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ABSTRACT

Context. Theoretical studies predict the presence of thermal inversions in the atmosphere of highly irradiated gas giant planets. Recent
observations have identified these inversion layers. However, the role of different chemical species in their formation remains unclear.
Aims. We search for the signature of the thermal inversion agents TiO and Fe in the dayside emission spectrum of the ultra-hot Jupiter
WASP-33b.
Methods. The spectra were obtained with CARMENES and HARPS-N, covering different wavelength ranges. Telluric and stellar
absorption lines were removed with SYSREM. We cross-correlated the residual spectra with model spectra to retrieve the signals from
the planetary atmosphere.
Results. We find evidence for TiO at a significance of 4.9σ with CARMENES. The strength of the TiO signal drops close to the
secondary eclipse. No TiO signal is found with HARPS-N. An injection-recovery test suggests that the TiO signal is below the
detection level at the wavelengths covered by HARPS-N. The emission signature of Fe is detected with both instruments at significance
levels of 5.7σ and 4.5σ, respectively. By combining all observations, we obtain a significance level of 7.3σ for Fe. We find the TiO
signal at Kp = 248.0+2.0

−2.5 km s−1, which is in disagreement with the Fe detection at Kp = 225.0+4.0
−3.5 km s−1. The Kp value for Fe is in

agreement with prior investigations. The model spectra require different temperature profiles for TiO and Fe to match the observations.
We observe a broader line profile for Fe than for TiO.
Conclusions. Our results confirm the existence of a temperature inversion layer in the planetary atmosphere. The observed Kp offset
and different strengths of broadening in the line profiles suggest the existence of a TiO-depleted hot spot in the planetary atmosphere.

Key words. planets and satellites: atmospheres – techniques: spectroscopic – planets and satellites: individual: WASP-33b

1. Introduction

Hot Jupiters are gas giant planets with close-in orbits, which ex-
hibit strong spectral features due to their enhanced temperatures
and sizes. So far, targets of atmospheric observations have been
mostly among this class of exoplanets. Hubeny et al. (2003) and
Fortney et al. (2008) predicted the existence of temperature in-
version layers in highly irradiated gas planets due to the strong
absorption of visible and UV radiation caused by TiO and VO in
the upper atmosphere. Initial evidence for the presence of an at-

mospheric inversion was found in the spectrum of the hot Jupiter
HD 209458b by Knutson et al. (2008). However, the claim of
an inverted atmospheric temperature profile could not be con-
firmed (Hansen et al. 2014; Diamond-Lowe et al. 2014; Schwarz
et al. 2015; Evans et al. 2015), and Hoeijmakers et al. (2015) did
not find any signatures of TiO in high-resolution spectra of the
planet. Moreover, Hoeijmakers et al. (2015) investigated the TiO
line database and found several wavelength ranges with poor line
list precision.
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Producing high-resolution spectral line lists for transition
metal diatomic molecules is computationally challenging, but
the completeness and accuracy of line lists are critical for the de-
tection of these chemical species (McKemmish et al. 2019; Mer-
ritt et al. 2020). Nevertheless, hints for the existence of TiO and
VO were found in the atmospheres of WASP-33b and WASP-
121b in secondary eclipse measurements by Haynes et al. (2015)
and Evans et al. (2017), respectively. High-resolution Doppler
spectroscopy led to the detection of TiO in the emission spec-
trum of WASP-33b (Nugroho et al. 2017). However, Herman
et al. (2020) reported a non-detection of TiO at high spectral
resolution. More recently, Serindag et al. (2021) reassessed the
presence of TiO in the spectra from Nugroho et al. (2017) by us-
ing an improved TiO line list, but they could not find a detection
at the same orbital parameters as the previous work. Also the ex-
istence of TiO and VO in WASP-121b could not be confirmed by
high-resolution spectroscopy observations (Merritt et al. 2020).
TiO was also detected in the low-resolution transmission spec-
trum of WASP-19b by Sedaghati et al. (2017), but the detection
was not confirmed by Espinoza et al. (2019).

To explain these non-detections of metal oxides in the atmo-
spheres of highly irradiated planets, a number of mechanisms
have been proposed. A theoretical study by Spiegel et al. (2009)
predicted the depletion of TiO and VO in the upper atmosphere
of hot Jupiters, as gravitational settling moves the species into
deeper layers of the atmosphere. Close-in giant planets are as-
sumed to be tidally locked, with a permanent day- and night-
side. Hence, the existence of a day-night cold-trap effect has
been suggested. In this scenario, TiO and VO are moved by
winds on a global scale to the nightside of the planet (Parmen-
tier et al. 2013), where they condense due to cooler temperatures
and they are thus efficiently removed. According to the studies
of Lothringer et al. (2018) and Lothringer & Barman (2019),
temperature inversions are also sensitive to the spectral type of
the host star. Their simulations predict the occurrence of thermal
dissociation and ionization in planetary atmospheres around hot
stars, which decrease molecular abundances in favor of atomic
species and ions.

Although TiO and VO have not been widely detected in hot
Jupiters, thermal inversions have been found in several plan-
ets, such as WASP-33b (Haynes et al. 2015; Nugroho et al.
2017, 2020a), WASP-121b (Evans et al. 2017), WASP-19b
(Sedaghati et al. 2017), WASP-18b (Sheppard et al. 2017; Ar-
cangeli et al. 2018), WASP-103b (Kreidberg et al. 2018), and
HAT-P-7b (Mansfield et al. 2018). These planets are all ultra-hot
Jupiters (UHJs), that is gas giant planets with dayside tempera-
tures greater than 2200 K (Parmentier et al. 2018). Theoretical
simulations (e.g., Lothringer et al. 2018) suggest that the ab-
sorption of atoms and ions can produce thermal inversion layers
in UHJs. Extreme thermal conditions lead to the dissociation of
molecules into their constituent elements, allowing us to charac-
terize the elemental composition of UHJ atmospheres.

Recently, atomic hydrogen was found in the transmission
spectra of UHJs (e.g., Yan & Henning 2018; Casasayas-Barris
et al. 2018; Jensen et al. 2018; Cauley et al. 2021; Yan et al.
2021). Moreover, metals such as Fe, Mg, Na, Ca, Ti, or V and
their ions were detected via transmission spectroscopy in the at-
mospheres of KELT-9b, KELT-20b, WASP-121b, WASP-12b,
and WASP-33b (e.g., Fossati et al. 2010; Hoeijmakers et al.
2018; Casasayas-Barris et al. 2019; Hoeijmakers et al. 2019;
Cauley et al. 2019; Sing et al. 2019; Yan et al. 2019; Stangret
et al. 2020; Nugroho et al. 2020b; Gibson et al. 2020; Ben-
Yami et al. 2020; Hoeijmakers et al. 2020). For some plan-
ets, the detected spectral lines allowed for properties of their

Table 1. Parameters of the WASP-33 system used in this work.

