D. So we allow mutually recursive procedures but not nested
procedures. We denote by var (D | S) the set of variables that occur in (D | S).

By a correctness formula, we mean a triple {p} S {q}, where p,q are assertions and S is a state-
ment, or a triple {p} D | S {q}, where (D | S) is a program. Of special interest in our approach will
be the representation of contracts that specify by means of a precondition and postcondition the
input/output behavior of a procedure. We represent them by the correctness formulas {p} P (ū) {q},
where ū are the formal parameters of P . Such a call P (ū) is called a generic procedure call.2 Note
that so defined contracts abstract from the implementation of the specified procedure.

The parallel assignment plays a crucial role in the way procedure calls are dealt with: the
procedure call P (t̄), where P is declared by P (ū) :: S , is interpreted as the block statement
begin local ū := t̄ ; S end, where ū := t̄ models the parameter passing by value and the block
statement ensures that the changes to the formal parameters ū are local. Such a replacement of a
procedure call by an appropriately modified procedure body is called inlining or a copy rule.

2Not to be confused with generic types (e.g., as in Java) of the formal parameters. Our basic programming language does

not have multiple different types, nor generic types.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:7

In our setup inlining results in a dynamic scope of local variables so that each procedure call
is evaluated in the environment in which it is called. The simplest example is the parameterless
procedure P declared by P () :: y := x and the main statement x := 0; begin local x := 1; P () end.
Here the inlining results in the program

x := 0; begin local x := 1; begin local skip; y := x end end

that yields y = 1 upon termination. However, if we renamed the occurrence of x in the block state-
ment to a fresh variable, say, x ′, and thus used the statement x := 0; begin local x ′ := 1; P () end,
then inlining would result in the program

x := 0; begin local x ′ := 1; begin local skip; y := x end end

that yields y = 0 upon termination. Thus renaming of local variables (e.g., also known as alpha
conversion in the lambda calculus) affects the semantics. However, renaming of local variables
upon inlining, to avoid clashes between global and local variables, gives rise to a static scope of
local variables, which ensures that each procedure call is evaluated in the environment in which
it is declared.

The above example shows that static scope can also be ensured when certain variable name
clashes are avoided. This can be made precise as follows.

Definition 2.1 (Global Variables). Given a program (D | S), we define the set of global variables
Gvar (D | S) as follows.

• Gvar (D | skip) = ∅,
• Gvar (D | x̄ := t̄) = {x̄ } ∪ var (t̄),
• Gvar (D | P (t̄)) = Gvar (D | begin local ū := t̄ ; S end) where P (ū) :: S ∈ D,
• Gvar (D | S1; S2) = Gvar (D | S1) ∪ Gvar (D | S2),
• Gvar (D | if B then S1 else S2 fi) = var (B) ∪ Gvar (D | S1) ∪ Gvar (D | S2),
• Gvar (D | while B do S od) = var (B) ∪ Gvar (D | S),
• Gvar (D | begin local x̄ := t̄ ; S end) = var (t̄) ∪ (Gvar (D | S) \ {x̄ }),

Finally, we define

• Gvar (D | P) = Gvar (D | S) \ {ū}, where P (ū) :: S ∈ D.

To formally justify the circularity caused by the presence of recursive calls, we use a sequence of

Gvark functions, where k ≥ 0, defined as follows. For each of them, we reuse the above equalities
as definitions, except for the case of the procedure calls for which we set

• Gvar0 (D | P (t̄)) = ∅,
• Gvark+1 (D | P (t̄)) = Gvark (D | begin local ū := t̄ ; S end),

where P (ū) :: S ∈ D. A simple proof by induction shows that for all k ≥ 0

var (D | S) ⊇ Gvark+1 (D | S) ⊇ Gvark (D | S),

so for each procedure call P (t̄)

∃k ≥ 0 ∀l ≥ k Gvarl+1 (D | P (t̄)) = Gvarl (D | P (t̄)).

Denote the least such k by k (P (t̄)). We identify then Gvar (D | S) with Gvarl (D | S), where
l = max{k (P (t̄)) | P (t̄) occurs in (D | S)} + 1. Clearly, Gvar (D | S) thus defined satisfies the
original equalities. �

It is important to note that in the statement begin local x̄ := t̄ ; S end the variables occurring in
t̄ are global, and as such those variables x̄ appearing in t̄ are interpreted differently from the local

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:8 F. S. de Boer and H.-D. A. Hiep

ones that only exist in the context of the block statement (as formalized in Section 3). We view the
variables from Gvar (D | P) as the global variables of the procedure P .

Definition 2.2 (Lexical Scope). A variabley ∈ Gvar (D | P) appears in the (lexical) scope of a block
statement begin local x̄ := t̄ ; S end, if y appears in the list of local variables x̄ and S contains a call
of P . A program (D | S) is called clash-free if the following holds for every procedure P declared
in D: no variable y ∈ Gvar (D | P) appears in the scope of a block statement that occurs in (D | S).

Clash-free programs by definition thus ensure static scoping of local variables. So a programmer
in the considered programming language can ensure static scope by adhering to a simple syntactic
convention. This syntactic approach to static scoping also avoids the need for a different semantics
of the block statement and allows for an uniform proof theory.

In our considerations it will be important to refer to the set of variables that a given program
may change (but not necessarily does change).

Definition 2.3 (Write Variables). Given a program (D | S), we define the set of variables that may
be changed by it as follows. Consider the following equalities:

• change(D | skip) = ∅,
• change(D | x̄ := t̄) = {x̄ },
• change(D | P (t̄)) = change(D | begin local ū := t̄ ; S end),

where P (ū) :: S ∈ D,
• change(D | S1; S2) = change(D | S1) ∪ change(D | S2),
• change(D | if B then S1 else S2 fi) = change(D | S1) ∪ change(D | S2),
• change(D | while B do S od) = change(D | S),
• change(D | begin local x̄ := t̄ ; S end) = change(D | S) \ {x̄ }.

The circularity of this definition can be resolved as above. �

3 SEMANTICS

In this section, we gather various basic facts concerning semantics of our programming language.
We begin by a slightly adjusted presentation extracted from the textbook [4], followed by a collec-
tion of various properties that will be needed later.

As already mentioned, we assume for simplicity that all variables are of the same type, say, T .
Each realization of this type (called a domain) yields an interpretation I that assigns a meaning to
the function symbols and relation symbols of the language L.

Throughout this article, we assume a fixed interpretation I . By a state, we mean a function that
maps each variable to an element of the domain of I . We denote the set of states by Σ.

An update σ [x := d] of a state σ , where x is a variable and d an element of the domain of I , is a
state that coincides with σ on all variables except x to which it assigns d . A simultaneous update
σ [x̄ := d̄] of a state σ , where x̄ is a list of (distinct) variables and d̄ is a list of domain elements of
the same length, is defined analogously.

Given a state σ and an expression t , we define the element σ (t) of the domain of I inductively
in the standard way and for t̄ := t1, . . . , tk we put σ (t̄) := (σ (t1), . . . ,σ (tk)).

For a setZ of variables, we denote by σ [Z] the restriction of the state σ to the variables occurring
in Z and write for two states σ and τ

σ = τ mod Z

ifσ [Var\Z] = τ [Var\Z]. We extend the definitions of an update and equality modZ to, respectively,
a set of states and sets of states in the expected way. So for a set of states X

X [x := d] = {σ [x := d] | σ ∈ X }

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:9

Fig. 1. Big-step operational semantics.

and for two sets of states X and Y and a set of variables Z ,

X = Y mod Z if {σ [Var \ Z] | σ ∈ X } = {σ [Var \ Z] | σ ∈ Y }.

The relation “assertion p is true in the state σ ∈ Σ,” denoted by σ |= p, is defined inductively
in the standard way. The meaning of an assertion (with respect to the interpretation I), written as
�p�, is defined by �p� = {σ ∈ Σ | σ |= p}.We say that p is valid, and write |= p, if �p� = Σ.

The meaning of a program (D | S) is a functionM�D | S� : Σ → P (Σ) of which the small-step
operational semantics is given in the textbook [4]. See Figure 1 for its big-step operational seman-
tics. The operational definition of the assignment, sequential composition, choice and iteration
constructs are standard. A procedure call is defined in terms of a corresponding block statement.
The semantics of a block statement begin local x̄ := t̄ ; S end resets the local variables x̄ after the
execution of the statement x̄ := t̄ ; S . Note that since t̄ are evaluated in the initial state, the variables
x̄ appearing in t̄ also refer to their values in the initial state.

For a given state σ ,M�D | S�(σ) = {τ } states the fact that the program (D | S) terminates when
started in the initial state σ , yielding the final state τ . If (D | S) does not terminate when started
in σ , thenM�D | S�(σ) is the empty set.

We extend the functionM�D | S� to deal with sets of states X ⊆ Σ by

M�D | S�(X) =
⋃

σ ∈X
M�D | S�(σ).

Definition 3.1 (Syntactic Approximation). Given D = {P1 (ū1) :: S1, . . . , Pn (ūn) :: Sn } and a state-
ment S , we define the kth syntactic approximation Sk of S by induction on k ≥ 0:

S0 = Ω,
Sk+1 = S[Sk

1 /P1, . . . , S
k
n/Pn],

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:10 F. S. de Boer and H.-D. A. Hiep

where Ω denotes a diverging statement (e.g., while true do skip od) and S[R1/P1, . . . ,Rn/Pn] is
the result of a simultaneous replacement in S of each procedure call Pi (t̄) by

begin local ūi := t̄ ; Ri end.

Furthermore, let Dk stand for {P1 (ū1) :: Sk
1 , . . . , Pn (ūn) :: Sk

n }.

Lemma 3.2 (Basic Semantic Properties).

Skip For all states σ

M�D | skip�(σ) = {σ }.
Assignment For all states σ

M�D | x̄ := t̄�(σ) = {σ [x̄ := σ (t̄)]}.
Composition For all states σ

M�D | S1; S2�(σ) =M�D | S2�(M�D | S1�(σ)).

Block For all states σ and where X =M�D | x̄ := t̄ ; S�(σ),

M�D | begin local x̄ := t̄ ; S end�(σ) = X [x̄ := σ (x̄)].

Inlining For D = {P1 (ū1) :: S1, . . . , Pn (ūn) :: Sn }
M�D | S� =M�D | S[S1/P1, . . . , Sn/Pn]�.

As a special case, we have for any procedure P declared by P (ū) :: S ∈ D,

M�D | P (t̄)� =M�D | begin local ū := t̄ ; S end�.

