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“The trouble with computers, of course, is

that they’re very sophisticated idiots.”

Doctor Who
(Doctor Who, Season 12,

Episode 4: “Robot: Part Four”)

7.1 Introduction

The importance of remotely-sensed data, especially LiDAR data, for archaeology has

grown exponentially in recent years (Opitz & Herrmann, 2018). Nowadays, the man-

ual analysis of these data sources is a key element of local and regional scale archae-

ological research, as well as cultural heritage management (Cowley & Sigurdardóttir,

2011; Verhoeven, 2017). However, to overcome the challenges to manually analyze

big remotely-sensed datasets and to find and document the seemingly overwhelming

number of potential archaeological objects (Bennett et al., 2014; Bevan, 2015), ad-

vanced computational or manual brute-force search strategies are needed (Casana,

2014, 2020).

Therefore, archaeologists have started developing computational methods for the

(semi-)automated detection of archaeological objects (Lambers et al., 2019). Since

thenmultiple studies have shown that these algorithms are capable of detectingwell-

defined archaeological objects (see Chapter 1, Fig. 1.2 for an overview). However,

these (often) handcrafted algorithms are highly specialized on specific, single object

categories and data sources, which restricts their use in different contexts and limits

their usability in general for archaeological prospection. The recent developments

in Deep Learning (LeCun et al., 2015), instigated by the emergence of Convolutional

Neural Networks (CNNs; Krizhevsky et al., 2012), have shown the potential of these

methods in multiple domains, for a variety of tasks (Perrault et al., 2019), including

remote-sensing (Ball et al., 2017) and archaeology (Trier et al., 2018; Zingman, 2016).

However, many challenges remain concerning the application of Deep Learning ap-

proaches in ‘real-world’ scenarios, including archaeological practice. Therefore, the

first aim of this thesis has been to develop and apply methodologies using Deep

(Region-based) CNNs for the detecting of (multiple classes of) archaeological objects

in LiDAR data. The second aim was to explore the usability and incorporation of

these CNN-based methodologies in archaeological practice and spatial archaeology.

The ultimate goal of this research is to advance the use of Deep Learning and LiDAR

in archaeology.

This chapter starts with a summary of the challenges of archaeological object de-

tection in remotely-sensed data and the progressmade towards resolving these (Sec-

tion 7.2). One of the main outcomes of this research, a technique to add domain

knowledge to the classification process, is discussed in more detail (Section 7.2.3).

Subsequently, in Section 7.3 the evaluation of the performance of thesemethods and

their transferabilitywill be reviewed. Afterwards, the incorporation of thesemethods

in archaeological practice is considered (Section 7.4). The chapter concludes with a

summary of the most important insights generated by the research presented in this

thesis (Section 7.5) and suggestions for future work (Section 7.6).
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7.2 Archaeological Object Detection in Remotely-Sensed Data
The first aim of this thesis has been to investigate the possibilities and challenges

of using Deep (Region-based) CNNs for archaeological object detection in remotely-

sensed data. However, this particular task is not as straightforward as more gen-

eral object detection tasks, such as finding persons, animals, or household objects

in photographs (see Everingham et al., 2010; Lin et al., 2014b). Consequently, the

implementation of traditional object detection methods is limited by: 1) the nature

and appearance of archaeological objects in remotely-sensed data; 2) their similarity

to other anthropogenic and natural landscape elements; and 3) the characteristics of

the remotely-sensed data and images. These challenges, which are not restricted to

archaeology but are also prevalent in other domains (Sumbul et al., 2019; Tang et al.,

2017a; Van Etten, 2018), will be discussed in more detail, followed by an overview

of the solutions and workflows developed in this research.

7.2.1 Challenges
Small and Scarce Objects
The main challenge in using traditional object detection methods for our particu-

lar task is that archaeological objects in remotely-sensed images are usually small,

generally lack a consistent orientation, and are often densely clustered but scarcely

distributed. Furthermore, their degree of preservation varies greatly and with it,

their appearance in these images. For example, in our random test dataset from

the Veluwe the size of barrows and charcoal kilns is on average only 14–20 m (26–

40 pixels), while plots within Celtic fields are slightly larger with sizes of circa 56

m (112 pixels; see Fig. 7.1). In comparison, the coverage of a single image in the

random test dataset is 300 by 300 m (600 by 600 pixels) or 90,000 m
2
! While the

Veluwe area holds one of the densest concentrations of archaeological objects in

the Netherlands, these objects nevertheless only appear in 1 in every 5 images in

the random test dataset (see Chapter 3, Table 3.2). Detecting objects in such a ‘low

density’ dataset is a challenging task, not only for automated detection methods but

also for human interpreters (Soroush et al., 2020).

Figure 7.1: Boxplots showing the average size of objects in the random test dataset.
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This is in stark contrast to more general purpose datasets used for CNN-based object

detection, such as Microsoft COCO (Lin et al., 2014b) or Pascal VOC (Everingham et

al., 2010), which contain ‘natural images’, i.e., photographs of scenes seen in nor-

mal settings (Goodfellow et al., 2016). These images normally contain large, promi-

nent objects (i.e., they occupy a major portion of the image) that are overall reliably

orientated (Fig. 7.2). Traditional object detection methods take advantage of these

relatively large objects by heavily downscaling the images when they pass through

the CNN, which greatly reduces the computational cost (Olivier & Verschoof-van

der Vaart, 2021). Therefore, directly applying CNN-based object detection algo-

rithms renders unsatisfactory performance when applied to detect small objects in

images, as these methods are geared towards detecting abundantly present, large

objects (see Everingham et al., 2015; Ren et al., 2018b). Furthermore, small and

scarcely distributed objects lead to the problem of foreground-background class im-

balance in object detection (Oksuz et al., 2019), where one class is over-represented,

in this case the background class, while the other class (foreground, i.e., the archae-

ological objects) is under-represented (Luque et al., 2019). This imbalance can have

a major impact on the classification and generalization capacity of CNNs, leading to

bias and low performance (see also Section 7.3.2).

Figure 7.2: A comparison of a natural image from the Pascal VOC 2007 dataset (left;

Everingham et al., 2010) versus an extract of LiDAR data of the same pixel size, visualized

with Simple Local Relief Model (Hesse, 2010), showing barrows, Celtic fields, and hollow

roads (source of the height model: Nationaal Georegister, 2021).

Landscape Patterns
Automated detection methods have mainly been developed to find compact, local-

ized, and discrete objects, such as persons and household objects, or barrows and

charcoal kilns in the case of archaeology (Davis, 2021). However, in archaeological

spatial analysis more complex, large-scale landscape patterns, such as field systems

and roads, are also discerned and documented (Doneus, 2013; Traviglia & Torsello,

2017). These landscape patterns generally consist of a system of related entities (e.g.,

plots within Celtic fields) as opposed to separate, single entities.
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From a more theoretical point of view, these objects transcend from being delimited

points of interest in the landscape to being the areas or paths between these points,

but are of no less interest than the places they surround or connect (see Chapman,

2011; Doneus, 2013). These objects pose a challenge for traditional object detec-

tion methods as these traces generally cover extensive areas and/or have irregular

shapes, which makes it problematic to ‘catch’ these in (rectangular) bounding boxes.

In that sense the problem of detecting landscape patterns is more closely related to

land cover classification (Vali et al., 2020). A possible solution to this problem is to

use rotatable bounding boxes (Yu et al., 2020), although this does not solve the prob-

lem of long linear traces, e.g., roads. Furthermore, these patterns are often difficult

to define (on a pixel level), due to their heterogeneous nature (see Guyot et al., 2018).

Finally, these objects generally lack the uniformity of their modern counterparts, are

often only partially preserved due to anthropogenic and geomorphological interfer-

ence, and are regularly dissected by modern landscape objects (see Fig. 7.2). There-

fore, approaches developed to directly detect modern versions of these landscape

patterns, for instance motorways, do not translate well to the problem at hand (see

Chapter 5). Alternatively, in archaeology different methods have been developed

that use specialized (hand-crafted) feature extraction and analysis techniques (Fig-

orito & Tarantino, 2014; Kirchner et al., 2020; Traviglia & Torsello, 2017; Vletter,

2014; Vletter & van Lanen, 2018) or that indirectly detect landscape patterns using

spatial and predictive modeling (Davis et al., 2020; Verhagen et al., 2019) or onto-

logical reasoning (Nuninger et al., 2020a,b).

