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ABSTRACT

Context. Chemical modelling serves two purposes in dynamical models: accounting for the effect of microphysics on the dynamics
and providing observable signatures. Ideally, the former must be done as part of the hydrodynamic simulation but this comes with a
prohibitive computational cost which leads to many simplifications being used in practice.
Aims. To produce a statistical emulator that replicates a full chemical model capable of solving the temperature and abundances of
a gas through time. This emulator should suffer only a minor loss of accuracy over including a full chemical solver in a dynamical
model but would have a fraction of the computational cost.
Methods. The gas-grain chemical code UCLCHEM was updated to include heating and cooling processes and a large dataset of model
outputs from possible starting conditions was produced. A neural network was then trained to map directly from inputs to outputs
Results. Chemulator replicates the outputs of UCLCHEM with an overall mean squared error (MSE) of 1.7 × 10−4 for a single time
step of 1000 yr and is shown to be stable over 1000 iterations with an MSE of 3 × 10−3 on the log scaled temperature after one time
step and 6 × 10−3 after 1000 time steps. Chemulator was found to be approximately 50,000 times faster than the time dependent model
it emulates but can introduce a significant error to some models.

Key words. Methods: statistical – Astrochemistry – Radiative transfer – Hydrodynamics

1. Introduction

Hydrodynamic simulations are a cornerstone of theoretical astro-
physics. However pure hydrodynamics is often insufficient, for
example in scenarios where radiation, magnetic fields and/or the
chemical evolution plays an important role in setting the dynam-
ics. Furthermore, the chemical composition of an astrophysical
system is important for understanding observables.

Given the above there has been substantial, sustained effort to
develop numerical methods that are capable of dealing with the
combination of required spatial resolution, time step, and micro-
physics. However, even with a pure hydrodynamics calculation
there are many scenarios where the required resolution for con-
vergence alone makes simulations prohibitively expensive (e.g.
the now resolved problem of convergence in the behaviour of
self-gravitating discs, see Meru & Bate 2011, 2012; Young &
Clarke 2015; Deng et al. 2017). When additional microphysics
such as radiative transfer or chemistry are included, which are
typically orders of magnitude more computationally expensive
than hydrodynamics per time step (and may also reduce the pos-
sible time step that can be taken) we find that most problems
cannot be feasibly addressed.

Nevertheless, approximations have been made that have per-
mitted radiation/chemical/magnetic hydrodynamic applications
on the scales of cosmology/galaxies (e.g. Iliev et al. 2009; Few
et al. 2012; Pillepich et al. 2018) through ISM evolution and
star formation (e.g. Glover & Clark 2012; Ali et al. 2018; Ali
2021), protoplanetary disc evolution and planet formation (e.g.

Ilee et al. 2017; Haworth & Clarke 2019; Krijt et al. 2020) right
down to exoplanet atmospheres (e.g. Venot et al. 2012; Drum-
mond et al. 2018). However by necessity these approximations
sacrifice accuracy to make the problem computationally feasible.
Typical approximations regarding the chemistry are to assume
equilibirum (which could be inaccurate both for the tempera-
ture/dynamics and composition/observables) and to use severely
reduced networks with what are thought to be the key compo-
nents for any given problem. However it is difficult to know a
priori to what extent these approximations are reasonable for any
given application. Furthermore, there may even be qualitatively
new processes that are overlooked through simplified approaches
to the microphysics (e.g. this was discussed and reviewed in the
context of protoplanetary discs by Haworth et al. 2016).

One alternative to addressing the large computational cost is
to employ an efficiency boosting tactic. For example, on the fly
calculations can be used to determine reactions or species in a
chemical network that are unimportant in any given timestep, al-
lowing them to be left out of the calculation (Grassi et al. 2012).
This can give considerable speed up in models where the over-
head from the “importance calculations” is outweighed by the
speed up of the chemical solver. Alternatively, large grids of
models can be calculated in advance and a look up table inter-
polated over in dynamical models (eg. Ploeckinger & Schaye
2020). Another innovation has been to combine multiple reac-
tions and particles into smaller sets of meta-reactions and meta-
particles (e.g. Nelson & Langer 1999). However, even with these

Article number, page 1 of 16

ar
X

iv
:2

10
6.

14
78

9v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
8 

Ju
n 

20
21



A&A proofs: manuscript no. network_emulator

innovations there are still many problems that remain out of
reach.

In spite of the above, it may be possible to obtain a huge
decrease in computational time whilst maintaining high accuracy
through an emulator. An emulator in this context is a statistical
model which returns the same outputs as a numerical model for
the same inputs but is much faster to evaluate. These have been
used to speed up parameter inference from radiative transfer and
chemical models (de Mijolla et al. 2019) as well as to solve the
thermochemistry of a small reaction network (Grassi et al. 2011).

In this work, the code Chemulator1 is developed. The objec-
tive is to develop an emulator for solving the chemistry and gas
temperature with sufficient accuracy and speed to render a host
of new problems attainable. The emulator should take the state
of the gas at a time t as an input and returns the state of the gas
(composition, temperature) at a time ∆t later. This will result in a
model with approximately the accuracy of a full chemical solver
with the much smaller computational cost of evaluating a neural
network.