Parameter Symbol [Unit] Value

Planet

Radiusa Rp [RJ] 1.679+0.019
−0.030

Orbital periodb Porb [d] 1.219870897
Transit epoch (BJD)b T0 [d] 2454163.22449
Systemic velocityc 3sys [km s−1] −3.0 ± 0.4
RV semi-amplitudea Kp [km s−1] 231 ± 3
Duration ingressd Tingress [d] 0.0124 ± 0.0002
Duration transitd Ttransit [d] 0.1143 ± 0.0002
Surface gravityd log g [cgs] 3.46

Star

Radiusa R∗ [R�] 1.509+0.016
−0.027

Effective temperaturee Teff [K] 7430 ± 100
Rotational velocityf 3rot sin i∗ 86.63+0.37

−0.32
[km s−1]

Notes. (a) Lehmann et al. (2015) with parameters from Kovács et al.
(2013)
(b) Maciejewski et al. (2018)
(c) Nugroho et al. (2017)
(d) Kovács et al. (2013)
(e) Collier Cameron et al. (2010)
(f) Johnson et al. (2015)

atmospheres to be analyzed in more detail, including atmo-
spheric mass loss rate (e.g., Yan & Henning 2018; Wyttenbach
et al. 2020) and nightside condensation (Ehrenreich et al. 2020;
Kesseli & Snellen 2021). In addition to the transmission spectra,
emission features of neutral iron consistent with the presence of
an inversion layer were observed in the dayside spectra of the
UHJs KELT-9b, WASP-189b, and WASP-33b (Pino et al. 2020;
Yan et al. 2020; Nugroho et al. 2020a). These detections of atoms
and ions, together with the absence of TiO and VO in the spectra
of several UHJs suggest that metals are likely to play a key role
in the formation of thermal inversions.

WASP-33b (planet and host star parameters are listed in Ta-
ble 1) moves on a retrograde orbit around a δ Scuti A-type star
with a period of 1.22 days. The host star has a visual magnitude
of V ∼ 8 mag, which makes WASP-33b a favorable target for
observations. With an equilibrium temperature (Teq) of 2700 K
and a dayside temperature of Tday ∼ 3000 K, WASP-33b is the
second hottest exoplanet known so far. This makes the planet an
ideal candidate for investigating the role of chemical species in
thermal inversions, their effect on the energy budget, and global
circulation of strongly irradiated atmospheres. WASP-33b shows
evidence for the presence of an inversion layer (Haynes et al.
2015). In addition to the detection of TiO by Nugroho et al.
(2017), Yan et al. (2019) found Ca ii and Nugroho et al. (2020a)
detected the presence of Fe as well as the existence of a ther-
mal inversion via high-resolution Doppler spectroscopy. Hints
for other high temperature absorption species were also found by
von Essen et al. (2019) and Kesseli et al. (2020), who tentatively
detected the spectral signature of AlO and FeH, respectively.

In this work, we report the detection of Fe and evidence
for the presence of TiO on the dayside of WASP-33b. We use
high-resolution Doppler spectroscopy with CARMENES (Calar
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Alto high-Resolution search for M dwarfs with Exoearths with
Near-infrared and optical Échelle Spectrographs) and HARPS-N
(High Accuracy Radial velocity Planet Searcher for the Northern
hemisphere). The signature of both species is observed in emis-
sion, indicating the presence of an inverted temperature profile
in the planetary atmosphere. We structure the paper as follows.
In Section 2 and Section 3, we describe our observations and
the data reduction procedures. Section 4 details the methodology
used to find the signals of TiO and Fe. In Section 5, we present
the results with discussions. Conclusions are drawn in Section 6.

2. Observations

We observed the thermal emission spectrum of WASP-33b on 15
November 2017 with the CARMENES spectrograph (Quirren-
bach et al. 2016, 2018, 2020) at the 3.5 m Calar Alto telescope.
CARMENES consists of two fiber fed high-resolution spec-
trographs covering the wavelength ranges from 520 to 960 nm
(VIS) and from 960 to 1710 nm (NIR), which corresponds to 61
and 28 spectral orders, respectively. The resolution is R∼ 94,600
in the VIS channel and R∼ 80,400 in the NIR channel. In this
work, only the data collected with the VIS channel are used. The
CARMENES observation covered pre-eclipse, eclipse and post-
eclipse of the planet, which corresponds to an orbital phase cov-
erage of 0.29 to 0.65 (cf. Fig. 1a). In total, we gathered 105 spec-
tra, each with an exposure time equal to 300 s. The airmass var-
ied between 1.00–2.53. Except for one thick cirrus, the night was
photometric with a seeing of about 1.5 ′′. We discarded seven
spectra for which the target was not centered onto the fiber due
to bad guiding of the telescope. Moreover, we removed three
spectra during the passing of the cirrus cloud, ending up with a
total number of 95 spectra for further analysis.

Another two observations of the thermal emission spectrum
of WASP-33b were obtained on 15 October 2020 and 7 Novem-
ber 2020 with the HARPS-N spectrograph (Mayor et al. 2003;
Cosentino et al. 2012) at the Telescopio Nazionale Galileo.
HARPS-N is a fiber fed high-resolution spectrograph that cov-
ers the wavelength range from 383 to 690 nm, corresponding to
69 spectral orders. The spectral resolution is R∼ 115,000. Our
observations covered the orbital phase range 0.43 to 0.70 in the
first night and 0.24 to 0.57 in the second night (cf. Fig. 1a). We
obtained 125 and 155 spectra, respectively. The exposure time
of each spectrum was 200 s for both observations. The airmass
varied between 1.01–1.99 and 1.01–2.03, respectively.

For all the observations, we observed the target with fiber A
and used fiber B to record the sky background for considering
the sky emission lines in the subsequent data analysis. Further
details on the observations are reported in the observation log in
Table 2.

In addition to our data from CARMENES and HARPS-
N, we also re-analyzed five archival observations from ES-
PaDOnS (Echelle SpectroPolarimetric Device for the Observa-
tion of Stars) at the Canada-France-Hawaii telescope (Herman
et al. 2020). Details of this analysis are provided in Sections 5.5
and 5.6.

3. Data reduction

3.1. Preprocessing the spectra

The raw frames were processed by the data reduction pipelines
CARACAL v2.20 for CARMENES (Zechmeister et al. 2014;
Caballero et al. 2016) and the Data Reduction Software for
HARPS-N. With CARMENES, we obtained a one-dimensional

0.03 0.02 0.01 0.00 0.01 0.02 0.03
x [au]

0.03

0.02

0.01

0.00

0.01
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0.03

y 
[a

u]

WASP-33

 0.25 0.75

phase = 0

0.5(a)

0.3 0.4 0.5 0.6 0.7
Orbital Phase

20

30

40
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60
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S/
N

(b)

Fig. 1. Orbital phase coverage and S/N. Pink corresponds to
CARMENES, blue/green to HARPS-N and gray to the ESPaDOnS ob-
servations (Herman et al. 2020). Panel (a) is the WASP-33 system with
the phase coverage of the observations. Panel (b) is the S/N of each
spectrum as a function of orbital phase. The begin and the end of the
secondary eclipse are indicated by the yellow dashed lines.

spectrum for each frame and spectral order (our numbering is
1–61, corresponding to the CARMENES echelle orders 118–
58). We split the order-merged, one-dimensional spectra from
HARPS-N into 69 order-like segments to conduct the same anal-
ysis steps for both instruments (hereafter spectral orders; for
wavelength range of each segment see Fig. A.2). The flux signal-
to-noise ratio (S/N) of each spectral order and one-dimensional
spectrum was calculated by the instrument pipelines. We report
the mean S/N value of each spectrum in Fig. 1b.
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Table 2. Observation log. The observations from CARMENES and HARPS-N are presented the first time in this work (new data). The observations
with ESPaDOnS are archival data from Herman et al. (2020).

