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Abstract
Molecular astronomy is a field that is blooming in the era of large observatories
such as the Atacama Large Millimeter/Submillimeter Array (ALMA). With modern,
sensitive, and high spectral resolution radio telescopes like ALMA and the Square
Kilometer Array, the size of the data cubes is rapidly escalating, generating a need
for powerful automatic analysis tools. This work introduces MolPred, a pilot study to
perform predictions of molecular parameters such as excitation temperature (Tex) and
column density (log(N)) from input spectra by the use of neural networks. We used
as test cases the spectra of CO, HCO+, SiO and CH3CN between 80 and 400 GHz.
Training spectra were generated with MADCUBA, a state-of-the-art spectral analysis
tool. Our algorithm was designed to allow the generation of predictions for multi-
ple molecules in parallel. Using neural networks, we can predict the column density
and excitation temperature of these molecules with a mean absolute error of 8.5% for
CO, 4.1% for HCO+, 1.5% for SiO and 1.6% for CH3CN. The prediction accuracy
depends on the noise level, line saturation, and number of transitions. We performed
predictions upon real ALMA data. The values predicted by our neural network for
this real data differ by 13% from the MADCUBA values on average. Current limi-
tations of our tool include not considering linewidth, source size, multiple velocity
components, and line blending.
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1 Introduction

The study of the molecular composition of objects in space has been a matter of
extensive research since the 1930s [16]. Through the use of spectroscopy techniques
over 200 molecules have been identified in interstellar or circumstellar medium [20],
and the number keeps growing every year. The analysis process to detect these
molecules is quite complex and requires effort from observers, astrochemists and
laboratory spectroscopists [2]. The construction of astronomical observing facilities
like the Atacama Large Millimeter/Submillimeter Array (ALMA) has created the
possibility to observe the universe with an unprecedented combination of sensitivity
and angular resolution. Such facilities allow astronomers to study the physical and
chemical properties of the molecular gas in a variety of sources in the Universe (e.g.
Nakajima et al., [12]).

The introduction of ever larger and more sensitive instruments in astronomy and
the latest developments in computing performance has generated a need for tools
to support the analysis of data sets [1]. This is illustrated by the number of new
astronomical facilities that are implementing automated data reduction pipelines such
as ALMA [7], Vera C. Rubin Observatory (formerly LSST; Jurić et al., [5]) and E-
ELT [8]. Telescopes like the Square Kilometer Array (SKA), that will be deployed in
the very near future, will even rely only on fully automatic reduction pipelines, due
to the large amounts of data they will produce [4].

Current facilities produce crowded spectra even in sources where previous facil-
ities were only able to detect a limited number of bright transitions of the most
abundant species. Line identification and extraction of physical parameters is gener-
ally still a manual and time consuming process even making use of state of the art
tools briefly described below.

Several tools have been developed over time, to assist in line analysis. These tools
have varying degrees of automation. For instance CASA [10] allows the user to con-
nect to Splatalogue1 catalog via casaviewer. This enables the user to idenitfy lines
by overlaying transitions from the catalog on their spectra. In this case, there is no
automation. Another tool is the ALMA Data-Mining Toolkit (ADMIT, Teuben, [17])
which enhances CASA with a spectral Line identification algorithm. However, it
does not provide estimates of the physical parameters of the molecules identified.
Other programs like RADEX [18] and MADEX [2] can generate models, that can
be manually compared with data, although this comparison is not automated and
requires the tuning of many input parameters. The XCLASS interface [11] contains a
program named myXCLASS which contains routines to fit models to observed spec-
tra. The fitting model can be automated with multiple approaches as mentioned in
[15]. Another tool is CASSIS [19] which computes synthetic LTE models that can be
compared with observations. It contains a tool to perform physical parameter estima-
tions. The last tool we will cover is MADCUBA [9] which is a tool for line analysis
and spectroscopic work. It contains a feature called Spectral Line Identification
and Modelling (SLIM) which allows the automatic fitting of molecular parameters.

1https://splatalogue.online
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It allows the possibility to generate synthetic spectra programmatically, given the
appropriate parameters, and also to merge several data cubes across a frequency axis.
MADCUBA was selected as our primary source for training examples.

Having established that automated tools are necessary, our intention is to con-
tribute by taking a step towards the prediction of molecular parameters using neural
networks. For the sake of probing feasibility and as a pilot study, in this paper we con-
strain our analysis to the prediction of the parameters of excitation temperature (Tex)
and column density (log(N)) from molecular spectra. Section 2 presents our pilot
study for prediction of molecular parameters, describing the overall design, training
data and methods. Section 3 describes and discusses our test results with synthetic
data, with a number of parameter combinations for the neural networks. We also
present our results with astronomical data, performing predictions for log(N) and
Tex for a spectrum coming from an ALMA Large Program project. Section 4 ana-
lyzes the scalability and linear speedup of our solution. Section 5 summarizes our
conclusions and comments on future work.

