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We update the search for features, due to transient reductions in inflaton’s speed of sound, in the
Cosmic Microwave Background (CMB) angular power spectrum using Planck 2018 temperature,
polarization and lensing data. We develop a new methodology to test more flexible templates to
reconstruct the reduction of the speed of sound based on Gaussian Processes. We formally derive
a dynamical prior for the shape of the reduction using a maximum-entropy approach to ensure the
physical conditions of the model are satisfied. The posterior allows for one or more consecutive
reductions, fitting apparent features in the CMB power spectra in multipoles from a few tens to
` ' 2000. As expected, these fits are not statistically favored with respect to the ΛCDM model. The
methodology derived here allows for the inclusion of additional data sets (in particular, Large Scale
Structure data), which in principle will increase the statistical significance of the reconstruction of
the inflaton’s speed of sound.

I. INTRODUCTION

The standard cosmological model (ΛCDM) is currently
favored by the available data. It assumes that primordial
fluctuations are Gaussian and defined by an almost scale-
invariant primordial power spectrum. These assumptions
do not point to any particular origin, although the sim-
plest inflationary model, canonical slow-roll single-field
inflation, naturally predicts them. By contrast, other
models of inflation predict deviations from the near scale-
invariant spectrum in the form of features. If ever de-
tected, they would open a new window of research in the
field of primordial dynamics. See i.e: [1–4].

The study of features of primordial origin can be done
within an Effective Field Theory approach. Within this
scenario, features can be produced by the time depen-
dence of primordial functions such as the slow-roll pa-
rameters or the speed of sound of the effective inflaton
(the adiabatic mode). In particular, small, soft and tran-
sient reductions in the inflaton’s speed of sound produce
such correlated localized oscillatory features in the n-
point correlation functions. In the 3-point function (or
bispectrum), these localized oscillations present a distinct
difference in phase between the squeezed and equilateral
configurations [5].

The Planck Collaboration [6] searched for deviations of
the canonical scenario in its last release of data. Never-
theless, they did not find strong evidence in the context
of features in the primordial power spectrum [7]. They
included, for the first time, a joint search of correlated
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simple features in the primordial power spectrum and in
the bispectrum, also without significant results. How-
ever, the Planck Collaboration has not studied in detail
different feature templates such as the above mentioned
ones due to small and transient reductions of the infla-
ton’s speed of sound. This motivates us to continue our
previous study [8–11], in preparation for a future release
of the Planck bispectrum likelihood or for future investi-
gation in light of incoming Large Scale Structure surveys.

Most of the time, the study of features in both ob-
servables (primordial power spectrum and higher corre-
lation functions) are model-dependent, both regarding
their physical origin and the ansatz used. In our latest
paper in this series [11], we already pointed out the need
for testing more flexible feature templates to mitigate the
dependence on the ansatz. Within this approach, we can
test whether multiple and consecutive reductions of the
inflaton’s speed of sound can take place consecutively,
a possibility already pointed out in the previous work
[11]. Furthermore, reconstructing the inflaton’s speed of
sound allows us to test more complex feature templates
with variable amplitude and oscillation frequency, which
implies more possibilities to fit well-motivated deviations
from ΛCDM beyond those that only used a pre-defined
ansatz for the features.

Reconstructions at the level of the primordial power
spectrum have already been attempted [12–19]. How-
ever, there is not enough constraining power in Planck’s
power spectrum alone to decide on a particular model
for the features. Model-informed reconstructions have
the advantage of increasing the constraining power by
adding the information contained in higher-order correla-
tion functions; but this is only possible if the constraints
of the theoretical model are properly imposed on the re-
constructed spectrum, so that it will always lead to a
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consistent prediction. The task of imposing these physi-
cal constraints along the reconstruction is non trivial [20].
It is advisable, instead, to reconstruct the primordial dy-
namics directly. In our case, we reconstruct the infla-
ton’s speed of sound: the timing, intensity and rate of
its reduction. Since we are reconstructing the underlying
function leading to the correlated features, it is not only
guaranteed that we will obtain a consistent bispectrum
feature prediction using power spectrum data alone, but
we will also be able to use both data sets simultaneously
to get a more stringent reconstruction once a bispectrum
likelihood has been released.

In this paper, we develop a new analysis pipeline that
uses Gaussian Processes (GPs), a hyper-parametric re-
gression technique, to model the inflaton’s speed of sound
profile. The analytic nature of GPs makes easy to im-
pose the constraints of the theoretical model, which in-
volve derivatives of the reconstructed function. For a
given number of nodes in the GP, we construct a prior
on the hyper-parameters of the GP model (the position
of the nodes and the correlation length), that maximizes
entropy with respect to the bare physical constraints. In
this way, we verify that nodes are not placed wherever
they would lead to an unphysical reconstruction, and
that the density with which the hyper-parameters are
explored reproduces the measure of the physical prior
[21–23].

We test our new pipeline against Planck 2018 tem-
perature, polarization and lensing CMB angular power
spectrum data, obtaining corresponding posteriors of the
parameters of interest and several maxima a posteriori.
Our results do not only reproduce our previous findings
[11], but allow for combinations of multiple consecutive
reductions as well as more complex shapes.

This article is organized as follows. In section II we re-
view the theoretical framework for inflationary correlated
features in the primordial power spectrum due to tran-
sient reductions in the speed of sound. In section III, we
explain the methodology used to generate features in the
primordial power spectrum: the parametrization for the
reduction in the speed of sound (III A), the chosen priors
for the the different parameters (III B) and the compu-
tational procedure (III C). In section IV, we present the
results corresponding to the fitting of features using the
CMB angular power spectrum. Finally, we discuss the
results, draw our conclusion and show prospective work
for the future in section V.

II. THEORETICAL MODEL

We follow the Effective Field Theory (EFT) of infla-
tionary perturbations [24] to characterize the fluctuations
of comoving curvature perturbations around an inflating
cosmological background. It starts with an effective ac-
tion for the Goldstone boson of cosmic time diffeomor-
phisms π(t,x). This Goldstone boson is related to the
comoving curvature perturbation R(t,x) through the re-

lation R ≈ −H(t)π(t,x), with the Hubble parameter
H(t) ≡ ȧ/a, with a being the scale factor (where the dot
denotes derivatives with respect to cosmic time t). The
effective single field action for π up to second order is
given by

S2 =

∫
d4xa3M2

P ε1H
2

[
− π̇

2

c2s
+

(∂iπ)2

a2

]
, (1)

where MP = 1/
√

8πG is the reduced Planck Mass in

natural units c = ~ = 1, ε1 ≡ −Ḣ/H2 is the first
slow-roll parameter and cs ≡ cs(t) is the time-dependent
speed of sound.