Approximation

M�D | S� =
∞⋃

k=0

M�Dk | S�.

Access and Change For all states σ and τ ifM�D | S�(σ) = {τ } then

τ [Var \ change(D | S)] = σ [Var \ change(D | S)].

Lemma 3.2 collects various basic properties of the big-step operational semantics (their proofs
are standard, and therefore omitted). Note that the clauses for the basic constructs can also be
interpreted independently as a Definition of a denotational semantics.

The Block item employs the earlier introduced extension of the update operation to a set of
states and is a concise way of writing that for all states σ

M�D | begin local x̄ := t̄ ; S end�(σ) = {σ ′[x̄ := σ (x̄)] | σ ′ ∈ M�D | x̄ := t̄ ; S�(σ)}.
It states that the execution of a block statement consists of the initialization of the local variables,
followed by the execution of its body, and a subsequent reset of the local variables to their initial
values. The Access and Change item formalizes the intuition that when executing a program
(D | S) only variables in change(D | S) can be modified. It can be equivalently stated as that
M�D | S�(σ) � ∅ implies

M�D | S�(σ) = {σ } mod change(D | S).

Combining the above Block and Inlining items, we obtain that the execution of a procedure
call consists of the initialization of the formal parameters to the actual parameters, followed by the
execution of the procedure body, and a subsequent reset of the formal parameters to their initial
values. This is stated by following corollary.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:11

Corollary 3.3. Suppose that the procedure P is declared by P (ū) :: S . For all states σ

M�D | P (t̄)�(σ) = X [ū := σ (ū)],

where X =M�D | S�(σ [ū := σ (t̄)]) =M�D | ū := t̄ ;S�(σ).

Proof. By the appropriate items of Lemma 3.2, we successively have

M�D | P (t̄)�(σ)
= M�D | begin local ū := t̄ ; S end�(σ)

=
(
M�D | ū := t̄ ; S�(σ)

)
[ū := σ (ū)]

=
(
M�D | S�(σ [ū := σ (t̄)])

)
[ū := σ (ū)]. �

Definition 3.4 (Semantics Correctness Formulas). Given a program (D | S) and a correctness
formula {p} D | S {q}, we write

|= {p} D | S {q}
if

M�D | S�(�p�) ⊆ �q�.

We say then that {p} D | S {q} is true in the sense of partial correctness.

The following lemma states a basic property of the semantics of correctness formulas.

Lemma 3.5. Suppose that for all states σ

M�D | S�(σ) =M�D | T �(σ) mod {ū}.
Then for all assertions p and q such that {ū} ∩ free(q) = ∅

|= {p} D | S {q} iff |= {p} D | T {q}.

Proof. By the first assumption

M�D | S�(�p�) =M�D | T �(�p�) mod {ū}. (1)

By the second assumption free(q) ⊆ Var \ {ū}, so for arbitrary states σ and τ such that σ =
τ mod {ū} we have σ |= q iff τ |= q. Hence for two sets of states X and Y such that X = Y mod {ū},
we have

X ⊆ �q� iff Y ⊆ �q�.

So the desired equivalence follows Equation (1) and the definition of |= {p} D | S {q}. �

Corollary 3.6. For all assertions p and q such that {ū} ∩ free(q) = ∅,
(i) |= {p} D | begin local ū := t̄ ; S end {q} iff |= {p} D | ū := t̄ ; S {q}.

(ii) |= {p} D | P (t̄) {q} iff |= {p} D | ū := t̄ ; S {q},
where the procedure P is declared by P (ū) :: S ∈ D.

Proof. By the Block and Inlining items of Lemma 3.2,

M�D | begin local ū := t̄ ; S end�(σ) =M�D | ū := t̄ ; S�(σ) mod {ū}
and

M�D | P (t̄)�(σ) =M�D | ū := t̄ ; S�(σ) mod {ū},
so the claim follows by Lemma 3.5. �

Following Reference [11], we now introduce the following crucial notions underlying the com-
pleteness proof.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:12 F. S. de Boer and H.-D. A. Hiep

Definition 3.7 (Strongest Postcondition). Denote by SP(p,D | S) the strongest postcondition of the
program (D | S) with respect to an assertion p, defined by

SP(p,D | S) =M�D | S�(�p�).

So SP(p,D | S) is the set of states that can be reached by executing (D | S) starting in a state
satisfying p.

We say that a set of states X is definable (in the given interpretation I) iff for some formula p of
L we have X = �p�. We say then that p defines Σ.

Definition 3.8 (Expressivity). The language L is expressive with respect to the given interpreta-
tion I , if for for every assertion p and program (D | S) the set of states SP(p,D | S) is definable.

Throughout this article, we assume that the language L is expressive with respect to the given
interpretation I and identify SP(p,D | S) with its defining formula.

Given a proof system for proving correctness formulas, we denote by

� {p} D | S {q}
that {p} D | S {q} can be proved by means of the proof system. We say that a proof system

• is sound if for every correctness formula {p} D | S {q},
� {p} D | S {q} implies |= {p} D | S {q},

• is complete, if for every correctness formula {p} D | S {q},
|= {p} D | S {q} implies � {p} D | S {q}.

4 PROOF SYSTEM

Figure 2 includes the usual basic Hoare logic for assignment and the basic control structures of
sequential composition, choice and iteration (since the set of declarations is empty for this sub-
language, it is omitted). We use simultaneous substitution to generalize the standard assignment
axiom. A skip statement is identified with an empty assignment, and thus we obtain as an instance
of the (parallel) assignment axiom, the derived axiom {p} skip {p}. Hoare actually introduced two
consequence rules, that soon after were combined into the rule listed here. The proof rule concern-
ing the if-then-else statement was originally proposed by P. Lauer [25].

We note here that by collapsing consecutive applications of the consequence rule into one, we
can normalize any proof in our basic Hoare logic that consists of the consequence rule, the as-
signment axiom and the rules for the basic control structures of sequential composition, choice
and iteration. Such a normalization gives rise to proofs that are linear in the size of the statement,
measured by its number of constructs (assignments, sequential composition, choice and iteration).
To be more precise, let l (S) denote the number of constructs of S , inductively defined as follows.

Definition 4.1 (Size of a Statement). We inductively define the number l (S) as follows:

• l (skip) := 1,
• l (x̄ := t̄) := 1,
• l (S1; S2) := l (S1) + l (S2) + 1,
• l (if B then S1 else S2 fi) := l (S1) + l (S2) + 1,
• l (while B do S od) := l (S) + 1,

It is easy to verify by induction of l (S) that if {p} S {q} is provable then there exists a proof that
consists of at most 2 × l (S) rule applications.

To prove a correctness formula {p} D | S {q} about a recursive program (D | S), we extend the
basic Hoare logic with the following proof strategy:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:13

Fig. 2. The proof systems: Basic Hoare logic, CBV−, CBV (each includes all rules and axioms of the former).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:14 F. S. de Boer and H.-D. A. Hiep

• prove the correctness formula {p} S {q} of the main statement with respect to assumptions

{p ′} P (t̄) {q′} about the procedure calls (thus abstracting from their implementation),
• discharge these assumptions by proving from them correctness formulas referring to the

interpretation of these procedure calls in terms of the corresponding block statements.

The above idea is formalized by the following recursion rule (also used in the textbook [4]):

{p1} P1 (t̄1) {q1}, . . . , {pk } Pk (t̄k) {qk } � {p} S {q},
{p1} P1 (t̄1) {q1}, . . . , {pk } Pk (t̄k) {qk } � {p1} begin local ū1 := t̄1; S1 end {q1},
...
{p1} P1 (t̄1) {q1}, . . . , {pk } Pk (t̄k) {qk } � {pk } begin local ūk := t̄k ; Sk end {qk }

{p} (D | S) {q},
where D = {Pi (ūi) :: Si | i ∈ {1, . . . ,k }}. The � sign refers to the provability in the basic Hoare
logic extended with the following rule for the block statement from the textbook [4, p. 158]:

BLOCK
{p} x̄ := t̄ ; S {q}

{p} begin local x̄ := t̄ ; S end {q} ,

where {x̄ } ∩ free(q) = ∅.

Note that in the above recursion rule is allowed here that Pi and Pj denote the same procedure
identifier, for some i � j. In this rule there are k + 1 subsidiary proofs in the premises, where k is
the total number of procedure calls that appear in (D | S). Note that the statements used on the
right-hand sides of the last k provability signs � are the corresponding effects of inlining applied
to the procedure calls on the left-hand side of �. In this proof rule each procedure calls requires a
separate subsidiary correctness proof. This results in inefficient correctness proofs.

More precisely, assuming a program (D | S) with k procedure calls, each of the k + 1 subsidiary
proofs in the premises of the above recursion rule can be established in the number of steps linear
in the length of (D | S). But k is linear in the length of (D | S), as well, and as a result the bound on
the length of the whole proof is quadratic in the length of (D | S). This bound remains quadratic
even for programs with a single procedure, since k remains then linear in the length of (D | S).

Can we do better? Yes we can, by proceeding through a couple of simple steps. First, we replace
each procedure call P (t̄) such that t̄ � ū, where ū are the formal parameters of P , by the block
statement begin local ū := t̄ : P (ū) end. This gives rise to so-called pure programs that only contain
generic procedure calls (as introduced in Section 2). For pure programs the last k premises of the
above recursion rule reduce to

{p1} P1 (ū1) {q1}, . . . , {pk } Pk (ūk) {qk } �
{pi } begin local ūi := ūi ; Si end {qi }, i ∈ {1, . . . ,k }.

The transformation of programs the into pure ones can be avoided as follows. Incorporating in
the proof system the BLOCK rule the above k premises can be reduced to

{p1} P1 (ū1) {q1}, . . . , {pk } Pk (ūk) {qk } �
{pi } Si {qi }, i ∈ {1, . . . ,k },

provided that {ūi } ∩ free(qi) = ∅ for i ∈ {1, . . . ,k }.
Further, the replacement of every non-generic procedure call in the considered program by

its corresponding block statement that uses a generic call can be captured proof theoretically by

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:15

means of the proof rule
{p} begin local ū := t̄ ; P (ū) end {q}

{p} P (t̄) {q} .

This rule can be further simplified to a direct instantiation of the generic call using a BLOCK rule:

PROCEDURE CALL
{p} P (ū) {q}

{p[ū := t̄]} P (t̄) {q} ,

where {ū} ∩ free(q) = ∅.
Finally, recall that k is the number of different procedure calls that appear in (D | S). But for

pure programs k ≤ n, where n is the number of procedure declarations in D (or k = n if each
procedure declared is also called).