2 TheMolPred prototypemodel

Given that astronomical spectra can be modelled from their underlying physical
parameters, it should be possible to predict those parameters using a regression
model. In this work, we use several neural networks which take information from the
spectrum as an input. A neural network is an algorithm which learns relationships
between some inputs and outputs resulting in a blackbox model [14].

Whilst even simple radiative transfer models require several parameters, we con-
sider only log(N) and Tex in this pilot study. The column density is an important
quantity as it is a measure of how much of a species is present towards an object.
The intensity of a line approximately scales with the column density when lines are
optically thin. The excitation temperature reflects the relative population of energy
levels of a molecule (e.g., following a Boltzmann distribution at local thermal equi-
librium) and helps to characterize the conditions of the gas. It primarily determines
the relative line intensity among the transitions of a given species.

For this purpose, we have developed a tool called MolPred, which is capable of
predicting said parameters for an initial sample of four molecules, provided an input
spectrum. This set can be incrementally extended to more parameters and to the full
set of species available in spectroscopic catalogs. The current python code of the tool
is available in our GitHub repository 2

2.1 Overall design

An overview of the MolPred program is described in Fig. 1. The flow starts by receiv-
ing an input spectrum for which MolPred will generate predictions of log(N) and
Tex. The input spectrum is pre-processed as explained below, so the predictions for

2https://github.com/MadScience01/molpred
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Read Input Spectrum

Pre Processing Section

Post Processing 

Parallel predictions

Display Results

Fig. 1 A diagram showing the MolPred workflow. Each box indicates a process and the rectangles
showing molecules indicate the neural networks

all the molecules can be done in parallel via individual neural networks. After all
predictions are done, the results are collected and handled in a post-processing stage,
where the resulting predictions are presented to the user.

In the preprocessing stage, we extract the intensity of every transition of a given
molecule that falls into our working frequency range. Since the networks are trained
with a fixed number of transitions, this number of inputs must be supplied for every
prediction. However, real astronomical data is often incomplete and transitions may
be missing. In those cases, we have opted to zero-pad the input array so that measured
transitions are included and zeros replace missing transitions.

For the transitions that are present in the observation window, we include the cor-
responding Splatalogue frequency and the intensity value for the closest frequency
observed in the input array. We consider a transition present if the closest frequency in
the observation, with respect to the Splatalogue frequency, is within 10 MHz. Finally,
the intensities that will be passed to the predictor are scaled between 0 and 1, which
is a typical pre-processing step for neural network training, as all the training exam-
ples and labels were scaled for better training results. This scaling was also applied
to the values of log(N) and Tex in our test and training data. The molecules and the
number of transitions they have within the frequency range considered in this work
are given in Table 1.

In the prediction stage, the neural networks take the input array and produce a
scaled prediction for log(N) and Tex. For each molecule, the neural network used
in this stage is the best network from the grid discussed in Section 2.3. Finally, in
the post-processing stage, the produced predictions are descaled back to their actual
magnitudes.
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Table 1 Molecules considered in this work and the number of rotational transitions from the vibrational
ground state which are in the range of frequencies covered by MolPred

Species Name Number of Transitions (80-400GHz)

CO Carbon monoxide 3

HCO+ Formylium 4

SiO Silicon monoxide 8

CH3CN Methyl cyanide 437

2.2 Training data set

The data used to train the neural networks which make up MolPred are a set of
synthetic spectra generated by the SLIM LTE spectral model, which is part of the
MADCUBA software package [9], which makes use of the spectroscopic parameters
from JPL catalog [13]. We generate LTE spectra for each species, with 1 MHz resolu-
tion between 80 and 400 GHz using column densities in the range log(N) = 12 cm−2

to log(N) = 19.9 cm−2, with steps of log(N) = 0.1 cm−2 and temperatures from
10 K, performing multiplicative increments of 30% all the way to 233 K, in this way
we increase the coverage at lower temperatures.

In order to produce synthetic spectra, MADCUBA requires other parameters on
top of log(N) and Tex considered in our pilot study. Thus these parameters were
fixed as follows: output intensity units were set to Kelvin; line width and velocity
were fixed to 150 and 250 km s−1 respectively; an emitting source size of 10′′ was
assumed. These fixed parameters were selected to match those required to fit the
actual astronomical spectra from the ALMA Comprehensive High-Resolution Extra-
galactic Molecular Inventory (ALCHEMI, Martin et. al, in preparation), as discussed
below. Since our training datasets are created in rest frequency units, it is therefore
agnostic to the velocity parameter. However, our predictor cannot be directly applied
to astronomical data with different parameters of line width and source size. An
extension of our neural network should be required to make our tool fully useable.
All training and validation spectra used in this work were then created by combining
these individual molecular spectra and adding Gaussian noise with an rms between
10 and 50 mK, which we consider to be a reasonable range of values for noise in an
astronomical spectrum at these frequencies.

