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Abstract. A probabilistic automaton is a non-deterministic finite
automaton with probabilities assigned to transitions and states that
define a distribution on the set of all strings. In general, there are distri-
butions generated by automata with a non-deterministic structure that
cannot be generated by a deterministic one. There exist several meth-
ods in machine learning that can be used to approximate the probabil-
ities of an automaton given its structure and a finite number of strings
independently drawn with respect to an unknown distribution. In this
paper, we efficiently construct a probabilistic automaton from a sample
by first learning its non-deterministic structure using residual languages
and then assigning appropriate probabilities to the transitions and states.
We show that our method learns the structure of the automaton precisely
for a class of probabilistic automata strictly including deterministic one
and give some experimental results to compare the learned distribution
with respect to other methods. To this end, we present a novel algo-
rithm to compute the Euclidean distance between two weighted graphs
effectively.

Keywords: Probabilistic automata · Residual finite state automata ·
Learning automata · L2 distance between discrete distributions

1 Introduction

Probabilistic models like hidden Markov models and probabilistic finite automa-
ton (PFA) are widely used in the field of machine learning, for example, in
computational biology [2], speech recognition [1,14,15], and information extrac-
tion [20]. It has become increasingly clear that learning probabilistic models is
essential to support these downstream tasks.

Passively learning a probabilistic automaton aims at constructing an approx-
imation of a finite representation of an unknown distribution D through a finite
number of strings independently drawn with respect to D. Many passive learn-
ing algorithms for probabilistic automata have been proposed. Still, most of
them concentrate only on the restricted class of deterministic probabilistic finite
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automata (DPFA). The most famous algorithm is ALERGIA [4] based on state
merging and folding given a positive sample. ALERGIA has been extended to
deal with deterministic probabilistic automata [8,23], and at the limit, it char-
acterizes the original distribution. However, because of the underlying determin-
ism, the resulting automata are often very large (exponential on the size of the
sample), so that it may easily become impractical.

In this paper, we propose a more efficient representation using non-
determinism. We first learn from a finite sample the non-deterministic structure
of the support of the distribution using residual languages and then add prob-
abilities to the transitions solving non-determinism by a fair distribution of the
probabilities. As such, the algorithm also approximates distributions generated
by probabilistic automata that cannot be generated by deterministic ones [12].

There are not so many algorithms for learning general probabilistic automata.
The most well known is the Baum-Welch algorithm [3] that constructs a fully
connected graph on the estimated number of states needed and is therefore not
very practical. Our work is based on the learning algorithm for residual automata
introduced in [10]. The residual (also called derivative) of a language L with
respect to a word u is the set of words v such that uv is in L. Residual automata
are non-deterministic automata that can be used to learn efficiently any regular
language. In the probabilistic setting, a learning algorithm using probabilistic
residual distributions has been proposed in [13]. The starting point of their work
is very similar to ours, but the resulting algorithm assumes, differently from
ours, precise probabilities for each word in the sample.

To compare the goodness of our algorithm, we adapted the algorithm for
computing the L2 distance between two distributions presented in [18] in the
context of weighted automata, i.e. automata transitions and states labeled with
weights from a field (or more generally semirings) instead of probabilities. The
novelty is in the computation of the shortest distance algorithm for weighted
graphs using a weaker condition than the original one. This step was necessary
in order to be able to apply it to classical probabilistic automata. The L2 distance
is used in few experiments to compare our algorithm with ALERGIA and with
learning through k-testable languages [5]. The latter are language that can be
accepted by an automaton that can see at most k many symbols. We also use
other metrics in this comparison, such as accuracy, precision and sensitivity
weighted with a confidence factor to recognize the probabilistic nature of the
experiments.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be the set of all finite strings over Σ, with
ε denoting the empty string. A language L is a subset of Σ∗. For any string u
and any language L, we define Pref(u) = {v ∈ Σ∗|∃w ∈ Σ∗, vw = u} to be the
set of prefixes of u and Pref(L) =

⋃
u∈L Pref(u) to be the prefix closure of L.

Definition 1. Non-deterministic finite automaton. A non-deterministic
finite automaton (NFA) is a 5-tuple A = 〈Σ,Q, I, F, δ〉, where
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– Σ is a finite alphabet,
– Q is a finite set of states,
– I : Q → 2 is characterizing the set of initial states,
– F : Q → 2 is characterizing the set of final states,
– δ : Q × Σ → 2Q is the transition function.

The transition function δ can be naturally extended from symbol in Σ to
arbitrary strings by defining the extended transition function δ∗ : Q × Σ∗ → 2Q

inductively as follows:

– For every q ∈ Q, δ∗(q, ε) = q,
– For every q ∈ Q, x ∈ Σ∗, and a ∈ Σ, δ∗(q, xa) =

⋃{δ(p, a)|p ∈ δ∗(q, x)}.