However, we shall also need the so-called adaptation rules. The SUBSTITUTION rule from the
textbook [4, p. 98] is used to deal with the occurrences in the assertions of local variables of block
statements and the formal parameters of the procedure calls. Additionally, we have the rules IN-
VARIANCE and ∃-INTRODUCTION also used in Reference [21] (though the side conditions are
slightly different).

Let �D refer to provability in the proof system that extends the basic Hoare logic with the above
BLOCK, PROCEDURE CALL and adaptation rules. Provability depends onD to extract global infor-
mation about the program variables (see the side conditions in Figure 2). This notion of provability
is used in the following recursion rule:

RECURSION
{p1} P1 (ū1) {q1}, . . . , {pn } Pn (ūn) {qn } �D {p} S {q},
{p1} P1 (ū1) {q1}, . . . , {pn } Pn (ūn) {qn } �D {p1} S1 {q1},
...
{p1} P1 (ū1) {q1}, . . . , {pn } Pn (ūn) {qn } �D {pn } Sn {qn }

{p} D | S {q}
where D = {Pi (ūi) :: Si | i ∈ {1, . . . ,n}} and {ūi } ∩ free(qi) = ∅ for i ∈ {1, . . . ,n}.

We denote the resulting proof system by CBV (for call-by-value), and � {p} D | S {q} for prov-
ability in CBV, and CBV− for the proof system CBV consisting of all the axioms and rules except the
RECURSION rule. So Φ �D {p} S {q} refers to provability in CBV− (under the assumptions in Φ).

Example 4.2. Consider the block statement begin local u := t ; x := u end and suppose that
x � var (t). We want to prove that

{true} begin local u := t ; x := u end {x = t }. (2)

The approach where we first prove the same pre- and postcondition for the inner statement

{true} u := t ; x := u {x = t }

is not possible, since then we cannot apply the BLOCK rule, because u can occur in t . So we
introduce a fresh variable u0 and proceed as follows. Let t ′ = t[u := u0]. By the ASSIGNMENT
axiom, we have

{t = t ′} u := t {u = t ′}
and

{u = t ′} x := u {x = t ′},

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:16 F. S. de Boer and H.-D. A. Hiep

so by the COMPOSITION rule, we have

{t = t ′} u := t ; x := u {x = t ′}.
Now we can apply the BLOCK rule, since u � free(x = t ′), which yields

{t = t ′} begin local u := t ; x := u end {x = t ′}.
Applying the SUBSTITUTION rule on the above with the substitution [u0 := u], we then get (2) by
the CONSEQUENCE rule, since true → (t = t ′)[u0 := u] and (x = t ′)[u0 := u] → x = t are valid.
The crux here is that u is not changed, because it is a local variable, so we may substitute u0 by u.

We can now also prove the correctness formula

{true} begin local u := u; x := u end; begin local u := u; y := u end {x = y} (3)

(as discussed in the related work section). By the argument of above, we obtain

{true} begin local u := u; x := u end {x = u}
and

{true} begin local u := u; y := u end {y = u}.
Applying to the last correctness formula the INVARIANCE rule, we get

{true ∧ x = u} begin local u := u; y := u end {y = u ∧ x = u}.
Now Equation (3) follows by the COMPOSITION and CONSEQUENCE rules. �

Example 4.3. To illustrate the use of the PROCEDURE CALL rule consider the following example.
Let the set of declarations D include only the procedure declaration

add (u) :: sum := sum + u

and consider the correctness formula

{sum = z} D | add (sum) {sum = z + z}. (4)

So the variable sum is here both a global variable that is changed in the procedure body and an
actual parameter of the procedure call, a feature that is not allowed in existing Hoare logics for
recursive procedures, e.g., Reference [21], as explained in the introduction.

To prove Equation (4), we introduce the assumption

{sum = z ∧ u = v} add (u) {sum = z +v}
and first show that

{sum = z ∧ u = v} add (u) {sum = z +v} �D {sum = z} add (sum) {sum = z + z}. (5)

Applying the PROCEDURE CALL rule to the assumption, we get

{sum = z ∧ sum = v} add (sum) {sum = z +v}.
Next, applying the SUBSTITUTION rule with the substitution [v := z] we obtain

{sum = z ∧ sum = z} add (sum) {sum = z + z},
A trivial application of the CONSEQUENCE rule then completes the proof of Equation (5).

We next show that

{sum = z ∧ u = v} add (u) {sum = z +v} �D {sum = z ∧ u = v} sum := sum + u {sum = z +v}.
(6)

First, we get by the ASSIGNMENT axiom

{sum + u = z +v} sum := sum + u {sum = z +v},

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:17

so by the CONSEQUENCE rule we get

{sum = z ∧ u = v} sum := sum + u {sum = z +v}.

From Equation (5) and Equation (6), we derive by the RECURSION rule the correctness formula
(4). �

The above example proofs illustrate some characteristic uses of the adaptation rules. Adaptation
rules are always applicable, and thus may lead to an arbitrary and unbounded number of applica-
tions within a proof. In Section 5, we show that we still can normalize proofs so that for each proof
there exists a linear one.

5 PROOF NORMALIZATION

A proof

{p1} P1 (ū1) {q1}, . . . , {pn } Pn (ūn) {qn } �D {p} S {q},

may consist of an arbitrary number of applications of the adaptation rules. However, we shall show
in this section that we can normalize such a proof to obtain a proof that is still linear in the size of
the statement S , defined as in Definition 4.1 but with the additional clauses:

• l (P (t̄)) := 1,
• l (begin local x̄ := t̄ ; S end) := l (x̄ := t̄ ; S) + 1.

We divide the rules of CBV− into analytical rules and adaptation rules. Analytical rules are those
rules that one applies by analyzing the structure of a specified statement: The premise or premises
of analytical rules are correctness formulas of sub-statements of the statement of the conclusion.
Thus the number of analytical rules one may apply in any correctness proof of a statement is
bounded by the size of the statement. Adaptation can be applied on any statement, and have exactly
one correctness formula as premise. So, given a derivation in the proof system CBV−, we have that
between every two successive applications of analytical rules there is a (possibly empty) sequence
of adaptation rule applications.

Thus to show that one can always construct a proof that is of linear size, it suffices to trans-
form sequences (of arbitrary length) of applications of the adaptation rules to equivalent ones of a
fixed size. This transformation process (formalized below by a rewrite system) is called proof nor-
malization, and the resulting proof is normal if all its adaptation rules are brought into a certain
equivalent final form.

Rewrite system. For a formal description of the process of normalizing correctness proofs we
introduce the following alphabet to abbreviate sequences of adaptation rules:

• C denotes an application of the CONSEQUENCE rule,
• S denotes an application of the SUBSTITUTION rule,
• I denotes an application of the INVARIANCE rule, and
• E denotes an application of the ∃-INTRODUCTION rule.

Sequences of adaptation rule applications are represented by the regular expression (C | S | I | E)∗,
where | denotes choice, and ∗ is Kleene’s star with respect to concatenation. Two such sequences
are equivalent if their application to any correctness formula yields the same correctness formula.
We will introduce a rewrite system by means of which any sequence in (C | S | I | E)∗ can be
reduced to a equivalent normal form represented by the regular expression

[I] [S] [([C] E [C]) | C], (7)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:18 F. S. de Boer and H.-D. A. Hiep

where the juxtaposition of expressions is concatenation, and [e] is the usual notation of optional
acceptance, i.e., [e] = (e | ϵ) for any regular expression e and the empty string ϵ . The regular
expression (7) describes the empty sequence or non-empty sequences that consist of at most one
application of the INVARIANCE followed by at most one application of the SUBSTITUTION rule
that in turn is followed by a single application of the CONSEQUENCE rule or a single applica-
tion of the ∃-INTRODUCTION rule possibly preceded or followed by a single application of the
CONSEQUENCE rule. Examples of such expressions are ISCEC , ISE, ISCE, IC . For technical con-
venience, to avoid trivial applications of the CONSEQUENCE rule, we assume below some basic
logical equivalences in the specification of the correctness formulas.

First, we observe that any consecutive applications of the same rule can be collapsed into a
single such rule application. This observation is formalized by the rewrite rules RR −→ R, for any
R ∈ {C,E, I , S }.

For the CONSEQUENCE rule, we have that two consecutive applications

p → p ′
p ′ → p ′′ {p ′′} S {q′′} q′′ → q′

{p ′} S {q′} q′ → q

{p} S {q}

can be collapsed into

p → p ′′ {p ′′} S {q′′} q′′ → q

{p} S {q} .

For the SUBSTITUTION rule, we have that two consecutive applications

{p} S {q}
{p[x̄ � ȳ]} S {q[x̄ � ȳ]}

{p[x̄ � ȳ][z̄ � w̄]} S {q[x̄ � ȳ][z̄ � w̄]}

can be collapsed into

{p} S {q}
{pθ } S {qθ },

where θ denotes the substitution with domain consisting of the variables of x̄ and those variables
of z̄ that are not among x̄ such that

• θ (xi) = yi if yi does not appear in z̄,
• θ (xi) = w j if yi and zj denote the same variable,
• θ (zi) = wi if zi does not appear in x̄ .

The side-conditions are easily checked to still hold.
For the ∃-INTRODUCTION rule, we have that two consecutive applications

{p} S {q}
{∃ȳ : p} S {q}
{∃x̄ : ∃ȳ : p} S {q}

can be collapsed into

{p} S {q}
{∃x̄ , ȳ : p} S {q}

where the side-conditions are easily checked to still hold. (Note that ∃x̄ , ȳ : p and ∃x̄ : ∃ȳ : p are
identical.)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:19

Finally, assuming associativity of conjunction, for the INVARIANCE rule we have that two con-
secutive applications

{p} S {q}
{p ∧ r } S {q ∧ r }

{(p ∧ r) ∧ r ′} S {(q ∧ r) ∧ r ′}

can be collapsed into

{p} S {q}
{(p ∧ (r ∧ r ′)} S {q ∧ (r ∧ r ′)}.

where the side-conditions are easily checked to still hold.
The following rewrite rules allow to move the INVARIANCE rule applications to the front.

• CI −→ IC: A proof pattern

p → p ′ {p ′} S {q′} q′ → q

{p} S {q}
{p ∧ r } S {q ∧ r }

consisting of an application of the CONSEQUENCE rule followed by one of the INVARI-
ANCE rule, can be transformed into a reverse pattern

p ∧ r → p ′ ∧ r
{p ′} S {q′}

{p ′ ∧ r } S {q′ ∧ r } q′ ∧ r → q ∧ r
{p ∧ r } S {q ∧ r } .