2.3 Neural network training

We have used the keras package from the tensorflow library [3] for the creation and
training of the neural networks. Keras model files are saved after training, for later
use in the prediction stages. Neural networks have a large number of hyperparame-
ters. The hyperparameters that were varied are given in Table 2 along with the range
of values trialled. For each possible combination of parameters, a model was created.
Neural networks were trained for up to 1000 epochs, where an epoch is one pass of

161Experimental Astronomy (2021) 52:157–182



Table 2 A list of neural network hyperparameters which were varied and the values that were tested

Parameter type Parameter values

Activation functions Sigmoid, ReLU, Linear, Tanh, Swish.

Layers Single, double, triple

Neurons 256, 1024

Molecules CO,HCO+, SiO, CH3CN

Training examples 500, 1000, 2000, 4000, 8000, 16000, 32000

Noise levels 0.01 to 0.05 K

Optimizer Adam

Loss function MAE

Training patience 10 epochs

Maximum amount of training 1000 epochs

the full training dataset to the network. However, to keep training time low, we imple-
mented an early stopping mechanism where the training would stop if the validation
loss did not improve over 10 epochs.

We trained each neural network individually using spectra that contained only
noise and emission from transitions of the molecule for which the network would
predict. These neural networks could later be loaded together as part of the MolPred
code to predict from full spectra. In this initial experiment we decided to use a simple
sequential neural network with a maximum of 3 densely connected layers of up to
1024 neurons each. We wish to establish an initial set, as more molecules and output
classes can be added later. The networks were trained to minimize the mean absolute
error (MAE) between the scaled log(N) and Tex of an input spectrum and the pre-
dictions using the Adam optimizer [6]. We use the scaled predictions so that errors in
log(N) and Tex are equally weighted as the unscaled variables differ by many orders
of magnitude. To test these trained neural networks, the MAE on the scaled predic-
tions across the entire validation set was calculated for each network. These MAE
values were then compared between networks to select the best regressor to include
in MolPred.

2.4 Training performance

With the proposed methods, the next step was to observe the training time differences
based on the selection of CPU/GPU(s). We began by comparing training times for a
single molecule (CH3CN) and model (relu triple 1024) with 32000 training exam-
ples and 10 mK of noise with a batch size of 32, and configuring Tensorflow for
using either CPU, one GPU or two non-linked GPUs. We tried different data distribu-
tion strategies3, to observe the impact on the MAE, the results, ordered by minimum
MAE, can be seen in Table 3. For reference, these training times were obtained using
a PC with an Intel I7-8700K CPU, 32 GB of RAM, two non linked Zotac GeForce

3https://www.tensorflow.org/api docs/python/tf/distribute/Strategy
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Table 3 Data distribution comparison, sorted by MAE

Strategy Training Time Epochs Min MAE

Central storage 2 GPU 29 min 20 sec 100 0.01803

Collective all-reduce 1 GPU 10 min 8 sec 84 0.02096

Mirrored 1 GPU 9 min 43 sec 75 0.02203

Mirrored 2 GPU 21 min 57 sec 66 0.02238

Collective all-reduce 2GPU 20 min 49 sec 53 0.02384

Mirrored CPU 11 min 55 sec 54 0.02386

Collective all-reduce CPU 9 min 41 sec 44 0.02483

Central storage CPU 9 min 28 sec 43 0.0250

Central storage 1 GPU 5 min 3 sec 46 0.02568

GTX 1060 6GB video cards and a Kingston A2000 1 TB Solid State Drive - M.2
2280.

We can observe that in terms of MAE, the error ranges between 1.8% and 2.5%
and the training time ranges between 5 and 30 minutes, depending on the data distri-
bution strategy selected. In order to compare the speed of the strategies, we should
compare them based on the time they took to reach 43 epochs, which was the min-
imum number of epochs required to finish the training. The comparison can be
observed in Table 4.

It can be observed that the tests where just one GPU is used, performed faster. It
is interesting to notice that the instances where the CPU was used for training, were
faster than the instances where 2 GPUs were used, this seems reasonable, as both
GPUs in the test setup are not linked, and in order to perform the training work, the
data needs to be copied to both cards memory, consuming additional time. With this,
we believe that our training should be done using just one GPU.