Instrument Date Observing time Airmass change Phase coverage Exposure time Nspectra

New data
CARMENES 2017-11-15 17:59–04:47 UT 1.87–1.00–2.53 0.29–0.65 300 s 105
HARPS-N 2020-10-15 21:06–04:55 UT 1.99–1.01–1.27 0.43–0.70 200 s 125
HARPS-N 2020-11-07 19:39–05:18 UT 1.96–1.01–2.03 0.24–0.57 200 s 155

Archival data
ESPaDOnS 2013-09-15 09:09–13:00 UT 1.75–1.05 0.30–0.44 90 s 110
ESPaDOnS 2013-09-26 10:35–12:29 UT 1.16–1.05 0.37–0.44 90 s 55
ESPaDOnS 2014-09-04 10:49–14:42 UT 1.39–1.05–1.07 0.56–0.69 90 s 110
ESPaDOnS 2014-09-15 10:00–13:53 UT 1.42–1.05–1.06 0.55–0.68 90 s 110
ESPaDOnS 2014-11-05 08:51–10:49 UT 1.08–1.05–1.08 0.31–0.38 90 s 55

0
25
50
75

(a)

0
25
50
75

(b)

0
25
50
75

(c)

8270 8275 8280 8285 8290 8295 8300 8305
0

25
50
75

(d)

# 
Sp

ec
tru

m

Wavelength [Å]

Fig. 2. Preprocessing steps for a selected wavelength range of CARMENES. Panel (a) is the unprocessed spectral matrix; panel (b) is the matrix
after normalization, masking and outlier correction; panels (c) and (d) are the spectral residuals after one and six SYSREM iterations, respectively.
After one iteration, several telluric lines are still visible. At higher iteration numbers the telluric lines are almost entirely removed.

We used Python to apply the following procedures to the
spectra. After sorting the spectra chronologically, we obtained
a two dimensional matrix for each observation and spectral or-
der (see an example of spectral matrix in Fig. 2a). We corrected
pixels that the pipelines flagged as bad quality by linear inter-
polation to the nearest neighbors. Pixels that were flagged more
than three times during the time series were masked. To correct
5σ outliers due to cosmic rays, we fit a third order polynomial to
the time evolution of each pixel and replaced the affected pixels
with the polynomial function values. Furthermore, we needed
to remove the contribution of the grating blaze function and the
different exposure levels of the spectra due to the varying atmo-
spheric conditions (e.g., changing airmass) during the observa-
tions. Hence, we individually fit a second order polynomial to the
pseudo-continuum of each spectrum and normalized it with the
resulting fit function. Wavelength ranges with broad stellar ab-
sorption bands or strong emission lines in fiber B were excluded
during the second order polynomial fit. We masked wavelength
ranges where the flux was below 20% of the continuum level.
Due to almost no flux, the five spectral orders at the red end of
the CARMENES wavelength range were entirely masked and
excluded from further analysis. As a result, we obtained a nor-
malized, masked and outlier corrected spectral matrix for each
observation and spectral order (see example in Fig. 2b).

3.2. Removal of telluric and stellar lines

The Earth’s telluric and stellar lines were removed from the spec-
tra by using SYSREM, a detrending algorithm originally designed
to remove systematic effects from sets of transit light curves
(Tamuz et al. 2005). The algorithm iteratively performs linear
fits of the stellar and telluric line evolution in time and then sub-
tracts the linear contribution from the signal. We treated each
wavelength bin as an individual light curve to remove system-
atics from the spectral time series. The spectra were detrended
by passing each two dimensional spectral matrix as input to the
algorithm. We assigned airmass as the starting fit parameter in
order to improve the performance of SYSREM. We ran the algo-
rithm for different iteration numbers, that is between one and
ten consecutive iterations (see example of different iterations in
Fig. 2c and Fig. 2d). To remove large-scale features, we filtered
the resulting spectral residual matrices with a Gaussian high-
pass filter (25 pixels for CARMENES; 75 pixels for HARPS-N)
and divided each matrix column by its variance (Yan et al. 2019).

When assuming a circular orbit with a semi-amplitude ve-
locity equal to 231 km s−1 (Lehmann et al. 2015; Kovács et al.
2013), the planet is expected to move at radial velocities between
–220 km s−1 and +231 km s−1 during our observations (phase
coverage 0.24–0.70). On the other hand, the telluric and stel-
lar lines are approximately stationary. Therefore, at small iter-
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Fig. 3. Modeled planetary emission spectra (left panels) and the corresponding T -p profiles with volume mixing ratios (VMRs, right panels). We
used different T -p profiles for the two species and computed the VMRs assuming equilibrium chemistry with solar elemental abundances. The
upper and the lower panels refer to TiO and Fe, respectively. The CARMENES wavelength range is shaded in pink; the HARPS-N wavelength
range is shaded in green; the ranges overlap. The spectral lines are stronger in the CARMENES range when compared to HARPS-N. A different
scaling is applied to the planet-to-star flux contrast ratio on the y-axis of the spectra. The spectral lines of Fe are stronger when compared with the
TiO model spectrum.

ation numbers, the SYSREM algorithm removes mostly the tel-
luric and stellar lines while only slightly affecting the planetary
signal. However, once telluric and stellar lines are fit and re-
moved to a certain degree, the algorithm begins to detrend also
the planetary lines (e.g., Birkby et al. 2017; Nugroho et al. 2017;
Alonso-Floriano et al. 2019; Sánchez-López et al. 2019). Hence,
we expect the planetary signal to appear strongest after an opti-
mal number of SYSREM iterations. This number should vary from
order to order due to a different strength of telluric and stellar
line contamination. However, we decided to use a conservative
approach and assumed a common optimal iteration number for
all spectral orders. The amplitude of the signal from the plane-
tary atmosphere varies between different wavelength ranges and
chemical species. Therefore, we assessed the optimal iteration
number by maximizing the detection strength for each instru-
ment and chemical species separately (see Sections 5.1 and 5.2).

4. Methods

The planetary signal is buried in the noise of the residual matri-
ces (see example in Fig. 2d). To extract the atmospheric emission
signature, we employed the cross-correlation method, which has
been successfully applied in a number of previous studies (e.g.,
Snellen et al. 2010; Brogi et al. 2012; Rodler et al. 2012; Birkby
et al. 2013; Snellen et al. 2014; Alonso-Floriano et al. 2019;
Sánchez-López et al. 2019). This technique allows us to com-
bine the numerous weak planetary lines into a detectable signal
by computing the cross-correlation function (CCF) between the
residual spectra and a planetary model spectrum. To this end, we
computed model spectra for the chemical species we intended to
search for (i.e., TiO and Fe).