The effective single field action up to third order, ne-
glecting higher order slow-roll corrections (∼ O(ε21)) and
assuming π̇3 to be small and approximately constant
reads [25],

S3 =

∫ [
d4xa3M2

P ε1H
2

− 2Hsc−2
s ππ̇2 − (1− c−2

s )π̇

(
π̇2

c2s
− (∂iπ)2

a2

)]
, (2)

where s ≡ s(t) parameterizes the change in the speed of
sound cs(t) defined as

s ≡ ċs(t)

(cs(t)H)
. (3)

The physical details of the theory are encoded in the
speed of sound cs and in its corresponding rate of change
given by s. The speed of sound cs accounts for the effects
of integrating out the heavy fields within the effective ac-
tion. To get an insight of what this variable cs(t) means,
we look at the particular case of an effective theory for
the comoving curvature perturbation R, when a strong
turn in the inflationary trajectory in multifield space is
supported by a heavy field F with “effective mass” Meff.
In this case, the curvature perturbation R is kinetically
coupled to the heavy field F . This effective action is
similar to the EFT of inflation equation (1), with the
speed of sound cs of the adiabatic perturbation R given
by [26, 27]

c−2
s = 1 +

4Ω2

k2/a2 +Meff
, (4)

where Ω is the the angular velocity when there is a turn
in the inflationary trajectory, inducing a momentary re-
duction on the speed of sound cs [25]. The effect of this
variable speed of sound cs can be seen in the primor-
dial power spectrum PR, in the bispectrum BR and in
higher-order correlation functions. In particular, tran-
sient variations of cs produce localized oscillatory and
correlated features in both PR and BR [28]. Generally,
cs(t) encodes the effect of derivative interactions.

The almost scale-invariant featureless power spectrum
PR0, with cs = 1→ u = 0, is defined as,

PR0 = As

(
k

k∗

)ns−1

, (5)
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where As is the scalar amplitude, k∗ is the pivot scale
and ns the so-called spectral index, which depends on
the slow-roll parameters as,

ns ≡ 1− 2ε1 − ε2, (6)

where ε2 ≡ ε̇1/(ε1H) is the second slow-roll parameter.
Under the assumption of small, mild and transient reduc-
tions of the speed of sound cs, the modifications in the
primordial power spectrum of curvature perturbations
∆PR/PR0 were already calculated [5]. The quadratic
action of EFT of inflation, equation (1), is divided into
a free part (resembling single field inflation, with cs = 1)
and a small perturbation:

S2 =

∫
d4x a3M2

PεH
2

(
π̇2 − (∂iπ)

2

a2

)

−
∫

d4x a3M2
PεH

2

((
1− c−2

s

)
π̇2

)
, (7)

Transitioning from cosmic time t to the conformal time
τ , so that dτ = dt/a(t), using the in-in formalism [29]
and the following definition of the variable u,

u(τ) ≡ (1− c−2
s (τ)), (8)

the change in the primordial power spectrum ∆PR is
given by the Fourier transform of the reduction in the
speed of sound cs:

∆PR
PR0

= k

∫ 0

−∞
dτu(τ) sin (2kτ). (9)

III. METHODOLOGY

The reduction of the speed of sound and its rate of
change are encoded in u(τ) and s(τ) respectively. We
aim to use current cosmological data (the temperature,
polarization and lensing power spectrum of Planck 2018)
to estimate them given the theoretical framework pre-
sented in section II. To do that, we use Bayesian infer-
ence. The estimation of the joint probability distribution
of a set of parameters θ of a model M given some data
d, the so-called posterior P (θ|d,M), is computed using
Bayes’ Theorem [30]:

P (θ|d,M) ∝ L(d|θ,M)Π(θ|M), (10)

where L(d|θ,M) is the likelihood (probability of observ-
ing the data d given the model M is realized with param-
eters θ) and Π(θ|M) the prior (probability distribution
of the parameters θ given some a priori information).
In this section, we present the methodology that we have
employed to study the posterior distribution of u(τ), and
hence s(τ).

A. Reconstruction model for the reduction in the
speed of sound

We use Gaussian Processes (GPs) [31] as an interpola-
tor for reconstructing the speed of sound of the inflation.
We aim to reconstruct u(τ) ≡ (1 − c−2

s (τ)). Since u(τ)
is a negative quantity, it makes sense to reconstruct the
logarithm of −u = |u|, to guarantee that the GP in-
terpolator, once exponentiated, conserves sign. On the
other hand, there is a choice to be made about the scale
of the linear axis: whether to reconstruct log |u(τ)| or
log |u(log |τ |)|.

Using the latter case as an example for the formu-
lae, to reconstruct log |u(log |τ |)| we choose a number
i of training nodes1 (log |τi|, log |ui|) where log |ui| :=
log |u(log |τi|)| (see Fig. 1), to which we fit a GP with
kernel function

κ(log |τi|, log |τi+1|; l) =

c2 exp

{
−1

2

(
log |τi| − log |τi+1|

l

)2
}
, (11)

where c is the output scale, and l the correlation length.
The output scale c plays no role in this approach, and
can be fitted using maximum likelihood and then ignored.
The correlation length will be sampled together with the
position of the nodes. To compute the GPs, we use the
Python package sklearn [32]. The mean of the GP is
used as an interpolator for log |u(log |τ |)|, and reads, in
terms of the training nodes, as the matrix product:

log |u(log |τ |)| =κ(log |τ |, log |τi|; l)×
[κ(log |τi|, log |τj |; l)]−1

log |uj |,
(12)

where the first kernel function κ is a vector of evalua-
tions at the requested log |τ | combined with each of the
training log |τi|, the second one is the matrix of evalua-
tions of κ for each pair of training nodes (i, j), and the
final term is the vector of training log |uj |. Once u(τ) is
generated, we calculate s(τ) from Eq. (3), which we can
rewrite more conveniently as

s(τ) =
1

2

u

1− u
d log u

d log |τ |

=
1

2

u

u− 1

1

l2
[(log |τ | − log |τi|)κ(log |τ |, log |τi|; l)]×

[κ(log |τi|, log |τj |; l)]−1
log |uj |, (13)

where we have taken the derivative after substituting u by
the mean of the GP defined in Eq. (12). Notice that this
reproduces the matrix product in Eq. (12), just changing

1 Notice that our use of GPs as interpolators does not involve
machine-learning, but we are borrowing the term training from
its literature.
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FIG. 1. Left panel: Reconstruction of u(τ) using a GP on log |u(log |τ |)| (continuous line) and on u(τ) (dashed line), both
using as training nodes (τ, u) ∈ {(−100,−0.016), (−375,−0.03)}, and correlation length for each model such that the width
of the mode corresponding to the first node is similar (notice the difference in width of the mode of the second one). As the
reconstruction is done in conformal time τ , the x-axis is always negative and τ = 0 indicates the end of inflation. Right panel:
Corresponding feature in the primordial power spectrum. Notice how, despite the similar position of the training nodes, their
features look quite different: similar in the leftmost oscillations (corresponding to the node at τ = −100), but very different
after that, due to the broader width of the first mode.

the first vector. Finally, we compute the power spectrum
feature of Eq. (9) from a fine sampling of the GP using the
FFTLog algorithm [33, 34]. The density and limits of the
log |τ | sampling for the FFTLog are chosen adaptively to
minimise computational costs and guarantee the accurate
computation of the transform.

The most consequential difference of the choice be-
tween linear and logarithmic τ in the GP will show up
whenever we have nodes separated by a distance much
larger than the correlation length, appearing as isolated
(log)Gaussians: in the linear case, their width in τ will
be similar, whereas for the logarithmic one, the width
will scale logarithmically (see Fig. 1). Looking at the
first equality in Eq. (13), and seeing how s depends on
the logarithmic derivative on τ , it is easy to see that the
linear parameterization is going to struggle to place two
or more nodes away from each other, since s(τ) will peak
at highly different values in each of them, making it hard
not to violate the perturbativity bounds on s (see sec.
III B).