• SI −→ IS : A proof pattern

{p} S {q}
{p[x̄ � ȳ]} S {q[x̄ � ȳ]}

{p[x̄ � ȳ] ∧ r } S {q[x̄ � ȳ] ∧ r }

consisting of an application the SUBSTITUTION rule followed by one of the INVARIANCE
rule, can be transformed into a reverse pattern

{p} S {q}
{p ∧ r [x̄ � z̄]} S {q ∧ r [x̄ � z̄]]}
{p[x̄ � ȳ] ∧ r } S {q[x̄ � ȳ] ∧ r },

where z̄ is a sequence of fresh variables of the same length as x̄ . In the SUBSTITUTION
rule, we apply the (simultaneous) substitution [x̄ , z̄ := ȳ, x̄]. Note that p[x̄ , z̄ := ȳ, x̄] equals
p[x̄ := ȳ] (z̄ do not appear free in p) and r [x̄ := z̄][x̄ , z̄ := ȳ, x̄] equals r .
• EI −→ ISE: By the rewrite rule ES −→ SE (shown below) it suffices to show that a proof

pattern

{p} S {q}
{∃x̄ : p} S {q}

{(∃x̄ : p) ∧ r } S {q ∧ r },

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:20 F. S. de Boer and H.-D. A. Hiep

consisting of an application of the ∃-INTRODUCTION rule followed by one application of
the INVARIANCE rule, can be transformed into a pattern IES :

{p} S {q}
{p ∧ r [x̄ � z̄]} S {q ∧ r [x̄ � z̄]}

{(∃x̄ : p) ∧ r [x̄ � z̄]} S {q ∧ r [x̄ � z̄]}
{(∃x̄ : p) ∧ r } S {q ∧ r } ,

where, as above, z̄ is a sequence of fresh variables of the same length as x̄ , and in the
application of the SUBSTITUTION rule we apply the substitution [z̄ � x̄]. Note that in
the application of the ∃-INTRODUCTION rule we assume the logical equivalence between
(∃x̄ : p) ∧ r [x̄ � z̄] and ∃x̄ : (p ∧ r [x̄ � z̄]), which holds, because x̄ does not appear in
r [x̄ � z̄].

The following rules allow to reverse an application of the CONSEQUENCE rule, or an applica-
tion of the ∃-INTRODUCTION rule, d by an application of the SUBSTITUTION rule.

• CS −→ SC: A proof pattern

p → p ′ {p ′} S {q′} q′ → q

{p} S {q}
{p[x̄ � ȳ]} S {q[x̄ � ȳ]} .

consisting of an application of the CONSEQUENCE rule followed by one of the SUBSTITU-
TION rule, can be transformed into a reverse pattern

p[x̄ � ȳ]→ p ′[x̄ � ȳ]

{p ′} S {q′}
{p ′[x̄ � ȳ]} S {q′[x̄ � ȳ]} q′[x̄ � ȳ]→ q[x̄ � ȳ]

{p[x̄ � ȳ]} S {q[x̄ � ȳ]} .

• ES −→ SE: A proof pattern

{p} S {q}
{∃z̄ : p} S {q}

{(∃z̄ : p)[x̄ � ȳ]} S {q[x̄ � ȳ]},

consisting of an application of the ∃-INTRODUCTION rule followed by one of the SUBSTI-
TUTION rule, can be transformed in the reverse pattern

{p} S {q}
{p[x̄ � ȳ]} S {q[x̄ � ȳ]}

{∃z̄ : (p[x̄ � ȳ])} S {q[x̄ � ȳ]},

where we note that we may assume that z̄ and x̄ are disjoint (note that we can simply remove
the overlapping variables from the substitution [x̄ := ȳ]) and z̄ and ȳ are disjoint (by an
alphabetic conversion of the existentially quantified variables z̄), and thus (∃z̄ : p)[x̄ � ȳ]
is logically equivalent to ∃z̄ : (p[x̄ � ȳ]).

The mutual dependencies between consecutive applications of the CONSEQUENCE and the ∃-
INTRODUCTION rules do not allow a simple reversal of the ordering as above. This is because,
on the one hand, the CONSEQUENCE rule may enable an application of the ∃-INTRODUCTION
rule by generating a postcondition that does not contain free occurrences of the quantified vari-
able. However, the ∃-INTRODUCTION may enable an application of the CONSEQUENCE rule

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:21

by weakening the precondition. However, these dependencies can be unravelled by the following
rewrite rule.

• ECE −→ CEC: A proof pattern

p → ∃x̄ : p ′
{p ′} S {q′}
{∃x̄ : p ′} S {q′} q′ → q

{p} S {q}
{∃ȳ : p} S {q}

can be transformed into a pattern (assuming without loss of generality that x̄ and ȳ are
disjoint)

∃ȳ : p → ∃x̄ , ȳ : p ′

p ′ → p ′ {p ′} S {q′} q′ → q

{p ′} S {q}
{∃x̄ , ȳ : p ′} S {q} q → q

{∃ȳ : p} S {q} .

Note that indeed we can existentially quantify both the variables x̄ and ȳ in this single ap-
plication of the SUBSTITUTION rule, because the above pattern ECE ensures that the vari-
ables of x̄ do not appear free in q′ and that the variables ȳ do not appear free in q. But
validity of q′ → q implies that we may assume without loss of generality that q also does
not contain free occurrences of x̄ . Further, note that validity of p → ∃x̄ : p ′ implies that of
∃ȳ : p → ∃x̄ , ȳ : p ′.

We thus obtain a rewrite system (see Reference [32]), in which the objects are sequences of
adaptation rule applications, and rewrite rules are applicable anywhere in such sequences. It is
straightforward to check that no rewrite rule is applicable if and only if the sequence is in normal
form, as defined by the above regular expression (7). To show that any sequence in (C | S | I |
E)∗ can be reduced to a equivalent normal form it thus suffices to show that the rewrite system
terminates.

Termination. We show that our rewrite system terminates (see Reference [32, Chapter 6]) by
associating with each sequence in (C | S | I | E)∗ an element of a well-founded ordering

that (strictly) decreases with each application of a rewrite rule. Relevant parameters to consider
are

• the number of occurrences of C , S , I and E,
• for each occurrence of I the number of preceding occurrences of C , S and E,
• for each occurrence of S the number of preceding occurrences of C and E.

However, the rules EI −→ IES and ECE −→ CEC increases the number of occurrences of S andC ,
and as such these rules will in general lead to an increase of the above second and third parameters.
Therefore, we single out the two parameters that record for each occurrence of I the number of
preceding occurrences of E and the number of occurrences of E itself. To ensure each application
of a rewrite rule causes an overall decrease, we use pairs of natural numbers, ordered lexicographi-

cally, that is, 〈x1,x2〉 ≤ 〈y1,y2〉 if x1 < y1, or x1 = y1 and x2 ≤ y2, and associate with each sequence
in (C | S | I | E)∗ a pair 〈x ,y〉 such that x sums up

• the number of occurrences of E,
• for each occurrence of I the number of preceding occurrences of E,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:22 F. S. de Boer and H.-D. A. Hiep

and y sums up

• the number of occurrences of C , S an I ,
• for each occurrence of I the number of preceding occurrences of C and S ,
• for each occurrence of S the number of preceding occurrences of C and E.

It is straightforward to check that with each application of a rewrite rule the above measure
indeed decreases. Consider as a typical example the rule CI −→ IC . Clearly the number of occur-
rences ofC preceding the occurrence of I to which this rewrite rule is applied decreases. It further
does not affect the other parameters. So it decreases the abovey component, which causes an over-
all decrease, because the above x component is unaffected. As another example consider the rule
EI −→ IES . Since this rule generates a new S , it may increase the above y component. However,
the number of occurrences of E preceding the occurrence of I to which this rewrite rule is applied
decreases, and as such it decreases the above x component (which thus causes an overall decrease).
A similar argument applies to the rule ECE −→ CEC: The increase of the number of occurrences
of C is compensated by the decrease of the number of occurrences of E.

We also have checked termination of our rewriting system using the AProVE tool [20]. However,
the automatic termination proof is not as legible as the description given above.

Next, we show that the rewrite system is confluent, which implies that for any sequence in
(C | S | I | E)∗ there exists a unique normal form.

Confluence. By Newman’s Lemma, every rewrite system that is terminating and weakly conflu-
ent is also confluent (see Reference [32]). Thus, to show that our rewrite system is confluent, it
suffices to show that it is weakly confluent. The Critical Pair Lemma states that a rewrite system
is weakly confluent if and only if all its critical pairs are convergent (also called joinable, see Refer-
ence [32, Section 2.7.2]): The two reducible expressions of the critical pair have a common reduct.
We thus establish confluence by analyzing all critical pairs that arise from our rewrite rules. This
road to confluence is also known as the Knuth-Bendix Theorem.

We now show that all critical pairs are convergent. These critical pairs are identified by con-
sidering all ways in which the left-hand side patterns (the redexes) of the rewrite rules can over-
lap. Let P ,Q , and R range over {C, S, I ,E}, and (overlapping) redexes) be indicated by underlin-

ing/overlining. For all pairs PQ and QR of redexes of two letters, we obtain the critical pair PQR:

It thus suffices to analyze for each redex of two letters all critical pairs obtained by either adding
one letter after or adding one before. For the single redex ECE consisting of three letters, it suffices

to analyze ECECE, which is the single way it can overlap with itself, and analyze the remaining

critical pairs EECE and ECEP for P in {S, I ,E}. This analysis is covered by the following cases (in
some cases below the transitive closure −→∗ abstracts from the order of applications of rewrite
rules that do not have overlapping redexes).

• The critical pair PPP is convergent, for P ∈ {C, S, I ,E}:
Applying the rewrite rule PP −→ P to the first redex or the second one, both give PP .

• The critical pairs PPQ and PQQ are convergent, where P ∈ {C, S } and Q = I , or P ∈ {C,E}
and Q = S :

— Applying first the rewrite rule PP −→ P to the first redex of PPQ , gives
PPQ −→ PQ −→ QP .

— Applying first the rewrite rule PQ −→ QP to the second redex of PPQ , gives
PPQ −→ PQP −→ QPP −→ QP .

— Applying first the rewrite rule PQ −→ QP to the first redex of PQQ , gives

PQQ −→ QPQ −→ QQP −→ QP .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:23

— Applying first the rewrite rule QQ −→ Q to the second redex of PQQ , gives

PQQ −→ PQ −→ QP .