4.1. Spectral models

Molecular species are affected by thermal dissociation in the
dayside atmosphere of UHJs (e.g., Kreidberg et al. 2018; Par-
mentier et al. 2018; Arcangeli et al. 2019). As TiO may be de-
pleted at the locations where the temperature is highest (near the
substellar point), we hypothesize that the spectral signatures of
TiO and Fe may emerge from atmospheric regions with different
thermal conditions. For this reason, we decided to model two
different atmospheres, each with an individual thermal structure.
Both atmospheres consist of 40 layers in a pressure range from
10−5 to 1 bar and are equispaced on a logarithmic scale. We as-
sumed a moderate temperature for the TiO atmosphere (to avoid
TiO to be significantly dissociated) and a higher temperature for
Fe. In Section 5.3, we further discuss the usage of two differ-
ent temperature profiles. For TiO, we took the inverted T -p pro-
file found by Haynes et al. (2015). To model the Fe spectrum,
we used the T -p profile of WASP-189b, which was retrieved by
Yan et al. (2020) using the Fe emission lines. This planet has
properties similar to WASP-33b (e.g., mass, radius, equilibrium
temperature, and spectral type of the host star). Therefore, us-
ing this T -p profile is an appropriate approximation for studying
the presence of Fe in the atmosphere of WASP-33b. We used
easyCHEM (Mollière et al. 2017) to compute the volume mixing
ratio (VMR) and the mean molecular weight for each layer un-
der the assumption of equilibrium chemistry and solar elemental
abundances. We calculated emission spectra for TiO and Fe us-
ing the radiative transfer code petitRADTRANS (Mollière et al.
2019). We used a blackbody spectrum with a temperature of
7430 K for the host star to compute the planet-to-star flux ratio.
The flux normalized model spectra as well as the corresponding
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T -p profiles and VMRs are shown in Fig. 3. We convolved the
normalized emission model spectra with the instrument profiles
and applied the same high-pass filter as described for the resid-
ual spectra in Section 3.2. This makes our analysis insensitive
to the emission continuum level and consequently, allows us to
only account for the relative strength of the spectral lines.

4.2. Cross-correlation

Our implementation of the cross-correlation is based on the
Python routine pyasl.crosscorrRV from the PyAstronomy
package (Czesla et al. 2019). We computed the CCFs over
a range of Doppler shifts from –364 km s−1 to +364 km s−1

and applied velocity steps of 1.3 km s−1 for CARMENES and
0.8 km s−1 for HARPS-N , which corresponds to the mean pixel
spacing of the instruments. A CCF with the planet model spec-
trum was calculated for each residual spectrum. This resulted in
a 95×561 cross-correlation matrix (CCF) for CARMENES and
to a 125×911 and a 155×911 CCF for HARPS-N. We subtracted
the median value from each CCF to avoid any interference with
leftover broadband features in the spectra. The CCFs were cal-
culated independently for all spectral orders, chemical species
and observations.

We co-added the CCFs for each chemical species and ob-
servation separately. This led to the final cross-correlation maps.
Only the CCFs of the spectral orders that are selected in Sec-
tion 4.3 were included in this step. This resulted in a final cross-
correlation function map (CCF map) for each chemical species
and observation (e.g., Fig. 4). Finally, we merged the CCF maps
of the two HARPS-N observations into one single 280×911 CCF
map, which led to one CCF map for each instrument and chemi-
cal species.

We found strong artifacts in the CCF map of Fe that orig-
inate from residual stellar lines (see Fig. 4). These lines are
not efficiently removed by SYSREM as their strength varies with
time due to the pulsation of the host star. The radial velocity
(RV) domain of the residual stellar lines is determined by the
stellar rotation velocity and is confined to the range between
±3rot sin i∗ (i.e., between roughly –87 km s−1 and +87 km s−1 in
the stellar rest frame). To avoid any correlation with the model
spectrum in the CCF map of Fe, we masked all velocities be-
tween –90 km s−1 and +90 km s−1 in the stellar rest frame (for
comparison, the planetary RV during secondary eclipse is be-
tween –67 km s−1 and +67 km s−1). Hence, the RV ranges from
–90 km s−1 to –67 km s−1 and from +67 km s−1 to +90 km s−1 are
lost as the planetary trail in the CCF map is masked. This rep-
resents 10% (CARMENES) and 16% (HARPS-N) of the obser-
vations outside eclipse. Consequently, the masking of the stellar
line residuals will not strongly affect the detection in Section 5.1
and the resulting conclusions.

4.3. Exclusion of bad spectral orders

The precision of line lists is of critical importance when using the
cross-correlation technique. However, the line lists of TiO suffer
from inaccuracies, which reduce the detection sensitivity of the
molecule (Hoeijmakers et al. 2015; Nugroho et al. 2017). The
calculation of models leading to a detection of TiO in planetary
atmospheres remains a challenging task (Herman et al. 2020;
Serindag et al. 2021). We attempted to mitigate this issue by
using the new line database ToTo ExoMol (McKemmish et al.
2019) to generate our TiO model spectrum. However, this line
list is also expected to show inaccuracies in certain wavelength
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Fig. 4. CCF map of Fe obtained with CARMENES in the stellar rest
frame. The strong residuals between the yellow dashed lines are caused
by residual Fe lines from the host star pulsation. We indicate the faint
planetary trail with yellow arrows.

ranges (McKemmish et al. 2019). To exclude spectral orders
with a poor line list from our analysis, we conducted an order-
wise validation of the TiO line list. A detailed description of the
TiO line list validation is provided in Appendix A. As a result,
we only included the CCFs from spectral orders corresponding
to wavelength ranges with a precise line list when generating the
CCF map for TiO. In contrast, Fe line lists are considered to be
precise (Kurucz 2011). Hence, we refrained from analyzing the
line list precision of Fe and included the CCFs of all orders to
compute the CCF map of this species.

No prominent emission features are present in the TiO model
spectrum blueward of about 6000 Å (see Fig. 3). To assess
whether the molecular signature in the corresponding spectral or-
ders is strong enough to contribute to a detection of TiO, we con-
ducted an order-wise injection-recovery test (Appendix B). Con-
sequently, we included only the CCFs that allow us to recover an
injected model spectrum into the CCF map. We recovered the in-
jected model spectrum in several spectral orders of CARMENES
successfully (roughly between 6000 Å and 9000 Å). In contrast,
only in one spectral order of HARPS-N the injected signal could
be retrieved. This result suggests that even if present, the sig-
nature of TiO will be below the required level for a significant
detection in the HARPS-N observations. On the other hand, all
the spectral orders contribute to the detection of Fe due to the
stronger emission features in the model spectrum when com-
pared to TiO (cf. Fig. 3). Consequently, we included all the spec-
tral orders when calculating the Fe CCF map.

In conclusion, only the spectral orders passing both the line
list assessment and the injection-recovery test were included in
our TiO analysis. All other spectral orders were excluded. In
contrast, we included all spectral orders in the Fe analysis be-
cause of the availability of a precise line list and a strong spectral
signature expected from the model spectrum in Fig. 3.

4.4. Searching for atmospheric features

We assumed that the planet moves on a circular orbit and expect
its observed radial velocity to be described by the expression

3p = 3sys + 3bary + Kp sin (2πφ) + ∆3, (1)
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Fig. 5. CCF maps from CARMENES aligned to the rest frame consistent with the maximum Kp values (i.e., 248.0 km s−1 for TiO and 228.0 km s−1

for Fe; see Fig. 6). We indicate the TiO signature with the vertical dashed lines. The two horizontal dashed lines indicate the beginning and end
of the secondary eclipse. We masked the phase interval where the TiO signal is below the noise level (see Section 5.2). Also the radial velocity
domain of residual stellar Fe lines was masked (see Section 4.2). The wider Fe trail when compared to TiO is likely caused by a different degree
of rotational broadening, which hints at a global distribution of Fe and localized TiO in the atmosphere of WASP-33b.
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Fig. 6. S/N maps after six and five consecutive SYSREM iterations with CARMENES for TiO and Fe, respectively. We get S/N significance levels
of 4.9 for TiO and 5.7 for Fe. The peak coordinates in the S/N map are indicated by the yellow dashed lines. Cross-sections of the S/N peaks
are reported in the horizontal and vertical panels. The horizontal panels also correspond to the collapsed CCF maps in Fig. 5. The Fe signal is
consistent with the expected Kp value; the TiO peak is found with an offset of roughly +17 km s−1.