Thus for the primary results in this paper, we model
log |u(log |τ |)|. To mitigate excessive sensitivity to the
prior of our results, we also perform a reconstruction in
u(τ). Notice that by modelling u and not log |u| we need
to deal with cases in which u(τ) goes positive, by as-
signing it null prior density. However, those are gener-
ally disfavored by the data (require large l compared to
the distance between nodes), and the large difference be-
tween the log |u(log |τ |)| and the u(τ) reconstruction is
useful for assessing prior sensitivity.

B. Parameters and Priors

The action described in equations (1) and (2) is pertur-
bative in terms of (1−1/c2s). It implies that the reduction
in the speed of sound, cs, cannot be too big (|u| � 1)
and the rate of change in the reduction cannot be too
fast (|s| � 1). Also, the contributions of the slow-roll
corrections ε1, ε2 have to be smaller than those of the
variable speed of sound cs. We need to impose these
conditions for all values of τ , but it is enough to restrict
to the point where u(τ) and s(τ) take their maximum
value (|u|max, |s|max). Note that imposing the perturba-
tive limit on |s|max satisfies the consistency conditions in
[35–37]. In short:

max(ε1, ε2)� max(|u|max, |s|max)� 1. (14)

In [11] we argued that this condition could
be naturally imposed by a prior Beta(5, 5) on
max(log10 |u|max, log10 |s|max) between the extremes in
Eq. (14) (see left part of Fig. 2), the logarithm coming
from the difference in order of magnitude between both
bounds.

Contrary to [11], in this work |u|max and |s|max are
not sampled directly. Instead, the parameter space
for the feature consists of the position of the nodes
{(τi, ui = u(τi))} and the correlation length l. Thus, the
total number of feature parameters is 2N + 1 for a num-
ber N of nodes. Imposing the Beta prior described above
is not as simple as sampling the GP parameters from
some prior, computing |u|max and |s|max along the re-
construction, and multiplying by the Beta density. That
procedure will likely introduce undesired information in
the shape of under- or overdensities in the probability
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FIG. 2. A description of the Bayesian priors adopted in this study. Left panels: Desired Beta density distribution for the
parameters log10(|u|max) and log10(|s|max), with ε2 = 0.008 and ε2 = 0.04, respectively. Right panels: probability density
distribution induced by π0 on log10(|s|max) and log10(|u|max) (defined as P in the denominator of Eq. (15)), for a Gaussian-
Processes reconstruction in log |u(log |τ |)| using 2 training nodes. The initial prior π0(τi, ui, l) induces overdensities at low
log10(|s|max) due to this quantity being doubly-correlated to early-time position of the nodes and large correlation lengths; Eq.
(15) corrects for this effect.

induced on (|u|max, |s|max), which would finally diverge
significantly from a Beta. The correct way to proceed
so that the induced probability on the physical parame-
ters is the desired one is by constructing a distribution
on the parameters of the nodes that maximises entropy
with respect to the desired one, which can be computed,
according to [21], as

πpert, maxent(τi, uk, l) =
π0(τi, uk, l)πpert(|u|max, |s|max)

P (|u|max, |s|max | π0)
,

(15)
where π0(τi, ui, l) is some initial prior on the node param-
eters and πpert(|u|max, |s|max) the Beta prior described
above. The term in the denominator is the proba-
bility density induced by πo on (|u|max, |s|max), which
we compute from a Monte Carlo sample from π0 using

PolyChord [38, 39]. The Monte Carlo sample is fed to
GetDist [40] to construct a density estimator. Both the
Beta prior and the maxent prior can be seen in Fig. 2.

For π0, we choose log-uniform prior distributions on
the correlation length l and on the training node location
(τi, ui)

2. The bounds for the time-positions τi are chosen
so that the feature falls in the CMB window function
(features running from scales k ≈ 10−3 to k ≈ 3× 10−1,
though a larger region has been scanned as a consistency
check (see Sec. IV A). The bounds for the amplitude of

2 Note that we are sampling the training nodes and the correlation
length in a logarithmic scale as we expect them to vary several
orders of magnitude.
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the reductions at the nodes, ui, are chosen to generously
fulfill the EFT condition in Eq. (14). Summarizing:

π0(log10(|τ1|), . . . , log10(|τn|), log10(|u1|), . . . ,
log10(|un|), log10 l) = U(1.8 < log10(|τn|) < 3.3)×

2∏
i=n

U(log10(|τi|) < log10(|τi−1|) < 3.3)×

n∏
i=1

U(−4 < log10(|ui|) < 0)× π(l) (16)

where U means a uniform distribution, and the prior on
the time positions of the nodes includes sorting so that
τi < τi−1 (i runs from 1 . . . n). The prior on l is chosen so
that it produces reasonable values of |s|max. For each of
the two reconstructions studied here, log |u(log |τ |)| and
u(τ), the boundaries can be chosen as3

πlog |u(log |τ |)|(l) = U(−2 < log10 l < 2) and

πu(τ)(l) = U(−2 < log10 l < 3.3). (17)

As an improvement on [11], in this work we do not fix
the value of the slow-roll parameters ε1 and ε2 as bounds
of the perturbativity condition Eq. (14). Instead we let
the bounds of the Beta distribution run dynamically,
marginalizing over the slow-roll parameters. We use as
priors uniform distributions U(0.0001 < ε1 < 0.05) and
U(−0.06 < ε2 < 0.06), which encompass the ΛCDM pos-
terior found for them in Planck 2018 [12].

C. Data sets and sampler

To constrain the reduction of the speed of sound, we
use the Planck 2018 polarized CMB and lensing data. In
particular we use the product of the low multipole like-
lihoods lowT and lowE, the unbinned high-` likelihood
plik TTTEEE and the lensing likelihood. We use the
unbinned likelihoods because of the fast frequency of os-
cillations in the features, as was already pointed out in
[11].

We compute the changes to the CMB power spectra
C` using the Boltzmann code CAMB [41], modified accord-
ingly to account for the increased sampling in k needed
by the oscillatory features ∆PR/PR0 in the primordial
power spectrum. We sample over the parameter space
described in section III B, i.e. the positions of the train-
ing nodes {(τi, ui = u(τi))}, the correlation length l of the

3 Notice that, while smaller values of l will result in sharper re-
ductions with too high, forbidden |s|max values, larger values of
l would result in small |s|max values which are actually allowed
as long as |u|max fulfills Eq. (14). In any case, we are impos-
ing these upper l boundaries for the main runs, since reductions
with very small |s|max tend not to be easily distinguishable from
changes in the background cosmological model (see Sec. IV A).

GP, and the kinetic slow-roll parameters ε1 and ε2. We
also allow for the possibility of tensor modes, as changes
in the Sachs-Wolfe plateau caused by them could possi-
bly be correlated with features at very large scales. We
track as derived parameters the scalar tilt ns, the tensor-
to-scalar ratio r and the EFT parameters (|u|max, |s|max).
We fix the rest of cosmological parameters of ΛCDM to
the best fit of Planck 2018 with the present likelihoods, as
well as the nuisance parameters of the likelihoods. This
choice is justified by previous sensitivity analyses in [11],
that we repeat here for the background ΛCDM parame-
ters by exploring a broader range of τ and l than the one
indicated above (see Sec. IV A).