• The critical pair EII is convergent:
— Applying first the rewrite rule EI −→ ISE to the first redex, gives

EII −→ ISEI −→ ISISE −→∗ ISE.
— Applying first the rewrite rule I I −→ I to the second redex, gives

EII −→ EI −→ ISE.

• The critical pair EEI is convergent:
— Applying first the rewrite rule EE −→ E to the first redex, gives

EEI −→ EI −→ ISE.
— Applying first the rewrite rule EI −→ ISE to the second redex, gives

EEI −→ EISE −→ ISESE −→∗ ISE.

• The critical pair ESI is convergent:
— Applying first the rewrite rule ES −→ SE to the first redex, gives

ESI −→ SEI −→ SISE −→∗ ISE.
— Applying first the rewrite rule SI −→ IS to the second redex, gives

ESI −→ EIS −→ ISES −→∗ ISE.

• The critical pair ECEE is convergent:
— Applying first the rewrite rule ECE −→ CEC to the first redex, gives

ECEE −→ CECE −→ CCEC −→ CEC .
— Applying first the rewrite rule EE −→ E the second redex, gives

ECEE −→ ECE −→ CEC .

• The critical pair EECE is convergent:
— Applying first the rewrite rule EE −→ E the first redex, gives

EECE −→ ECE −→ CEC .
— Applying first the rewrite rule ECE −→ CEC to the second redex, gives

EECE −→ ECEC −→ CECC −→ CEC .

• The critical pair ECES is convergent:
— Applying first the rewrite rule ECE −→ CEC to the first redex, gives

ECES −→ CECS −→∗ SCEC .
— Applying first the rewrite rule ES −→ SE to the second redex, gives

ECES −→ ECSE −→∗ SECE −→ SCEC .

• The critical pair ECEI is convergent:
— Applying first the rewrite rule ECE −→ CEC to the first redex, gives

ECEI −→ CECI −→ CEIC −→ CISEC −→∗ ISCEC .
— Applying first the rewrite rule EI −→ ISE to the second redex, gives

ECEI −→ ECISE −→ EICSE −→∗ ISECE −→ ISCEC .

• The critical pair ECECE is convergent:
— Applying first the rewrite rule ECE −→ CEC to the first redex, gives

ECECE −→ CECCE −→ CECE −→ CCEC −→ CEC .
— Applying first the rewrite rule ECE −→ CEC to the second redex, gives

ECECE −→ ECCEC −→ ECEC −→ CECC −→ CEC .

We also have checked confluence of our rewriting system using the CSI tool [27]. However, also
here the automatic confluence proof is not as legible as the description given above.

Scheduling strategy. For any sequence, we can derive the normal form of Equation (7) by sched-
uling the rewrite rules as follows:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:24 F. S. de Boer and H.-D. A. Hiep

(1) For any sequence of letters (C | S | I | E)∗, move I to the front and collapse all consecutive I
applications.

(2) For the resulting postfix (C | S | E)∗, move S to the front and collapse all consecutive S
applications.

(3) For the resulting non-empty postfix (C | E)∗, first collapse all consecutive E applications to
a single E, and all consecutive C applications to a single C . Then we repeatedly apply the
rewrite rule ECE −→ CEC and collapse the possibly generated consecutive C applications
until at most one E application is left (with possibly oneC before and possibly oneC after it).

Thus starting from any sequence of adaptation rules, we end up with at most five rule applications.

Linear proofs. Using the proof normalization procedure above, we can now prove the claim that
our proof system admits linear proofs. Given a set of contracts Φ, denote by

Φ �kD {p} S {q}

the existence of a proof of {p} S {q} in CBV− from the assumptions Φ that consists of at most k
applications of axioms and proof rules.

Lemma 5.1. Suppose that Φ �D {p} S {q}. Then Φ �k
D
{p} S {q}, where k ≤ 6 × l (S).

Proof. The proof consists of at least l (S) applications of analytical axioms and rules, and be-
tween two analytical rules, or between an analytical rule and an assumption or an axiom appli-
cation, we have an arbitrary sequence of adaptations. The latter can be reduced to a sequence of
at most five rule applications. Thus the total number of axiom and rule applications needed in a
proof is at most 6 × l (S). �

We denote by �k {p} D | S {q} the existence of a proof of {p} D | S {q} in CBV that consists of at
most k applications of axioms and proof rules.

Theorem 5.2. Let D = {Pi (ūi) :: Si | i ∈ {1, . . . ,n}} and suppose that � {p} D | S {q}. Then

�O (k) {p} D | S {q}, where k is the length of (D | S) seen as a string of symbols.

Proof. The correctness formula {p} D | S {q} was established using the RECURSION rule. By
Lemma 5.1 to prove the premises of this rule, it takes at most 6 × (l (S) + Σn

i=1l (Si)) steps, where
S1, . . . , Sn are the bodies of the procedures declared in D. Clearly, l (S) + Σn

i=1l (Si) is less than the
length of (D | S) seen as a string of symbols. �

In the above result, we measure the complexity in size of the proof, being the number of axiom
and rule applications. By inspection of the rewrite rules introduced above, it is easily seen that
the weight of the proof (being the maximum complexity of the pre- and postconditions that occur
within correctness formulas as they appear in rule applications, as measured by the number of
connectives and quantifiers) remains constant: thus, the existence of a linear proof does not result
in an explosion of the complexity of assertions.

6 SOUNDNESS

We first prove the soundness of CBV−. We treat soundness of the block rule and the rule for proce-
dure calls in the context of a set of declarations (soundness of the rules for the remaining statements
are standard).

Lemma 6.1 (Soundness of the Block Rule). Suppose that

|= {p} D | x̄ := t̄ ; S {q},

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:25

where {x̄ } ∩ free(q) = ∅. Then

|= {p} D | begin local x̄ := t̄ ; S end {q}.

Proof. Follows directly from Corollary 3.6(i). �

Lemma 6.2 (Soundness of the Procedure Call Rule). Suppose that

|= {p} D | P (ū) {q},
where P (ū) :: S ∈ D and {ū} ∩ free(q) = ∅. Then

|= {p[ū := t̄]} D | P (t̄) {q}

Proof. By Lemma 3.2 and Corollary 3.6(ii)

|= {p} D | P (ū) {q} iff |= {p} D | ū := ū; S {q} iff |= {p} D | S {q}
and

|= {p[ū := t̄]} D | P (t̄) {q} iff |= {p[ū := t̄]} D | ū := t̄ ; S {q}.
But by the soundness of PARALLEL ASSIGNMENT axiom |= {p[ū := t̄]} D | ū := t̄ {p}, so |=
{p} D | S {q} implies by the soundness of the COMPOSITION rule |= {p[ū := t̄]} D | ū := t̄ ; S {q}.

�

We next introduce a semantic interpretation of Φ �D {p} S {q} that abstracts from the actual
implementation of the procedures as specified by D. Note that in such a proof only information
about the variables of D is used (in the INVARIANCE, SUBSTITUTION and ∃-INTRODUCTION
rules). We therefore introduce the notation D ′ ≤ D to denote that var (D ′ | skip) ⊆ var (D | skip)
and for every P (ū) :: S ∈ D we have change(D ′ | P (ū)) ⊆ change(D | P (ū)). Note that D ′ ≤ D
implies that change(D ′ | S) ⊆ change(D | S), for every statement S . It also holds that D ≤ D,
and Dk ≤ D for every kth approximation of D (see Definition 3.1). We use the relation ≤ between
programs in the soundness proof below, since syntactic approximations do not add more variables
or variables that may be changed.

Further, let |=D Φ denote that |= {p} D | P (ū) {q}, for every {p} P (ū) {q} ∈ Φ.

Definition 6.3. Φ |=D {p} S {q} denotes that |=D′ Φ implies |= {p} D ′ | S {q}, for all D ′ ≤ D.

We then have the following corollary.

Corollary 6.4 (Soundness of CBV−). Φ �D {p} S {q} implies Φ |=D {p} S {q}.

Proof. The proof proceeds by a straightforward induction on the length of proof, using the
above lemmas for the BLOCK rule and the PROCEDURE CALL rule. The side conditions of the
SUBSTITUTION and INVARIANCE rule are dealt with by the assumption that change(D ′ | P (ū)) ⊆
change(D | P (ū)), for every P (ū) ∈ D. �

To prove soundness of the proof system CBV it then suffices to prove the soundness of the
RECURSION rule (note that the RECURSION rule is the only rule for deriving a correctness formula
about a program).

Theorem 6.5 (Soundness of the Recursion Rule). Let D = {P1 (ū1) :: S1, . . . , Pn (ūn) :: Sn } and

Φ = {{p1} P1 (ū1) {q1}, . . . , {pn } Pn (ūn) {qn }} be such that {ūi } ∩ free(qi) = ∅, i ∈ {1, . . . ,n}. Then

Φ |=D {p} S {q} and Φ |=D {pi } Si {qi }, i ∈ {1, . . . ,n}
implies

|= {p} D | S {q}.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:26 F. S. de Boer and H.-D. A. Hiep

Proof. By Definition 6.3, the conclusion follows from the first premise and that we have D ≤ D,
if we show |=D Φ. For the latter, it suffices to show that |= {pi } D | Pi (ūi) {qi }, for i ∈ {1, . . . ,n}.
By the Approximation item of Lemma 3.2 this reduces to showing that |= {pi } Dk | Pi (ūi) {qi },
for every k ≥ 0 and i ∈ {1, . . . ,n}. We prove this by induction on k .

Base case: By Definition 3.1 and the Inlining item of Lemma 3.2 it suffices to observe that
M�D0 | Pi (ūi)� =M�D0 | Ω� and that |= {p ′} D0 | Ω {q′}, for any assertions p ′ and q′.

Induction step: We show that the induction hypothesis |=Dk Φ implies |=Dk+1 Φ. Since we

have the second premise Φ |=D {pi } Si {qi } and Dk ≤ D, the induction hypothesis implies
|= {pi } Dk | Si {qi } by Definition 6.3. It is sufficient to show that the latter is equivalent to

|= {pi } Dk+1 | Pi (ūi) {qi }.