A string x ∈ Σ∗ is accepted by a NFA A from a state q ∈ Q if δ∗(q, x) ∩ F �= ∅.
We denote by L(A, q) the set of all those strings. The language L(A) accepted
by A is the set of all strings accepted by A from some q0 ∈ I. A language L is
called regular if there is a NFA A that accepts exactly the language L [17].

For a NFA A, an accepting path π for a string x = a1 . . . an is a sequence of
states q0 . . . qn such that qi+1 ∈ δ(qi, ai+1) for all 0 ≤ i ≤ n− 1, starting from an
initial state, i.e. I(q0) = 1, and ending in a final state, i.e. F (qn) = 1. We denote
by Paths(x) the set of all accepting paths for a given string x. Note that the
set Paths(x) is finite. An accepting path contains a cycle if there is a repeating
state. That is, there exists different i and j such that qi = qj .

For any language L and for any string u ∈ Σ∗, the residual language of L
associated with u is defined by the u-derivative Lu = {x ∈ Σ∗|ux ∈ L}, and we
call u a characterizing word for Lu. A language L′ ⊆ Σ∗ is a residual language
of L if there exists a string u ∈ Σ∗ such that L′ = Lu. The number of residual
languages of a language L is finite if and only if L is regular [11]. This implies
that there exists a finite set of strings B(L) such that x ∈ B(L) if Lx is a residual
language of a regular language L. The set B(L) can be constructed depending on
the representation of the language L. For example, if L is the language accepted
by a trimmed NFA A (i.e., minimal and with all states reachable from an initial
state), then B(L) can be constructed as a finite set of minimal length strings
reaching all states of A from some initial state.

Definition 2. Residual finite state automaton [7]. A residual finite state
automaton (RFSA) is a NFA A = 〈Σ,Q,Q0, F, δ〉 such that, for each state q ∈ Q,
L(A, q) is a residual language of L(A).

In other words, a RFSA A is a non-deterministic automaton whose states
correspond exactly to the residual languages of the language recognized by A.

Non-deterministic automata can be generalized to frequency and probabilis-
tic automata. Frequency finite automata associate a positive rational number to
each transition, initial states and final ones representing the ‘number of occur-
rences’ of a transition or state.

Definition 3. Frequency finite automaton. A frequency finite automaton
(FFA) is a 5-tuple A = 〈Σ,Q, If , Ff , δf 〉, where:
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– Σ is a finite alphabet,
– Q is a finite set of states,
– If : Q → Q+,
– Ff : Q → Q+,

– δf : Q × Σ → Q+Q

such that for every state q ∈ Q the weight of the incoming transitions is equal to
the weight of the outgoing transitions:

If (q) +
∑

q′∈Q,a∈Σ

δf (q′, a)(q) = Ff (q) +
∑

q′∈Q,a∈Σ

δf (q, a)(q′).

Intuitively, the above condition says that frequency is preserved by passing
through states. Note that we allowed weights to be positive rational numbers
instead of positive integers. This is for technical convenience, but has no effect on
the definition. Frequency automata are strictly related to probabilistic automata.
Recall that a probabilistic language over Σ∗ is a function D : Σ∗ → [0, 1] that
is also a discrete distribution, that is:

∑

x∈Σ∗
D(x) = 1.

An interesting class of probabilistic languages can be described by a generaliza-
tion of non-deterministic automata with probabilities as weight on states and
transitions.

Definition 4. Probabilistic finite automaton. A probabilistic finite automa-
ton (PFA) is a 5-tuple A = 〈Σ,Q, Ip, Fp, δp〉, where:
– Σ is a finite alphabet,
– Q is a finite set of states,
– Ip : Q → (Q ∩ [0, 1]) is the initial probability such that

∑
q∈Q Ip(q) = 1,

– Fp : Q → (Q ∩ [0, 1]),
– δp : Q × Σ → (Q ∩ [0, 1])Q is the transition function such that ∀q ∈ Q,

Fp(q) +
∑

a∈Σ,q′∈Q

δp(q, a)(q′) = 1.

We define the support of a PFA A = 〈Σ,Q, Ip, Fp, δp〉 is the NFA supp(A) =
〈Σ,Q, I, F, δ〉, where I = {q | Ip(q) > 0}, F = {q | Fp(q) > 0}, and δ(q, x)(q′) =
1 iff δp(q, x)(q′) > 0.

Given a string x = a1 · · · an ∈ Σ∗ of length n, an accepting (or valid) path π
for x is a sequence of states q0 · · · qn such that:

– Ip(q0) > 0,
– δp(qi, ai+1)(qi+1) > 0 for all 0 ≤ i < n, and
– Fp(qn) > 0.