where 3sys is the systemic velocity, 3bary is the observer’s
barycentric velocity, Kp is the orbital semi-amplitude velocity
of the planet, φ is the orbital phase and ∆3 is the residual radial
velocity in the planetary rest frame. By using Eq. (1) and lin-
ear interpolation, we aligned the CCF map to the planetary rest
frame (see Fig. 5). To account for the varying flux level from
atmospheric conditions and instrumental effects (e.g., telescope
guiding, alignment with the instrument fiber), each row of the
CCF map was weighted with the squared flux S/N (see Fig. 1b)

of the corresponding spectrum (Brogi & Line 2019). We col-
lapsed the aligned CCF map along the time axis by computing
the mean value of each matrix column. If the model spectrum
reflects the planetary signal and a Doppler shift according to
Eq. (1) is present, the collapsed CCF map will show a peak at ∆3
close to 0 km s−1 (see top panels in Fig. 6). Following the same
procedure as previous studies (e.g., Birkby et al. 2017; Sánchez-
López et al. 2019; Alonso-Floriano et al. 2019), we aligned with
different Kp values and combined the resulting 1D plots of the
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Fig. 7. Detection of Fe with HARPS-N. (a) CCF map in the planetary rest frame (aligned using Kp = 225.0 km s−1). The vertical trail indicated with
white lines is the planetary Fe signal. The two horizontal dashed lines indicate the beginning and end of secondary eclipse. (b) Signal-to-noise ratio
map. The peak coordinates in the S/N map are indicated by the yellow dashed lines. Cross-sections of the S/N map are shown in the horizontal
and vertical panels.

collapsed CCF map in a 2D matrix. We used Kp values between
+150 km s−1 and +310 km s−1 in steps of 0.5 km s−1. We consid-
ered a range of ∆3 from –80.6 km s−1 to +80.6 km s−1 in steps of
1.3 km s−1 for the CARMENES observation. The considered val-
ues for both HARPS-N observations ranged from –80.0 km s−1

to +80.0 km s−1 in steps of 0.8 km s−1. Under exclusion of the
peak, we computed the standard deviation of the 2D matrix. The
matrix was normalized with the standard deviation and a signal-
to-noise map of the detection significance (S/N map) as a func-
tion of the orbital semi-amplitude Kp and the radial velocity de-
viation from the planetary rest frame ∆3 was obtained. To assess
the strength and the position of the detection peaks, we com-
puted the S/N map from each instrument and chemical species
independently.

5. Results and discussion

5.1. Detection of Fe

We found a clear signature of Fe with both instruments. With
CARMENES, we achieved a maximum peak value of S/N = 5.7
at Kp = 228.0+3.5

−5.0 km s−1 and ∆3= 1.3+3.9
−3.9 km s−1 after five con-

secutive SYSREM iterations (see Fig. 6 right panel). For HARPS-
N the maximum peak value of S/N = 4.5 was found after eight
iterations at Kp = 225.0+2.0

−5.0 km s−1 and ∆3=−0.8+4.0
−2.4 km s−1 (see

Fig. 7b). A summary of all results is provided in Table 3. The
detected Fe signal is strong enough to be clearly identified in
the CCF maps (Figs. 5 and 7). Since we only used the sections
of planetary trail that are located outside the region dominated
by stellar iron lines (c.f. the CCF map in Fig. 4), the detected
signal is not affected by the stellar line residuals from the pul-
sations. Moreover, we computed the S/N maps of Fe by using
the non-inverted T -p profile from Nugroho et al. (2017) and ob-
served negative S/N peaks with orbital parameters that are con-

sistent with those found by using the inverted atmospheric profile
(Fig. C.2).

Our results confirm the recent report of neutral iron and an
atmospheric inversion layer in the dayside of WASP-33b (Nu-
groho et al. 2020a). As the model spectrum used for cross-
correlation is based on an inverted T -p profile, the detection
of Fe is an unambiguous proof of a temperature inversion in
the planetary atmosphere. The negative detection peaks obtained
with a non-inverted T -p profile further substantiate the existence
of a thermal inversion layer. The obtained Kp values are close to
the expected Kp (231±3 km s−1), which was calculated using the
planetary orbital parameters. The strong detection of Fe strength-
ens the hypothesis that the species is significantly contributing to
the heating of the upper planetary atmosphere (Lothringer et al.
2018; Lothringer & Barman 2019). However, additional atomic
and molecular species (e.g., Ti, Mg, AlO, SiO, CaO, FeH) and
ions (e.g., Fe ii, Mg ii) may also contribute to maintain the atmo-
spheric temperature inversion (Lothringer et al. 2018; Lothringer
& Barman 2019; Gandhi & Madhusudhan 2019).

5.2. Evidence for TiO

We find evidence for TiO in all ten S/N maps of CARMENES,
with each map corresponding to a different number of SYSREM
iterations (see Fig. 6 left panel). In contrast, no significant sig-
nature at physically realistic values of Kp was detectable with
HARPS-N. This non-detection is not surprising because the ex-
pected TiO emission feature is relatively weak in the HARPS-N
wavelength range (Fig. 3).

The TiO signal found with CARMENES peaks after six con-
secutive iterations and when we excluded an orbital phase in-
terval around secondary eclipse (i.e., between 0.37 and 0.60,
which is masked in Fig. 5). This suggests that inside this or-
bital phase range the planetary signal is not detectable. A map
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Fig. 9. Solution of the toy model for the TiO signal. (a) Modeled S/N map. The yellow lines indicate the peak value at Kp = 243.0 km s−1. (b)
Modeled CCF map in the stellar rest frame. The yellow lines indicate the begin and end of the secondary eclipse. We also show the continuation
of the CCF trail during eclipse for a better understanding. Prior to the secondary eclipse only the terminator region at the east limb is visible to
the observer, leading to a red-shift of the TiO signature (shift indicated by red arrow). After eclipse only the blue-shifted TiO signal from the
terminator at the west limb is visible (shift indicated by blue arrow).

of the detection strength when excluding different orbital phase
ranges is provided in Fig. C.3. We found the maximum S/N at
Kp = 248.0+2.0

−2.5 km s−1 and ∆3= 0.0+2.6
−2.6 km s−1 with a significance

level of S/N = 4.9 (cf. Table 3). The measured evidence for TiO
is in line with prior detections (Haynes et al. 2015; Nugroho et al.
2017) and consistent with the systemic velocities calculated by
Nugroho et al. (2017, 2020a). However, Kp is located +17 km s−1

off from the expected value (231 km s−1). In comparison, Nu-
groho et al. (2017) also found a deviation of about +8 km s−1

from the expected Kp value.
Our detected signature of TiO is unlikely to originate from

the host star. WASP-33 is an A-type star and hence, we expect
the absence of significant stellar TiO concentrations (e.g., in stel-
lar spots). Moreover, the planetary trail of TiO in Fig. 5 is located

Article number, page 9 of 21



A&A proofs: manuscript no. W33-TiO-Fe

outside the RV range that could potentially be affected by resid-
ual stellar TiO lines (i.e., outside ±3rot sin i∗ in the stellar rest
frame).