By Definition 3.1, Corollary 3.6(ii), and {ūi } ∩ free(qi) = ∅, we have that

|= {pi } Dk+1 | Pi (ūi) {qi }

if and only if

|= {pi } Dk+1 | ūi := ūi ; S
k+1
i {qi }

for every i ∈ {1, . . . ,n}. Observe that

M�Dk+1 | ūi := ūi ;S
k+1
i � =M�Dk+1 | Sk+1

i � =M�Dk+1 | Si [S
k
1 /P1, . . . , S

k
n/Pn]�

holds by simplification and definition of Sk+1
i . Further, we have that

M�Dk+1 | Si [S
k
1 /P1, . . . , S

k
n/Pn]� =M�Dk | Si [S

k
1 /P1, . . . , S

k
n/Pn]� =M�Dk | Si�,

since Si [S
k
1 /P1, . . . , S

k
n/Pn] does not contain any procedure calls (thus allowing us to replace all

declarations), and by the definition of Dk and the Inlining item of Lemma 3.2. Thus we have
established that

|= {pi } Dk+1 | Pi (ūi) {qi }
if and only if

|= {pi } Dk | Si {qi }. �

7 COMPLETENESS

We now prove completeness of CBV in the sense of Cook, that is, assuming that the language
L is expressive (see Definition 3.8) and that all valid assertions can be used in proofs. To this
end, following Gorelick [21], we introduce the most general correctness formulas. Given a set of
declarations D, in our setup these are contracts of the form

{x̄ = z̄ ∧ ū = v̄} P (ū) {∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)},

where

• P (ū) :: S ∈ D,
• {x̄ } = change(D | P (ū)),
• v̄ and z̄ are lists of fresh variables, of the same length as, respectively, ū and x̄ ,
• SP(p,D | S) is the strongest postcondition given in Definition 3.7.

The crucial difference between our most general correctness formulas and the ones used in
[21] is that in our case the strongest postcondition of the generic call P (ū) is defined in terms of
a strongest postcondition of the body S in which the formal parameters are quantified out. This
has to do with the way we model the call-by-value parameter mechanism by a general notion
of local variables, whereas, as already mentioned, in Reference [21] the call-by-name parameter

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:27

mechanism is used in combination with a specific notion of local variables that ensures static
scoping semantically by variable renaming.

To compensate for this loss of your information, we have introduced the variables v̄ that in the
above postcondition denote the initial values of the formal parameters ū. The variables z̄ are used in
the above postcondition to denote the initial values of the variables x̄ that could be changed by a call
(D | P (ū)). In particular, note that ū and x̄ have no variables in common, because {x̄ } = change(D |
P (ū)) = change(D | begin local ū := ū; S end) = change(D | S) \ {ū}, where P (ū) :: S ∈ D. In fact,
it is important to note that the sets of variables listed in ū, v̄, x̄ and z̄ are mutually disjoint.

The following crucial theorem shows that the assertion

(t̄ = v̄)[x̄ := z̄] ∧ ∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)

encodes the semantics of a call (D | P (t̄)), where P is declared by P (ū) :: S ∈ D. Note that since
the sets of variables v̄ and x̄ are disjoint, (t̄ = v̄)[x̄ := z̄] equals t̄[x̄ := z̄] = v̄ . Further, since z̄ are
used to denote in the postcondition the initial values of the variables x̄ , t̄[x̄ := z̄] denotes in the
postccondition the initial values of the actual parameters t̄ .

Theorem 7.1. Let P be declared by P (ū) :: S ∈ D. Further, let the lists of variables v̄, x̄ and z̄ be

defined as above and let

σ |= (t̄ = v̄)[x̄ := z̄] ∧ ∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S). (8)

It follows that

M�D | P (t̄)�(σ ′′) = {σ },
where σ ′′ = σ [x̄ := σ (z̄)].

Proof. From the assumption (8) it follows that

σ ′ |= SP(x̄ = z̄ ∧ ū = v̄,D | S),

where σ ′ = σ [ū := d̄] for some sequence d̄ of elements (of the domain of I).
By the definition of the strongest postcondition there exists a state σ0 such that

• σ0 |= x̄ = z̄ ∧ ū = v̄ and
• M�D | S�(σ0) = {σ ′}.

Let σ ′′ = σ [x̄ := σ (z̄)]. Assume first that

σ ′′[ū := σ ′′(t̄)] = σ0. (9)

Then, given that σ ′′(ū) = σ (ū) and σ ′[ū := σ (ū)] = σ , Corollary 3.3 allows us to derive the
following chain of equalities:

M�D | P (t̄)�(σ ′′)

=
(
M�D | S�(σ ′′[ū := σ ′′(t̄)])

)
[ū := σ ′′(ū)]

=
(
M�D | S�(σ0)

)
[ū := σ ′′(ū)]

=
(
M�D | S�(σ0)

)
[ū := σ (ū)]

= {σ ′[ū := σ (ū)]} = {σ }.
Figure 3 clarifies the relation between the introduced states and illustrates the construction of

a computation of P (t̄) that starts in the state σ ′′ with the final state σ and that corresponds to the
above equalities.

It remains to prove Equation (9). First, note the following consequences of the Access and

Change item of Lemma 3.2 that follow from the fact that the variables listed in v̄ and z̄ are fresh
and that by the choice of x̄ we have change(D) ⊆ {ū} ∪ {x̄ }:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:28 F. S. de Boer and H.-D. A. Hiep

Fig. 3. Construction of a computation of P (t̄).

(a) σ ′(v̄) = σ0 (v̄),
(b) σ ′(z̄) = σ0 (z̄),
(c) σ ′(y) = σ0 (y), where y � {ū} ∪ {x̄ }.

By Equation (8), σ |= (t̄ = v̄)[x̄ := z̄], so by the definition of σ ′′ (this is an instance of the
Simultaneous Substitution Lemma in the textbook [4, p. 50]) σ ′′ |= t̄ = v̄ , i.e.,

σ ′′(t̄) = σ ′′(v̄).

This, item (a) above, the fact that the sets of variables listed in ū, v̄ and x̄ are mutually disjoint, and
the definitions of σ ′′ and σ ′ justifies the following chain of equalities:

σ ′′[ū := σ ′′(t̄)](ū) = σ ′′(t̄) = σ ′′(v̄) = σ (v̄) = σ ′(v̄) = σ0 (v̄) = σ0 (ū).

Next, the same observations and item (b) above justifies the following chain of equalities:

σ ′′[ū := σ ′′(t̄)](x̄) = σ ′′(x̄) = σ (z̄) = σ ′(z̄) = σ0 (z̄) = σ0 (x̄).

Finally, take a variable y � {ū} ∪ {x̄ }. Then the above observations and item (c) above justifies
the following chain of equalities:

σ ′′[ū := σ ′′(t̄)](y) = σ ′′(y) = σ (y) = σ ′(y) = σ0 (y).

We thus established Equation (9), which concludes the proof. �

From the above theorem, we derive the following corollary.

Corollary 7.2. Let |= {p} D | P (t̄) {q}, where P is declared by P (ū) :: S ∈ D. Further, let the lists

of variables v̄, x̄ and z̄ be defined as above and let

Inv ≡ (p ∧ t̄ = v̄)[x̄ := z̄].

It follows that |= (Inv ∧ ∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)) → q.

Proof. Take a state σ such that

σ |= Inv ∧ ∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S).

By the above Theorem 7.1 it follows that

M�D | P (t̄)�(σ ′′) = {σ },

where σ ′′ = σ [x̄ := σ (z̄)]. We are given that σ |= p[x̄ := z̄], so σ ′′ |= p by the definition of σ ′′.
(This is again the contents of the Simultaneous Substitution Lemma in the textbook [4, p. 50].) We
conclude by the assumption |= {p} D | P (t̄) {q} that σ |= q. �

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:29

In the completeness proof below, we transform a given precondition p of a procedure call D |
P (t̄) into an invariant (p ∧ t̄ = v̄)[x̄ := z̄]. The following corollary shows that any precondition p
logically implies its invariant transformation for some values of the variables v̄ and z̄.

Corollary 7.3. Let the lists of variables v̄, x̄ and z̄ be defined as above and let

Inv ≡ (p ∧ t̄ = v̄)[x̄ := z̄].

Suppose that the variables listed in v̄ and z̄ do not appear in p. Then

|= p → ∃v̄, z̄ : (Inv ∧ x̄ = z̄ ∧ t̄ = v̄).

Proof. Take a state σ such that σ |= p. By assumption the variables listed in v̄ and z̄ do not
occur in p, so τ |= p, where τ = σ [v̄, z̄ := σ (t̄),σ (x̄)].

Note that τ [x̄ := τ (z̄)] = τ , so τ [x̄ := τ (z̄)] |= p. By the Simultaneous Substitution Lemma of
Reference [4, p. 50] τ |= p[x̄ := z̄], i.e.,

σ [v̄, z̄ := σ (t̄),σ (x̄)] |= p[x̄ := z̄].

Further, for an arbitrary σ we have

σ [v̄, z̄ := σ (t̄),σ (x̄)] |= (t̄ = v̄)[x̄ := z̄] ∧ x̄ = z̄ ∧ t̄ = v̄,
so

σ [v̄, z̄ := σ (t̄),σ (x̄)] |= (p ∧ t̄ = v̄)[x̄ := z̄] ∧ x̄ = z̄ ∧ t̄ = v̄ .
This shows that

|= p → ∃v̄, z̄ : ((p ∧ t̄ = v̄)[x̄ := z̄] ∧ x̄ = z̄ ∧ t̄ = v̄)

and yields the conclusion by the definition of Inv . �

As in Reference [21] the completeness proof is based on the following key lemma (see also
Reference [3, pp. 450–452]). We denote by G (D) the set of most general correctness formulas for
all procedures declared in D.

Lemma 7.4. Suppose that |= {p} D | T {q}. Then G (D) �D {p} T {q}.

Proof. As in Reference [21] and Reference [5], we proceed by induction on the structure of the
statement T , with two essential cases being different.

Block statements. Suppose that |= {p} D | begin local ȳ := t̄ ; S end {q}. Let ȳ ′ be some fresh vari-
ables corresponding to the local variables ȳ. Note that by the definition of change(D | S),

{ȳ} ∩ change(D | begin local ȳ := t̄ ; S end) = ∅. (10)

So from the soundness of the INVARIANCE rule it follows that

|= {p ∧ ȳ = ȳ ′} D | begin local ȳ := t̄ ; S end {q ∧ ȳ = ȳ ′}.
Consequently, by the soundness of the CONSEQUENCE rule

|= {p ∧ ȳ = ȳ ′} D | begin local ȳ := t̄ ; S end {q[ȳ := ȳ ′]},
because q ∧ ȳ = ȳ ′ implies q[ȳ := ȳ ′]. From Corollary 3.6(i) it then follows that

|= {p ∧ ȳ = ȳ ′} D | ȳ := t̄ ; S {q[ȳ := ȳ ′]}.
By the induction hypothesis we obtain

G (D) �D {p ∧ ȳ = ȳ ′} ȳ := t̄ ; S {q[ȳ := ȳ ′]}.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:30 F. S. de Boer and H.-D. A. Hiep

An application of the BLOCK rule then gives

G (D) �D {p ∧ ȳ = ȳ ′} begin local ȳ := t̄ ; S end {q[ȳ := ȳ ′]}.
Thanks to Equation (10), we can now apply the SUBSTITUTION rule with the substitution [ȳ ′ :=

ȳ] and subsequently the CONSEQUENCE rule to replace p ∧ ȳ = ȳ by p. This yields

G (D) �D {p} begin local ȳ := t̄ ; S end {q}.