We denote by Pathsp(x) the set of all accepting paths for a string x. Note that
this set is necessarily finite. A probabilistic automaton is said to be unambiguous
if for any string x ∈ Σ∗ there is at most one path for x. Examples of unam-
biguous probabilistic automata are the deterministic ones, restricting the initial
probability and the transition function to have a support of at most one state:
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Definition 5. Deterministic probabilistic finite automaton. A PFA A =
〈Σ,Q, Ip, Fp, δp〉 is called deterministic probabilistic finite automaton (DPFA) if

– |{q | Ip(q) > 0}| ≤ 1 (at most one single initial state),
– ∀q ∈ Q, ∀a ∈ Σ, |{q′ | δp(q, a)(q′) > 0}| ≤ 1 ((at most one next state).

Basically, a DPFA is deterministic if its support is a DFA. All deterministic
probabilistic automata are unambiguous, but not all unambiguous automata
are deterministic because they can have more that one next state leading to a
non-accepting path.

Given a path π = q0 · · · qn for a string x = a1 · · · an, we denote by ip(π)
the probability Ip(q0) of its initial state q0, by ep(π) the probability Fp(qn) of
the last state qn of π, and by δp(π) the product of all probabilities along the
transitions in the path, that is δp(π) = 1 if x is the empty string and otherwise

δp(π) = Πn−1
i=0 δp(qi, ai+1)(qi+1) .

Note that ip(π), ep(π) and δp(π) are always strictly positive for an accepting path
π. Given a probabilistic automaton A, the probability of a path π ∈ Pathsp(x)
is given by ip(π) ·δp(π) ·ep(π), while the probability of a string x ∈ Σ∗ is defined
by:

[[A]](x) =
∑

π∈Pathsp(x)

ip(π) · δp(π) · ep(π). (1)

A PFA is said to be consistent if all its states appear into at least one accepting
path. If a PFA A is consistent then it is easy to show [12] that [[A]] gives a
distribution on Σ∗, that is

∑
x∈Σ∗ [[A]](x) = 1. A distribution D is called regular

if it is generated by a PFA A, that is D = [[A]].
The language L(A) accepted by a probabilistic automaton A is the support

of its distribution and is given by all strings x with a strictly positive prob-
ability [[A]](x). In other words, L(A) is the language of the support of A. A
language is regular if and only if it is accepted by a (deterministic) probabilistic
finite automaton. However, differently, than for ordinary automata, the class of
distributions characterized by DPFAs is a proper subclass of the regular ones,
characterized by PFAs [12].

The following lemma will be useful later stating that if an accepting path
contains a cycle then we can pump that cycle to obtain infinitely many other
accepting paths.

Lemma 1. For a probabilistic automaton A, the probability of an accepting path
π with a cycle is strictly smaller than 1.

A useful tool for proving that a regular distribution generated by a PFA A
cannot be expressed by a DPFA, is given by the function ρA : Σ∗ → [0, 1] defined
by

ρA(x) =

{
[[A]](x)

[[A]](x)
if [[A]](x) > 0

0 otherwise.
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where [[A]](x) is the probability of generating in the automaton A a (possibly
infinite) string with finite prefix x ∈ Σ∗:

[[A]](x) =
∑

π∈Pathsp(x)

ip(π) · δp(π)

Note that the above definition does not make use of the final probability F of the
automaton A, and as such can be considered as a generator of prefixes of finite
and infinite strings. Important here is that if A is a DPFA, the set {ρ(x)|x ∈ Σ∗}
is necessarily finite and bound by the number of states q with Fp(q) > 0 [12].

3 Learning Probabilistic Languages Using Residuals

A sample (S, f) consists of a finite set of strings S ⊆ Σ∗ together with a frequency
function f : S → N assigning the number of occurrences of each string in the
sample. The frequency function f partitions the strings in S into positive samples
and negative ones. We denote by S+ = {x | f(x) > 0} the set of positive samples
and by S− = {x | f(x) = 0} the set of negative samples. A simple sample is
a sample (S, f) such that f(x) ≤ 1 for every x ∈ S. In other words, a simple
sample consists only of a set of strings that must be accepted together with a
set of strings that should not be accepted.

A NFA A = 〈Σ,Q, I, F, δ〉 is consistent with respect to a sample (S, f), if
every positive sample is accepted by A and every negative sample is not, i.e.
S+ ⊆ L(A) and S− ∩ L(A) = ∅.

A sample (S, f) is complete with respect to a regular language L if there
exists a finite characteristic set B(L) ∈ Σ∗ such that

– the positive samples cover the language, that is, both x and xa are in Pref(S+) for
every x ∈ B(L) and a ∈ Σ,

– the positive samples contain enough strings of L, that is, Pref(S+) ∩ L ⊆ S+,
– distinguishable strings in the language are distinguishable in the sample too, that is,

for every u, v ∈ Pref(S+), if Lu � Lv then there exists x ∈ Σ∗ such that ux ∈ S+

but vx ∈ S−.

The first condition guarantees that prefixes of strings in S+ are enough to reach
all residual languages of L and to cover all possible transitions from it. The
second condition is about requiring all characteristic strings of the residual lan-
guages to be in S+. And the third condition ensures that S− is large enough to
distinguish different residual languages.