5.3. TiO depleted hot spot region

The TiO signal is located at a Kp value deviating from the ex-
pected one, while the Fe signal is consistent with the expected
value. To explain the Kp deviation, we propose the presence
of a TiO-depleted hot spot region in the dayside atmosphere of
WASP-33b. General circulation models predict a confined region
with enhanced temperature, namely the hot spot, as a general
feature in UHJ atmospheres (e.g., Komacek et al. 2017; Parmen-
tier et al. 2018; Arcangeli et al. 2019). With an average dayside
temperature of Tday ∼ 3000 K (Zhang et al. 2018; von Essen et al.
2020), TiO is expected to be largely dissociated in the hot spot
region. Consequently, the molecule will be more concentrated
toward the terminator region of the planet. Moreover, theoretical
studies predict Doppler shifts of hot Jupiter atmospheres due to
global-scale winds with predominant super-rotation (e.g., Show-
man et al. 2013; Zhang et al. 2017; Flowers et al. 2019; Beltz
et al. 2021). Therefore, we propose that the combination of a
TiO-depleted hot spot region, the planetary rotation, and atmo-
spheric winds could cause the observed deviation of Kp.

To check the plausibility of this scenario, we implemented
a simple toy model to compute the synthetic CCF map and the
corresponding S/N map. In this toy model, we assumed that TiO
is absent in the hot spot region and is only present in the regions
close to the equator at both sides of the planetary limb. An ex-
ample of the model setup is shown in Fig. 8. We divided the TiO
regions into individual longitudinal grid points and assumed a
Doppler shifted Gaussian profile as the CCF of each point. The
velocity of each grid point is determined by the planetary rota-
tion, the super-rotation of the atmosphere, and the planetary or-
bital motion. The velocity at the equator due to rotation was set
to 3rot = 7 km s−1, which corresponds to a tidally locked planet.

To construct a model S/N map resembling that of the
CARMENES observations, we defined a set of different com-
binations of the following parameters: geographical longitudes
where TiO is present, velocities of the super-rotation and Kp val-
ues in the uncertainty range (231 ± 3 km s−1). We simulated the
S/N map for each combination and assessed the locations of the
peak values. As a result, we found several parameter configu-
rations that led to a peak in the model S/N map at Kp values
between 240 km s−1 and 250 km s−1. To produce a S/N peak in
this range, our model tends to favor the presence of TiO on the
night hemisphere or close to the terminator regions. However,
the nightside atmosphere has a significantly lower average tem-
perature than the dayside (von Essen et al. 2020). Hence, the
nightside atmosphere is unlikely to possess a temperature inver-
sion and we do not expect that the TiO emission originates from
the nightside hemisphere. Instead, we hypothesize that the TiO
emission signals are from the regions close to the planetary ter-
minators. We also suggest that a super-rotating atmosphere may
transport heated gas across the eastward terminator, leading to a
significant presence of TiO in a restricted region of the nightside.
Figure 9 shows a toy model solution for this scenario, adopting
a super-rotating atmosphere with 3wind = 8 km s−1 and two TiO
regions at longitudes 90 ◦ to 130 ◦ (east limb) and –70 ◦ to –
90 ◦ (west limb) (Fig. 8). This led to a maximum S/N located
at Kp = 243.0 km s−1, which is close to the orbital parameters of
the planet obtained with CARMENES from the TiO signal. In
order to obtain a similar Kp as the CARMENES result, only one

TiO region must be visible at a given phase, otherwise we would
observe a double-peak CCF. Figure 8 shows that the region at
the east planetary limb is only visible before the eclipse while
the west limb region is only visible after the eclipse. Although
the toy model can explain the observed TiO signal, we empha-
size that the model is not constrained sufficiently well to retrieve
the actual parameters of the global circulation and the TiO dis-
tribution. Due to the simplicity of the toy model, we also refrain
from giving the uncertainties of the parameters. The parameters
of global circulation could probably be retrieved from a more
comprehensive model of the atmosphere along with observations
with higher S/N.

Our toy model also predicts that the TiO signal weakens at
orbital phases close to the eclipse as the TiO-depleted hot spot
faces toward the observer. This prediction is consistent with the
observed results. We found the strongest TiO peak in the S/N
map when excluding the orbital phases between 0.37 and 0.60
(Fig. C.3). This indicates that the spectra inside this phase range
probably carry a very weak TiO signal that is below the noise
level. On the other hand, Fe is not depleted in the hot spot region
but distributed more homogeneously over the planetary dayside.
We emphasize that the suggested scenario of a TiO-free hot spot
is consistent with our choice of using two different T -p profiles.
We assumed atmospheric profiles with a higher temperature for
Fe and a moderate temperature for TiO. Each profile may de-
scribe the average thermal conditions for the specific species.
To verify this hypothesis, we reassessed the detection strengths
by exchanging the two temperature profiles used to calculate the
TiO and Fe model spectra. The coordinates of the S/N peaks do
not change significantly (cf. Fig. C.4). This indicates that the de-
tection peaks are mainly caused by the presence of a thermal in-
version layer. However, the detection strengths are lower than the
results in Sections 5.1 and 5.2, which is an additional hint toward
TiO emission at moderate thermal conditions and Fe emission at
higher temperatures.

5.4. Comparison of line profiles

We also assessed the width of the detected significance peaks by
fitting a Gaussian function to the signals (Fig. C.1). We found
FWHM values of the Fe signal equal to 8.6 ± 1.0 km s−1 and
6.7 ± 0.8 km s−1 for CARMENES and HARPS-N, respectively.
The FWHM of the TiO signal is equal to 4.0 ± 0.7 km s−1. The
results are summarized in Table 3.

The CCF of Fe is significantly broader than that of TiO (cf.
Figs. 6 and C.1 for comparison; FWHM values in Table 3). This
indicates that the line width of Fe is larger when compared to the
TiO lines. Therefore, we suggest that the two chemical species
experience a different level of rotational broadening, with Fe be-
ing affected more strongly than TiO. The narrow TiO line pro-
file can be explained by the presence of the TiO-depleted hot
spot, which produces a localized TiO concentration and a less
rotational-broadened line profile. We checked this assumption by
simulating two cross-correlation functions: the auto-correlation
of the non-broadened TiO model spectrum; the cross-correlation
between the non-broadened Fe model and a rotationally broad-
ened Fe model, assuming a tidally locked rotational velocity
(i.e., 7 km s−1 at the equator). The widths of the simulated CCFs
are close to the widths of the observed CCFs (Fig. C.5), indicat-
ing that the profile of the Fe lines is more strongly rotationally
broadened than the profile of the TiO lines.
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Fig. 10. S/N maps of Fe for ESPaDOnS (left panel) and a combination of all instruments (CARMENES, HARPS-N and ESPaDOnS; right panel).
The detection significance peaks in both cases at Kp = 225.0 km s−1 and ∆3= 0.0 km s−1 with a S/N value of 6.2 and 7.3, respectively. The peak
coordinates in the S/N maps are indicated by the yellow dashed lines; cross-sections of the S/N peaks are reported in the horizontal and vertical
panels.

5.5. Comparison with previous work

In contrast to the results of this work and previous studies
(Haynes et al. 2015; Nugroho et al. 2017), a recent investiga-
tion by Herman et al. (2020) does not report a significant de-
tection of TiO in the atmosphere of WASP-33b. Their measure-
ments with ESPaDOnS at the Canada-France-Hawaii telescope
(CFHT) are comparable to our data, as the authors use a cumu-
lative exposure time equivalent to ∼ 1.4 times of our observa-
tion with CARMENES. At Kp ∼ 250 km s−1 and 3sys ∼ 0 km s−1

in their Fig. 4 a weak pattern is visible, which resembles the peak
region in the S/N map from our work (cf. left panel in Fig. 6).
The orientation of the weak pattern (from upper left to lower
right in their Fig. 4) indicates that most of the contribution to
this feature is from the observations before the eclipse.