Procedure calls. Suppose that |= {p} D | P (t̄) {q}, where P is declared by P (ū) :: S ∈ D.
Assume the most general correctness formula

{x̄ = z̄ ∧ ū = v̄} P (ū) {∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)}.
By applying the SUBSTITUTION rule to rename the variables listed in v̄ and z̄, we may assume

these variables not appear in {p} P (t̄) {q}. By the choice of the list x̄ , z̄ and v̄ none of them contains
a variable from ū. So by the PROCEDURE CALL rule with the substitution [ū := t̄], we obtain

{x̄ = z̄ ∧ t̄ = v̄} P (t̄) {∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)}.
As in Corollary 7.3 let

Inv ≡ (p ∧ t̄ = v̄)[x̄ := z̄].

Note that free(Inv) ∩ {x̄ } = ∅ and by definition change(D | P (t̄)) = change(D | P (ū)) = {x̄ }, so
free(Inv) ∩ change(D | P (t̄)) = ∅. Thus by the INVARIANCE rule

{Inv ∧ x̄ = z̄ ∧ t̄ = v̄}P (t̄){Inv ∧ ∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)}. (11)

It remains to show that the pre- and postconditions of the above correctness formula can be
replaced, respectively, by p and q.

First, we have by Corollary 7.2

|= (Inv ∧ ∃ū : SP(x̄ = z̄ ∧ ū = v̄,D | S)) → q,

so by the CONSEQUENCE rule we obtain from Equation (11)

{Inv ∧ x̄ = z̄ ∧ t̄ = v̄} P (t̄) {q}.
By assumption the variables in v̄ and z̄ do not appear in P (t̄) or q, so by the ∃-INTRODUCTION

rule

{∃v̄, z̄ : (Inv ∧ x̄ = z̄ ∧ t̄ = v̄)} P (t̄) {q}.
By Corollary 7.3

|= p → ∃v̄, z̄ : (Inv ∧ x̄ = z̄ ∧ t̄ = v̄),

so we obtain the desired conclusion by the CONSEQUENCE rule.
The remaining cases are as in Reference [11]. �

Theorem 7.5 (Completeness). The proof system CBV is complete (in the sense of Cook).

Proof. Let |= {p} D | S {q}. To prove {p} D | S {q} in CBV, we use the RECURSION rule with
G (D) as the set of assumptions in the subsidiary proofs. Lemma 7.4 ensures the first premise. The
remaining n premises also follow by this lemma. Indeed, suppose

G (D) = {{x̄i = z̄i ∧ ūi = v̄i } Pi (ūi) {∃ūi : SP(x̄i = z̄i ∧ ūi = v̄i ,D | Si)} | i ∈ {1, . . . ,n}},
where D = {Pi (ūi) :: Si | i ∈ {1, . . . ,n}}.

Choose an arbitrary i ∈ {1, . . . ,n}. By the definition of the strongest postcondition

|= {x̄i = z̄i ∧ ūi = v̄i } D | Si {SP(x̄i = z̄i ∧ ūi = v̄i ,D | Si)},

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:31

so

|= {x̄i = z̄i ∧ ūi = v̄i } D | Si {∃ū : SP(x̄i = z̄i ∧ ūi = v̄i ,D | Si)}
by the soundness of the CONSEQUENCE rule. Hence by Lemma 7.4

G (D) �D {x̄i = z̄i ∧ ūi = v̄i } Si {∃ū : SP(x̄i = z̄i ∧ ūi = v̄i ,D | Si)}}.

We now obtain � {p} D | S {q} by the RECURSION rule. �

We conclude this section with the following simple calculation of the complexity of the com-
pleteness proof (measured in terms of the number of axioms and rules applied). Since the above
completeness proof shows that the INVARIANCE, SUBSTITUTION and ∃-INTRODUCTION rules
are only used for the block statements and the procedure calls, we can lower the upper bound of
Theorem 5.2 by

2 × x1 + 3 × x2 + 6 × x3,

wherex1 denotes the number of assignments, block statements and iteration statements,x2 denotes
the number of block statements, and x3 denotes the number of procedure calls.

8 FORMALIZATION IN COQ

The main semantic argument underlying the completeness proof is the proof of Theorem 7.1 (and
its Corollaries 7.2 and 7.3), which shows how the semantics of procedure calls can be expressed by
the strongest postcondition. We checked this proof by means of the Coq theorem prover, and to
this end we only need to formalize the semantics of the programming language and the strongest
postcondition. Our formalization is publicly and freely accessible.3

Theorem 7.1 requires first of all a formalization of the syntax and semantics of the program-
ming language and the assertion language. A main challenge is to abstract from syntax to avoid
the overhead of irrelevant details, while still capturing essential syntactical notions like occur-
rences of variables and substitution. We formalize in Coq expressions semantically as particular
functions from states to (abstract) values. Similarly, we formalize assertions semantically, as sets
of states. Moreover, this extensional approach4 to the formalization of expressions and assertions
also allows to abstract from the given interpretation I and the assumption of the expressibility
of the strongest postcondition. However, and this is where our approach crucially differs from,
for example, References [34, 36], to capture essential syntactic notions like that of occurrences
of free variables (this is required in the notion of freshness used in Theorem 7.1.) we introduce
finitely-based functions and predicates as the semantic structures for expressions and assertions,
as explained in more detail next.

An expression is formalized as a function e from states to values together with an additional
list of variables x̄ with the coincidence condition that for every σ ,τ such that σ [x̄] = τ [x̄] we have
e (σ) = e (τ). Similarly, an assertion consists of a set of states X and a list of variables x̄ with
the coincidence condition that for every σ ,τ such that σ [x̄] = τ [x̄] we have σ ∈ X iff τ ∈ X . For
assertionp, we writeσ |= p to meanσ ∈ X . The intuition is that the finite set of variables associated
with an expression or assertion forms its basis: the semantic counterpart of the syntactical notion of
free variable occurrences. Only the values assigned by a state to variables in its basis can influence
an expression’s value or an assertion’s truth. Assertions are equal whenever their extension and
basis are equal, regardless of the proof of the coincidence condition.5

3See Reference [22]: https://doi.org/10.5281/zenodo.4005507
4This is also known as a shallow embedding.
5For this, we may use proof irrelevance, which in Coq follows from propositional extensionality.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

https://doi.org/10.5281/zenodo.4005507

17:32 F. S. de Boer and H.-D. A. Hiep

For the formalization, we further need the following constructions of expressions and assertions.
For a given value, we immediately can construct an expression that evaluates to that value with
the empty basis. For a given variable, we can construct an expression that evaluates to the value of
that variable and its basis consists of (at least) the given variable. Since one could always extend a
basis, we take the smallest. Given two expressions, we can construct the assertion that states their
equality: Its extension consists of those states in which the equality is evident, and its basis is the
union of the bases of the equated expressions. We also have equality of lists of variables of equal
length. For all these constructions, we verified the coincidence condition.

Further, we have the constructions of conjunction, implication, substitution, and existential
quantification assertions. Given two assertions p and q, the conjunction p ∧ q consists of the in-
tersection of the states of p and q and as basis the union of the bases of p and q. Similarly, we can
define the implication p → q. For the substitution construct p[x̄ � t̄], we take an assertion p and
assignment x̄ � t̄ that is an association of variables in x̄ to expressions in t̄ . Let σ [x̄ � t̄] be a
state update replacing the values of variables x̄ by the corresponding value of t̄ . We define the set
of states of the substitution p[x̄ � t̄] as {σ | σ [x̄ � σ (t̄)] |= p}. The basis of the substitution
construct is the basis of p with variables in x̄ removed, together with the union of the bases of
expressions in t̄ . Thus, if a variable occurs both in x̄ and in some expression in t̄ , then it is still
in the basis of p[x̄ � t̄]. The Simultaneous Substitution Lemma, i.e., σ |= p[x̄ � t̄] if and only if
σ [x̄ � σ (t̄)] |= p, then can be verified already by definition. Finally, the existential quantification
∃x̄ : p is formalized by the set of states {σ | ∃τ : σ [x̄ � τ (x̄)] |= p} and as basis, the basis of p with
all variables in x̄ removed.

The syntax of statements we formalize does not include while statements, but does include a
diverge statement that is needed for Approximation part of Lemma 3.1. This modification does
not reduce expressivity of the language, as it is well known that while loops can be encoded using
(tail) recursion, but it simplifies the definition of, and proofs about, the semantics of programs.

We have formalized the big-step operational semantics as given in Figure 1 by an inductive
predicate, so that every program (D | S) is associated to a relation of states denoted by (_,D |
S) ⇒ _. This relation can also be treated as a function mapping states to a subset of states. We then
have formally verified the properties of Lemma 3.1, Corollary 3.2, Lemma 3.3, and Corollary 3.4.
Not all of these results are needed in Theorem 7.1, but their verification increases our confidence
that the formalized semantics contains no error.

Given an assertion p and program (D | S), the strongest postcondition SP (p,D | S) consists
of an extension and a basis for which the coincidence condition holds. Its extension is defined by
{σ ′ | ∃σ : (σ ,D | S) ⇒ σ ′ and σ |= p}, and as its basis x̄ , we take the union of the set of variables
occurring in the program and the basis of p. The set of variables occurring in a program can be
defined inductively by the structure of the program; it is the union of the bases of all expressions
and all variables that occur in the program. Now, to show that the coincidence condition holds for
the strongest postcondition, we need to show that for every state σ ′ in its extension, any state τ ′

obtained from σ ′ in which variables not in the basis are possibly modified are also in the extension:

σ ′ |= SP (p,D | S) and σ ′[x̄] = τ ′[x̄] implies τ ′ |= SP (p,D | S).

To show this property, it is sufficient to show a more general closure property on the meaning of
programs. The following lemma establishes the latter property.