To achieve this, a zero dimensional model that includes a de-
tailed treatment of the relevant chemical and thermal processes
was produced and is described in Section 2. This is then used to
train the network, with the training process aided by a dimen-
sionality reduction described in Section 3. The model training
and basic performance metrics are presented in Section 4 and
the work is summarized in Section 5.

2. The Model

2.1. Model Requirements

The model should take the physical parameters and chemical
abundances of a gas at time t and return the temperature and
abundances at a time t + ∆t. It is intended to be employed as a
subgrid model in 2/3D dynamical simulations. This results in a
crucial requirement on the list of the model specifications due to
two competing constraints.

Firstly, in order for the emulator to work, the model cannot
rely on information about the object beyond the initial condi-
tions of a given time step. For example, radiative transfer solvers
typically iteratively solve the optical depths along "rays" from
a given position. However, the emulator will not have access to
internal values of the model such as those optical depths and so
the model cannot rely on this method.

However, in order for the emulator to be effective at its in-
tended task, non-local effects such as line cooling should approx-
imate their effect in multi-dimension models. Therefore a set of
inputs must be found that allow the 0D treatment to recover the
temperatures of a non-local treatment. In the following sections,
the solution to this is discussed and the model is benchmarked
against a 1D model.

2.2. Model Description

The time dependent gas-grain chemical code UCLCHEM (Hold-
ship et al. 2017) was adapted to serve as the model to be emu-
lated. It has been modified to include heating processes from
UCL-PDR (Bell et al. 2005; Priestley et al. 2017), molecular line
cooling (Bell et al. 2005; de Jong et al. 1980) and other cooling
processes from KROME (Grassi et al. 2014). See Tables 1 and
2 for a list of implemented heating and cooling processes. The
model consistently solves the time-dependent gas chemistry and

1 https://github.com/uclchem/Chemulator

Cooling Process Source
KROME

H, He, He+ collisional ionization Cen (1992)
H+,He+,He2+ recombination Cen (1992)
He dielectric recombination Cen (1992)
H collisional excitation Cen (1992)
He collisional excitation Cen (1992)
He+ collisional excitation Cen (1992)

H2 collisional dissociation Martin et al. (1998)
Glover & Mac Low (2007)

Bremsstrahlung all ions Cen (1992)
Compton cooling Cen (1992)
Continuum Hirano & Yoshida (2013)
Collisionally Induced Emission Hirano & Yoshida (2013)

UCL_PDR
LVG line cooling de Jong et al. (1980)
H2 single pseudo level
vibrational cooling Röllig et al. (2006)

Dust cooling (and heating) Hollenbach & McKee (1979)
Important endothermic Reactions Bell et al. (2005)

Table 1. Cooling Processes in the model. The processes are listed with
their original source and grouped by the source for the treatment used
in the model.

Heating Process Source
Photoelectric Heating Weingartner & Draine (2001)
H2 Formation Hollenbach & Tielens (1999)
H2 Photodissociation Hollenbach & McKee (1979)
H2 FUV pumping Hollenbach & McKee (1979)
C ionization Kamp & van Zadelhoff (2001)
CR heating Goldsmith (2001)
Important exothermic Reactions Bell et al. (2005)
Gas-grain Collisions Burke & Hollenbach (1983)
Turbulent decay Black (1987)

Table 2. Heating Processes in the model with original reference. The
code and processes were taken from UCL_PDR (Bell et al. 2005).

temperature for a single position in a cloud. The required inputs
are the initial chemical abundances and the physical properties
of the cloud at that position as listed in Table 3. The outputs are
the gas temperature and chemical abundances at a later time.

The requirement that the model solves a single position inde-
pendently of other positions has been satisfied using the column
density inputs. There are broadly two areas where a non-local
model would use information from the wider cloud. For pho-
toionization reactions, the total column density gives the level of
visual extinction and therefore the local UV field. Further, cal-
culating the column density of a specific species to the cloud
edge corrects their rates for effects like self-shielding. For this
time dependent model, the H2 self-shielding and C photoioniza-
tion rate can simply be calculated using the column density of
C and H2 at the start of the time step. Interestingly, despite the
fact UCLCHEM treats CO self-shielding, the CO column den-
sity was not included as an input. In initial testing, it was found
that calculating the CO column density by simply using the CO
abundance of the current position and the input column density
allowed the model to pass the benchmark tests over a wide range
of parameters and visual extinctions.
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Parameter Symbol Range

Gas density nH 10 –106 cm−3

Gas temperature Tg 10 – 104 K
Dust temperature Td 10 – 103 K
Radation Field FUV 10−1 – 105 Habing
Cosmic Ray Ionization Rate ζ 10−2 – 105ζ0
Total Column density N 1015 – 1024 cm−2

H2 Column density NH2 105 – 5 × 1023 cm−2

C Column density NC 1.0 – 1.5 × 1020

Metallicity Z 10−2 – 100.5

Table 3. A list of model inputs excluding the species abundances. ζ0
indicates a standard cosmic ray ionization rate of 1.3 × 10−17 s−1. Note
that throughout the text the UV field is discussed in units of the Draine
field to assist comparison with other codes. However, Chemulator uses
Habing (1 Draine = 1.7 Habing).