We obtain the posterior distribution of the parame-
ters using the sampler PolyChord [38, 39]. We use this
nested sampler since, from previous searches, we expect
the posterior distributions of umax and τi to be multi-
modal. The handling of the priors, likelihoods, Boltz-
mann code and sampler is managed by the Bayesian
framework Cobaya [42]. The analysis of the posterior
distributions is carried out using GetDist [40].

We sample the posterior of two different param-
eterizations of the GP sound speed reconstruction:
log |u|(log |τ |) and u(τ), in the following called simply log-
arithmic and linear parameterizations, respectively. We
know the logarithmic parameterization is more stable nu-
merically, as it consistently makes the reconstruction of
u(τ) negative. However, we still use the runs in the linear
parameterization for the purposes of assessing prior sen-
sitivity. For the first sampling processes (up to three GPs
nodes), we run Cobaya in parallel launching 8 MPI pro-
cesses, each allowed to thread across 3 CPU cores. In the
case of 4 nodes, we run Cobaya with 32 MPI processes,
each allowed to thread across only one single CPU core.
The nested sampler PolyChord has been run with 1000
live points (which is far above the requirements for the
current number of dimensions in the parameter space)
and a stopping criterion of 0.01. The computation time
varies depending on the number of training nodes in the
GPs: from a few days with only 1 node, up to several
weeks with 4 nodes.

All the maxima a posteriori (MAP) presented in the
next section have been obtained running Py-BOBYQA
[43, 44] (a Python implementation of the BOBYQA algo-
rithm [45], available via Cobaya), initialized on the rele-
vant local maxima of the PolyChord samples.

IV. RESULTS

A. Consistency checks

Before presenting our results, we shortly discuss
whether the assumptions made in previous sections were
justified. In particular, we have tested whether we
find clear posterior modes outside the (τi, l) prior re-
gion described section III B (the CMB window prior),
and whether in posterior modes either in our initial prior
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or in the broader region, the assumption of no-correlation
with background cosmological parameters is fulfilled.

To do that, we produced a 1-node posterior sample in
the logarithmic parameterization in the enlarged prior
region 0 < log10(|τi|) < 4.3 and 2 < log10 l < 10,
and let the background ΛCDM parameters vary. No
significant modes were found outside the original, re-
duced prior region. We found mild modes in the region
1.8 < log10(|τi|) < 3.3 and 2 < log10 l < 3.3, which pre-
sented some degeneracy between Ωm, ns and the recon-
struction parameters (ρ ≈ 0.17), due to the fact that
these features can be confused with the shape of the
first and second acoustic peaks (already observed in [11]).
This justifies restricting ourselves to the prior described
in III B, since any mode found outside of it would not be
distinguishable from background cosmology.

The check for degeneracies between the cs reconstruc-
tion parameters and the slow-roll parameters is of par-
ticular importance, since the latter determine the per-
turbative prior limits on the former (see Eq. 14 and Fig.
2). We have found no significant degeneracies, neither in
the tests described above nor in the final runs. We have
reproduced the Planck ΛCDM posterior on the slow-roll
parameters in all cases (see Fig. 3).

Most of the results below have been run both in the
linear and logarithmic parameterizations for the Gaus-
sian Processes (GPs) reconstruction of the speed of sound
profile u(τ). The results agree with each other, in par-
ticular, for the maxima a posteriori found at late confor-
mal time (i.e. towards the end of inflation, with −τi of
a few hundreds, where both parameterizations look sim-
ilar). However, the logarithmic parameterization differs
from the linear one when training nodes are thrown at
early values of conformal time (i.e. −τi over 800), see
Fig. 1). This is due to modes of constant width in loga-
rithmic scale getting broader the further we go along the
axis of conformal time. In the 1-node case, the linear pa-
rameterization reproduces the results in [11] (which uses
a Gaussian ansatz in u(τ)), whereas the logarithmic pa-
rameterization produces different 1-node posterior modes
(see Sec. A 1 in appendix A).

It is worth remarking that the use of the logarithmic
parametrization does not compromise the flexibility of
our reconstruction of u(τ). Even though the logarithmic
parameterization reconstructs naturally profiles of u(τ)
with broad reductions at earlier conformal times and nar-
rower reductions at later times (which is preferred so that
|s|max is not violated), narrow reductions at early confor-
mal times can always be achieved by adding further nodes
that would force the profile to return to zero. If the data
and EFT conditions did allow for a narrow reduction at
earlier conformal times, we would have seen it during the
analysis of the posterior distributions when more than
one training node was used.

FIG. 3. Posterior distributions of the primordial parameters:
the kinetic slow-roll parameters ε1 and ε2, and the derived
spectral index ns and tensor-to-scalar ratio r, for a 2-node
reconstruction in the logarithmic parameterization (red line).
The grey contours correspond to the featureless ΛCDM sce-
nario. The correspondence between both posteriors is due
to the absence of degeneracies between the cs reconstruction
parameters and the slow-roll parameters. Similar results are
found for 1, 3 and 4 nodes.

B. Reconstruction of the inflaton’s speed of sound
profile u(τ)

In this section, we present the results of the GP re-
construction in the logarithmic parameterization using
the Planck data as described above, and imposing the
Maximum-Entropy prior described in III B for the de-
rived quantities |u|max and |s|max.

When presenting our results, we use an effective ∆χ2

obtained by using a reference value of χ2 = 24611.6 cor-
responding to the MAP of Planck 2018 for an equivalent
combination of likelihoods, re-evaluated in our case after
swapping the binned for the unbinned version of the high-
` likelihood. Note that this effective ∆χ2 is not meant
for model selection purposes and it is used for illustration
only. As an example, a triangle plot of the posterior for
the 2-nodes case can be seen in Fig. 4.

We have reconstructed the inflaton’s speed of sound
profile u(τ) using up to four training nodes. We have
stopped there after checking that the Akaike Information
Criterion (AIC) [46] has a minimum for three training
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FIG. 4. Posterior distribution for the reconstruction of the speed of sound’s profile u(τ) using 2 training nodes and the
logarithmic parametrization shown in Fig. 1. We use ∆χ2 = χ2

model − χ2
baseline as the variable for the scatter plot’s colour

scale, the reference χ2
baseline corresponding to the MAP of the baseline ΛCDM model to the same datasets. We show the

parameters of the training nodes (τi, uk) and the correlation length l (described in III A; priors in III B). We also show the
posteriors of the EFT parameters (|u|max, |s|max) (described in section II, and not sampled directly, but derived from the nodes
parameters). It can be seen how longer correlation lengths (broader reductions) lead to lower values of |s|max, and vice-versa.
The posterior distributions for different numbers of nodes display similar patterns. For all cases, the posterior distributions are
clearly multi-modal.

nodes and stabilizes after that. The profile u(τ) shows
different patterns depending on how many training nodes
are used in the GP reconstruction. We have decided to
classify all possible profiles u(τ) based on whether they
show differentiated and non-overlapping reductions (that
we denominate dips) or they present some kind of sub-
structure:

• One single dip: usually present at either late val-
ues of conformal time (−100, −200, −400), or at
earlier times (−800, ∼ −1000). Early-time dips
produce features in the CMB power spectra lo-
calised in `’s up to the first acoustic peak, whereas
features from late-time dips affect the power spec-
tra along the full ` range. Similar profiles were
already found in previous studies (see Sec. IV A).