The authors use the Plez’12 (Plez 2012) database to com-
pute the TiO model spectrum instead of the more precise ToTo
ExoMol (McKemmish et al. 2019). Thus, we analyzed the data
from Herman et al. (2020) to investigate whether the weak signa-
ture at Kp ∼ 250 km s−1 is caused by a real TiO signal or by line
list dependent effects (Merritt et al. 2020). We downloaded the
spectra from the CFHT archive and applied the same data reduc-
tion procedures as for the CARMENES and HARPS-N spectra.
We used the ToTo ExoMol TiO model spectrum (as in Fig. 3) to
perform the cross-correlation. Our re-analyzed ESPaDOnS re-
sult shows a weak TiO signature with S/N∼ 3, which is similar to
the weak pattern in Fig. 4 of Herman et al. (2020). The obtained
S/N map of TiO is presented in Fig. C.6. This weak feature is lo-
cated close to our TiO detection with CARMENES. Therefore,
this ESPaDOnS feature could be a real signature of TiO. How-
ever, the TiO signature in the ESPaDOnS spectra appears to be
absent after the eclipse in contrast to the CARMENES observa-

tion. This could be due to the existence of temporal variability in
global circulation (Komacek & Showman 2020).

Very recently, Serindag et al. (2021) reassessed the TiO ob-
servation from Nugroho et al. (2017), but did not confirm the re-
sults from this previous study. In line with Serindag et al. (2021),
we used the same line list ToTo ExoMol and adopted a similar
approach by assuming a common optimal number of SYSREM it-
erations. They find a significant TiO detection with a Kp that is
similar to our value, but different from the value published by
Nugroho et al. (2017). In contrast, we identified the molecular
signature at a ∆3 that is consistent with the planetary rest frame.
We assumed the presence of a TiO-depleted hot spot to explain
the Kp deviation of the detection peak, a hypothesis that has to
be confirmed in future studies. Otherwise, we cannot exclude
the presence of a spurious signal. This aspect is also discussed
by Serindag et al. (2021), who suggest that previous claims of
TiO may be false positives. The contradicting results of different
studies on TiO in the atmosphere of WASP-33b (Haynes et al.
2015; Nugroho et al. 2017; Herman et al. 2020) highlight the
critical role of accurate line lists and the potential need of dif-
ferent data reduction techniques and spectral models in further
investigations.

5.6. Additional analysis of the Fe signal

In addition to TiO, we also searched for Fe features in the ES-
PaDOnS data. We applied the same reduction procedures as
described in Sections 3 and 4. The velocity steps were set to
1.8 km s−1, which corresponds to the mean pixel spacing of the
instrument. The signature of Fe is clearly detected with a peak
S/N of 6.2 after nine SYSREM iterations (Fig. 10). The signal is
located at Kp = 225.0+3.5

−5.0 km s−1 and ∆3= 0.0+3.6
−3.6 km s−1, which is
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Table 3. Summary of results.

Instrument S/N Kp ∆3 FWHM
[km s−1] [km s−1] [km s−1]

TiO

CARMENES 4.9 248.0+2.0
−2.5 0.0+2.6

−2.6 4.0 ± 0.7
HARPS-N no significant detection
ESPaDOnS no significant detection

Fe

CARMENES 5.7 228.0+3.5
−5.0 1.3+3.9

−3.9 8.6 ± 1.0
HARPS-N 4.5 225.0+2.0

−5.0 −0.8+4.0
−2.4 6.7 ± 0.8

ESPaDOnS 6.2 225.0+3.5
−5.0 0.0+3.6

−3.6 11.1 ± 1.1
Combined 7.3 225.0+4.0

−3.5 0.0+2.6
−2.6 9.2 ± 0.7

in agreement with the results from CARMENES and HARPS-N.
The FWHM of the peak CCF is measured as 11.1 ± 1.1 km s−1.

We further calculated a combined S/N map of Fe using
the data from all three instruments (CARMENES, HARPS-
N, ESPaDOns). For this purpose, we used a common veloc-
ity step equal to 1.3 km s−1. We firstly merged the CCFs of
all the spectra and then computed the S/N map following the
description in Section 4.4. The final combined S/N map is
presented in the right panel of Fig. 10. The resulting detec-
tion peak with S/N = 7.3 is located at Kp = 225.0+4.0

−3.5 km s−1 and
∆3= 0.0+2.6

−2.6 km s−1. The measured FWHM of the combined Fe
peak CCF is 9.2 ± 0.7 km s−1.

6. Conclusions

We observed the dayside of WASP-33b at high spectral res-
olution with the CARMENES and HARPS-N spectrographs.
By using the cross-correlation technique, we detected Fe and
found strong evidence for the presence of TiO. Both species
show emission spectra, which confirms the presence of a tem-
perature inversion claimed by prior studies (Haynes et al. 2015;
Nugroho et al. 2017, 2020a). For TiO, we found the signal
peak at Kp = 248.0+2.0

−2.5 km s−1, which deviates from the litera-
ture value by +17 km s−1 (Kovács et al. 2013; Lehmann et al.
2015; Nugroho et al. 2020a). In contrast, we detected Fe at
Kp = 225.0+4.0

−3.5 km s−1, which is consistent with the literature val-
ues. The observed CCF of Fe is broader than that of TiO, indi-
cating that the Fe lines are broader than the TiO lines.

We hypothesize that a TiO-depleted hot spot is present in the
atmosphere of WASP-33b. Since TiO is suggested to be ther-
mally dissociated in the hot spot region, we suppose that the
observed TiO signal originates from locations close to the ter-
minators. Our toy model suggests that this could lead to the ob-
served deviation of Kp from the literature value. Such a scenario
is also supported by the observed narrow line profile of TiO. Be-
cause TiO may be restricted to regions outside the hot spot while
a homogeneous Fe distribution is expected in the dayside hemi-
sphere, the TiO lines are less broadened by the planetary rotation
compared to the Fe lines.

Although temperature inversions have been detected in a
number of UHJs, the underlying formation mechanisms are still
a matter of discussion. Our results suggest that atomic species
and metal oxides are both involved in the heating mechanism,
which is required to maintain a thermal inversion layer. Obser-

vations with higher S/N and the inclusion of 3D atmospheric
structure into spectral modeling will be beneficial for further
advances in exploring the atmospheres of extremely irradiated
planets.
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Appendix A: Validation of the TiO line list

We assessed the quality of the ToTo ExoMol line list via com-
parison of the line positions with the spectrum of Barnard’s
star (Reiners et al. 2018) that is dominated by TiO absorption
features. The TiO transmission model spectrum was computed
with petitRADTRANS by using the VMR and T -p profile from
Section 4.1. The analysis covered both the CARMENES VIS
channel and HARPS-N wavelength ranges. We convolved the
transmission model spectrum with the instrument profiles and
removed large-scale features with a Gaussian high-pass filter
(25 pixels for CARMENES; 75 pixels for HARPS-N). The filter
was also applied to the high-resolution spectrum of Barnard’s
star. We then computed the CCF between the spectrum and
the transmission model. The considered Doppler shifts rela-
tive to the stellar rest frame were between –80.6 km s−1 and
+80.6 km s−1 in steps of 1.3 km s−1 for CARMENES. We ap-
plied Doppler shifts between –80.0 km s−1 and +80.0 km s−1 in
steps of 0.8 km s−1 in the HARPS-N analysis. The line list was
assumed to be accurate if a prominent CCF peak (> 3σ) was
present at the systemic velocity of Barnard’s star.