Learning a regular language L from a simple sample (S, f) means building a
non-deterministic finite automaton A consistent with the sample and such that if
the sample is complete with respect to L, then L(A) = L. Of course, one should
consider time and space complexity bounded on the two steps above, which are
typically required to be polynomial on the number of strings in the sample and
of the model representing the language L [7].

Learning a regular distribution D from a sample (S, f) of finite strings inde-
pendently drawn with a frequency f according to the distribution D means
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building a probabilistic finite automaton A with a support learning the lan-
guage of the support of D and with a distribution associated with A that gets
arbitrarily closer to D when the size of the sample (S, f) increases. In general, we
cannot realistically expect to get exact information on the learned distribution
with respect to the target one.

Next, we present our algorithm to learn an unknown regular distribution D
from a sample (S, f). The idea is to first learn the non-deterministic structure
of the automaton underlying D using residual languages, and then labelling the
transitions consistently with the frequency of the sample using a fair distribution
when needed.

In our first step, we use Algorithm 1 below to build a RFSA from a simple
sample (S, f). The algorithm is similar to that presented in [9] but approximates
the inclusion relation between residual languages by calculating on the fly the
transitivity and right-invariant (with respect to concatenation) closure ≺tr of
the following relation. For u, v ∈ Pref(S+), we define:

– u ≺ v if there is no string x such that ux ∈ S+ and vx ∈ S−,
– u 	 v if u ≺ v and v ≺ u.

The idea is to characterize all distinguishable states (seen as prefixes of the
positive samples). Intuitively, u ≺tr v is an estimate for the inclusion between
the residuals Lu ⊆ Lv, and if the sample is complete with respect to the unknown
language L, this is indeed the case.

Initially, the set of states Q of the automaton is empty. All prefixes of S+ are
explored, and only those which are distinguishable are added to the Q. States
below ε with respect to ≺ are set to be initial states, while states that belong to
S+ are final ones. Finally, a transition δ(u, a) = v is added when v ≺ ua, where
a ∈ Σ. The algorithm ends either when u is the last string in Pref or when the
learned automaton is consistent with the sample.

Example 1. Given a sample (S, f) with f(ε) = 3, f(aa) = f(ba) = 2, f(bb) =
f(abb) = f(bab) = 1 and f(a) = f(b) = f(ab) = f(abb) = 0 we have S+ =
{ε, aa, ba, bb, abb, bab} and S− = {a, b, ab, aab}. The Algorithm 1 terminates in
three iterations:

– First, the state ε is added. Since ε ≺tr ε, the state ε is an initial state, and it
is also an accepting state because ε ∈ S+. No transitions will be added yet,
since a and b are not in S− and thus distinguishable from ε

– In the next iteration, a is added to the states as a �tr ε. Clearly, a is neither an
initial state nor an accepting one. However, a ≺ εa, ε ≺ aa, so two transitions
δ(ε, a) = a and δ(a, a) = ε are added. As the automaton is not consistent with
the sample, another iteration is needed.

– Finally, the state b is added because b �tr ε and b �tr a. Also, b is neither
initial nor final state because b ∈ S−. Six transitions are added to the automa-
ton, as a ≺ εb, b ≺ εb, ε ≺ ba, ε ≺ bb, b ≺ ab and b ≺ ba. These transitions
are δ(ε, b) = a, δ(ε, b) = b, δ(b, a) = ε, δ(b, b) = ε, δ(a, b) = b and δ(b, a) = b.
Since the automaton constructed so far is consistent with the sample, the
algorithm terminates.
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Algorithm 1: Building a RFSA from a simple sample
Input: A simple sample (S, f)
Output: A RFSA 〈Σ, Q, I, F, δ〉
1: Pref := Pref(S+) ordered by length-lexicographic order
2: Q := I := F := δ := ∅
3: u := ε
4: loop
5: if ∃u′ ∈ Q such that u �tr u′ then
6: Pref := Pref \uΣ∗
7: else
8: Q := Q ∪ {u}
9: if u ≺tr ε then

10: I := I ∪ {u}
11: if u ∈ S+ then
12: F := F ∪ {u}
13: for u′ ∈ Q and a ∈ Σ do
14: if u′a ∈ Pref and u ≺tr u′a then
15: δ := δ ∪ {δ(u′, a) = u}
16: if ua ∈ Pref and u′ ≺tr ua then
17: δ := δ ∪ {δ(u, a) = u′)}
18: if u is the last string of Pref or 〈Σ, Q, I, F, δ〉 is consistent with S then
19: exit loop
20: else
21: u := next string in Pref
22: return 〈Σ, Q, I, F, δ〉

The resulting automaton is shown in Fig. 1a.