Details on this posterior modes can be found in ap-
pendix A 1.

• Combination of non-overlapping reductions
(2, 3 and 4 dips): appearing when more than one
training node is used, they consist of consecutive,
isolated reductions in the speed of sound.4 Details
can be found in appendices A 2, A 3 and A 4. These
combinations can be classified as (for details see
appendix A):

4 Notice that the number of training nodes is not always equal to
the number of dips: reconstructions with m dips found with m
GP nodes usually re-appear as posterior modes in the m+ 1 GP
nodes case, where one of the nodes is placed at ui ≈ 0.
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FIG. 5. Reconstruction of the inflaton’s speed of sound profile u(τ) based a 4-nodes GP, where the confidence contours (68% and
95%) are shown. We are able to constrain the shape the inflaton’s speed of sound more stringently at late times (up to ∼ −200),
whereas the confidence intervals get larger at earlier times (i.e: starting from −800). This difference in the constraining power
between early and late conformal times is mostly due to early-time reductions being associated to low-multipole features where
cosmic variance is largest. The best maxima a posteriori are also plotted on top of the confidence contours.

– All dips at late conformal times: when at least
two training nodes are considered, there is a
preference for two of the possible dips remain-
ing at late-time values of τi, combining either
−100 and −200, or −400 and −200. Their ef-
fect in the CMB power spectrum overlap each
other along a large range of `’s.

– Combination of early- and late-time dips:
these appear typically as a combination of fea-
tures at both low `’s (from the early-time dips)
and high `’s (from the late time ones), e.g.
from the presence of dips both at −800 and
−100.

• Dips with substructure: We have found some
maxima a posteriori where the reconstructed u(τ)
does not show clearly separated reductions, but a
more complex profile with some degree of substruc-
ture. These substructures are presented either at
early and late τi, trying to fit some of the character-
istic features of the CMB angular power spectrum
(i.e: ` ≈ 20− 40 feature). The fits are presented in
Appendix A, in subsection A 5.

As noticed in previous works [11, 47], we do not have a
highly predictive posterior of the maximum of the rate of
change of the sound speed, |s|max, whose value is mostly
constrained by the prior information. By contrast, the
positions of the nodes (the oscillation frequency of the

features in the power spectrum) are tightly constrained
within each of the multiple posterior modes, specially for
nodes at late conformal time.

Using the sampling results of the profile u(τ) with four
training nodes in the GPs, we have reconstructed the
allowed confidence contours for u(τ) given Planck 2018
data. The result can be seen in Fig. 5. As expected from
the 1-D marginalized posterior distributions, the confi-
dence contours are narrower around τi = [−100, 200].
These modes were found in every single reconstruction of
the inflaton’s speed of sound independently of the num-
ber of training nodes (and were also observed in pre-
vious studies [11]), and usually show the highest indi-
vidual dip ∆χ2 with respect to ΛCDM (since they pro-
duce features at a long range of ` for which Planck has
low error bars). On the other hand, the confidence con-
tours are broader for earlier conformal times τi < −400.
This is the range of τ where we have found the modes at
τi = [−800,−1000] and some degree of substructure. In
this range, the posterior distributions are not very pre-
dictive (see again Fig. 4, where the posterior peaks are
small for τi < −800), since they produce low-multipole
features hidden by cosmic variance.
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V. CONCLUSIONS

We have searched for features in the primordial power
spectrum as given by the last release of Planck 2018 data.
Following an EFT of inflation approach, we have focused
our search on features coming from reductions of the
sound speed of the inflaton, assuming these reductions
to be small, mild and transient. These feature templates
were not tested by the Planck Collaboration.

We have improved over previous studies (which used a
single-reduction Gaussian ansatz) by developing a recon-
struction technique for the speed of sound’s profile based
on Gaussian Processes. We have also marginalised over
the slow roll parameters to allow for a dynamical prior. In
this new pipeline, the parameters of the reconstruction
(the position of the training nodes and the correlation
length) are fitted to the Planck 2018 data. The physical
constraints of the model are imposed on the reconstruc-
tion parameters by means of a Maximum-Entropy prior
defined on the EFT quantities (|u|max, |s|max), which de-
fine the consistency bounds of the model. We have also
tracked as derived parameters ns and r.

This template-free reconstruction of u(τ) has allowed
us to make an exhaustive search of more flexible fea-
tures’ templates, constrained only by EFT conditions.
The analysis of the result of Bayesian parameter inference
on the Planck 2018 data has demonstrated that there are
many possible different and complex u(τ) profiles which
are consistent with Planck’s CMB power spectra. Even
though none of these fits is preferred with respect to
ΛCDM (their ∆χ2’s are not significant), we have shown
some promising results in terms of interesting feature
templates. First, we have argued that there is a strong
preference for two consecutive reductions of the speed of
sound to coexist at late times around τi ≈ −200 and
τi ≈ −100. Also, combinations of modes at late confor-
mal time τi ≈ −100 and early conformal time τi ≈ −800
are also possible. Secondly, we have found certain pro-
files which show some degree of sub-structure at early
and late conformal times. Finally, we have been able to
obtain confidence contours for the u(τ) profile given the
results obtained with four training nodes.

In the future, we plan to exploit this robust and novel
pipeline in the search of features using new sets of data
(in particular, Large Scale Structure surveys or the CMB
bispectrum). The improvement of current data (for ex-
ample, the polarization of the CMB) will also help to
reduce the noise and, therefore, the uncertainty we have
at large scales. If the noise is reduced, we could discern
how realistic the reductions at earlier conformal times
are. Moreover, we also consider introducing new features
coming from a variable first slow-roll parameter [18] to
perform a joint search of both patterns: features induced
by a variable cs(τ) and ε(τ).
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Appendix A: detailed results up to 4 nodes of u(τ) in
log-log parameterization

In this appendix, we explain in detail the several max-
ima a posteriori found during the sampling runs when
the profile of the inflaton’s speed of sound u(τ) was re-
constructed using Gaussian Processes up to 4 training
nodes.

1. One dip (denoted by “A”)

These profiles of u(τ) show only one single reduction of
the inflaton’s speed of sound or one dip. These reductions
can be found using just one training node in the Gaussian
Process. The modes at late conformal time τi (see the
first row of Fig. 6) present a well defined oscillation fre-
quency τi (at -100, -200 and -400). The value of |u|max is
around 0.02 and the rate of change in the speed of sound
|s|max � |u|max. These dips are exactly reproduced with
the linear parametrization of the reconstruction of u(τ).
They were already listed during previous searches using
Planck 2013 and 2015 data [11, 48]. In particular, the
mode corresponding at τi ≈ −400 was identified faintly
in [11]. These modes are present in a broad multipole `
range (` ≈ [100 − 2000]), fitting some structures in the
temperature and polarization data.