We are able to influence in the training speed, by adjusting the batch size. Table 5
shows the relation between batch size and minimum MAE. We selected the central

Table 4 Strategy performance comparison, sorted by training time

Strategy Training Time Epochs Min MAE

Central storage 1 GPU 4 min 45 sec 43 0.02579

Collective all-reduce 1 GPU 5 min 8 sec 43 0.02553

Mirrored 1 GPU 5 min 35 sec 43 0.02536

Collective all-reduce CPU 9 min 28 sec 43 0.02462

Central storage CPU 9 min 28 sec 43 0.02500

Mirrored CPU 9 min 28 sec 43 0.02536

Central storage 2 GPU 12 min 46 sec 43 0.02601

Mirrored 2 GPU 14 min 15 sec 43 0.02434

Collective all-reduce 2GPU 16 min 55 sec 43 0.02564
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Table 5 Batch size performance comparison, sorted by batch size

Batch Size Training Time Epochs Min MAE

32 5 min 3 sec 46 0.02568

64 2 min 9 sec 38 0.02623

128 2 min 32 sec 75 0.2269

256 44 sec 30 0.03387

512 41 sec 37 0.03658

1024 1 min 11 sec 73 0.03532

2048 1 min 23 sec 99 0.03750

storage distribution, with one GPU, and vary the batch size, from 32 examples per
batch, to 2048 examples per batch, the noise remains at 10 mK.

To observe the specific relation between batch size, and MAE, we will stop at 30
epochs, the minimum required to complete the training and review the difference in
Table 6.

We can observe the trade off between training time versus minimum MAE as given
by the batch time. The larger the batch size, the faster the training finishes, at the
expense of larger errors. In this test, by increasing the batch size to 2048 examples per
batch, the model error increases about 3%, but this represents over 50% of the original
error figure, however the training time has been reduced in almost 87%. Having lower
training times, opens the possibility of using a larger number of training examples.
In order to obtain the best possible predictions, we decided to aim for a lower MAE,
rather than a fast training time, thus we will use a batch size of 32 examples per batch
for the rest of the following experiments.

In Section 4 we will calculate MolPred’s prediction speed acceleration or speedup,
by using (1)

S = Serial execution time

Parallel execution time
(1)

Table 6 Batch size vs training time vs minimum MAE comparison, sorted by batch size

Batch Size Training Time Epochs Min MAE

32 3 min 18 sec 30 0.02836

64 1 min 42 sec 30 0.02746

128 1 min 2 sec 30 0.02971

256 44 sec 30 0.03387

512 34 sec 30 0.03995

1024 30 sec 30 0.04734

2048 26 sec 30 0.05072
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3 Results and discussion

3.1 Results on test data

Our first task was to determine an appropriate number of training examples for the
neural networks. We present the evolution of the MAE as a function of the number
of training examples in Fig. 2. We found that the MAE initially improves by dou-
bling the number of training examples but beyond 16000 examples, increasing the
number of training examples gives a marginal improvement. As we increase the num-
ber of examples, we increase the amount of information we provide the model until
the point where further examples just duplicate information we’ve already provided.
At that point, further examples don’t improve things. We also included the training
times, for evaluation, which we found to be roughly proportional to the number of
examples. To balance low MAE values with reasonable training times so we don’t
affect scalability, we reached a compromise of 32000 examples, which we defined as
our baseline for all models shown in this section.

Our networks achieve different accuracies because the relationship between exci-
tation temperature and line intensities varies strongly depending on the molecule’s
transition properties and collisional rates. Thus, the function the network must learn
to represent each molecule is different and the network has varying success in
replicating it. We also observe that the more transitions a molecule has within our fre-
quency range, the lower the MAE our network achieves. This is illustrated in Fig. 2
and may indicate that, in general, the more transitions a molecule has, the easier it is
for networks of this type to learn a useful prediction strategy.

Once we have established the number of training examples, we wished to observe
the behaviour of the MAE in the training stage of each network. Figure 3 presents the
evolution of the MAE for the neural network that performed best on each molecule.
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Fig. 2 Mean absolute error and training time in hours as a function of number of training examples
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Fig. 3 Training mean absolute error over Molecule set, each figure contains the molecule name, the best
neural network model, the minimum MAE and its respective noise level. HCO+ was the only molecule
whose best model was with a higher noise level

We allowed the networks to be trained for a maximum of 1000 epochs but stopped
training early if the model did not improve for 10 epochs (training patience). In most
models, the training stops close to 100 epochs, the lowest validation loss can be seen
in the plots approximately ten epochs before the end of the plot.

To obtain a deeper understanding of the behavior of the neural networks, we ana-
lyzed how the noise would influence the performance. In Fig. 4 we can observe that
the general trend is that the MAE increases with the noise. We assume the best net-
work is the one with the lowest MAE at any noise level for that particular molecule,
and use that network in MolPred as shown in Table 7. However, since Fig. 4 shows
the MAE is only weakly affected by the noise value, one could choose to train their
networks with a large noise value to ensure the model is robust to the noise in real
spectra.