Objects of Confusion
Next to the problems related to the appearance of archaeological objects, a recurrent

issue are anthropogenic or natural landscape elements with a comparable morphol-

ogy to the archaeological objects of interest, which cause False Positives (Casana,

2020). Examples of these ‘objects of confusion’ are rounded outcrops or round-

abouts classified as barrows (Cerrillo-Cuenca, 2017; Chapter 2), spoil heaps classi-

fied as charcoal kilns (Schneider et al., 2015), and forest planting ditches classified as

hollow roads (Chapter 5.3.2). The occurrence of these objects can lead to reduced

performance in automated detection methods, especially when the archaeological

classes of interest are relatively ‘simple’ objects, e.g., mounds or pits, of which the

shape appears abundantly in the landscape (Meyer-Heß, 2020). This issue increases

with scale and becomes especially prevalent when methods are applied on large ar-

eas with different types of complex terrain (see Trier et al., 2021; Chapter 3.6). Con-

trary, human interpreters can usually differentiate between objects of confusion and

archaeological objects with minor difficulty. For instance, humans seldom classify a

roundabout as a barrow, even though these objects appear the same in LiDAR data,

i.e., as a circular, positive elevation (Fig. 7.3). This can partly be explained by the fact

that human interpreters can observe the vicinity of potential objects, i.e., they have

contextual information (see also Wu et al., 2020), and that during manual analysis

regularly additional data sources are consulted to make an informed decision.
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In contrast, most automated detection approaches classify small segments of an im-

age, derived from a single data source (e.g., LiDAR data), which limits the available

contextual information. Furthermore, an interpreter has a certain amount of prior

experience, archaeological and geological knowledge, and a degree of flexible and

creative reasoning that can be used in the classification task (Cowley, 2012; White,

2019, Chapters 3.6 & 4.4). In that sense a human uses a combination of perception

and comprehension to analyze the data (Lozic & Štular, 2021), while an automated

detection approach only uses perception, but generally lacks comprehension. It is

therefore hardly surprising that these methods struggle with objects of confusion.

Figure 7.3: Extracts of LiDAR data, visualized with Simple Local Relief Model (Hesse, 2010),

showing drift-sand dunes (left), barrows (middle), and a roundabout (right; source of the

height model: Nationaal Georegister, 2021).

Remotely-Sensed Datasets versus General Purpose Datasets
Next to these challenges related to the appearance and nature of archaeological ob-

jects, there is also a difference between remotely-sensed images and the natural im-

ages normally used to train and test traditional object detection methods. Remotely-

sensed images are on averagemuch larger than natural images and frequently exceed

the maximum input sizes of CNNs. For example, the LiDAR data used in this research

is distributed in images of 10,000 by 12,500 pixels. Yet, the maximum input size of

Faster R-CNN is 600 pixels. Therefore, images need to be split into smaller parts (i.e.,

subtiles or snippets), preferably with overlap. This process can result in the dissecting

of archaeological objects on the edge of subtiles (see Chapter 2.4). Also, this cutting

up can lead to class imbalance between the number of ‘positive’ and ‘negative’ ex-

amples due to the scarcely distributed objects.

More specifically, LiDAR images differ from natural images (RGB-colored photo-

graphs), as the former are the product of the conversion of raster datasets, containing

elevation values, into human-readable grayscale (or color) images through different

filtering, interpolation, and visualization techniques (Kokalj & Hesse, 2017; Opitz,

2013). Rather than having objects standing opaquely before a background, LiDAR

images contain intricate surface textures that semi-transparently overlay the natural

background and are in turn (partially) overlapped by other textures (Mlekuž, 2013a;

see Fig. 7.2). The latter phenomenon, occlusion—when objects are not perfectly visi-

ble and are obscured by objects or vegetation—is a common issue in remotely-sensed

images and problematic for detection methods (Ren et al., 2018a).
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The difference between grayscale (single-channel data) and RGB-color (three-

channel data) is normally resolved by turning the grayscale images into RGB by copy-

ing the value from the first channel to the other two color channels (Chollet, 2015).

Although this is regarded as a valid solution, the impact on the performance of a

transfer-learned CNN, pre-trained on RGB-colored images, remains a point of dis-

cussion (Xie & Richmond, 2019). Because the image characteristics of both types

of imagery, grayscale LiDAR versus RGB-colored photographs, are quite different, it

has been suggested that the effectiveness of transfer-learning declines as primary

data, i.e., the images used for pre-training, and secondary data, i.e., the images used

for fine-tuning, become less similar (Pires de Lima & Marfurt, 2019). Therefore,

there might be potential for improvement in transfer-learning by using CNNs that

are pre-trained on images more similar to the used remotely-sensed data (Gallwey

et al., 2019; Opitz & Herrmann, 2018; Trier et al., 2021). However, to date no large

remotely-sensed datasets with annotated archaeological objects (Opitz & Herrmann,

2018) and few labeled, more general remotely-sensed datasets are publicly available

for pre-training (Sumbul et al., 2019). Besides, the question remains—not only in ar-

chaeology but also in Deep Learning research in general—whether pre-training on

more comparable data actually improves performance (Ball et al., 2017; He et al.,

2019; Trier et al., 2019; Zoph et al., 2020). In the research of Gallwey et al. (2019) it

was shown that a CNN named DeepMoon (Silburt et al., 2019), originally trained to

detect craters in lunar LiDAR data, reached high performance when transfer-learned

to detect mining pits in terran LiDAR data. However, it remains the question whether

the pre-training on comparable data and/or the close similarity between the objects

of interest, i.e., craters and mining pits, is the main cause of the reported high per-

formance. In this thesis research it was attempted to transfer-learn VGG16 (the

backbone CNN of our Faster R-CNN), pre-trained on remotely-sensed data from the

Aerial Image Dataset (AID; Xia et al., 2017), on our own LiDAR dataset. The AID

dataset consists of 10,000 annotated aerial images of 600 by 600 pixels with pixel

resolution varying between 0.5–8 m. Contrary to our expectations, the resulting

model performed worse than others that were pre-trained on the general purpose

dataset ImageNet (Russakovsky et al., 2015) and further attempts were discontin-

ued. Other research has also shown that CNNs pre-trained on ImageNet outper-

formed CNNs pre-trained on different remotely-sensed datasets in the classification

of remotely-sensed data (Pires de Lima & Marfurt, 2019). This might be related to

the sheer size of general purpose datasets such as ImageNet, which ranges in themil-

lions of images, compared to available remotely-sensed datasets that contain tens of

thousands of images (Pires de Lima & Marfurt, 2019). Besides, the successful ap-

plication of transfer-learning in different earth observation domains (see Ma et al.,

2019) indicates the ability of CNNs to adjust to different types of data, advocating

the use of general purpose datasets for pre-training (Ball et al., 2017; Nogueira et al.,

2017).
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7.2.2 Progress
Considering the above challenges and the prerequisites for the applicability of au-

tomated detection methods for archaeological prospection, formulated at the start

of this research (see Chapter 1.4), two different workflows have been developed:

WODANandCarcassonNet (Fig. 7.4). Both approaches use transfer-learning inwhich

VGG16 (Simonyan & Zisserman, 2015) and ResNet34 (He et al., 2016) respectively,

pre-trained on the general purpose dataset ImageNet (Russakovsky et al., 2015), are

fine-tuned on our own developed training datasets of LiDAR images with annotated

archaeological objects. WODAN is amulti-class detector of both discrete objects and

landscape patterns, i.e., barrows, charcoal kilns, and Celtic fields, while Carcasson-

Net has been specifically developed to deal with the problem of irregular landscape

patterns, i.e., medieval hollow roads.

Both workflows solely make use of open-source data and software: the utilized

LiDAR and other geospatial data is freely available from the online spatial data repos-

itory PDOK (Nationaal Georegister, 2021). The LiDAR data has been processed with

QGIS (QGIS Development Team, 2017) and visualized with the Relief Visualization
Toolbox 1.3 (Kokalj & Hesse, 2017). Preprocessing, post-processing, and LBR are im-

plemented inQGIS (QGISDevelopment Team, 2017) and Python (VanRossum&Drake,

2009). Faster R-CNN is written in Python using the Keras library (Chollet, 2015) on

top of Tensorflow (Abadi et al., n.d.), while ResNet34 is written in Python using the

Fast.ai library (Howard & Gugger, 2020) on top of Facebook’s PyTorch Artificial Intel-

ligence development framework (Paszke et al., 2017).

Figure 7.4: Simplified representations of the WODAN2.5 and CarcassonNet workflows.