The other non-local effect is the calculation of the line opac-
ities of all coolant species. For this, the on-the-spot approxima-
tion (Dyson & Williams 1997) was used in which the line opac-
ities are calculated for a homogeneous cloud with the gas prop-
erties of the current position and a size that gives the same total
column density as the input value. Whilst this does not a pri-
ori guarantee correct cooling rates, the model is benchmarked
extensively in the next section.

Overall, this approach means the user needs to provide only
three variables to allow the model to capture non-local effects on
the temperature and chemistry. An alternative approach would
be to make UCLCHEM use local variables only and shift the
computation of the local UV field, the rates of photo-processes
and the cooling rates to the user. It is possible this would im-
prove the emulator by essentially pre-encoding the relationship
between various inputs but would represent a much larger com-
putational burden to the user.

The chemical network contains 33 gas phase species, inter-
acting through 330 reactions. The gas phase network is taken
from the UMIST12 database (McElroy et al. 2013), including
reactions between the network species, cosmic rays and UV pho-
tons. X-rays are not considered by this model. In principle, using
an emulator could allow complex chemistry to be solved without
computational overhead but in an early prototype of this emula-
tor, no working emulator could be produced from a model us-
ing a network of 215 species (Appendix A). Moreover, the gas
temperature for any given set of input parameters was largely
unaffected by the choice of network and so, for simplicity, this
smaller network was used (see Section 2.4).

The temperature is solved by including it in the ODE system
solved for the chemistry. The rate of change of temperature is
calculated as

dT
dt

= (γ − 1)
Γ − Λ

kBnH
(1)

where γ is the adiabatic constant of the gas calculated from the
number densities of the most abundant gas phase species using
Equation 8 from Grassi et al. (2014). Γ and Λ are the total heating
and cooling rates in erg cm−3 s−1 respectively and nH is the total
gas number density, approximated as the total number density of
hydrogen nuclei.

2.3. Benchmarking the modified UCLCHEM code

Given the simplified nature of the radiation treatment in this
model, the modified UCLCHEM code was benchmarked against
UCL_PDR (Bell et al. 2005; Priestley et al. 2017). UCL_PDR is
a 1D PDR code that uses ray tracing to consistently solve the line
opacities for all positions in the model together and to calculate
column densities for the treatment of photoionization reactions.
Therefore, it is an ideal test of the 0D approximation of the mod-
ified UCLCHEM. Moreover, it was itself benchmarked against
many other PDR codes (Röllig et al. 2007). For this benchmark-
ing, all cooling rates other than molecular line cooling were
also turned off so that both codes shared heating and cooling
mechanisms. As a result, any differences can be attributed to ei-
ther the single point treatment or time dependent chemistry of
UCLCHEM.

The two codes were compared using the four benchmark
models of Röllig et al. (2007) as well as models with a low
radiation field, low metallicity and high cosmic ray ionization
rate. Figure 1 shows the results of the (Röllig et al. 2007) bench-
marks, the low radiation field and high cosmic ray ionization rate
models. In every model, the temperatures between the two codes
were in close agreement.

Each of the Röllig et al. (2007) benchmarks modelled a cloud
of constant density. In order to investigate whether this homo-
geneity was important for UCLCHEM to achieve accurate re-
sults in a 0D model, further models were run for clouds with
more complex density profiles. In particular, Figure 2 shows the
temperature and abundances of several species as a function of
Av for a cloud where the density at any position is a sine wave
function of the distance to the cloud edge. This unphysical sce-
nario would reveal any problems that UCLCHEM suffers when
dealing with inhomogeneous clouds. However, it is clear from
the figure that the agreement between the two codes is very good.

2.4. Considerations for the Full Model

A major conclusion of Röllig et al. (2007) was that a large degree
of fine tuning is required to make PDR codes agree. Therefore, it
is important to consider the effect of including additional cooling
mechanisms and more complex chemistry in the model after the
benchmarking tests were completed.

In particular, it should be noted that the initial elemental
abundances have a large effect on the gas temperature. In the
worst case, in the high density benchmark model with a radiation
field of 105 Draine, the gas temperature using solar abundances
(Asplund et al. 2009) reaches 7750 K rather than the 1380 K ob-
tained using the Röllig et al. (2007) benchmarking abundances.

However, holding the abundances constant, the benchmarks
were performed including the additional cooling mechanisms in
Table 1 and a larger network of ∼ 250 species. This gave a maxi-
mum temperature difference of 5% compared to the benchmark-
ing models. This justifies the use of a smaller network for the
emulator.