To verify the quality of the predictions on each neural network, we predicted the
column density and excitation temperature for a test set of 6400 testing examples not
used during training. We then checked the error distribution of the predictions, which
is shown in Fig. 5. The error distribution is centrally peaked which is an important
result that our choice of loss function does not guarantee. The strongly peaked distri-
butions mean that the networks typically give small errors and are unlikely to predict
an extremely incorrect value.
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Having obtained the best models for each molecule, we wanted to review the pre-
diction behaviour of the networks, which was plotted in Fig. 6. We see that for all the
molecular species in our pilot study, the predictions follow a tight linear correlation
with predicted values close to the true values, as also seen in the centrally peaked
histograms in Fig. 5. This can be used to obtain a general idea of the relative errors.
However, the prediction accuracy drops for both low and high values of log(N). The
log(N) value at which this deviation occurs is dependent on the molecule and has a
physical explanation. For low values of log(N) the line intensities become close to
or below the noise level, which causes the neural network to predict values that are
not dependent on the true value. Moreover, this also has a low dependency on the

Table 7 The MAE of the best neural network trained for each molecule and the name of the model which
indicates the activation function, the number of layers (3), and number of neural per layer

Molecule Noise (K) MinMAE Epochs Model

CO 0.01 0.08508 96 swish triple-1024

HCO+ 0.02 0.04170 116 relu triple-256

SiO 0.01 0.03589 42 relu triple-1024

CH3CN 0.01 0.01581 96 sigmoid triple-1024
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prediction of each molecule (100 bins). These all peak at zero indicating small errors are most common
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Fig. 6 Scatter plots showing the predicted log(N) against its true value for all spectra in the test data.
The colour scale indicates the excitation temperature of the spectrum. Each neural network was trained
on spectra with a noise of 10mK for all molecules except for HCO+ where the best network was trained
using a noise of 20 mK

temperature as seen in the color coding in Fig. 6, as it is purely due to the lack of
signal in the input spectra. Essentially, the network cannot distinguish between input
spectra below a log(N) threshold.

On the other hand, for high values of log(N), the spectral features from the input
data are saturated. That is, all transitions reach a saturation flux density once a value
of log(N) is surpassed (see Martı́n et al., [9], for a description of line saturation).
The log(N) value at which saturation occurs has a strong dependency on the value
of the temperature as seen in the color coding in Fig. 6. The behaviour also depends
on the number of transitions available for each molecule (Table 1). Thus, in the case
of CH3CN, even for high values of log(N), there is still a significant number of low
flux density unsaturated transitions and therefore we do not observe the effect of
saturation in Fig. 6.

The same physical explanation applies to the predictions of temperature param-
eter. Figure 7 presents the test predictions of Tex against their true values. For all
molecules, we can observe that for all values of Tex, predictions appear dependent on
the value of N. As can be seen in the figure, the predicted temperatures are closer to
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Fig. 7 Predicted Tex from the best neural networks against the true value for all spectra in the test set.
The column density of the test spectra is given in the colour scale. The training noise was 10 mK for all
molecules except HCO+ which was 20mK

their real values for higher N. This has a similar explanation to the neural networks’
poor performance on the column density prediction for low column densities. At low
N, the intensities of the transition decrease and come closer to the noise. The noise
then dominates the prediction, making the recognition of the transition impossible
if the transition is below the noise level. We can compare the CO results with the
results of other molecules, particularly with CH3CN which has the largest number of
transitions of the molecules in our set. These results suggest that the accuracy in the
prediction of the temperature could be dependent on the number of transitions avail-
able to construct a better characterized model of the molecule. However this would
require additional testing, which escapes the original scope of this work.

If we increase the noise to 0.05 (50mK) we can observe that the predictions of
temperature spread over a wider range, rather than forming small groups, as in the
case with lower noise. Still, the predictions remain accurate for the higher column
density values (yellow/red values in Fig. 8), where the spectral features are clearly
identified above the noise level.
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Fig. 8 Similar to Fig. 7 but only showing predictions for CH3CN with an rms noise of 50 mK so it can be
compared with lower right panel of Fig. 7

3.2 Results on astronomical data

To further test MolPred we used data from ALCHEMI, which was one of the ALMA
Large Programmes in Cycle 5. The astronomical target was the central molecular
zone of the starburst galaxy NGC253. The project consists of a full spectral line sur-
vey continuously covering ALMA Bands 3 to 7. We used the low resolution spectrum
from the ALMA Compact Array (Morita Array) which covers the frequency range
of 125 GHz to 373.2 GHZ. It therefore contains an almost complete set of transitions
from the sample molecules used in this study. The continuous coverage and uniform
sensitivity makes this dataset an ideal test sample for our study. This wide band spec-
trum was shift to rest frequency assuming a Doppler shift of 250 km s−1 and used as
an input to MolPred. MolPred then generated log(N) and Tex predictions for each
molecule following the flow of Fig. 1.