Once we have learned the structure of a RFSA from a sample (S, f), the next
step is adding frequencies to get a FFA based on the frequency information of
the sample. This step will not change the structure of the automaton, so Σ and
Q are the same as the ones resulting from Algorithm 1. Frequency is distributed
fairly by dividing it among non-deterministic transitions.

Algorithm 2: Building a FFA from a RFSA
Input: A RFSA 〈Σ, Q, I, F, δ〉 consistent with a sample (S, f)
Output: A FFA 〈Σ, Q, If , Ff , δf 〉
1: If (q) := 0 for all q ∈ Q
2: Ff (q) := 0 for all q ∈ Q
3: δf (q, a) := 0 for all q ∈ Q and a ∈ Σ.
4: for a1 · · · an ∈ S+ do
5: compute Paths(x)
6: for every π := q0 . . . qn ∈ Paths(x) do

7: If (q0) := If (q0) +
f(x)

|Paths(x)|
8: Ff (qn) := Ff (qn) +

f(x)
|Paths(x)|

9: for i := 0, i := i + 1, i ≤ n − 1 do

10: δf (qi, ai+1)(qi+1) := δf (qi, ai+1)(qi+1) +
f(x)

|Paths(x)|
11: return 〈Σ, Q, If , Ff , δf 〉

It is not hard to prove that the resulting automaton is indeed a FFA, satis-
fying the frequency preservation condition when passing through states.
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Example 2. Continuing from the previous example, let us consider the case of
ba ∈ S+. Two paths are accepting this string, namely ε a ε and ε b ε. As they
both start from and end to the same state, If (ε) and Ff (ε) are incremented by
2, respectively. However, the frequency f(ba) = 2 is divided equally between the
two b-transitions from state ε, incrementing each of them by 1. After all strings
in S+ are treated, we get the FFA shown in Fig. 1b.

Fig. 1. Three automata learned from the sample (S, f), with f(ε) = 3, f(aa) = f(ba) =
2, f(bb) = f(abb) = 1 = f(bab) = 1, and f(a) = f(b) = f(ab) = f(abb) = 0.

The last step is the standard for building a PFA from a given FFA. Again,
the structure is not modified, but frequencies labelling the transitions and the
states are used to calculate the probabilities. In the algorithm below, FREQ(q)
denotes the number both of strings either passing through a state q or ending
in it, and SUMI denotes the number of strings entering all initial states. For
every state q in Q, the probability of being initial state is If (q)

SUMI
and of being

final state is Ff (q)
FREQ(q) , while the probability associated to each transition from

q to q′ with input a is δf (q,a)(q′)
FREQ(q) .

Algorithm 3: Building a PFA from a FFA
Input: A FFA 〈Σ, Q, If , Ff , δf 〉
Output: A PFA 〈Σ, Q, Ip, Fp, δp〉
1: for q ∈ Q do
2: FREQ(q) := Ff (q) +

∑
a∈Σ,q′∈Q δf (q, a)(q′)

3: Fp(q) :=
Ff (q)

FREQ(q)

4: for a ∈ Σ1, q′ ∈ Q do

5: δp(q, a)(q′) := δf (q,a)(q′)
FREQ(q)

6: SUMI :=
∑

q∈Q If (q)

7: for q ∈ Q do

8: Ip(q) :=
If (q)

SUMI

9: return 〈Σ, Q, Ip, Fp, δp〉
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When the input is a FFA, the above algorithm returns a probabilistic automa-
ton.

Example 3. The probabilistic automaton A resulting from the FFA in Fig. 1b is
shown in Fig. 1c. The support automaton is consistent with the sample (S, f).

4 Metrics for Probabilistic Automata

In the previous section, we have presented an algorithm to learn a distribution
presented via a PFA. The support of the learned automaton learns the support
language of the original distribution. Precise learning of the distribution itself is
not realistic, so next, we consider the problem of computing how close the result-
ing distribution is to the original one. We consider two methods: one when the
original distribution is presented via a PFA itself and another to compute easily
understandable metrics such as accuracy, precision, or recall when comparing
the learned automaton against a sample.

4.1 The L2 Distance Between Probabilistic Automata

There are many standard distances that can be used to compare regular dis-
tributions by means of their representations as probabilistic automata. Here we
will concentrate on Lp metrics using a variation of the algorithm presented in [6]
for stochastic weighted automata. The Lp distance between two distributions D1

and D2 on Σ∗ is defined as

Lp(D1,D2) = (
∑

x∈Σ∗
|D1(x) − D2(x)|p) 1

p .

Examples include the Euclidean distance L2 and the ‘Manhattan’ distance L1.
Another useful distance is the L∞, adapted from the L1 by substituting the sum
with the supremum. In general, the problem of computing L2p+1 and L∞ given
two probabilistic automata is shown to be NP-hard [6,16], even for automata
without cycles.