WODAN
The final version of theWODANworkflow,WODAN2.5 (Chapter 3.8), is amulti-class

detector able to detect barrows, Celtic fields, and charcoal kilns, in both a small, non-

random, and a large, random test dataset (see Chapter 3). The workflow has also

been successfully applied ‘in the wild’, in a case study in the southern Netherlands

(see Chapter 4). WODAN2.5 consists of four steps (Fig. 7.4): 1) A preprocessing step

that ‘cleans’, visualizes, cuts, and normalizes the LiDAR data into input images;

2) an object detection step that uses an adapted version of the Faster R-CNN archi-

tecture (Ren et al., 2017); 3) a post-processing step that converts the output of the

prior step, i.e., bounding boxes with pixel coordinates, a class label, and a confidence

score, into geospatial vectors (either points or polygons) with real-world coordinates,
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directly usable in GIS; and 4) an additional post-processing step called Location-

BasedRanking (see Section 7.2.3) that incorporates domain knowledge into thework-

flow.

In the WODAN2.5 workflow different modifications were made to Faster R-CNN

to cope with the above mentioned challenges and to adapt to the specific archaeo-

logical task. To address the problem of small objects, a relatively simple strategy was

used that reduces the window in which the algorithm looks for objects. This is pos-

sible by lowering the size of the anchor boxes (see Chapter 3.3.3) generated by the

Region Proposal Network (RPN; Ren et al., 2017) in Faster R-CNN, based on the ap-

proximate size of the objects of interest (Chen et al., 2017; Ren et al., 2018b; Tang et

al., 2017b). This strategy was chosen over other techniques, such as magnifying the

input images, combining the output of multiple layers of the neural network, i.e., mul-

tilevel feature fusion, or using multiple detectors with multiple scales (Guyot et al.,

2018; Van Etten, 2018), as these result in a more complex model and a considerable

increase in computational cost (Ren et al., 2018b). The problem of inconsistent orien-

tation of objects can be dealt with by using data augmentation (Van Etten, 2018). In

this research image flip (horizontally and vertically) and rotations were implemented

(see Chapters 2 & 3). An additional benefit of data augmentation is that the dataset

is effectively multiplied, reducing overfitting (Goodfellow et al., 2016). To reduce the

foreground-background class imbalance the Focal Loss function (Lin et al., 2020) was

applied in the RPN (see Chapter 3.8).

The issue related to the large size of the LiDAR images, as compared to images in

general purpose datasets, has been addressed by cutting the images into subtiles of

600 by 600 pixels with an overlap of 30 pixels to all sides (see Chapter 3.3.2). The

latter eliminates potential edge effects resulting from the visualization of the LiDAR

data, and avoids the dissecting of archaeological objects on the edges of subtiles. By

normalizing the subtiles, such that each image has pixel (or grayscale) values between

0 and 255, any detrimental effects of the dissecting of the data and potential prob-

lems due to relative height differences to the training of the CNN are negated (see

Kazimi et al., 2019).

To successfully detect Celtic fields, a novel approach was taken to annotate these

landscape patterns: instead of labeling the entire area as a single example, individ-

ual plots within the Celtic field were annotated as individual objects (see Chapter 2).

This not only considerably increases the number of examples in the training dataset,

but also proves to be a suitable solution to the problem of detecting Celtic fields.

A downside of this approach is that instead of looking for a checkerboard pattern,

which has few parallels in the landscape (see also Risbøl et al., 2013), WODAN looks

for square or rectangular embankments, a shape much more abundant in the land-

scape. This results in more False Positives being caused by comparable objects.
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CarcassonNet
The CarcassonNet workflow uses a combination of a Deep CNN and geospatial and

image processing algorithms to detect and trace hollow roads (i.e., irregular landscape

patterns) in LiDAR. CarcassonNet has been successfully applied on LiDAR data from

the Veluwe (see Chapter 5), as well as on data fromGermany and Slovenia (see Chap-

ter 6). The workflow has a comparable structure as WODAN but consists of only

three steps (see Fig. 7.4): 1) A pre-processing step that visualizes, cuts, and normal-

izes the LiDAR data into input images; 2) a classification step that uses the ResNet34

architecture (He et al., 2016) and Location-Based Ranking; and 3) a post-processing

step that converts the output of the CNN into two types of geospatial vectors to

efficiently study the roads themselves and their precise location in the landscape

(polygons), and the course of the roads and the resulting route network (lines; see

Chapter 5.2.2).

The most important contribution of CarcassonNet to the above challenges is a so-

lution to detecting irregular landscape patterns. Comparable to the approach taken

for the detection of Celtic fields (see above), CarcassonNet uses individual sections

of roads as input, instead of whole roads. Therefore multiple pieces per single hol-

low road can be taken, making it much more cost-effective to create a sufficient

training dataset. Furthermore, other challenges that are specifically related to object

detection, such as the size and distribution of the objects, are resolved in Carcasson-

Net by separating the characterization and localization problem (see Chapter 1.2.2).

By reducing the characterization sub-task to a binary classification, a CNN is only

used for classification, a relatively simple task. This results in better performance at

a lower cost/effort (Guo et al., 2016). Moving the localization sub-task to the post-

processing step offers the opportunity to fully employ the capabilities of GIS, making

it easier to process the output of the classification into results usable for archaeol-

ogy. Apart from this, CarcassonNet addresses the above challenges by using overlap

in the splitting of the LiDAR data, normalization of the resulting snippets, and by bal-

ancing the training dataset through data pruning (Angelova et al., 2005) and down

and upsampling (He & Garcia, 2009).

7.2.3 Techniques to Add Domain Knowledge
To make automated detection methods usable in large-scale archaeological survey,

additional information to differentiate between these morphologically identical ob-

jects needs to be incorporated into the classification process. Within archaeological

object detection, differentmethods (see Table 7.1) have been developed that add this

information, also called domain knowledge (Chapter 3.4, Davis et al., 2018; Meyer

et al., 2019; Meyer-Heß, 2020; Zingman, 2016; Zingman et al., 2014). The basic as-

sumption of these techniques is that the location of archaeological objects or objects

of confusion in the landscape is not random but is, among others, the result of certain

characteristics of the past and present environment (see also Verhagen & Whitley,

2020). Objects of confusion do not appear randomly throughout the landscape, but

are generally related to specific natural or anthropogenic phenomena, such as drift-

sand areas and modern roads.
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Furthermore, although the location of archaeological objects is often related to their

topographical or environmental context (Verhagen, 2007), e.g., the proximity of Vi-

king age fortresses to watercourses (Stott et al., 2019), the current distribution of ar-

chaeological objects and their visibility in remotely-sensed data is generally the result

of variable preservation or ground visibility conditions in different parts of the land-

scape (Bourgeois, 2013; Casarotto et al., 2018). The developed methods (Table 7.1)

use this information about these so-called map formation processes (Fokkens, 1998)

to enhance performance of automated detection methods.

Table 7.1: Approaches to add domain knowledge to reduce false positives.

Research Method Step Results

Meyer et al. (2019)
Digital Landscape

Model (DLM)
preprocessing

exclude areas that are exposed

to anthropogenic

relief-changing activities from

detection

Zingman et al.

(2014)

Morphological

Texture Contrast

(MTC) descriptor

preprocessing

exclude high contrast texture

regions (urban areas, forests,

rocky mountains) from

detection

Davis et al. (2018) land-use maps
post-

processing

exclude detections in proximity

to certain landscape elements

Verschoof-van

der Vaart et al.

(2020)

Location-Based

Ranking (LBR)

post-

processing

rank detections based on their

location in relation to certain

landscape elements

A general strategy of these methods is to either exclude specific parts of the land-

scape from classification or exclude detections made in these parts (Davis et al.,

2018; Meyer et al., 2019; Zingman et al., 2014, 2016). For instance, Meyer et al.

(2019) filter out areas that were (or still are) exposed to (sub)modern anthropogenic

relief-changing activities, e.g., urban development, as it is unlikely that archaeological

objects have been preserved in these parts of the landscape (Meyer-Heß, 2020). An

alternative strategy is to add a specific ‘terrain’ class to the train and test datasets, in

order to reduce confusion between objects of comparable morphology (Somrak et

al., 2020; Trier et al., 2019). Location-Based Ranking (LBR), developed in this thesis

(see Chapter 3.4), differs from these methods in that it does not a priori exclude any
areas or detections from the classification process. Instead, detections are ranked

according to their location in relation to specific landscape characteristics. Whether

subsequently all detections, or a selection of detections based on their ranks, are

used for further analysis is up to the operator and might depend on the goal of the

survey (Chapter 3.6). Contrary, the approach taken by Stott et al. (2019) actually con-

siders the topographical context, i.e., the proximity of possible archaeological objects

to bodies of water, roads, and present-day place names or toponyms, in the classifi-

cation process.