The MolPred predictions are displayed in Table 8. For comparison, we also
include the fitted values using the MADCUBA AUTOFIT packaged used for the
actual spectroscopic analysis of the ALCHEMI data. The MolPred predictions for
log(N) are within 1.5% of the ones from MADCUBA, and for Tex are within 25%
from the ones by MADCUBA. Thus the predictions agree very well except in the case
of the excitation temperature of CH3CN. However, we note that MADCUBA fitting
algorithm did not converge unless taking into account the contribution from other
molecular species blended to the CH3CN. Despite the fact MolPred did not include
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Table 8 The log(N) and Tex predicted by Molpred for the ALCHEMI data alongside the the values
obtained from the MADCUBA fit

Molecule MolPred log(N) MolPred Tex MADCUBA log(N) MADCUBA Tex

CO 18.51 17.45 18.44 19.48

HCO+ 13.98 16.55 14.08 15.30

SiO 13.17 17.65 13.18 13.98

CH3CN 13.39 58.95 13.27 38.95

information on other molecular “contaminants”, the predictions were still reasonably
close to the value predicted by MADCUBA. We now examine these results by plot-
ting our predictions together with the closest examples to the MADCUBA predictions
from our training files.

We start the analysis with CO, the simplest molecule of our set. The MolPred pre-
diction gives a very similar value of log(N) to the MADCUBA fit but has a slightly
lower excitation temperature. The result of this difference can be seen in Fig. 9 where
we plot the intensities of MADCUBA spectra generated using the MolPred and
MADCUBA predictions alongside the ALCHEMI data. Whilst both models underfit
the data, the MolPred spectrum has a somewhat lower intensity than the others due to
the low excitation temperature. Based on our analysis of the test data, we can expect
the saturation effect seen in Fig. 7 has affected the accuracy of predictions at these
high column densities. Further, the value of the intensity passed to the MolPred pre-
dictor was taken at the rest frequency of the transition and does not match the peak
value due to imprecise Doppler shifting. The peak intensity of the MolPred predic-
tion is close to the value of the ALCHEMI data at the transition frequency for both
CO transitions.

Fig. 9 CO line profiles from the ALCHEMI Data plotted in blue. Overplotted are the spectra generated
from the MolPred predictions (orange) and MADCUBA predictions (green). For reference, we included
a red vertical line to indicate the frequency of the closest transition according to the JPL Catalog. The
ALCHEMI data set used in this test, only has data for 2 out of the 3 transitions in our training data, we can
see the the detail of the CO(2-1) in the left figure and CO(3-2) transitions in the right figure
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Fig. 10 Similar to Fig. 9 for HCO+

For HCO+, the analysis was done following the same process as used for CO.
For this molecule, the ALCHEMI dataset contains data for 3 out of 4 transitions in
the working frequency range. It is interesting that despite the missing transition, in
most cases the MolPred predictions for HCO+ are closer to the ALCHEMI data, than
those obtained with MADCUBA. We can see the prediction differences per transition
in Table 11 and visually observe them in Fig. 10. In Fig. 6, we can see the saturation
limit beyond which the column density cannot be predicted is 14 cm−2. Therefore, we
might expect the accuracy to be affected by this since the column density predicted by
MolPred is close to this value. Despite this, the spectra from the MolPred predictions
are good fit to the ALCHEMI dataset.

The ALCHEMI dataset contains 6 out of the 8 SiO transitions in the working
frequency range. Similarly to HCO+, we can see the prediction accuracy is good in
a couple of transitions. Intensities predicted for SiO transitions can be examined on
Table 12 and seen in Fig. 11. The SiO lines are quite weak and the MolPred fits give
a small log(N). As a result, the temperature prediction suffers for SiO as discussed in
Section 3.1. When used to generate an LTE spectrum, the high temperature predicted
by MolPred for SiO, results in line intensities that are often too large.

Finally we move to the molecule with the largest number of transitions in this
exercise, CH3CN. Since there are 14 groups of transitions with the same J quantum
number, we will zoom in on each group to observe the behavior in Fig. 12. Predicted
intensities generated for each group are described in Table 13. Since the molecule
contains many transitions per group, we decided to select a group representative
frequency (GRF) as the frequency that is closer to the MolPred and MADCUBA’s
prediction peaks. We included in the table, the ALCHEMI intensity at that frequency.
MolPred predictions for log(N) are close to 13.4 cm−2, at which point the noise
starts to strongly affect the predictions (see Fig. 6). This may explain why the tem-
perature predicted by MolPred for CH3CN differs so strongly from the MADCUBA
prediction. We can see the effect of this inaccuracy on the intensities of several tran-
sitions, where the intensities derived from the MolPred prediction, are higher than
the ALCHEMI intensity.