Modes at early conformal time τi (-800, -1000) (see
the second row of Fig. 6) are found, but are more poorly
constrained and with worse ∆χ2 with respect to ΛCDM.
Mode A.3 at τi ≈ −800 shows similar characteristics to
the modes at a late conformal time (small amplitude and
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FIG. 6. One single dip, one training node. Top: Different profiles u(τ) for the 6 maxima a posteriori when only 1 training
node is used (and consequently only one dip is visible). The reconstruction is done following the logarithmic parametrization
explained in Sec. III A. We found a principal MAP and 5 other fits when the multimodal posterior distribution is further
analysed (see, for example, Fig. 4, where other peaks in the posterior distribution are visible). Bottom: Differences in the
CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra (TE) between the MAP to the Planck 2018
data and the featureless ΛCDM baseline model for the reconstructed speed of sound profiles u(τ) A.0 - A.5 shown above. Notice
how these profiles fit small deviations from ΛCDM at low and high multipoles `. The same color and line-style correspondence
between the u(τ) profiles and the differences in the CMB spectra has been used.

same behaviour in the EFT parameter s). It fits an ap-
parent oscillating structure of the temperature C` at the
first acoustic peak. This mode is also found with the lin-
ear parametrization and in previous searches in [11, 48].

The modes at -800 and -1000, with a larger amplitude,
have |s|max ≈ |u|max. They slightly differ from the modes
found in previous studies. The main reason is that u(τ)
reconstructed using the logarithmic parametrization dif-
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FIG. 7. 2 non-overlapping dips, 2 training nodes. Top: Different profiles u(τ) for the 3 maxima a posteriori when only 2
training nodes are used and only two clearly different dips are observed. The reconstruction is done following the logarithmic
parametrization explained in Sec. III A. We found a principal best fit and 2 other fits when the multimodal posterior distribution
is further studied (see, for example, Fig. 4, where other peaks in the posterior distribution are visible). Bottom: Differences in
the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra (TE) between the best fit to the Planck
2018 data and the featureless ΛCDM baseline model for the reconstructed speed’s of sound profile u(τ) shown above. Notice
how these profiles fit small deviations from ΛCDM at low and high multipoles `. The same color and line-style correspondence
between the u(τ) profiles and the differences in the CMB spectra has been used.

fers from the linear one at high values of τi. The modes
at -1000 try to fit the characteristic ` ≈ 20−40 structure
of the CMB temperature angular power spectrum. As
identified in [11], this kind of features impose a tighter
upper limit on the scalar-to-tensor ratio r (see the ta-
bles on this section), although these are still within the
analogous bounds in ΛCDM.

2. Two dips (denoted by “B”)

In this case, the inflaton would suffer two consecutive
reductions of the speed of sound (due to, for instance,
two consecutive turns in the field space). In the previous
study using Planck 2015 [11], it was pointed out that, a
priori, the features due to single reductions of the sound
speed that do not overlap can in principle co-exist. These
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FIG. 8. 3 non-overlapping dips, 3 training nodes. Top: Different profiles u(τ) for the 3 maxima a posteriori when only
3 training nodes are used and three differentiated dips are observed. The reconstruction is done following the logarithmic
parametrization explained in Sec. III A. We found 3 MAP when the corresponding multimodal posterior distribution is further
studied (see, for example, Fig. 4, where other peaks in the posterior distribution are visible). Bottom: Differences in the CMB
temperature (TT), E-polarization (EE) and cross-correlated power spectra (TE) between the best fit to the Planck 2018 data
and the featureless ΛCDM baseline model for the reconstructed speed’s of sound profile u(τ) shown above. Notice how these
profiles fit small deviations from ΛCDM at low and high multipoles `. The same color and line-style correspondence between
the u(τ) profiles and the differences in the CMB spectra has been used.

combinations would be modes at early τi with another
late mode (i.e: -1000 and -100). However, the results of
the reconstruction using two training nodes show a richer
picture (see Fig. 7). We have identified that the modes at
-100 and -200 can result from an overlapping feature that
is preferred by the data, and thus, it is the overall MAP
for the 2-nodes reconstruction. The dips at -200 and -400
can also co-exist (mode B.1), with a worse ∆χ2. These

two overlapping features fit TT, TE and EE structure
across a large range of `. On the other hand, there is
a possible combination of the modes at -800 and -100
(see the first row of Fig. 7). This u(τ) profile includes
the fitting of the apparent oscillations around the first
acoustic peak and small deviations across the rest of the
multipole scale. All of these combinations of modes fulfill
|s|max � |u|max.
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FIG. 9. 4 non-overlapping dips, 4 training nodes. Top: Different profiles u(τ) for the 3 maxima a posteriori when only 4 training
nodes are used and four differentiated dips are observed. The reconstruction is done following the logarithmic parametrization
explained in Sec. III A. In this case, we observe how possible reductions at τ ≈ −100,−200,−400 and −800 can consecutively
take place. Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra (TE)
between the best fit to the Planck 2018 data and the featureless ΛCDM baseline model for the reconstructed speed’s of sound
profile u(τ) shown above. Notice how these profiles fit small deviations from ΛCDM at low and high multipoles `. The same
color and line-style correspondence between the u(τ) profiles and the differences in the CMB spectra has been used.

3. Three dips (denoted by “C”)

When the profile of the inflaton’s reduction of the
speed of sound u(τ) is reconstructed using 3 training
nodes, we find more complex profiles. The usual dips
at late τi around -100 and -200 combine to mild and
small reductions at early conformal times around -1000
and -1500 (see modes C.2 and C.3 of Fig. A 3, respec-
tively). The combinations that are preferred by the data

are those whose earlier training node τi is placed around
uk ≈ −0.01. These small dips at early τi were not found
alone during the search using one training node (modes A
shown in Fig. 6). However, these modes at early confor-
mal times are loosely constrained and the confidence in-
tervals are large. Overall, these profiles fits the data very
similarly as the single standing modes A.0 and A.1, as
well as the combination B.0. Furthermore, we have also
verified that the modes A.0 and A.2 can co-exist (con-
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FIG. 10. Profiles with substructure (2 training nodes and 4 training nodes). Top: Different profiles u(τ) for 2 maxima a
posteriori when only 2 or training nodes are used and the profiles of u(τ) show some grade of substructure. The reconstruction
is done following the logarithmic parametrization explained in Sec. III A. We found 2 fits (one an earlier conformal time and
a another one at late conformal time), when the corresponding multimodal posterior distributiosn are further studied (see, for
example, Fig. 4, where other peaks in the posterior distribution are visible). Bottom: Differences in the CMB temperature
(TT), E-polarization (EE) and cross-correlated power spectra (TE) between the best fit to the Planck 2018 data and the
featureless ΛCDM baseline model for the reconstructed speed’s of sound profile u(τ) shown above. Notice how these profiles
fit small deviations from ΛCDM at low and high multipoles `. The same color and line-style correspondence between the u(τ)
profiles and the differences in the CMB spectra has been used.

trary to the case of reconstruction with 2 training nodes,
where the combination -100 and -400 was not found) if
a very small mode is added close to -100. All these pro-
files presented in Fig. 8 are in the limit |s|max � |u|max.
Finally, the 2-dip profiles explained above are also repro-
duced when we run with 3 training nodes.