The methods in Table 7.1 have proven effective in adding domain knowledge to

archaeological automated object detection.
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For instance, the use of the Digital Landscape Model in Westphalia (Germany) re-

duced the amount of False Positives with circa 35% (Meyer-Heß, 2020), while the

implementation of LBR on the Veluwe resulted in a reduction of False Positives with

up to 70% (see Chapters 3, 4 & 5). Nevertheless, the development and success-

ful implementation of the majority of these approaches is highly dependent on the

availability of the required geospatial data (but see Zingman et al., 2014). While the

Netherlands has a wide variety of high-quality geospatial data readily available (Na-

tionaal Georegister, 2021), the level of availability, coverage, and quality varieswidely

between countries (Opitz & Herrmann, 2018). Of course, the latter is of influence

on the usefulness of these methods, as the quality of the approach is limited by the

data from which it was generated (Meyer-Heß, 2020).

While these approaches have a comparable goal, there is a clear methodologi-

cal difference between LBR (see Chapter 3.4) and the strategies proposed in other

work that exclude portions of the terrain or detections made therein from the re-

sults (Davis et al., 2018; Meyer et al., 2019; Meyer-Heß, 2020; Zingman, 2016).

These ‘exclusion strategies’ have, in addition to the reduction of False Positives, the

advantage that reducing the investigated area also decreases computational costs

and processing time (Meyer-Heß, 2020). However, their implementation has a po-

tential risk: it can result in a self-fulfilling feedback system (Wheatley, 2004). As

these strategies are based on the known distribution of archaeological sites, they

effectively reproduce and reinforce the inherent biases within the existing archae-

ological record (Nuninger et al., 2020b). Consequently, using exclusion strategies

results in the systematic searching for undiscovered sites in places where we expect

to find them. And if we only look in those places, we will only find them there (Nick-

erson, 1972). In contrast, LBR offers the opportunity to analyze the detections made

in less-favorable areas. This can lead to new insights on the preservation conditions

of specific areas, which in turn can result in changes in subsequent versions of the

method. For instance, initially modern roads were considered as detrimental to the

preservation of all archaeological objects on the Veluwe and were given a low rank

on the LBRmaps (see Chapter 3.4.1). However, during the preliminary analysis it was

noted that while many Celtic fields were intersected by roads, this has had a limited

negative impact on the preservation of the overall objects. On the other hand, dis-

crete objects, e.g., barrows, were severely damaged or even completely destroyed

by roads. Therefore, the LBR map was adjusted and roads were given a high rank in

the case of Celtic fields, while for discrete objects the lower rank was maintained.

A further complication of exclusion strategies lies in multi-class detection, in which

the classes vary in date and/or have a different preservation in particular areas. For

instance, the majority of large-scale drift-sands on the Veluwe originate from the

Middle Ages (Koster, 2009). Obviously, these areas are detrimental for the preserva-

tion and visibility of prehistoric traces, such as barrows. On the other hand, charcoal

kilns, dating from the late Middle Ages or later, are not or hardly affected by these

drift-sand areas. The binomial nature of exclusion strategies does not take such dis-

crepancies or intricacies into account, unless for every class the exclusion strategy

is adjusted and the dataset or detection model is reimplemented, which decreases

efficiency and negates the advantage of reduced computational costs.
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Improving Domain Knowledge-including Techniques
Current strategies to include domain knowledge to automated detection are based

on the relation between archaeological object classes and specific anthropogenic and

natural landscape elements, for example barrows and drift-sand areas (see Chap-

ter 3.4). These methods could be further improved and extended by incorporating

information on the spatial relationship or dependence among objects within a spe-

cific class or between different classes, i.e. spatio-contextual information (Li et al.,

2014). For instance, in this thesis individual plots within a Celtic field are detected as

opposed to the entire Celtic field. Therefore, clusters of multiple detections, as op-

posed to single, isolated detections, are much more likely to actually indicate a Celtic

field. This concept could be used to further reduce False Positives by disregarding

isolated detections and only look at clusters. However, this requires a high level of

completeness—how accurately the results reflect the extent of the archaeological

objects (see Chapter 4.4.1). If the completeness of a model is sub-optimal, such as

in the case study in the Midden Limburg area (see Chapter 4), disregarding isolated

detections could actually be detrimental to the overall performance.

Alternatively, the confidence score of detections could be penalized or increased

based on the proximity of other detections of the same class. For instance, bomb

craters from the Second World War generally appear in (linear) clusters due to the

purpose, i.e., destroying a particular enemy target, and the practicality, i.e., the use of

so-called bomb runs, of aerial bombardment (see for instance Passmore et al., 2014;

Waga& Fajer, 2021). Therefore, in an approach that detects these craters, detections

could be given an increase to their confidence scores based on the spatial proximity

to other detections, while isolated detections could be penalized (see also Brenner

et al., 2018). Furthermore, in multi-class detection the presence of bomb craters

could be used as an indication that other traces of conflict might be present, i.e, the

target of the aerial bombardment, and detections of other classes could be given

an increase in confidence when bomb craters detections appear in close proximity.

Although, if the bombardment was successful, the target was most likely (partially)

destroyed and might not be preserved.

Further potential for improvement lies in the addition of expert cognitive pro-

cesses and reasoning to the classification process. As said, human interpreters can

often make a distinction between objects of confusion and archaeological objects.

These interpretations are often based on a complex mix of prior experience, knowl-

edge, and a degree of flexible and creative reasoning that are almost impossible to

untangle (Halliday, 2013). But deconstructing these often subconscious processes

could help us to better understand the reasoning underlying an expert’s definition

and identification of archaeological objects or objects of confusion (Bennett et al.,

2014; Nuninger et al., 2020b). Unfortunately, explicit verbalizing of these thought

processes and reasoning, i.e., elicitation, has proven difficult (White, 2019). This is

further complicated by semantic inconsistency (Davis, 2020). Moreover, among in-

terpreters there is a variability in detection accuracy (Risbøl et al., 2013; Sadr, 2016),

leading to different interpretations of the same data which are often highly per-

sonal (Quintus et al., 2017). Consequently, these thought processes and reasoning

are still poorly understood, in-explicit, and not reproducible (Cowley et al., 2020;

Davis, 2020).
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In that sense, humans are asmuch ‘black boxes’ as is sometimes claimed of CNNs (see

Castelvecchi, 2016). Yet, a better understanding and quantification of expert reason-

ing would greatly improve domain knowledge including techniques (White, 2019).

7.2.4 Solutions for Automated Detection in Archaeology
The experiments conducted with WODAN and CarcassonNet have shown the po-

tential of (Region-based) CNNs for archaeological object detection. This potential

is further demonstrated by an abundance of other research projects that report fa-

vorable performance of CNNs on the classification, object detection, and segmenta-

tion of archaeological objects in remotely-sensed data (see Chapter 1, Fig. 1.2 for an

overview). However, the implementation of these (traditional) object detection ap-

proaches is limited by the above mentioned challenges. In this research these chal-

lenges have been addressed by using an established object detection model (Faster

R-CNN), to which different modifications and extensions (e.g., anchor box reduc-

tion, Focal Loss, and Location-Based Ranking) were added. The different experiments

have shown that both WODAN and CarcassonNet work adequately, although their

performance still has room for improvement. For instance, WODAN has not reached

general human performance on the same task (see Chapter 3).

Concerning the different types of detection used in this research it can be con-

cluded that for multi-class detection problems, especially when different object

classes appear in close proximity or even overlap, object detection is the preferred

method (see also Fiorucci et al., n.d.). In the case of a detection problem involving

a single object class it is more beneficial to split the classification and localization

sub-tasks, as was done in CarcassonNet. This is possible by combining a ‘normal’

CNN for classification and employing GIS in the post processing for localization (see

Chapter 5.2.2). Especially for irregular landscape patterns (e.g., roads) this method

has proven useful as it removes the problem of producing fitting bounding boxes.

The question remains what level of performance is needed for these methods to be

confidently employed in archaeological practice. To determine this, the actual evalu-

ation of the performance of archaeological detection methods needs to be reviewed

to facilitate comparisons between methods.