In this paper we restrict to L2 using an adaptation of the algorithm to com-
pute it for probabilistic automata by [6]. The basic idea is that

(L2(A1, A2)) = (
∑

x∈Σ∗
|[[A1]](x) − [[A2]](x)|2) 1

2

= (
∑

x∈Σ∗
([[A1]](x) − [[A2]](x))2)

1
2

= (
∑

x∈Σ∗
[[A1]](x)2 − 2[[A1]](x)[[A2]](x) + [[A2]](x))2)

1
2

= (
∑

x∈Σ∗
[[A1]](x)2 − 2

∑

x∈Σ∗
[[A1]](x)[[A2]](x) +

∑

x∈Σ∗
[[A2]](x)2)

1
2 .

(2)

In the second equality, the absolute values can be removed since they are squared.
The last three summations can be computed separately via a shortest distance



Learning Probabilistic Automata Using Residuals 305

algorithm for weighted graphs (see below). In general, we consider three different
situations.

First, when A1 and A2 are acyclic, those summations are finite and can be
computed directly.

Second, when A1, A2 are deterministic probabilistic automata, we compute
their intersection automaton A using the product construction. To avoid com-
puting three intersections, we can keep the label of each transition

δp((q1, q2), a)(q′
1, q

′
2)

as a pair (δp1(q1, a)(q′
1), δp2(q2, a)(q′

2)), where δp1 is the transition function of A1

and δp2 is the one of A2. When calculating [[Ai]](x)2, we only need to square the i-
th component of the pair, while we will multiply the two components to calculate
[[A1]](x)[[A2]](x). This is possible because, for any string x ∈ Σ∗, there is at most
one accepting path in A1 and A2. In the end, we use the shortest distance
algorithm over the intersection automaton with weight modified as described
above to compute

∑
x∈Σ∗([[A1]](x))i([[A2]](x))2−i for i = 0, 1 and 2.

Third, when A1 and A2 are arbitrary automata, there may be multiple paths
with the same label, which means we cannot avoid performing three different
intersection automata: one of A1 with itself, another of A1 with A2, and the
last of A2 with itself. As before, we use the shortest distance algorithm over the
intersection automaton to compute

∑
x∈Σ∗([[A1]](x))i([[A2]](x))2−i for i = 0, 1

and 2.

A Shortest Distance Algorithm for Weighted Graphs. Classical shortest
paths problems compute the shortest paths from one set of source vertices to
all other vertices in a weighted graph. The classical shortest paths problem has
been generalized to the weighted graph [18]: The shortest distance from a set of
vertices I to a vertex F is the sum of the weights of all paths from nodes in I to
nodes in F [18] presented a generic algorithm to compute single-source shortest
distances for a directed graph with weight in a semiring. Termination of the
algorithm depends on the graph being k-closed, a condition that unfortunately
is not satisfied by our probabilistic automata (or their intersection). Therefore we
have to adapt the algorithm so as to work with a weaker condition, boundness.

A weighted graph 〈Σ,Q, I, F, δ〉 consists of a finite alphabet Σ, a finite set of
states, an initial weight I : Q → Q, a final weight F : Q → Q, and a transition
function δ : Q × Σ → QQ. It is similar to a probabilistic automaton, but it
does not need to satisfy its restriction. In fact every probabilistic automaton
is a weighted graph, and also the intersection of two probabilistic automata
as defined in the previous section is a weighted graph (but, in general, not a
probabilistic automaton).

Definition 6. A weighted graph 〈Σ,Q, I, F, δ〉 is bounded, if for any cycle π
there exists a k ∈ Q such that:

∞∑

n=1

δ(π)n = k
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For example, every probabilistic automaton 〈Σ,Q, Ip, Fp, δp〉 is bounded
because the probability of a path with a cycle is always strictly less than 1.
It follows that

∑∞
n=1 δp(π) = r

1−r , where δp(π) = r < 1. Also, the intersection
of two probabilistic automata is a bounded weighted graph, but not necessarily
a probabilistic automaton because weights need to normalized.

Next, we provide a shortest distances algorithm for bounded weighted graphs.
The pseudo-code is given in Algorithm 4.

Algorithm 4: A shortest distance algorithm for weighted graphs
Input: A bounded weighted graph 〈Σ, Q, I, F, δ〉
Output: A rational number d, the shortest distance between I and F
1: Let S and M be an empty set
2: for q ∈ Q do
3: if Ip(q) �= 0 then
4: d[q] := Ip(q)
5: r[q] := Ip(q)
6: M [q] := {q}
7: add state q to S
8: else
9: d[q] := 0