4. Four dips (denoted by “D”)

We find similar profiles for u(τ) as the ones for 3
training nodes, adding one extra dip and finding the
remaining possible combination of nodes at late τi
around -100, -200 and -400 with modes at earlier times
at -800, -1000 or -1500 (see modes D.0, D.1 and D.3 of
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Fig. 9). Thus, we have corroborated that the modes A.0,
A.1, A.2 and A.4 can, in principle, co-exist. Still, the
small modes at early τi ≈ −1000,−1500 are less likely to
show up in the posterior, as they are poorly constrained
given the data. It is worth mentioning that we can
mostly reproduce all the different profiles found during
the search using up to three nodes when four training
nodes are used. In this case, one, two or three training
nodes are placed in such a way the corresponding profile
looks very similar to the cases A, B or C (either the
training node is placed close to ui ≈ 0 or close to the
previous training mode itself).

5. Reductions with substructure (denoted by “S”)

Apart from concatenations of transient reductions in
the speed of sound, we have also observed some possible
fits which show more complicated feature patterns ac-
cording to the data. These are profiles of u(τ) that do
not clearly show full dips but have some kind of substruc-
ture (see the upper row of Fig. 10, profile S.1). We find
a sub-structured maxima a posteriori at a late conformal
time (centred around τi ≈ −100), which resembles the

mode A.0 but with two small sub-reductions. Similarly
to A.0, the limit of the EFT functions is |s|max � |u|max.

Motivated by the loose constraints of the training
nodes in the range of early conformal times −800 <
τi < −3000, we have launched a GPs reconstruction us-
ing two training nodes, which are restricted to remain
in the range −3500 < τi < −990, obtaining the pro-
file S.2 of Fig. 10. This profile have the particularity
that |s|max � |u|max. This profile tries to fit not only
the structure of the CMB TT angular power spectrum
around ` ≈ 20 − 40 but also the apparent structure of
the first acoustic peak in the TT and TE data. To an-
swer the question if it is possible the substructure mode
S.2 to co-exist with any of the modes at late conformal
time τi, we have relaunched the GPs reconstruction with
4 training nodes, constraining the two early ones in the
range −3500 < τ1 < τ2 < −990. When this constraint
is imposed, the later training nodes τ3 and τ4 are placed
clearly around -100 and -200. The resulting profile (see
mode S.3 in Fig. 10) can fit the CMB data at low ` but
also in a broader range similarly to the case of the mode
A.0, increasing the statistical significance ∆χ2. In this
case, the EFT limit is reverted to |s|max � |u|max due to
the narrow mode at -100.
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Name A.0 (∆χ2 = −14.3) B.0 (∆χ2 = −19.9) C.2 (∆χ2 = −28.2) D.0 (∆χ2 = −29.5)

Parameters Center lower upper Center lower upper Center lower upper Center lower upper
log10 l -0.972 -1.997 0.300 -0.995 -1.989 0.282 -1.231 -1.211 -0.754 -0.994 -1.165 -0.917

log10(|τ1|) 2.014 1.959 2.299 2.305 1.993 3.299 3.192 2.834 3.297 2.896 2.397 3.100
log10(|u1|) -1.760 -2.687 -0.271 -1.528 -3.999 -0.593 -1.979 -1.952 -0.851 -1.101 -3.997 -0.597
log10(|τ2|) - - - 2.002 1.845 3.145 2.295 2.237 2.395 2.564 2.285 3.301
log10(|u2|) - - - -1.764 -3.843 -0.977 -1.840 -3.958 -1.495 -2.229 -3.987 -0.404
log10(|τ3|) - - - - - - 2.003 1.963 2.030 2.564 2.492 2.629
log10(|u3|) - - - - - - -1.749 -2.039 -1.495 -2.229 -1.854 -0.741
log10(|τ4|) - - - - - - - - - 2.002 1.983 3.310
log10(|u4|) - - - - - - - - - -1.764 -2.693 -0.256

log10(|u|max) -1.462 -2.694 -0.282 -1.523 -2.587 -0.500 -1.621 -1.810 -0.851 -0.998 -1.831 -0.804
log10(|s|max) -0.768 -1.442 -0.235 -0.813 -1.352 -0.312 -0.928 -1.084 -0.206 -0.266 -1.731 -0.471

ε1 0.000 0.000 0.007 0.000 0.000 0.006 0.001 0.000 0.005 0.001 0.000 0.005
ε2 0.036 0.021 0.039 0.036 0.025 0.040 0.035 0.027 0.037 0.032 0.025 0.038
ns 0.964 0.960 0.968 0.963 0.959 0.968 0.963 0.961 0.967 0.963 0.963 0.968
r 0.002 0.002 0.111 0.005 0.002 0.094 0.015 0.002 0.078 0.014 0.002 0.069

TABLE I. Maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters for the cases
where |∆χ2| is the largest, when a minimizer method is used. The correspond to 1, 2, 3 and 4 training nodes used in the GPs
reconstruction, respectively.

Number of nodes i 1 training node (late conformal time)

Modes A.1 (∆χ2 = −10.3) A.2 (∆χ2 = −7.7)
Parameters Center lower upper Center lower upper

log10 l -1.012 -1.942 -0.762 -1.445 -1.996 -0.983
log10(|τ1|) 2.299 2.202 2.300 2.583 2.501 2.639
log10(|u1|) -1.682 -2.304 -1.410 -1.804 -2.168 -0.870

log10(|u|max) -1.592 -2.313 -1.412 -1.814 -2.777 -0.282
log10(|s|max) -0.727 -0.999 -0.275 -0.617 -1.442 -0.304

ε1 0.000 0.000 0.004 0.0001 0.0001 0.0043
ε2 0.036 0.027 0.039 0.035 0.026 0.038
ns 0.964 0.961 0.967 0.965 0.961 0.968
r 0.003 0.002 0.058 0.002 0.002 0.068

TABLE II. 1 node secondary maxima a posteriori values, at low conformal time, and 68% confidence intervals of the feature
and primordial parameters when a minimizer method is used.

Number of nodes i 1 training node (early conformal time)

Modes A.3 (∆χ2 = −6.1) A.4 (∆χ2 = −5.6) A.5 (∆χ2 = −6.9)
Parameters Center lower upper Center lower upper Center lower upper

log10 l -0.988 -1.642 -0.661 -0.488 -1.066 0.050 -0.233 -1.141 0.328
log10(|τ1|) 2.923 2.402 3.100 2.931 2.804 2.995 3.087 3.001 3.299
log10(|u1|) -1.215 -2.976 -0.807 -1.210 -1.470 -0.472 -0.554 -1.457 -0.270

log10(|u|max) -1.169 -1.880 -0.797 -1.367 -1.470 -0.474 -0.554 -1.459 -0.282
log10(|s|max) -0.473 -1.231 -0.340 -0.702 -1.371 -0.406 -0.614 -1.442 -0.329

ε1 0.000 0.000 0.005 0.0001 0.0001 0.0035 0.0001 0.0001 0.0041
ε2 0.036 0.026 0.040 0.037 0.028 0.037 0.036 0.026 0.038
ns 0.964 0.960 0.966 0.963 0.961 0.967 0.963 0.961 0.967
r 0.004 0.002 0.068 0.002 0.002 0.055 0.002 0.002 0.065

TABLE III. 1 node secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters
when a minimizer method is used.
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Number of nodes i 2 training nodes (other fits)

Modes B.1 (∆χ2 = −16.1) B.2 (∆χ2 = −17.3)
Parameters Center lower upper Center lower upper

log10 l -1.522 -1.922 0.292 -0.999 -1.462 -0.618
log10(|τ1|) 2.565 2.296 3.297 2.896 2.400 3.200
log10(|u1|) -2.230 -3.987 -0.404 -1.210 -3.997 -0.797
log10(|τ2|) 2.277 2.213 2.300 2.002 1.970 2.033 5
log10(|u2|) 1.452 -3.895 -1.424 -1.693 -2.240 -1.426

log10(|u|max) -1.591 -2.299 -0.385 -1.169 -1.980 -0.803
log10(|s|max) -0.613 -1.279 -0.381 -0.468 -1.226 -0.318

ε1 0.000 0.000 0.005 0.000 0.000 0.005
ε2 0.037 0.026 0.037 0.036 0.026 0.039
ns 0.963 0.961 0.967 0.964 0.960 0.968
r 0.003 0.002 0.076 0.005 0.002 0.082

TABLE IV. 2 nodes secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters,
when a minimizer method is used.