7.3 Evaluation of the Performance of Detection Methods in Ar-
chaeology

Arguably, one of the most important parts of many archaeological detection research

projects is the assessment of the performance of the developed method, and a com-

parison of the performance with other approaches (see for instance Kazimi et al.,

2020a; Trier et al., 2019). However, as shown in Chapters 3 and 5 the performance of

a method is in large part dependent on the datasets, metrics, and evaluationmethods

used. These same factors also make a fair comparison between different methods

difficult (see Chapter 2.6). Therefore, in the following these different aspects will be

discussed in more detail.
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7.3.1 Datasets
Generally, in archaeological detection research considerable attention is paid to the

preprocessing of remotely-sensed data and the creation of the training dataset (see

Trier et al., 2019). For instance, multiple research projects have focused on evaluating

different LIDAR visualization techniques to be used for input images of CNNs (Gall-

wey et al., 2019; Guyot et al., 2021a; Kazimi et al., 2020b; Somrak et al., 2020). This

preprocessing is certainly of importance, as the training data is a key-component of

Deep Learning approaches. Deep CNNs are data-hungry beasts—as opposed to Ma-

chine Learning applications that often perform well even if the dataset is small—of

which the performance is in large parts linked to the amount and quality of the data

presented to it. The more data a CNN is given, the better it is likely to perform (Ku-

mar & Manash, 2019). And obviously, these approaches can only be as good as the

data from which they are created (Chapman, 2011). The relation between the size of

the training dataset and performance could be observed during this research: with

only 177 charcoal kiln examples in the initial dataset, WODAN was unable to detect

this class (Chapter 2). In subsequent research the dataset was enlarged with circa

400 additional charcoal kiln examples, which proved sufficient for the model to de-

tect charcoal kilns, albeit with a relative low performance (Chapter 3). Therefore, a

logical way to further improve the performance ofWODAN—and other Deep Learn-

ing approaches—is by increasing the number of examples in the training dataset. Yet,

expanding and combining archaeological training datasets brings about several is-

sues, such as veracity (i.e., differences in quality of information between datasets),

incompleteness, and the issue of using unverified data (McCoy, 2017).

With the aggregation of data from different and heterogeneous providence, a cer-

tain degree of messiness should be expected and is probably inevitable (Gattiglia,

2015). This messiness results from combining, extracting, and transforming data, in-

consistencies in formatting, and unavoidable (human) errors. In the case of geospatial

or remotely-sensed data this generally emerges as variations in positional accuracy

or measurement quality, although semantic inconsistency can also become problem-

atic (Davis, 2020; Gattiglia, 2015). Furthermore, archaeological datasets are inher-

ently incomplete and almost always contain a certain degree of unknown archaeol-

ogy (Opitz & Herrmann, 2018). For example, during the creation of the datasets used

in this research, over 700 new potential barrows were discovered, in an area that was

regarded as extensively surveyed (Lambers et al., 2019). Moreover, in the develop-

ment of CarcassonNet (Chapter 5.3.3), a feedback loop between the archaeological

interpreter and the classification algorithm showed that in the initial manual labeling

of the dataset circa 5.5% of the hollow roads were missed. It is also regularly noted in

various research that False Positives from automated detection methods could actu-

ally be unlabeled or unconfirmed archaeological objects in the test dataset, so called

‘NewPositives’ (Bonhage et al., 2021; Meyer et al., 2019; Trier et al., 2019). This com-

plexity and inconsistency in datasets constrains the development and performance

of automated detection methods (Casana, 2020; Lambers et al., 2019; Sadr, 2016).

Especially for approaches that use fully automated preprocessing to create training

data this can cause problems (see for example Olivier & Verschoof-van der Vaart,

2021).
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Finally, expanding datasets with unverified archaeological objects remains a point

of discussion. Archaeologists generally make a clear (quantitative) distinction be-

tween verified and unverified objects or sites, and putmuch reliance into field-validat-

ed sites, while unverified sites are generally distrusted and given low confidence (Ba-

naszek et al., 2018; Cowley, 2012). However, only using fully field-validated data is

both financially and practically unfeasible, although efforts that utilize Citizen Science

are a potential solution (see Lambers et al., 2019). In other domains the use of un-

verified sources of information is justified by the logic that the sheer volume of data

will overcome the inclusion of some poor quality data (McCoy, 2017). Furthermore,

enlarging the training dataset with unverified archaeological objects, which often

are not consolidated or reconstructed—and therefore better resemble undiscovered

objects—might actually benefit the generalization capabilities of the approach (see

Chapter 3.4). Besides, it could also be argued that for certain types of archaeol-

ogy (e.g., Celtic fields or hollow roads) remotely-sensed data might be the optimal

medium to evaluate the presence of these objects, as validation in the field is prob-

lematic due to the lack of clear traces and material culture (Lambers et al., 2019).

Therefore, the benefits of adding unverified data might outweigh the drawbacks.

While the training dataset is in general carefully created, the importance of the

composition of the test dataset is often overlooked. As shown in Chapter 3, the per-

formance of the same model can vary significantly between test datasets in which

the state of preservation of the archaeological objects varies and that have a different

density of archaeological objects, i.e., a different ratio of positive and negative exam-

ples. For example, Brenner et al. (2018) demonstrate a Precision (see Fig. 7.5) of circa

90% in the detection of bomb craters in historic aerial photographs on a test dataset

with an 1:1 ratio of positive and negative examples. However, they also note that

in a realistic scenario the ratio of positive and negative examples is approximately

1:250, and the Precision would drop to 4%. Therefore, a distinction can be made

between experimental and ‘in the wild’ testing. In the former the test dataset is of-

ten small, non-random, and selective, i.e., it is an excerpt of the available data often

containing well-visible or well-preserved objects and/or a disproportionate number

of positive examples. Contrary, testing in the wild concerns a large dataset of all

available data from a certain area (and therefore a realistic distribution of positive

and negative examples). These datasets generally also include obscured objects or

objects in a bad state of preservation (see Chapter 3). Both types of test dataset have

merit in different situations. Testing on an experimental test dataset gives a good in-

dication whether the applied method is suitable, on a technical level, for the specific

task. These datasets are usable to test newly developed approaches (e.g., proof of

concepts) or to assess the improvement of additional measures, e.g., new data aug-

mentation or loss functions, in an existing method. On the other hand, a random

test dataset better represents the real-world situation of the prospection of scarce

archaeological objects over different types of complex terrain, and therefore gives a

better indication of the practical value of the automated detection model for archae-

ological practice. Therefore, a well thought-out composition of the test dataset or

datasets is essential for representative results.
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7.3.2 Metrics
Within archaeological automated detection a variety of performance metrics are

used to evaluate methods (see for instance Bundzel et al., 2020). The majority of

studies use metrics computed from a confusionmatrix (Gong, 2021), i.e., Accuracy or

a combination of Precision, Recall, and F-score, generally F1 (see Fig. 7.5). Accuracy

gives the ratio of correctly predicted instances to the total instances in the dataset.

The F1-score is the harmonic mean of the Precision and Recall and gives a measure

of a model’s performance (Sammut & Webb, 2010). This metric can also be used in

multi-class detection, by using themacro/micro averaged F1-score (Chicco& Jurman,

2020; seeChapter 2). It should be noted that during the actual training ofDeepCNNs

rather than these metrics, the loss function—a function that calculates the penalties

of incorrect classifications into a single number (Goodfellow et al., 2016)—is opti-

mized. A low loss function is generally regarded as an indication for a well-trained

approach and therefore high performance (Guo et al., 2016).

Figure 7.5: Overview of different metrics generally used in archaeological automated

detection research.
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Both Accuracy and F1-score are among the most popular statistical measures in

Machine Learning (Chicco & Jurman, 2020). However, the use of these metrics can in

certain circumstances result in overoptimistic or sub-optimal results, especially when

imbalanced datasets are used (He & Garcia, 2009; Johnson & Khoshgoftaar, 2019;

López et al., 2013; Luque et al., 2019; Santos et al., 2018). Class imbalance—when

the number of examples in one class is much larger than the number of examples in

the other class(es)—is naturally inherent inmany real-world situations, such as inmost

archaeological datasets used for automated detection. This is especially the case in

‘realistic’ test datasets, where the distribution of positive and negative examples is

very skewed (see Section 7.3.1). Usually, the minority class represents the concepts

of interest, e.g., archaeological objects, whereas the other class (the majority class)

represents the counterpart of that concept, e.g., empty terrain.