Finally, it is worth noting the benefits of the single point
model over the 1D PDR codes that are available. UCL_PDR,
like many PDR codes, assumes the chemistry and temperature
reach equilibrium. In Figure 3, the gas temperature as a fraction
of the equilibrium temperature is given for different times for a
sample of 20000 random UCLCHEM models (see Section 3.1
for the models used). Equilibrium is often reached quickly with
80% of models reaching equilibrium by 0.1 Myr. However, 5%
of models do not reach equilibrium after 0.5 Myr. Thus for a
sub-grid model with short time steps, the model presented here
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Fig. 1. Temperature as a function of visual extinction, the lower four plots show Röllig et al. (2007) benchmarking models. In each subplot, the UV
field in Draine is noted and in the top right, 100xCR indicates the cosmic ray ionization rate is 100 times standard. The models agree extremely
well, allowing for the finer AV sampling of UCL_PDR.
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UCLCHEM are plotted as solid lines and equivalent values from
UCL_PDR are plotted with dashed lines in the same colour.

offers a significant improvement over equilibrium models for
many cases. Further, given that the heating and cooling processes
have been shown to be implemented with adequate accuracy by
the benchmarks, the differences in temperature obtained with the
full network must in fact be the result of improved chemistry.

3. Dimensionality Reduction

The inputs for the full model are the 33 initial chemical abun-
dances and the physical variables listed in Table 3. Considering
all inputs, there are 41 variables which would need to be suf-
ficiently well sampled to provide adequate training data for the
emulator which poses a considerable challenge. Further, an em-
ulator that could take all 41 variables and return them at a time
∆t later would be required and a regressor with so many outputs
is unlikely to be uniformly accurate.

However, the chemical abundance variables cannot be in-
dependent because the chemical network is a closed system of
ODEs. Intuitively, the more atoms there are, the fewer molecules
there must be and the more ions in the gas phase, the more free
electrons there must be. Therefore, it should be possible to trans-
form the abundances to a new, lower dimensional set of variables
with minimal loss of accuracy.

Using such a dimensionality reduction procedure, the opera-
tion of Chemulator would be to first encode the input chemical
abundances into the lower dimensional space, then emulate the
advancement of the (encoded) chemistry and temperature, before
decoding the abundances. This is illustrated in Figure 4 and the
following section details the creation of the encoder and decoder.
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Fig. 3. A histogram where the colour shows the fraction of models at
a given time which have a given log ratio of current temperature to
equilibrium temperature. After as few as 1000 years, the majority of
models have reached their equilibrium temperature. However, even as
the time approaches 1 Myr, ∼ 1% of models have not reached equilib-
rium which demonstrates that assuming equilibrium will often lead to
incorrect chemical abundances.

3.1. Dimensionality Dataset

To do this, a dataset of abundances that gave a good representa-
tion of all possible abundances in the model was created. Latin
hyper cube sampling (LHS) (McKay et al. 1979) was used to ef-
ficiently sample the physical parameters in Table 3 in log-space
within the given ranges to produce initial conditions for 10000
models. An exception to this sampling procedure had to be made
for the column densities. Whilst the total column density was
sampled with the other parameters, the H2 and C column densi-
ties are dependent on the total column density and so could not
be sampled independently. To obtain sensible column densities
for those molecules, the benchmarking models were examined
to find possible ranges for any given total column density. These
possible ranges were then randomly sampled to get a H2 and
C column density compatible with the total column density for
each model.

Those models were run for 1 Myr starting with elemental
gas and abundances were written out every 1000 yr. Following
that, another 10000 samples from the physical parameter space
were taken and models were run for 1 Myr starting from the final
abundances of a model from the first set. This introduced differ-
ent chemical histories to the dataset as well as varying the phys-
ical parameters. The resulting dataset contained 2 × 107 sets of
abundances from various stages of chemical evolution in physi-
cal conditions that span the range of those covered by the emu-
lator.

This dataset was then used to find a transformation that could
transform the abundances to a lower dimensional set of variables
and then recover them with minimal losses. Ultimately, an au-
toencoder was chosen for this purpose. An autoencoder is a neu-
ral network which returns the input as an output. By creating an
autoencoder where one of the hidden layers is very small, the
abundances can be compressed.
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Fig. 4. Flowchart showing the operations performed by Chemulator. In
particular, it shows how the autoencoder described in Section 3 com-
bines with the emulated version of the chemical model to produce the
final output.

To train the network, the dataset was transformed in the fol-
lowing way:

– All abundances less than 10−20 were clipped to 10−20.
– The log of the abundance was taken.
– Log abundances were scaled to be between 0 and 1.
– If any set of scaled log abundances was identical to another

to at least 3 decimal places, one set was removed to ensure
there were no duplicate sets of abundances in the data.

The log of the abundances was used so that no preference was
given to the high abundance species. Without this, a 10% error
on a species like H2 would contribute ∼ 104 times as much error
to the network as even an abundant species like CO.

The abundances were clipped to 10−20 as this greatly im-
proved the autoencoder accuracy over UCLCHEM’s internal
clipping at 10−30. This negligible error of at most 10−20 on the
species abundance was considered an acceptable given that ob-
served abundances in the ISM are typically greater than 10−12.

The removal of duplicates improved the efficiency of training
the neural network as approximately 40% of the training data
was removed with no loss of information. It also improves the

Layer Nodes Type

0 33 Input
1 256 Dense - Swish
2 8 Dense - Swish
3 256 Dense - Swish
4 33 Dense - Sigmoid

Table 4. Description of autoencoder layers and configuration. Layers
0-2 comprise the encoder and layers 2-4 are the decoder.

network by preventing it from favouring accurate recovery of
a small set of commonly repeated abundances. Finally, scaling
variables is a common approach to training neural networks. It
also has the advantage that the rms error becomes intuitive as it
is the average fractional error on the outputs.