We found prominent cross-correlation signals for most of
the spectral orders, except for CARMENES spectral orders
[16:18, 22, 52:56] and HARPS-N spectral orders (segments)
[1:9, 11:13, 29, 42, 47:51, 55, 56]. This is consistent with the
line list analysis from McKemmish et al. (2019) and shows the
improved precision of ToTo ExoMol at wavelengths shorter than
6000 Å in comparison to the line list Plez’98 (Plez 1998; Hoei-
jmakers et al. 2015). An order-wise plot of the CCF is given in
Fig. A.1 and Fig. A.2 for CARMENES and HARPS-N, respec-
tively. Spectral orders at wavelengths with a poor line list were
not considered in the TiO analysis.

Appendix B: Injection-recovery test

After scaling the TiO model spectrum from Section 4.1 by a fac-
tor of 3, we convolved it with the respective instrument profiles
of CARMENES and HARPS-N. We then shifted the convolved
model spectrum with the planetary orbital RV and injected the
model spectrum into the raw spectra (1D spectra from the in-
strument pipelines). The raw spectra with the injected model
were subsequently processed in the same way as described in
Section 3 and cross-correlated with the convolved TiO model
spectrum in Fig. 3. This resulted in a cross-correlation matrix
(CCFinj) for each observation and spectral order.

We computed a S/N map for all CCFinjs and identified the
spectral orders that allowed us to recover the injected model
spectrum (good orders). We assumed that only these spectral or-
ders will give a contribution to the detection of the real planetary
signature. In contrast, we assumed that spectral orders with no
recovery of the injected model spectrum (bad orders) will not
contribute to the detection of the real planetary signature. The
following metric was applied to discriminate between good and
bad orders. Good orders were supposed to detect the injected
model spectrum (S/N > 3 at the injected Kp and ∆3 position) at
least for one specific number of SYSREM iterations in the S/N
map. Bad orders were supposed to not show a significant detec-
tion of the injected model spectrum (S/N < 3).

As a result, we found that the spectral orders number
[1:20, 22, 24, 50, 51, 54:56] will not contribute to the detec-
tion of TiO in the CARMENES observation. For HARPS-N we
recovered the injected model spectrum only in one order (seg-
ment) out of 69, that is order number 26. This suggests that the
TiO signal will not be detectable with the HARPS-N data even if

present in the data. The recovered detection strengths are shown
for each spectral order in Fig. B.1 and Fig. B.2.

Appendix C: Additional figures
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Fig. A.1. CCFs between the TiO transmission model and the high-resolution spectrum of Barnard’s star for CARMENES. The x-axis represents
the radial velocity offset from the stellar rest frame; the y-axis measures the CCF in units of standard deviation. The yellow and green shaded
panels indicate the spectral orders with a CCF peak greater than three and five standard deviations, respectively. Red shaded panels represent
spectral orders not showing any correlation.
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Fig. A.2. Same as Fig. A.1, but for wavelength segments (cf. Section 3.1) of HARPS-N.
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Fig. B.1. Strength of the injected TiO model spectrum. The x-axis represents the number of consecutive SYSREM iterations; the y-axis measures
the S/N detection strength of the injected model spectrum. Each panel is labeled with the number of the corresponding spectral order. Data points
marked with green stars (?) correspond to a detection, red circles (•) to a non-detection of the injected model. The horizontal gray line corresponds
to S/N = 3. We consider a spectral order to be good, if the injected model spectrum is detected at S/N > 3 for at least one specific number of SYSREM
iterations. Spectral orders shaded with green are considered to be good orders, orders shaded with red to be bad orders. Although we got detections
of the injected model in orders 50 and 51, we observed a strong enhancement of noise the in the final S/N detection map if we included them (cf.
Section 4.4). We concluded that these orders have an increased noise level and excluded them from the list of good orders.
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Fig. B.2. Same as Fig. B.1, but for wavelength segments (cf. Section 3.1) of HARPS-N. We retrieved the injected model planet spectrum only in
one segment.
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Fig. C.1. Comparison between the CCF widths of the detection peaks of TiO and Fe. The Fe signal is broader when compared to TiO. The observed
CCFs are represented by the gray circles (•). The Gaussian fit functions are presented by the thick solid lines with different colors denoting different
instruments. Red (—): CARMENES; green (—): HARPS-N; blue (—): ESPaDOnS; black (—): Combined signal of CARMENES, HARPS-N,
ESPaDOnS.
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Fig. C.2. S/N maps of Fe obtained by using a non-inverted T -p profile for cross-correlation (Nugroho et al. 2017). Panel (a) shows the anticorrela-
tion signal of Fe in the CARMENES data (S/N = -4.3); panel (b) shows the anticorrelation with the HARPS-N data (S/N = -4.6). The coordinates
of the negative S/N peaks are indicated by the yellow dashed lines. The cross-sections of the negative S/N peaks are reported in the horizontal and
vertical panels. Each S/N map corresponds to the SYSREM iteration number that maximizes the detection strength in Sections 5.1 and 5.2.
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Fig. C.3. Map of TiO S/N detection significance when excluding different orbital phase ranges around the secondary eclipse (measured at
Kp = 248.0 km s−1 and ∆3= 0.0 km s−1). The values on the x- and y-axis show the boundaries of the excluded phase intervals. The signal of
TiO peaks when the orbital phase interval between ∼ 0.37 and ∼ 0.60 is excluded. The corresponding phase values are indicated with a red star
(?). We checked the exclusion of all possible orbital phase intervals. Phase ranges that are entirely inside eclipse were not considered (between
roughly 0.45 and 0.55).
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Fig. C.4. S/N maps obtained by exchanging the T -p profiles of TiO and Fe to compute the model spectra for cross-correlation. All detection
strengths are lower than those found in Sections 5.1 and 5.2. Panel (a) corresponds to the TiO signal observed with CARMENES (S/N = 4.6);
panel (b) is the Fe detection with CARMENES (S/N = 3.8); panel (c) is the Fe detection with HARPS-N (S/N = 4.1). The horizontal panels show
the cross-sections of the S/N peaks. Each S/N map corresponds to the SYSREM iteration number that maximizes the detection strength in Sections
5.1 and 5.2.
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Fig. C.5. Auto-correlation of the TiO model spectrum (left panel) and cross-correlation between the Fe model spectrum and a rotationally
broadened version of itself (3rot = 7 km s−1; right panel). For comparison, we plot the observed CCFs from the CARMENES observations in
gray lines. The auto-correlation of the TiO model spectrum has a width of 5.4 km s−1. This is close to the FWHM value of the observed CCF
(4.0 ± 0.7 km s−1). Also the FWHM of the cross-correlation with the broadened Fe model spectrum is close to the value of the observed CCF
(10.5 km s−1 and 8.6 ± 1.0 km s−1, respectively).
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Fig. C.6. S/N maps of TiO from the ESPaDOnS observations. Panel (a) represents the S/N map of all spectra; panel (b) is the S/N map of the
pre-eclipse TiO signature. The expected orbital parameters are indicated by the yellow dashed lines. A weak TiO signal is located close to the
orbital parameters found with CARMENES, which is indicated with a red star (?). Only the spectra before eclipse contribute to the signal. The
x-axis is presented in the systemic rest frame (3sys) in order to be consistent with Herman et al. (2020).
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