Figure 13 summarizes the prediction differences seen in previous tables. In many
cases, MolPred does very well, giving predicted intensities that are closer to the
data than MADCUBA. Where the results appear significantly different, these differ-
ences can be understood based on the way the parameters are obtained. In the case
of MADCUBA, the entire spectrum is used to fit a group of Gaussian profiles at
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Fig. 11 Similar to Fig. 9 for the SiO transitions in the ALCHEMI data

the frequencies of the molecular transitions. This includes a simultaneous fit to the
width of the line, which can help constrain the effect of opacity mentioned in Section
3.4 of [9], and the fit may be more robust to individual channel variations due to
line shape or noise. On the other hand, our neural networks are trained with single
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Fig. 12 Similar to Fig. 9 for the CH3CN transitions in the ALCHEMI data. The transitions are grouped
by the J quantum numbers and the frequency of each transition are indicated by silver lines
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Fig. 13 Real and predicted intensities as a function of J from MolPred (orange), MADCUBA (green) and
the ALCHEMI data (blue). Intensities are at the rest frequency of the transitions. ALCHEMI collaboration
has agreed on a 15% error bar, due to calibration uncertainties

intensity values for each transition. We can see how in the particular cases of CO
and HCO+, the prediction from MolPred follows very closely the intensity at the
reference frequencies.

It is important to indicate that the training examples were calculated for a veloc-
ity of 250 km s−1 which is slightly different from the source velocity and thus the
channel closest to each transition’s rest frequency is not the peak intensity. This mis-
alignment affects our neural network predictions since it uses the intensity of a single
channel instead of the integrated emission.

Figure 12 also shows the strong impact of contamination from brighter transitions
from other species on the fit results. This is severely affecting 19 − 18 transition of
CH3CN.

Despite its limitations, the MolPred predictions for CO and HCO+ are within the
error boundaries of the ALCHEMI data set. We believe that its performance can be
further tuned moving to a model which uses more information from the spectrum
such as the full line profile or an integrated intensity.

4 Scalability and linear speedup

In order to observe the effects of the paralellization of the predictions, we devised a
test where we would test four different scenarios based on the number of molecules
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Table 9 Prediction speed test, average times in seconds after 30 executions

CO HCO+ SiO CH3CN Cumulative

S1 5.122 5.066 5.246 4.981 20.415

S2 5.671 5.604 11.275

S3 5.888 4.981 10.869

S4 6.573 6.573

passed to MolPred. Each value was obtained by executing MolPred thirty times,
and averaging the execution times. Scenario number one (S1) was to run MolPred,
passing one molecule each time. Scenario number two (S2) consisted in passing pairs
of molecules on each run, CO and HCO+ in the first run, and SiO and CH3CN in
the second run. Scenario number three (S3) consisted in passing three molecules CO,
HCO+ and SiO in one run. We kept the time for CH3CN from its individual pass.
Scenario number four (S4), consisted in passing all four molecules in a single run.

We can observe the times in Table 9 where Scenario number one shows a linear
cumulative time of twenty seconds. Checking scenario number two, we can observe
a 45% decrease in time, as expected from running in parallel. Furthermore, we can
observe that scenario number four displays a 68% time reduction, agreeing with the
expected behaviour.

We can observe in Fig. 14 that the MolPred design, allows to have faster predic-
tions for a larger number of molecules than if they were calculated in a serial way.
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Fig. 14 MolPred prediction speed comparison, average times in seconds after 30 executions
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We can calculate the prediction speedup by applying (1), to Scenario 2, as shown in
(2) and Scenario 4 in (3).

S(S2) = 20.415

11.275
= 1.810x (2)

S(S4) = 20.415

6.573
= 3.105x (3)

5 Conclusions and future work

We described a software package called MolPred which is able to extract the peak
intensities of molecular transitions from spectra and use them to estimate the column
density and temperature of the molecule. It is able to do this for CO, HCO+, SiO
and CH3CN with a mean error of 1-9% on the predicted values when evaluated on
synthetic data.

Molpred was also shown to perform well on real astronomical data. A spectrum
from NGC 253 was processed by MolPred and the values obtained were similar to
those found using the MADCUBA software package for the cases of CO and HCO+.
This was despite the fact that some molecular transitions required for the networks
were missing from the data. The predicted values of log(N) and Tex from MolPred
were within 13% of those found using MADCUBA on average. The differences with
MADCUBA are understood, and mostly related to the fact that MolPred is using sin-
gle values per transition training and spectrum analysis rather than the whole spectral
profile.

We concluded that the best way to train our networks, was by the use of a
single GPU, and observed that increasing the batch size, allowed lower train-
ing times even achieving 87% faster training times, at the expense of a larger
MAE, with an overall increase of 3%, however the relative increase was over 50%
which motivated us to remain using lower batch sizes to achieve lower error lev-
els. MolPred’s parallel prediction design allowed to train all the molecules in 68%
less time (or 3x faster) than what it would have taken to train them one after
another.