10: r[q] := 0
11: while S �= ∅ do
12: q := S[0]
13: remove q from S
14: add q to P
15: r′ := r[q]
16: r[q] := 0
17: for all a ∈ Σ, q′ ∈ Q do
18: if δp(q, a)(q′) �= 0 then
19: if q′ is not in M [q] then
20: M [q′] := M [q] + aq′
21: d[q′] := d[q′] + (r′ × δp(q, a)(q′))
22: r[q′] := r[q′] + (r′ × δp(q, a)(q′))
23: if q′ /∈ S then
24: add q′ to S
25: else
26: find cyclic subsequence q′xq′ in M[q] and store it Re
27: remove alphabet symbols from q′xq′ and store the resulting path in π
28: if Re /∈ M [q′] then
29: l := δp(π)

30: k := l
1−l

31: d[q′] := d[q′] + (r′ × k)
32: r[q′] := r[q′] + (r′ × k)
33: for q ∈ Q do
34: d[q] := d[q] × Fp[q]
35: return d

The algorithm uses a set S to maintain the set of next states after transitions
and M to store the sequence of transitions visited. S is initialized as a set of
initial states. d[q] is the total weight from an initial state to the current state q,
r[q] is the weight of the current transition from an initial state to state q.

In the while loop from line 11 to 31, each time we extract a state q from set
S, then store the value of r[q] in r′ and set r[q] to 0. Lines 17–31 is calculating
distances. First, for all transitions starting from state q, if next state q′ does not
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exist in M [q], update M [q′] and the value of d[q′] and r[q′]. If next state q′ is
not in S, add q′ into S. If next state q′ exists in M [q], find path π of repetition
part, then update d[q]. When q is the last state in set S, and there are no more
transitions, the while loop ends. In the end, for each state q, d[q] is multiplied
by the final weight of the state.

4.2 Metrics Using the Sample

In practice, we usually don’t know the target distribution of its PFA representa-
tion. So we often metric such as Accuracy, Precision, or Sensitivity when testing
a PFA against a sample. To measure the similarity or dissimilarity of strings
from the sample and ones from the learned automaton, the learned strings are
categorized in terms of a confusion matrix [21], as shown in Table 1.

Table 1. Confusion matrix

Classification by sample Classification by learned automaton
ω ∈ L(A) ω /∈ L(A)

ω ∈ S+ True Positive (TP) False Negative (FN)
ω ∈ S− False Positive (FP) True Negative (TN)

Since the confusion matrix only takes into account the support of a proba-
bilistic language, we propose a generalization of true positive and false negative
weighted by a confidence measure, based on the L1 distance between the sample
and the distribution of the learned automaton. This leads to a new definition of
precision, sensitivity and accuracy for probabilistic automata:

Precision =
cTP

|TP | + cFP
, Sensitivity =

cTP

|TP | + cFN
,

Accuracy =
|TP | + |TN |

|TP | + |TN | + |FP | + |FN | .

where cTP =
∑

x∈TP 1 − |Ps(x) − [[A]](x)|, and cFN =
∑

x∈FN Ps(x). Here
Ps(x) = f(x)∑

y∈S f(y) , is the probability of the string x given the sample S. Similarly,
we could define the confidence false positive cFP =

∑
x∈FP [[A]](x). We do not

weight TN with a confidence value, as the probability of not belonging to the
sample and to the language of A is both 0, and therefore have 0 distance. Also,
note the asymmetry between |TP | and cFP in the denominator of Precision and
Sensitivity (TP does not use the confidence extensions). This is because |TP |
simply refers to the total number of samples and is needed to average cTP .

When the distribution of the learned automaton coincides with that of the
sample, cTP = |TP | = |S+|, |TN | = |S−|, and |FP | = |FN | = 0. In this
case, precision, sensitivity and accuracy will be all 1. On the other opposite,
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when there are no true positive but only false positive and false negative, then
cTP = |TP | = |TN | = 0, |FP | = |S−|, |FN | = |S+| and cFP = cFN = 1
meaning that the precision, sensitivity and accuracy will be 0.

5 Experimental Results

We used the metrics introduced above to study the performance of our algorithm
for learning probabilistic languages. We used different sizes of samples indepen-
dently draw according to a distribution presented by four different probabilistic
automata depicted in Fig. 2: one DPFA, one PFA, one RFSA and one PFA that
cannot be expressed by a DPFA. First, we generate a set S of size n of strings
from the alphabet by length-lexicographic order and assign the probability of
each strings according to the target automaton. Given a fixed number of total
occurrences m, we then calculate the frequency of each string in the sample based
on its assigned probability. Note that samples generated in this way need not to
be complete. All target automata we consider have 3 to 5 states, for which we
generate a sample set of size n < 50 and total number of occurrences m varying
between 10 to 200.

Fig. 2. The four target automata for our experiments

We compare our algorithm to ALERGIA [4] and k-testable algorithms [5].
Contrary to our algorithm presented here, the performance of these other algo-
rithms may be impacted by a parameter setup. For ALERGIA we choose two
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different parameters α = 0.9 and α = 0.1. For k-testable algorithms, we set k to
be 2, 3, 4 and 5.