When a dataset is imbalanced, Accuracy becomes an unreliable metric (see for in-

stance Chapter 5, Table 5.5), since it does not distinguish between the number of

correctly classified examples of different classes, and therefore provides an overop-

timistic estimation of the classifier’s ability on the majority class (Chicco & Jurman,

2020; López et al., 2013). Simply said, an approach that classifies every example as

the majority class, will reach a high Accuracy, due to the overabundance of these ex-

amples compared to the minority class(es). For example, if only 1% of the instances

in a dataset belong to the minority class, a classifier that always outputs the ma-

jority class label for all instances will achieve an Accuracy score of 99%! This high

score misleadingly indicates good performance, while the approach will be useless in

practice (Johnson & Khoshgoftaar, 2019). Contrary, Precision and Recall, and conse-

quently the F-score (see Fig. 7.5), only consider positive examples and predictions,

generally the minority class(es), and do not show how the approach handles correct

negative examples (True Negatives, TN; see Fig. 7.5), which is usually the majority

class (Chicco & Jurman, 2020; Gong, 2021). Therefore, these metrics are not af-

fected by class imbalance, but on the other hand do not show how well an approach

can identify negative examples. Furthermore, the F1-score is very sensitive towards

disparate values, i.e., outlying scores in Precision or Recall, which can lead to a sub-

optimal approach (López et al., 2013). Related to this is the fact that the F1-score

assigns equal importance to both Precision and Recall. However, this balance might

not be desirable as the relative importance of Precision and Recall is an aspect of the

task of the method. For instance, as argued in Chapter 3.6, within archaeology the

preferred balance between Precision and Recall depends partly on the (envisioned)

users and the task of the method. A high Recall might be preferred when localizing as

many of the archaeological objects as possible is paramount for appropriate conser-

vation and heritage management. Contrary, when limited resources are at hand for

(field) validation, a high Precision is preferred. Generally, priority is given to Recall in

archaeological research (see for example Soroush et al., 2020). Although, completely

neglecting Precision runs the risk ofmoving the professional bottleneck (Smith, 2014)

from the desk to the field, i.e., the main problem becomes (field) validating, instead of

detecting, an overwhelming amount of potential archaeological objects. Therefore,

other versions of the F-score, where the ‘1’ is replaced for either ‘2’ or ‘0.5’ in the

equation might be more fitting for archaeology.
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The former (F2-score) weighs Recall higher than Precision, while the latter (F05-

score) weighs Recall lower than Precision (Sammut & Webb, 2010). Of course the

use of alternative versions of the F-score should be clearly stated to avoid confu-

sion.

Balancing Solutions
As the main problem of overoptimistic or sub-optimal metrics lies in the imbalance

between the majority and minority classes, different solutions on either a data, al-

gorithm, or metric level have been developed to resolve this (Oksuz et al., 2019).

Solutions on a data level generally involve sampling methods to modify an imbal-

anced dataset into a balanced distribution of positive and negative examples, i.e.,

random over and undersampling (He & Garcia, 2009). The former duplicates random

examples from the minority class, while the later discards random examples from

the majority class. Over and under-sampling have been successfully implemented to

balance the training dataset of CarcassonNet (see Chapter 5.2.2). However, these

techniques should be used with caution because random over-sampling might cause

overfitting, while under-sampling reduces the amount of information in the dataset

from which the approach has to learn. Consequently, a variety of additional ‘intel-

ligent’ methods have been developed that do not randomly over or under-sample

the data, but attempt to either reduce overfitting or preserve information for learn-

ing (Johnson & Khoshgoftaar, 2019). Solutions on an algorithm level generally con-

cern new loss functions, e.g., Focal Loss (see Section 7.2.2 and Chapter 3.8), different

training schemes, and threshold moving (Johnson & Khoshgoftaar, 2019; Zou et al.,

2016).

An effective metric to evaluate approaches that use an imbalanced dataset is

Matthews Correlation Coefficient (MCC; Chicco & Jurman, 2020; see Fig. 7.5). Con-

trary to Accuracy and F1-score, MCC is not bound between 0 and 1 but between -1

and 1. In order to obtain a MCC between 0 and 1, normalized MCC (nMCC; Fig. 7.5)

can be used (Chicco & Jurman, 2020). Comparable to F1-score, MCC can also be

calculated for multiple classes (Grandini et al., 2020). MCC is regarded as a balanced

metric, which takes all aspects of the confusion matrix (i.e., TP, FP, TN, and FN) into

account. Thus to get a high MCC score, a classifier has to make correct predictions

both on the negative and positive cases, independently of their ratio in the overall

dataset (Chicco & Jurman, 2020). For this reason, it is recommended to use either

MCC (see Chapter 5.3) or, preferably, a combination of different metrics including

MCC (see for instance Bundzel et al., 2020) to evaluate performance of archaeologi-

cal detection methods. Reporting results using a combination of diverse metrics also

facilitates and simplifies the comparison of different methods.

7.3.3 Evaluation Methods
Apart from the usefulness of different metrics for archaeological detection methods,

it might be considered whether the evaluation methods used are actually suitable

for our specific task (see also Fiorucci et al., n.d.). In other words: Do we need to

evaluate how we evaluate our methods? For instance, Gallwey et al. (2019) show

that even if individual detections are not always correct, the overall patterns in the

landscape are correctly reproduced by their method.
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A comparable issue is raised in Chapter 4, where the matter of completeness—how

accurately the results reflect the extent of the archaeological objects—is discussed.

While WODAN is able to detect the majority of demarcated areas of Celtic fields

within the research area, it generally does not detect the full extent. This results in

low(er) performance when calculating metrics based on coverage, even though the

method did correctly point to the location of archaeological objects and shows the

overall pattern of Celtic fields in the area. Therefore, the proximity of a detection to

the actual location of an archaeological object might be more important than the ex-

act intersection or coverage for archaeological object detection. Bundzel et al. (2020)

have quantified this with the MOR10R metric, which calculates the number of mis-

classified pixels further than 10 m from True Positives over all pixels. The concept

is to minimize the proportion of misclassified pixels outside an area that will be in-

spected by an expert, which is near the True Positives. Basically, errors close to True

Positives are less detrimental than those farther away (Bundzel et al., 2020). These

notions are in line with Cowley’s idea of a conceptual shift from awidely held fixation

on individual detections being correct to the overall patterns being descriptive (Cow-

ley, 2012; Sadr, 2016). While the correct detection of individual objects ismost bene-

ficial for settlement archaeology, correctly identifying the overall pattern is especially

relevant for environmental and landscape archaeology (see Chapter 1.1). Consider-

ing the incorporation of these methods in archaeological practice, quantifying the

‘overall pattern descriptiveness’ of a method would be valuable information. In the

research of Sadr (2016) patterns, resulting from the classification of settlements by

different interpreters, are compared by visually inspecting grayscale heatmaps. This

methodology could be translated into an evaluation metric, e.g., by using statisti-

cal tests developed in Computer Vision to compare grayscale images (Wilson et al.,

1997) or in Ecological research to compare the spread of populations (Syrjala, 1996),

to compare the known distribution of archaeological objects in an area to the distri-

bution resulting from using automated detection methods.

7.3.4 Transferability
Next to the performance on a random test dataset, an important factor determin-

ing the applicability of an automated detection method is their transferability (Cow-

ley et al., 2020; Kermit et al., 2018), i.e., the usability of the method on an unre-

lated area with either different topography, land-use, and/or LiDAR data of different

properties. As can be imagined, these factors can vary considerably on a regional

or national level, and a method that is unable to adjust to such different situations

has little practical value for wide application. Therefore, studies in different environ-

ments are important to investigate the true potential of automated approaches for

archaeological practice. In Chapters 4 and 6, the transferability of WODAN and Car-

cassonNet has been investigated. WODANwas trained on data from the central part

of the Netherlands (the Veluwe) and subsequently applied to data from the south-

ern Netherlands (Midden Limburg). While the parameters of the LiDAR data (e.g.,

average point-density, resolution, etc.) were the same for both regions, these areas

varied in archaeological, geo(morpho)logical, and land-use conditions (Chapter 4.2.1).

Contrary, in the transferability study of CarcassonNet, the topography, land-use, as

well as the properties of the LiDAR data varied (Chapter 6.2.1).
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Both studies showed that the approaches are able to generalize to different sit-

uations, although in general the performance on the new datasets decreases. The

influence of different terrain and land-use seems minor. This is probably due to the

fact that the majority of the possible terrain and land-use encountered is present

within the training datasets in some degree. Additionally, issues with particular ter-

rain and land-use can be overcome by adding (additional) domain knowledge (see

Section 7.2.3). However, differences in the properties of the LiDAR data, especially

the average point-density, seem to be detrimental to the ability of methods to detect

archaeological objects (Chapter 6.4). This has also been observed in other research

on the automated detection (Dolejš et al., 2020; Trier & Pilø, 2012) and the manual

analysis (Risbøl et al., 2013) of archaeological objects in LiDAR data.

Related to this is the question whether transferability should be expanded with

the ability of a particular method or workflow to be (re)applied to different types of

remotely-sensed data and/or archaeological objects. For instance, is it beneficial to

fine-tune WODAN, which already has been trained to detect prehistoric traces, to

detect traces of conflict? Or does this involve the complete retraining and restructur-

ing of the workflow? It would be beneficial to focus future research on the develop-

ment of general workflows and methods that can easily be modified and fine-tuned

on particular data and archaeological objects.