In addition to this pre-processing, two aspects of UCLCHEM
could be used to improve the emulator. Firstly, the e− abundance
is always the sum of all ion abundances. Thus, this abundance
does not need to be encoded and can be simply recovered from
the ions. Secondly, the total H in the model must equal one,
this is enforced in the emulator by removing H+ when the to-
tal is larger than one and then H if the abundance is still too
large. Other species have total abundances that can vary based
on metallicty and so no conservation is applied to them.

3.2. Selecting an Autoencoder

The abundance dataset was split 70:30 into training and vali-
dation data and a large grid of neural network configurations
with different sizes and numbers of layers and different acti-
vation functions was run. Each autoencoder required approxi-
mately one minute per epoch to train and 30-50 epochs to reach
a minimum validation error. The neural networks were trained
by minimizing the mean squared error (MSE) on the recovered
abundances. This is the mean squared difference between the in-
put abundances and the predicted abundances. MSE values be-
tween 10−6 to 10−5 could be obtained with many neural networks
with encoded sizes of as few as 4 variables.

However, neural networks can show strongly non-linear be-
haviour particularly when multiple layers are combined. This
would mean small changes to the encoded values could result
in large changes to output abundances. Since the emulator will
work with these encoded variables, simple behaviour was pre-
ferred because the emulator would introduce small errors to the
encoded values which should ideally correspond to small errors
in the abundances. Therefore, whilst the best autoencoders had
two layers in the encoding and decoding parts of the network, the
final network chosen was one with only a single layer in the en-
coder and decoder. The model described in Table 4 has an MSE
of 8 × 10−6 on the test data, which corresponds to an RMS error
on the predited log abundances of 0.3%.

This accuracy is demonstrated visually in Figure 5. Most
species show an extremely tight relationship between the autoen-
coded and original abundances. The autoencoder’s performance
is worst when the abundance of a species is much lower than is
typical. This can be seen in the spikes in the H2 predictions at ∼
10−10. The figure also shows that at low abundances (<10−5), the
H abundance is systematically underpredicted, likely as a result
of the enforcement of H conservation described in Section 3.1.
Nevertheless, the performance of this autoencoder was consid-
ered to be sufficient and therefore it was used for the emulator.
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Fig. 5. Predicted abundance after a pass through the autoencoder as a
function of true abundance for several important species. The solid lines
show the median predicted value in the test set for a given real value, the
shaded area shows the predicted range for 95% of encoded abundance
sets.

3.3. Drawbacks of the Autoencoder Approach

Despite using the simplest network with an acceptable accuracy,
the drawback of using an autoencoder was that, upon experimen-
tation, it was found that the chemical abundances could not be
sampled in encoded space. The complexity of this dimensional-
ity reduction method is such that any set of abundances can be
accurately encoded and decoded but not all possible combina-
tions of encoded variables will produce realistic or even reason-
able abundances.

When testing this, the entire dimensionality reduction data
was encoded and the range of values each encoded variable took
were used as limits on those variable. LHS sampling between
those limits was then performed to generate a well sampled set of
encoded abundances. However, upon decoding, it was found that
many abundance sets were infeasible such as total carbon abun-
dances ten times that of hydrogen meaning that this sampling
procedure could not be used to generate well sampled abun-
dances.

Given that one of the two motivators for the dimensional-
ity reduction was improved sampling, a simpler dimensionality
reduction method was tried. A PCA analysis of the training data
was conducted to investigate whether a simple linear transforma-
tion of the abundances would suffice. However, the PCA analy-
sis required 12 variables to describe 99% of the variance in the
abundances and this gave an rms error on the log abundances
of 1.4 × 10−2. Encoding the chemistry in PCA components re-
quired too many components to be useful in order to achieve an
acceptable accuracy.

In light of this, it was not possible to evenly sample phys-
ical and chemical parameter space. Therefore, the dimension-
ality dataset was used to train the emulator. The chemical and
physical parameters for each of the 10000 models in that dataset
were written to file every 1000 years from 0 to 1 Myr inclusive.

This means there were 1000 pairs of initial parameters with the
corresponding values 1000 years later in each model. Thus 20
millions pairs of inputs and outputs were available to train the
emulator.

Whilst the autoencoder was not used for sampling, it was
still used to reduce the input parameters for the emulator. It is
likely that an improved dimensionality reduction would repre-
sent a major improvement to this work and may even allow a
much larger chemical network to be emulated. This will be the
focus of later study.

4. Creating an Emulator

The model presented so far is a complex and accurate time de-
pendent model for the thermodynamics and chemistry of a parcel
of gas. However, unlike models such as PRIZMO (Grassi et al.
2020) which have been optimized for direct use in hydrodynamic
models, it would be inefficient to run as a sub-grid model. The
main aim of this work is to produce an emulator for the model
that is similarly accurate but has a far lower computational cost
than any equivalent model.

4.1. Training the Emulator

As noted in Section 3.3, the dimensionality dataset was used
to train the emulator. In fact, the possiblity that this would be
a secondary use of the dimensionality dataset is the reason a
fixed timestep was used in the generation of that data. By match-
ing each timestep to the one that follows, an emulator can be
trained that always advances the temperature and chemistry by
1000 years. Larger timesteps can be obtained by repeatedly run-
ning the emulator and an emulator working with small, fixed
timesteps is easier to develop than one which can produce vari-
able time advancements.