Lemma 8.1. Given a list of variables x̄ such that every variable occurring in (D | S) is also in x̄ ,

and given that σ ′[x̄] = τ ′[x̄] and (σ ,D | S) ⇒ σ ′, then (τ ′[x̄ � σ (x̄)],D | S) ⇒ τ ′.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

3.1
3.1
3.2
3.3
3.4

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:33

By τ ′[x̄ � σ (x̄)], we mean a state, which has the value in σ for the variables in x̄ , and the value
in τ ′ otherwise. Intuitively, we can reconstruct a run backwards from a final state that simulates
the original run of the program but with different values stored in non-essential variables.

The above formalization allows for a formal verification of the statements of Theorem 7.1, with-
out adding any custom axioms to the Coq theorem prover. We have used the axioms of functional
extensionality, propositional extensionality, and classical logic, all provided by the base system.
Functional extensionality is necessary to show equality of states, which are total functions from
variables to values. Functional and propositional extensionality is needed for showing (and using)
the fact that our semantics is compositional. Classical logic is typically used when reasoning in
Hoare logic. This concludes the description of the formalization effort of Reference [22].

9 CONCLUSIONS

We conclude that the proof system presented in this article and its relative completeness result con-
solidates and improves the proof complexity of the proof system in the textbook [4] and Reference
[5]. Following this, it would be interesting to revisit related work.

The already-mentioned work of Clarke [10] led to a research on proof systems for program-
ming languages in which in presence of static scope both nested declarations of mutually recur-
sive procedures and procedure names as parameters of procedure calls were allowed. In particular
in Reference [30], Reference [13], and Reference [19], sound and relatively complete Hoare-like
proof systems were established, each time under different assumptions concerning the assertion
language. In all these papers the call-by-name parameter mechanism was used and the actual pa-
rameters were variables. It would be interesting to see how to modify these proofs to programming
languages in which the call-by-value parameter mechanism is used instead of the call-by-name
mechanism.

It would be useful to extend (in an appropriate sense) the results of this article to total correct-
ness of programs. In this context, we should mention [2], where a sound and relatively complete
(in an appropriate sense) proof system for total correctness of programs in presence of recursive
procedures was provided. However, in the article only procedures without parameters were con-
sidered.

Formally verified completeness and soundness theorems of Hoare logic in theorem provers have
been established in, for example, Reference [28]. In future work, we intend to proceed in further
formalizing the (syntactic) proof system as described in this article and verifying its soundness
and relative completeness theorems in Coq. Such work is comparable to Von Oheimb’s thesis [35],
who formalized a Hoare logic for reasoning about a subset of the Java language in Isabelle/HOL.

We can extend our completeness result to object-oriented Java-like programs by the syntax-
directed transformation from object-oriented programs to recursive programs as described in [5].
However, separation logic (see Reference [29]) is particularly tailored to modular reasoning about
aliasing as it arises in object (and pointer) structures. Completeness for recursive parameterless

procedures in separation logic is established in Reference [17]. Of interest is that to obtain this com-
pleteness result the frame rules, which are important for the local reasoning in separation logic are
not needed (as observed by the authors themselves). A slight modification of the usual adaptation
rules for reasoning about invariance are sufficient. Therefore, we expect that the completeness
result of Reference [17] can be extended to recursive procedures with call-by-value parameter
passing, using our techniques.

ACKNOWLEDGMENT

Krzysztof R. Apt identified the problem of completeness of reasoning about call-by-value in
Hoare logic. We also thank him for his contributions to earlier versions of the article. We thank

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

17:34 F. S. de Boer and H.-D. A. Hiep

Ernst-Rüdiger Olderog and Stijn de Gouw for helpful comments about the contributions of a num-
ber of relevant references. We further are most grateful for the comments of the anonymous ref-
erees that led to various improvements.

REFERENCES

[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich (Eds.). 2016.

Deductive Software Verification—The KeY Book: From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001.

Springer. https://doi.org/10.1007/978-3-319-49812-6

[2] P. America and F. S. de Boer. 1990. Proving total correctness of recursive procedures. Inf. Comput. 84, 2 (1990), 129–162.

[3] K. R. Apt. 1981. Ten years of hoare’s logic, a survey, part I. 3, 4 (1981), 431–483.

[4] K. R. Apt, F. S. de Boer, and E.-R. Olderog. 2009. Verification of Sequential and Concurrent Programs (3rd ed.). Springer-

Verlag.

[5] Krzysztof R. Apt, Frank S. de Boer, Ernst-Rüdiger Olderog, and Stijn de Gouw. 2012. Verification of object-oriented

programs: A transformational approach. J. Comput. Syst. Sci. 78, 3 (2012), 823–852.

[6] Krzysztof R. Apt and Ernst-Rüdiger Olderog. 2019. Fifty years of Hoare’s logic. Form. Aspects Comput. 31, 6 (2019),

751–807. https://doi.org/10.1007/s00165-019-00501-3

[7] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino,

and Erik Poll. 2005. An overview of JML tools and applications. Int. J. Softw. Tools Technol. Transf. 7, 3 (2005), 212–232.

[8] Robert Cartwright and Derek C. Oppen. 1981. The logic of aliasing. Acta Inf. 15, 4 (1981), 365–384.

[9] Adam Chlipala. 2013. Certified Programming with Dependent Types. MIT Press.

[10] E. M. Clarke. 1979. Programming language constructs for which it is impossible to obtain good Hoare axiom systems.

J. ACM 26, 1 (1979), 129–147.

[11] S. A. Cook. 1978. Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7, 1

(1978), 70–90.

[12] S. A. Cook. 1981. Corrigendum: Soundness and completeness of an axiom system for program verification. SIAM J.

Comput. 10, 3 (1981), 612.

[13] W. Damm and B. Josko. 1983. A sound and relatively complete Hoare-logic for a language with higher type procedures.

Acta Inf. 20, 1 (1983), 59–101.

[14] J. W. de Bakker. 1979. A sound and complete proof system for partial program correctness. In Proceedings of the 8th

Symposium on Mathematical Foundations of Computer Science (Lecture Notes in Computer Science), Vol. 74. Springer,

1–12.

[15] J. W. de Bakker. 1980. Mathematical Theory of Program Correctness. Prentice-Hall International.

[16] Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot, and Dominic Steinhöfel. 2019. Verifying

OpenJDK’s sort method for generic collections. J. Autom. Reas. 62, 1 (2019), 93–126.

[17] Mahmudul Faisal Al Ameen and Makoto Tatsuta. 2016. Completeness for recursive procedures in separation logic.

Theor. Comput. Sci. 631 (2016), 73–96. https://doi.org/10.1016/j.tcs.2016.04.004

[18] M. Foley and C. A. R. Hoare. 1971. Proof of a recursive program: Quicksort. Comput. J. 14, 4 (1971), 391–395.

[19] Steven M. German, Edmund M. Clarke, and Joseph Y. Halpern. 1989. Reasoning about procedures as parameters in

the language L4. Inf. Comput. 83, 3 (1989), 265–359.

[20] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. 2004. Automated termination proofs with

AProVE. In Proceedings of the International Conference on Rewriting Techniques and Applications. Springer, 210–220.

[21] G. A. Gorelick. 1975. A Complete Axiomatic System for Proving Assertions about Recursive and Non-recursive Programs.

Master’s thesis. University of Toronto.

[22] Hans-Dieter A. Hiep. 2020. Completeness and Complexity of Reasoning about Call-by-value in Hoare Logic (Proof Files).

Zenodo. https://doi.org/10.5281/zenodo.4005508

[23] C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580, 583.

[24] C. A. R. Hoare. 1971. Procedures and parameters: An axiomatic approach. In Proceedings of Symposium on the Semantics

of Algorithmic Languages, Lecture Notes in Mathematics, Vol. 188. Springer-Verlag, 102–116.

[25] Peter E. Lauer. 1971. Consistent Formal Theories of the Semantics of Programming Languages. Ph.D. Dissertation.

Queen’s University Belfast, UK.

[26] Bertrand Meyer. 1992. Applying “design by contract.” IEEE Comput. 25, 10 (1992), 40–51.

[27] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. 2017. CSI: New evidence—A progress report. In Proceedings

of the Annual Conference on Automated Deduction (CADE’26). Springer, 385–397.

[28] Tobias Nipkow. 2002. Hoare logics for recursive procedures and unbounded nondeterminism. In Proceedings of the

International Workshop on Computer Science Logic, Lecture Notes in Computer Science, Vol. 2471. Springer.

[29] Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1016/j.tcs.2016.04.004
https://doi.org/10.5281/zenodo.4005508

Completeness and Complexity of Reasoning about Call-by-Value in Hoare Logic 17:35

[30] E.-R. Olderog. 1984. Correctness of programs with pascal-like procedures without global variables. Theor. Comput. Sci.

30 (1984), 49–90.

[31] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cǎtǎlin

Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. 2020. Programming Language Foundations. Electronic

textbook. Version 5.8. Available at https://softwarefoundations.cis.upenn.edu.

[32] Terese, Marc Bezem, Jan Willem Klop, Roel de Vrijer, et al. 2003. Term Rewriting Systems. Cambridge Tracts in Theo-

retical Computer Science, Vol. 55. Cambridge University Press.

[33] Gauthier van den Hove. 2015. On the origin of recursive procedures. Comput. J. 58, 11 (2015), 2892–2899. https://

doi.org/10.1093/comjnl/bxu145

[34] David von Oheimb. 1999. Hoare logic for mutual recursion and local variables. In Foundations of Software Technol-

ogy and Theoretical Computer Science (FSTTCS’99) Lecture Notes in Computer Science, Vol. 1738. Springer, 168–180.

https://doi.org/10.1007/3-540-46691-6_13

[35] David von Oheimb. 2001. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. Ph.D.

Dissertation. Technische Universität München. Available at http://ddvo.net/diss/.

[36] David von Oheimb and Tobias Nipkow. 2002. Hoare logic for NanoJava: Auxiliary variables, side effects, and virtual

methods revisited. In Proceedings of the Formal Methods—Getting IT Right (FME’02) Lecture Notes in Computer Science,

Vol. 2391. Springer, 89–105. https://doi.org/10.1007/3-540-45614-7_6

Received September 2019; revised May 2021; accepted July 2021

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 17. Publication date: October 2021.

https://softwarefoundations.cis.upenn.edu
https://doi.org/10.1093/comjnl/bxu145
https://doi.org/10.1007/3-540-46691-6_13
http://ddvo.net/diss/
https://doi.org/10.1007/3-540-45614-7_6