Number of nodes i 3 training nodes (other fits)

Modes C.0 (∆χ2 = −21.4) C.1 (∆χ2 = −20.7) C.3 (∆χ2 = −24.5) C.4 (∆χ2 = −22.3) C.5 (∆χ2 = −17.1)
parameters Center lower upper Center lower upper Center lower upper Center lower upper Center lower upper

log10 l -0.979 -1.634 -0.559 -1.166 -1.514 -0.646 -1.208 -1.209 -0.821 -1.297 -1.475 -0.721 -0.909 -1.443 -0.690
log10(|τ1|) 2.940 2.214 3,300 2.253 2.214 3.286 3.002 2.840 2.998 2.580 2.405 2.599 2.903 2.814 2.997
log10(|u1|) -3.205 -4.000 -0.825 -1.658 -3.989 -0.939 -1.974 -1.952 -1.288 -2.169 -3.931 -1.507 -1.205 -3.953 -0.971
log10(|τ2|) 2.309 1.969 3.261 2.080 1.969 2.100 2.356 2.237 2.395 2.019 2.014 2.506 2.078 1.981 2.100
log10(|u2|) -1.486 -3.998 -1.120 -3.487 -3.965 -1.572 -2.216 -3.724 -1.965 -2.741 -3.303 -1.560 -2.735 -3.965 -1.572
log10(|τ3|) 2.027 1.846 2.318 2.003 1.901 2.064 1.970 1.963 2.018 1.846 1.846 2.065 1.945 1.915 2.064
log10(|u3|) -1.822 -3.261 -1.415 -2.185 -2.860 -1.559 -1.733 -2.019 -1.565 -1.807 -3.261 -1.513 -2.296 -2.822 -1.629

log10(|u|max) -1.462 -2.046 -0.473 -1.633 -1.878 -0.939 -1.697 -1.697 -1.288 -1.584 -1.844 -1.409 -1.205 -1.878 -0.971
log10(|s|max) -0.768 -1.287 -0.206 -0.925 -1.216 -0.231 -0.808 -0.994 -0.516 -0.872 -1.151 -0.410 -0.547 -1.216 -0.231

ε1 0.000 0.000 0.005 0.002 0.000 0.005 0.001 0.001 0.003 0.000 0.000 0.002 0.002 0.000 0.005
ε2 0.036 0.024 0.039 0.033 0.025 0.039 0.035 0.031 0.036 0.036 0.031 0.039 0.033 0.025 0.038
ns 0.963 0.960 0.968 0.964 0.960 0.968 0.963 0.962 0.964 0.964 0.961 0.965 0.963 0.961 0.966
r 0.004 0.002 0.087 0.025 0.002 0.082 0.018 0.018 0.044 0.003 0.002 0.039 0.028 0.002 0.081

TABLE V. 3 nodes secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters,
when a minimizer method is used.

Number of nodes i 4 training nodes (other fits)

Modes D.1 (∆χ2 = −26.3) D.2 (∆χ2 = −25.4)
Parameters Center lower upper Center lower upper

log10 l -1.294857 -1.211 -0.751 -0.994857 -1.522 -0.613
log10(|τ1|) 3.192 2.934 3.298 3.191 2.928 3.293
log10(|u1|) -1.978718905 -1.952 -0.851 -1.979 -1.952 -0.851
log10(|τ2|) 2.99835 2.840 3.150 2.565 2.296 2.745
log10(|u2|) -1.95155 -3.294 -1.120 -2.230 -3.987 -0.404
log10(|τ3|) 2.304 2.201 2.323 2.305 2.203 2.326
log10(|u3|) -1.528 -2.654 -0.262 -1.528 -2.662 -0.261
log10(|τ4|) 2.002 1.951 2.297 2.002 1.951 2.297
log10(|u4|) -1.765 -2.691 -0.270 -1.763 -2.691 -0.272

log10(|u|max) -1.528 -2.223 -1.312 -1.511 -2.334 -1.422
log10(|s|max) -0.484 -0.998 -0.196 -0.845 -1.322 -0.231

ε1 0.000 0.000 0.004 0.000 0.000 0.005
ε2 0.035 0.024 0.040 0.036 0.027 0.036
ns 0.963 0.961 0.966 0.964 0.960 0.967
r 0.004 0.002 0.062 0.002 0.002 0.060

TABLE VI. 4 node secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters
when a minimizer method is used.
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MAP with substructure

Modes S.1 (∆χ2 = −19.6) S.2 (∆χ2 = −15.9) S.3 (∆χ2 = −24.1)
Parameters Center lower upper Center lower upper Center lower upper

log10 l 1.228 -1.415 -0.855 -1.101 -1.999 0.499 -1.098 -1.939 0.501
log10(|τ1|) 2.062 1.993 2.100 3.180 2.998 3.400 3.180 2.999 3.400
log10(|u1|) -1.900 -3.907 -1.555 -1.048 -2.987 -0.390 -1.047 -2.950 -0.394
log10(|τ2|) 1.936 1.901 2.028 2.985 2.970 3.395 2.986 2.967 3.391
log10(|u2|) -1.937 -3.178 -1.605 -1.001 -2.973 -0.365 -1.000 -2.974 -0.361
log10(|τ3|) - - - - - - 2.299 2.202 2.300
log10(|u3|) - - - - - - -1.682 -2.304 -1.410
log10(|τ4|) - - - - - - 2.003 1.961 2.030
log10(|u4|) - - - - - - -1.749 -2.039 -1.495

log10(|u|max) -1.610 -1.875 -1.451 -0.876 -2.758 -0.355 -0.908 -2.758 -0.355
log10(|s|max) -0.799 -1.170 -0.420 -1.414 -1.775 -0.334 -0.138 -1.775 -0.334

ε1 0.001 0.000 0.005 0.0002 0.0001 0.0035 0.0001 0.0000 0.0036
ε2 0.034 0.028 0.037 0.036 0.029 0.038 0.034 0.024 0.037
ns 0.964 0.960 0.968 0.965 0.962 0.967 0.964 0.961 0.967
r 0.002 0.002 0.095 0.010 0.002 0.074 0.004 0.002 0.056

TABLE VII. Maxima a posteriori values, for those nodes which show some degree of sub-structure, and 68% confidence intervals
of the feature and primordial parameters, when a minimizer method is used.
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