All chemical abundances were encoded by the autoencoder
to give eight chemical variables. The physical parameters were
then log scaled and then all inputs were min-max scaled to take
the range 0-1. To avoid bias, the data were rounded to n deci-
mal places and duplicate rows were removed before returning to
the original values. Rounding to two or three decimal places was
found to greatly improve the model performance over higher val-
ues of n. Finally, this dataset was split 70:30 to train and test the
emulator.

The emulator is a neural network which takes the 16 input
variables and returns the gas temperature and the eight encoded
abundance variables. The number of hidden layers, the size and
the activation function for each layer was chosen by training a
large grid of models, minizing the MSE on the outputs.

It was found that MSE values of 10−5 to 10−4 could be ob-
tained with networks with 2-4 hidden layers of at least 128 nodes
each using ReLu or Swish activation functions (Ramachandran
et al. 2018). The performance of a typical emulator on a single
time step is shown in Figure 6. Note that despite the fact it is
an analytical function of the emulator inputs, the dust tempera-
ture has been included as a target for the emulator for ease of
implementation.

A selection of species abundances are also shown in Figure 6.
Since neither the emulator nor autoencoder are trained to con-
serve mass, oscillations seen in these abundances do not affect
the abundancs of other species. The exception is e− which has
an abundance equal to the total ionization fraction of the gas in
UCLCHEM and therefore is calculated by summing the total ion
abundances in the emulator. By capturing this abundance well,
the emulator is recovering that fraction.
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However, a known flaw of these kinds of emulators is that
over many time steps, error accumulates and the predicted val-
ues after n iterations can be extremely far from the true value.
This has been seen in similar models in the past (Grassi et al.
2011, private comm.). Since this emulator is intended to be used
over many iterations of a hydrodynamical model, this would be
unacceptable and it was found that all single emulators suffered
from this issue.

4.2. Error Mitigation

Once it was found that even a small single time step error pro-
duced unacceptable error growth, two methods were explored to
make the emulator robust to errors that would be introduced by
the neural network.

Firstly, a Gaussian noise layer was added to the network dur-
ing both the autoencoder and emulator training. This is a neural
network layer which is only active during training and introduces
Gaussian noise with some standard deviation σ. This noise was
added to the encoded variables in the autoencoder and to the in-
put of the emulator. If a network can still accurately predict the
outputs with this noise, it should be robust to errors of the same
order as σ. Given the typical RMSE of the emulators is 0.01,
values of sigma between 0.01 and 0.05 were trialled. Secondly,
an ensemble model was employed. This is simply a model which
contains N neural networks each trained individually on the data.
They each predict the output and then the mean prediction from
all N networks is the model output. In this way, if one network
predicts an incorrect value, the others may counter it.

Increasing the noise was found to improve the model sta-
bility at the cost of increasing the single timestep error. Models
trained using a σ of 0.05 were found to be most stable, giving a
similar MSE after 1000 time steps as they give for a single time
step. However, those trained with lower noise achieved better
MSE error overall and often had a lower MSE error after 1000
time steps than the high noise models despite the fact the error
grows with time. It was also found that the ensemble models im-
proved the prediction accuracy but only for ensemble sizes up to
four, beyond which the MSE was unchanged.

The final ensemble model used four networks each with two
ReLu layers of 256 nodes per layer which were trained seper-
ately before being combined using an averaging layer. It was
trained with a noise σ of 0.02 to minimize error at the cost of
some stability as it still performed better after 1000 time steps
than a similar, more stable, network trained with a noise of 0.05.
The ensemble performs just as well on a single time step as
the single networks, with an overall MSE of 5.6 × 10−5. This is
equivalent to an RMS error of 0.7% on the output variables. Most
importantly, the error does not continuously grow over many it-
erations as it did in the noise-free single models.

4.3. Model Performance & Benchmarking

The goal of this work is to produce a prototype of a "fast" and
"accurate" emulator for thermochemical models. The former cri-
terion is certainly met. The training data required 3750 CPU
hours to produce. However, taking the values at t=0 yr and em-
ulating each of the 20,000 models to their final time of t=106

years required 5 minutes on a single NVIDIA GeForce GTX
1650 GPU.

To demonstrate how well Chemulator meets the second cri-
terion, the performance of the emulator on the test data and a
number of simple benchmarks are presented in this section. In

Figure 7 a similar plot to Figure 6 is shown except the predicted
and real values are compared after 1, 100, and 1000 time steps
to show the error growth. From the size of the shaded regions
in the figure, it is clear the error does not grow continuously.
One should note, however, that even after 1 time step, the error
is larger than in Figure 6. The model appears to perform worst
on the first time step of each model in the database, possibly be-
cause the random conditions are not always consistent with the
abundances. Quantitatively, the MSE on the log-scaled tempera-
ture is 6 × 10−3 after 1000 yr and 6 × 10−3 after 1 Myr.