For the case of the DPFA A1, the distribution found by all algorithms con-
verges with respect to the L2 distance rather quickly towards the original one.
The 5-testable algorithm has the highest precision and sensitivity and the small-
est L2 distance, but it needs 19 states to learn an automaton of 3. Our algorithm
has the best accuracy and is the only one learning the same structure as the orig-
inal automata (Fig. 3).
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Fig. 3. Results of learning A1

A similar situation happens when learning the RFSA A3. In this case, our
algorithm learns a distribution that cannot be described by any DPFA (see
appendix for proof that the distribution generated by A3 cannot be generated
by any DFPA). We omit the tables here because of a lack of space.

When considering the PFA A2, our algorithm, ALERGIA and 5-testable
algorithm outperform all the others, see Fig. 4. Only our algorithm can learn the
same number of states but with few more transitions. Accuracy is 1 again. Some
errors are introduced because of the fair distribution among non-deterministic
transitions.

Finally, we considered the PFA A4 that cannot be expressed by any DPFA,
and that does not have an equivalent RFSA as support, either. All algorithms
cannot learn the same structure as the target automaton. Nevertheless, our algo-
rithm achieves the best performance. The L2 distance is smallest, precision is
highest, sensitivity is second highest, and accuracy is always 1 (something not
true for all other algorithms). Even if we perform better because the RFSA we
learn has the same structure as the support of target distribution, our algorithms
will never be able to identify it. We omit the tables here because of a lack of
space.
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Fig. 4. Results of learning A2

6 Conclusion

We proposed a new algorithm to learn regular distributions using residual lan-
guage and adapted existing metrics to evaluate its performance. Our experimen-
tal results show that our algorithm can learn the structure of the target automa-
ton efficiently, but distributing probabilities fairly among non-deterministic tran-
sitions can cause problems in learning the target distribution at the limit.
Other techniques could be used to alleviate this problem and finding a better
approximating solution. For example, we will investigate the use of evolution-
ary computing, and machine learning to better distribute probabilities among
non-deterministic transition. Alternatively, we will investigate the use of iterative
methods for polynomial constraint solving. Contrary to most existing algorithms,
we have shown that our method can learn some PFA with a RFSA support that
does not generate a deterministic regular distribution. Furthermore, it would be
interesting in having larger samples so to experiment, for example, the impact
of passive learning of probabilistic automata in model checking [19,22]. It would
also be interesting to have a deeper analysis of the distance algorithm and the
new metrics we introduced. We leave both these points for future work.

A Appendix

In this appendix we prove that the probabilistic language described automaton
A3 cannot generated by any deterministic automata.
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Proof. For A3, we have

ρA(a2n) =
[[A]](a2n)
[[A]](a2n)

=

∑
π∈Pathp(a2n) δp(π) · ep(π)
∑

π∈Pathp(a2n) δp(π)

=

∑
π0∈Pathp(a2n) δp(π0)0.5 +

∑
π1∈Pathp(a2n) δp(π1)0

∑
π0∈Pathp(a2n) δp(π0) +

∑
π0∈Pathp(a2n) δp(π1)

=

∑
π0∈Pathp(a2n) δp(π0)

2[
∑

π0∈Pathp(a2n) δp(π0) +
∑

π0∈Pathp(a2n) δp(π1)]

(3)

where π0 is the path for the string x ending at state q0, and π1 is a path for the
string string x ending at state q1. Let r2n denote

∑
π0∈Pathp(a2n) δp(π0), and s2n

denote
∑

π0∈Pathp(a2n) δp(π1). Then [[A]](a2n)

[[A]](a2n)
= 3r2n

4(r2n+s2n)
. Suppose [[A]](a2n)

[[A]](a2n)
=

[[A]](a2(n+1))

[[A]](a2(n+1))
, we can get:

[[A]](a2n)
[[A]](a2n)

=
[[A]](a2(n+1))
[[A]](a2(n+1))

3r2n

4(r2n + s2n)
=

3
4

r2n · 0.15 · 0.5 + s2n · 0.5 · 0.2
r2n(0.15 · 0.5 + 0.15 · 0.2) + s2n(0.2 · 0.5 + 0.2 · 0.2 + 0.5 · 0.15)

r2n

r2n + s2n
=

0.075r2n + 0.1s2n

0.105r2n + 0.215s2n
r2n
s2n

r2n
s2n

+ 1
=

0.075 r2n
s2n

+ 0.1
0.105 r2n

s2n
+ 0.215

(4)
Since r2n

s2n
is greater than 0, we get r2n

s2n
= 29.6125.

r2n

s2n
=

0.075r2(n−1) + 0.1s2(n−1)

0.03r2(n−1) + 0.04s2(n−1)
(5)

It is easy to find that r2(n−1)

s2(n−1)
is strictly smaller than 29.6125, so the set {ρ(a2n) |

n > 0} cannot be finite. Therefore, the automaton show as Fig. 2c cannot be
expressed as deterministic probabilistic automaton.

��
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