Further work should include increasing the number of molecules and predicting
a broader range of physical parameters such as the line width and source size, for
which the whole line profile should be used. The number of molecules should be
extended, and the capacity to predict highly blended spectrum should be explored.
Another parameter to explore would be multiple velocity components. However, this
will require further tuning of the networks as three of the four best neural networks in
this work had three layers of 1024 nodes. This would be prohibitively large if many
molecules were considered, each needing their own neural network. Therefore, either
these networks must be greatly reduce or networks must be trained which can solve
for more than one molecule.
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Appendix A

Table 10 Peak intensities from spectra generated using the MolPred and MADCUBA predictions for CO

Molecule J Intensity Intensity Intensity ALCHEMI @

MolPred (K) MADCUBA (K) Transition Freq (K) @ (GHz)

CO 2-1 49.11 60.15 52.10 @ 230.5380

CO 3-2 93.11 126.60 96.14 @ 345.7959

Table 11 Peak intensities from spectra generated using the MolPred and MADCUBA predictions for
HCO+

Molecule J Intensity Intensity Intensity ALCHEMI @

MolPred (K) MADCUBA (K) Transition Freq (K) @ (GHz)

HCO+ 2-1 2.77 3.44 2.77 @ 178.3750

HCO+ 3-2 6.64 8.24 5.77 @ 267.5576

HCO+ 4-3 7.78 9.69 6.99 @ 356.7342

Table 12 Peak intensities from spectra generated using the MolPred and MADCUBA predictions for SiO

Molecule J Intensity Intensity Intensity ALCHEMI @

MolPred (K) MADCUBA (K) Transition Freq (K) @ (GHz)

SiO 3-2 0.08 0.09 0.10 @ 130.2686

SiO 4-3 0.17 0.15 0.13 @ 173.6884

SiO 5-4 0.22 0.16 0.14 @ 217.1050

SiO 6-5 0.22 0.13 0.17 @ 260.5180

SiO 7-6 0.17 0.08 0.15 @ 303.9270

SiO 8-7 0.11 0.04 0.08 @ 347.3306
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Table 13 Peak intensities from spectra generated using the MolPred and MADCUBA predictions for
CH3CN. The ALCHEMI intensity at the Group Representative Frequency is also shown

Molecule J Intensity Intensity Intensity ALCHEMI

MolPred (K) MADCUBA (K) @ GRF (K) @ (GHz)

CH3CN 7 − 6 0.07 0.08 0.11 @ 128.7577

CH3CN 8 − 7 0.11 0.11 0.11 @ 147.1499

CH3CN 9 − 8 0.16 0.15 0.12 @ 165.5415

CH3CN 10 − 9 0.21 0.18 0.07 @ 183.9320

CH3CN 11 − 10 0.27 0.20 0.12 @ 202.3204

CH3CN 12 − 11 0.33 0.22 0.10 @ 220.7090

CH3CN 13 − 12 0.37 0.22 0.13 @ 239.0968

CH3CN 14 − 13 0.42 0.21 0.08 @ 257.4830

CH3CN 15 − 14 0.44 0.20 0.07 @ 275.8678

CH3CN 16 − 15 0.46 0.17 0.07 @ 294.2514

CH3CN 17 − 16 0.46 0.15 0.09 @ 312.6336

CH3CN 18 − 17 0.45 0.12 0.08 @ 331.0143

CH3CN 19 − 18 0.43 0.10 2.6 @ 349.3450

CH3CN 20 − 19 0.40 0.07 0.04 @ 367.0777

Acknowledgements A.B. wishes to thank Dr. Diego Mardones for his contribution to the early stages
of this work. Also, to acknowledge support from the Federico Santa Marı́a Technical University Gen-
eral Directorate for Research and Postgraduate Studies (DGIP). JH and SV are funded by the European
Research Council (ERC) Advanced Grant MOPPEX 833460. V.M.R. acknowledges support from the
Comunidad de Madrid through the Atracción de Talento Investigador Modalidad 1 (Doctores con
experiencia) Grant (COOL: Cosmic Origins Of Life; 2019-T1/TIC-15379; PI: V.M. Rivilla).

References

1. Berriman, G.B., Groom, S.L.: How will astronomy archives survive the data tsunami? Commun. ACM
54(12), 52–56 (2011). https://doi.org/10.1145/2043174.2043190

2. Cernicharo, J.: Laboratory astrophysics and astrochemistry in the herschel/alma era. EAS Publ. Ser.
58, 251–261 (2012). https://doi.org/10.1051/eas/1258040

3. Chollet, F., et al.: Keras. https://github.com/fchollet/keras (2015)
4. Farnes, J., Mort, B., Dulwich, F., Salvini, S., Armour, W.: Science Pipelines for the Square Kilometre

Array. arXiv:1811.08272 (2018)
5. Jurić, M., Kantor, J., Lim, K., Lupton, R.H., Dubois-Felsmann, G., Jenness, T., Axelrod, T.S., Aleksić,
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