However, this error is not uniform and a minority of models
drastically affect the performance. Figure 8 is identical to Fig-
ure 7 except it shows only the 67% of models closest to the true
value. The error distribution is much narrower, especially on the
gas temperature, showing that in the majority of cases the em-
ulator produces very accurate temperatures over long times. In
order to determine the region of parameter space in which the
emulator fails, the error as a function of input parameters was
investigated. Figure 9 shows how the mean fractional error on
the temperature varies as a function of radiation field and density
after 1 Myr of evolution. The emulator gives better temperature
estimates for lower UV, with a notable cut off at a UV field of
100 Draine, above which the average error can be larger than
50%.

The second set of tests considered for the emulator are the
Röllig et al. (2007) benchmark models from Section 2.3. Given
that the original model passed this benchmarking, an emula-
tor should too. This offers several advantages as a test. Firstly,
it is a test many PDR models have passed and therefore any
new PDR model should attempt to pass it. Second, the bench-
marks are equilibrium models and so the stability of the emula-
tor will be tested. Finally, every single model in the training set
uses elemental abundances from Asplund et al. (2009), scaled
by the metallicity. However, the benchmark models use elemen-
tal abundances that are not a single scaling of those elemental
abundances and so present an interesting out of sample test.

Figure 10 shows the four benchmarking models from Röllig
et al. (2007) plus two additional models as in Figure 1. Com-
paring the temperature as a function of Av between UCL_PDR
and Chemulator, it appears the model struggles with low Av val-
ues. At 10-20% error is typical in these regions and in the low
density, high UV model this error is almost 50% in the low Av
region. This is likely due to the fact the emulator performs worse
at higher UV as seen in Figure 9.

However, the model does perform well at higher Av. The er-
rors on the temperature are very small once the Av & 1 Mag.
Moreover, these solutions are extremely stable and the same re-
sult is obtained after 2000 iterations as after the 1000 iterations
(1 MYr) shown in these figures.

This is further demonstrated in Figure 11 which shows the
sinusoidally varying cloud used as a complex benchmark for
UCLCHEM. Whilst the temperature is over predicted at low Av,
Chemulator gives a reasonable estimate further into the cloud.
Moreover, the fluctuations in the temperature that arise from the
varying density are very well captured.

Figure 11 also shows the abundances from the sinusoidal
model and Figure 12 presents the abundances from the bench-
mark models. Chemically, the emulator appears to give accu-
rate estimates of the true abundances. The abundances of most
species are close to the benchmark values in every model. Most
interestingly, this is even true in the case of the 105 Draine, low
density model for which the temperature is poorly captured. It
appears Chemulator is able to recover the chemistry even in
cases where the temperature predictions are poor.
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Fig. 6. Predicted against real model outputs for the emulator test set. The solid line shows the median value predicted for a given true value and
the shaded region shows the range of values predicted in 95% of cases.
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Fig. 7. Predicted against real values for time steps in the test set. The median is plotted as a line and the shaded region shows the range predicted
by 95% of models. The colours represent the number of timesteps emulated. For example, the blue lines show predicted evolution of the chemistry
for 1 Myr compared to actual value after 1 Myr. Note, the dust temperature error is stable as it is a function of UV and column density which do
not change.
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Fig. 8. Similar to Figure 7 but the shaded region only covers the 67% of models closest to the correct value rather than 95%.
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Fig. 9. Fractional error on the gas temperature after 1000 iterations (1
Myr) through the emulator as a function of gas density and external UV
field.

However, Chemulator does overestimate the CO abundance
at low Av where the abundance is low. Since the CO column
density is not included in the model inputs, one might expect
a poor CO self-shielding treatment is the problem. However,
the UCLCHEM benchmarking (eg Figure 2) shows UCLCHEM
does not suffer from this issue and so it cannot be a result of the
inputs. Therefore, this error is more likely due to the fact that
CO is most often found at higher abundances and so the emu-
lator struggles with the unusual case of a low CO abundance.
Similar behaviour can be seen in Figure 7 with species such as
O which often have a high abundance. The emulator performs
very poorly in situations where a species has a much lower than
usual abundance but performs well when the species has a high
abundance.

5. Conclusions

The code Chemulator2 has been presented. Chemulator is an
emulator that advances the gas temperature and chemical abun-
dances of a single position in an astrophysical gas. It is very ac-
curate on a single timestep and stable over many iterations with
decreased accuracy.

An autoencoder was used to reduce the dimensionality of the
problem. This was successful in reducing the number of chemi-
cal variables in the model from 33 to 8. However, it was found
that the encoded space could not be uniformly sampled as it led
to spurious abundances. An improved dimensionality reduction
procedure could both allow this emulator to be extended to much
larger networks and lead to a better sampling of the input param-
eter space.

Chemulator was used to calculate the gas temperature of a
standard suite of PDR models. It performed well on these when
the visual extinction was high, demonstrating both accuracy and

2 https://github.com/uclchem/Chemulator

stability. However, it gave large error on at low visual extinc-
tions, often underestimating the temeprature and giving a tem-
perature a factor of two too small in a model with an external
UV field of 105 Draine and density of 103 cm−3.