7.4 Incorporating Automated Detection in Archaeological Prac-
tice

The research in this thesis has shown the potential of workflows like WODAN and

CarcassonNet to detect different types of archaeological objects in LiDAR data. In

the preceding sections the progress made towards resolving the challenges of us-

ing (R-)CNNs for archaeological automated detection has been discussed. Further-

more, the datasets, performance evaluation, and metrics used for these methods

have been reviewed. This all leads to the discussion on how automated detection

methods can be incorporated in archaeological practice, which is the aspiration of

many research endeavors (see Kermit et al., 2018; Trier et al., 2019), including this

one. To date only a few automated detection methods have actually been applied in

archaeological practice or heritage management (see Kermit et al., 2018). According

to Opitz &Herrmann (2018) this lack of incorporation is prompted on a technological

level by the fact that these approaches are still in an early stage of development with

unsatisfactory results. On a practical level the minimal requirements of automated

detection methods for specific activities within archaeological practice (e.g., decision

making, planning, and research) remain undefined (Opitz & Herrmann, 2018). In my

opinion these two factors are directly related. To move from a development stage

to an application stage, initially a baseline of acceptable performance needs to be

established (see Cowley et al., 2020; Stallkamp et al., 2012).
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7.4.1 Setting the Bar for Archaeological Automated Detection
Current automated detection research focuses mainly on the development and as-

sessment of methods within a vacuum, as the field lacks consensus on the minimal

acceptable performance for practical use—while benchmarks to assess this perfor-

mance are also absent (see Section 7.6.4). This problem is not limited to archaeology,

but is prevalent in many domains in which Deep Learning is used (see Zhang et al.,

2021). Some archaeological research describes the minimal level of performance

in general terms, such as that methods need to produce ‘reasonable’ low numbers

of False Positives and False Negatives to be applicable (see for instance Kermit et

al., 2018). In other cases, the minimal level of performance is equated with the ca-

pabilities of human experts to analyze remotely-sensed data (Casana, 2020). This

expert performance is generally regarded as exceptionally good, to the point that

the results of their manual analysis are essentially taken as truth (Raczkowski, 2020),

even though classifications by different interpreters are highly subjective and can

vary widely (Quintus et al., 2017; Risbøl et al., 2013; Sadr, 2016). This has in part

fueled the distrust towards automated detection methods, as the performance of

these often fall behind manual mapping results (Traviglia et al., 2016). In my opin-

ion, expecting expert performance from (current) archaeological detection methods

is a pipe dream, as these are not only limited by their lack of expert knowledge,

but also suffer from additional constrains on a methodological and data level (see

Sections 7.2.1, 7.2.3, and 7.3.1). Although occasional reports are published about

Deep Learning approaches outperforming humans (for instance Silver et al., 2016),

these incidents generally concern (board)games, chemical or medical tasks, or rela-

tively simple image classification tasks (Perrault et al., 2019). However, to date no

CNN-based object detection approach, as used in this research, has reached super-

human performance (Zhang et al., 2021). At best, most Deep Learning approaches

can approximate the performance of the humans that created their training datasets,

due to the heavy reliance of these algorithms on humanly annotated data to effec-

tively learn. These large datasets, which are an important part of the pre-training of

CNNs, are generally not made by experts but through crowd-sourcing (Russakovsky

et al., 2015). While these are certainly of high quality, they are neither exceptional

nor error free (Northcutt et al., 2021). Besides, the comparison between the perfor-

mance of human experts and automated detection methods often misses the point

that the purpose of the latter is to rapidly detect potential archaeological objects

in large areas as opposed to a detailed analysis and interpretation of all potential ar-

chaeology (Cowley, 2012). Consequently, expert’s levels of performance as aminimal

baseline for automated detection methods in archaeology seem unsuitable.

General Human Performance
Rather, if a minimal baseline should be set for automated detection methods, it could

be argued that their performance should be more closely related to—and therefore

can be better compared with—the capabilities of general humans. Because the lat-

ter share the same cognitive capabilities as experts to detect objects in images, but

‘lack’ the experience and expertise of expert interpreters (see also Cummings, 2014;

Stallkamp et al., 2012).
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Therefore, the performance of general humans better shows the achievable perfor-

mance of automated detection methods, without expert knowledge—which so far

has seem impossible to add to the classification process (see Section 7.2.3). Inter-

estingly, a comparison between general humans, experts, and automated detection

might actually inform us on which part of the variability in performance is related to

the limitations in ‘vision’ and which part equals expert knowledge (see Section 7.2.1

and 7.2.3).

To asses this general human performance, methods and techniques from Citizen

Science can be used (Fritz et al., 2017; Kosmala et al., 2016; Salk et al., 2016). The

applicability of this type of research has been shown by recent projects in which ar-

chaeological objects were classified in remotely-sensed data by citizen researchers,

generally without a background in either remote sensing or archaeology (Forest et al.,

2020; Lambers et al., 2019; Lin et al., 2014a; Stewart et al., 2020). For instance, the

results of the Heritage Quest project give a good indication of the performance of

general humans in detecting archaeological objects in LiDAR images (Lambers et al.,

2019). The results show that humans perform reasonably well on this task, although

the performance varies between different types of archaeological objects (see Chap-

ter 3). Interestingly, mistakes made by citizen researchers can often be related to

objects of confusion (see Section 7.2.1), comparable to misclassifications made by

automated detection methods. This underlines the issue of the lack of expert knowl-

edge in both strategies (see Section 7.2.3). Aside, a high number of False Positives,

often the main argument against automated detection methods (Casana, 2020; Trav-

iglia et al., 2016), can also be observed in the results of the citizen researchers. Of

course, the performance of the citizen researchers in the Heritage Quest project

(Chapter 3.5.2) are specific to this particular research area and task, and might not

be directly translatable to every other research project involving archaeological de-

tection. The performance will differ when other types of archaeological objects are

mapped, in different areas, and/or in other types of remotely-sensed data. Nonethe-

less, this general human performance serves as a better baseline for determining

the achievable capability of automated detection methods than the performance

of experts. A next step would be to develop benchmark datasets for archaeologi-

cal automated detection, which also record the performance of general humans on

that particular dataset (see Section 7.6.4). The question remains whether this human

level of performance is actually necessary in all activities within archaeological prac-

tice, i.e., the specific role of the method within the broader archaeological (research)

framework is of importance as well.

7.4.2 The Role of Automated Detection in Archaeological Practice
As argued in Chapters 3 and 4 the required performance of an automated detection

method for incorporation into archaeological practice is dependent on the envisioned

users, the intended task, and the embedding of the tool (and its results) within the

wider archaeological research framework (see also Banaszek et al., 2018; Cowley et

al., 2020; Lambers et al., 2019; Opitz & Herrmann, 2018).
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Different users and tasks require an emphasis on either Recall, (i.e., maximizing the

number of True Positives) or Precision (i.e., minimizing the number of False Positives;

see Section 7.3.2). For example, the task of cultural heritage managers is often to

evaluate and attach priorities to certain areas. This requires adequate information

about the presence of archaeological objects within that area (i.e., a high Recall) to

ensure appropriate conservation. On the other hand, a researcher studying the dis-

tribution of a certain archaeological phenomenon is more concerned with the results

showing the overall pattern of objects, and therefore a high Precision might be pre-

ferred (see Chapter 3.6).

More importantly, when automated detection methods are used as a single source

of information, without subsequent verification of the results, middling levels of per-

formance are not adequate. However, using automated detection in this way seems

neither scientifically sound, nor desirable (see also Bennett et al., 2014). Contrary,

when automated detection methods are used in collaboration with other techniques,

or are subsequently verified, moderate performance can be sufficient and practi-

cal (Opitz & Herrmann, 2018). Related to this is the amount of reliance that is put

into the results of automated detection methods. As argued in Chapter 4, when the

results of an automated detection method are taken as highlighting areas of interest,

which contain potential archaeological objects that require (field) verification, rather

than direct indicators of the presence of an archaeological object, the level of com-

petence of the method does not have to be extremely high as the loss of a wrong

detection is low (see also Opitz & Cowley, 2013). As noted by Kermit et al. (2018),

the results of an imperfect automated detection method are better for aiding manual

analysis or for selecting areas for field verification than no detections at all. Rather

than thinking of automated detection methods as individual agents within archaeo-

logical prospection, the role reserved for automation on a complex task such as ana-

lyzing remotely-sensed data is as a teammate aiding humans in organizing, filtering,

and synthesizing data (see Bennett et al., 2014; Cummings, 2014).