Given the density and UV field constraints on the perfor-
mance of Chemulator, it would be a useful code for applica-
tions such as large scale ISM modelling. It should be noted that
the code to develop these emulators has been released alongside
the pre-trained Chemulator. Thus, more specialized applications
such as the modelling of planetary atmospheres could be also be
served by retraining the emulator for a given parameter space.

Overall, Chemulator is a strong first step, demonstrating the
promise of this approach. However, improvements need to be
made to make it more generally usable as a chemical tool. It is
likely that the emulator could be improved by a more accurate
or less complex dimensionality reduction. The introduction of a
noise layer during training ensured the emulator was resilient to
small errors in the encoded variables but it is possible the au-
toencoder introduces large changes to the encoded variables for
small changes in abundance, making it difficult for the emula-
tor to learn the relationships between the encoded variables, the
physics, and their subsequent values.

Further improvements could be made through the production
of a training dataset that is better engineered to cover all realis-
tic inputs. The dimensionality reduction is a part of this but it
is also important to investigate sampling techniques which will
produce a dataset that uniformly covers the chemical parameter
space rather than just the parameter space of the initial physical
inputs. It is possible the poor performance at low visual extinc-
tions could be rectified by altering the training set to more strong
represent these regions.
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Fig. 10. Similar to Figure 1 but comparing gas temperatures from UCL_PDR and Chemulator. The dust temperature is not included as it is an
analytical function of column density and UV.
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Fig. 12. Comparison of the equilibrium abundances obtained with UCL_PDR and Chemulator for each of the benchmark models. UCL_PDR
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Appendix A: Extending to Larger Networks

An early iteration of this work utilized a network of 215 species
interacting through 2508 reactions including both gas and grain
surface species. The possibility of producing an emulator which
could solve such complex chemistry with a small computation
time was an obvious goal. However, no working emulator could
be produced and in this appendix, the strengths and failings of
that model are discussed.

Interestingly, despite the fact this network had almost seven
times as many species as the small network, it was possible to
produce an autoencoder that had a similar accuracy to the small
network encoder without being much larger. A network with one
hidden layer of 256 neurons in both the encoder and decoder
was used, just like the final autoencoder in section 3.2. With an
encoded size of 12, rather than 8, chemical variables, the au-
toencoder for the large network could obtain MSE values ∼10−5.
This is promising for future work as it implies even large chem-
ical networks can be represented by very few variables.

Following this, a grid of emulators were trained and tested
using the encoded chemistry and physical inputs. The best emu-
lator had a single timestep MSE of 2.9 × 10−4, approximately a
factor of two larger than the small network emulator. However,
even with the introduction of ensemble models and the Gaus-
sian noise layer which ensured the small network emulator had
a stable error, error growth could not be prevented in this model.

References
Ali, A., Harries, T. J., & Douglas, T. A. 2018, Monthly Notices of the Royal

Astronomical Society, 477, 5422
Ali, A. A. 2021, Monthly Notices of the Royal Astronomical Society, 501, 4136
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, Annual Review of

Astronomy and Astrophysics, 47, 481
Bell, T. A., Viti, S., Williams, D. A., Crawford, I. A., & Price, R. J. 2005,

Monthly Notices of the Royal Astronomical Society, 357, 961
Black, J. H. 1987, in Interstellar Processes, Proceedings of a symposium, held

at Grand Teton National Park, Wyo., July, 1986, Dordrecht: Reidel, 1987,
edited by David J. Hollenbach, and Harley A. Thronson. Astrophysics and
Space Science Library, Vol. 134, p.731, Vol. 134, 731–744

Burke, J. R. & Hollenbach, D. J. 1983, THE GAS-GRAIN INTERACTION IN
THE INTERSTELLAR MEDIUM: THERMAL ACCOMMODATION AND
TRAPPING, Tech. rep.

Cen, R. 1992, The Astrophysical Journal Supplement Series, 78, 341
de Jong, T., Dalgarno, A., & Boland, W. 1980, Astronomy & Astrophysics, 91,

68
de Mijolla, D., Viti, S., Holdship, J., Manolopoulou, I., & Yates, J. 2019, Astron-

omy & Astrophysics, 630, A117
Deng, H., Mayer, L., & Meru, F. 2017, The Astrophysical Journal, 847, 43
Drummond, B., Mayne, N. J., Manners, J., et al. 2018, The Astrophysical Jour-

nal, 855, L31
Dyson, J. & Williams, D. 1997, The Physics of the Interstellar Medium (CRC

Press)
Few, C. G., Courty, S., Gibson, B. K., et al. 2012, Monthly Notices of the Royal

Astronomical Society: Letters, 424, L11
Glover, S. C. & Clark, P. C. 2012, Monthly Notices of the Royal Astronomical

Society, 421, 116
Glover, S. C. O. & Mac Low, M. 2007, The Astrophysical Journal Supplement

Series, 169, 239
Goldsmith, P. F. 2001, The Astrophysical Journal, 557, 736
Grassi, T., Bovino, S., Gianturco, F. A., Baiocchi, P., & Merlin, E. 2012, Monthly

Notices of the Royal Astronomical Society, 425, 1332
Grassi, T., Bovino, S., Schleicher, D. R. G., et al. 2014, Monthly Notices of the

Royal Astronomical Society, 439, 2386
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