Human—Computer Collaboration
The concept of automated detection in a supplementary role, next to manual anal-

ysis, offers many opportunities for improving the investigation of remotely-sensed

data (Bennett et al., 2014; Cowley, 2012; Trier & Pilø, 2012). This was shown in

Chapter 4, where archaeological objects, missed during the manual analysis, were

found by the automated detection method. The re-examination of the research area,

guided by the results of the automated detection, resulted in even more potential

archaeological objects, overlooked during both the initial manual analysis and the

automated detection. It was shown that the interaction between human and com-

puter (Boy, 2011), in which manual analysis and automated detection is combined

in a so-called Human—Computer strategy, resulted in a more complete overview of

the archaeology in the area and a gain in both quantitative and qualitative archaeo-

logical knowledge (see Cummings, 2014; Huggett, 2020a). The efficiency of these

Human—Computer strategies lies in the fast run-time of automated detection meth-

ods, which offers opportunities to run multiple algorithms, which detect different

types of archaeology, or run multiple versions of the same method simultaneously

to improve performance (see Chapter 3).
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An added benefit of Human—Computer strategies is the insight it can offer in the

biases of both manual and automated analysis (Bennett et al., 2014; Halliday, 2013;

Trier et al., 2019). It also resolves one of the caveats of current automated detec-

tion methods: these tools can only detect objects similar to the pre-defined target

class(es) while other objects are ignored (Lambers et al., 2019).

Obviously, the level of human involvement—and consequently the performance

of the automated method—in these strategies can vary based on the purpose of

the research. To get a general baseline on the presence of certain archaeological

objects, human involvement can be minimal, while an in-depth analysis of an area

needs more involvement. Human involvement might also decrease over time, when

the performance of the automatedmethod increases, due to technical improvements

or additional training data. Of course, a certain degree of involvement from a human

interpreter remains necessary and desirable, as the purpose of automated methods

is the detection of potential archaeological objects, not in the interpretation of these

objects. The latter is and stays the prerogative of archaeological experts (see Traviglia

et al., 2016).

7.4.3 Staunching the Data Deluge
From the preceding, it becomes obvious that I envisions the incorporation of auto-

mated detection methods in archaeological practice in a strictly supplementary role,

preceding or in conjunction with manual analysis. These Human—Computer strate-

gies, with various levels of human involvement depending on the task, resolve many

of the current issues of archaeological detection and require only moderate levels of

performance from developed methods. In my view, the incorporation of these ap-

proaches in archaeological prospection—to highlight areas of archaeological interest

that require (field) verification, add detail to existing archaeological predictive maps,

or to create the basis for fieldwork projects—lies in the very near future.

However, there are still some who deny the problems relating to the ever-increas-

ing amount of remotely-sensed data, and/or argue against the use of automated de-

tection in archaeology (Palmer, 2021; Parcak, 2009). According to them, the analysis

of all data is not necessary, as years of experience have enabled experts to ignore data

that is unlikely to serve our purpose, thereby effectively staunching the data deluge.

Not only does such a strategy run the risk of turning in a self-fulfilling feedback sys-

tem (Nuninger et al., 2020b; Wheatley, 2004), the fact remains that the analysis of

remotely-sensed datasets—even when chunks of data are discarded or ignored—is a

labor and time intensive effort, which often exceeds the limited resources available to

archaeology (Lambers et al., 2019). Unsurprisingly, the analysis of remotely-sensed

data on a regional, let alone national scale is hardly ever undertaken (Cowley et al.,

2020; Hesse, 2013). The implementation of automated detection methods can at

least alleviate part of the labor investment and provide a starting point for further

(manual) analysis (Banaszek et al., 2018). A more pressing matter, necessitating au-

tomated detection, is the ever-increasing threat to archaeology around the globe.
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While in most European countries this might comprise a slow rate of degradation

due to modern land-use, e.g., agriculture, and urban development (Bonhage et al.,

2021), in other parts of the world archaeology is under threat of extensive looting

and systematic and deliberate destruction (El-Hajj, 2021). Even in an ‘uneventful’

region as the Dutch Veluwe, where little land development is taking place, archae-

ology is inadvertently damaged or destroyed (see for instance Fontijn et al., 2011).

This is generally not deliberate but due to an unawareness of the presence of ar-

chaeological objects. The ability to rapidly detect objects in large remotely-sensed

datasets might prevent this irretrievable loss of archaeological sites and information.

Finally, these automated detection methods are not meant to replace expert inter-

preters or ‘automate archaeology’ (Traviglia et al., 2016). Rather, these methods can

be valuable additions to the existing archaeologists’ toolbox to rapidly map archaeo-

logical objects over extensive areas (see Soroush et al., 2020), to provide knowledge

about human activity in the landscape, to improve the efficiency of remotely-sensed

data analysis, and most importantly to reduce the expert’s time invested in actually

mapping objects, so that their time can be reallocated to analysis, validation, and

interpretation.

7.5 Conclusions
To conclude, in this thesis the use of Deep (Region-based) CNNs for the detection

of (multiple classes of) archaeological objects in remotely-sensed data, and the in-

corporation of these methods in archaeological practice was investigated. This re-

search has shown the possibilities of Deep CNNs for this task, although the imple-

mentation of these architectures is limited by several factors, such as the nature

and appearance of archaeological objects in remotely-sensed data, their similarity

to other anthropogenic and natural landscape elements, and the characteristics of

the remotely-sensed data itself. Two workflows have been developed in this thesis,

named WODAN and CarcassonNet, which combine CNNs and GIS to detect bar-

rows, Celtic fields, charcoal kilns, and hollow roads in LiDAR data. Location-Based

Ranking was developed to incorporate domain knowledge into the classification pro-

cess, without excluding specific parts of the landscape or detections therein. Experi-

mental evaluation of WODAN and CarcassonNet showed that these performed rea-

sonable, although there is always room to improve the efficiency and performance of

these workflows. The transferability of these methods, albeit with decreased perfor-

mance, was shown by case studies where both methods were applied on areas with

different archaeological, geo(morph)ological and land-use conditions and on LiDAR

data with different properties.

In this research, it is argued that the incorporation of automated detection ismostly

dependent on the role of these methods in the broader archaeological research

framework. This thesis proposes Human—Computer strategies, in which automated

detection precedes or is used in conjunction with manual analysis, to highlight areas

of archaeological interest that require (field) verification and to add detail to exist-

ing archaeological predictive maps. These strategies, with various levels of human

involvement depending on the task, resolve many of the current issues of archaeo-

logical automated detection methods, while requiring only moderate performance.
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Finally, this thesis has shown that the use of automated detection methods can

benefit both cultural heritage management and landscape or spatial archaeology

(i.e., räumliche Archäologie; Doneus, 2013). The efficient detecting and mapping of

the presence, location, and distribution of previously unknown archaeological ob-

jects within the landscape (i.e., quantitative knowledge gain) is of obvious benefit

for both settlement archaeology (Siedlungsarchäologie), environmental archaeology

(Umweltarchäologie) and cultural heritage management. However, such a compre-

hensive dataset also gives us a more complete view of the patterns and trends within

the (large-scale) distribution of archaeological objects in the landscape, the interre-

lationships between these objects and/or the landscape, and the structuring of the

landscape in the past (i.e., qualitative knowledge gain). This forms the basis for a bet-

ter understanding of the archaeological landscape, i.e., landscape archaeology (Land-
schaftarchäologie). Moreover, it offers insight into the current archaeological research

practice and possible biases that result from certain methods and/or interpretations.

In conclusion, the application of automated detection methods in large remotely-

sensed datasets benefits both cultural heritage management and archaeological re-

search and has the potential to radically transform archaeological practice in the near

future.

7.6 Outlook
7.6.1 Combining Methods for Archaeological Automated Detection
A potential benefit for the detection of archaeological objects, especially landscape

patterns, lies in combining Deep Learning approaches with other methods that (in-

directly) detect archaeological objects and patterns. For instance, combining Deep

Learning approaches with predictive modeling (Verhagen et al., 2019) seems an ob-

vious angle (see also Bickler, 2021), especially considering how the use of automated

detection results is envisioned in this thesis, i.e., as areas of interest that contain po-

tential archaeological objects. But also combining other techniques (Vletter & van

Lanen, 2018) or ontological reasoning (Nuninger et al., 2020a,b) with an automated

detection method such as CarcassonNet could lead to an improvement in perfor-

mance.

7.6.2 Combining Deep Learning and Citizen Science in Archaeology
An interesting angle for further research is the combination ofDeep Learning andCit-

izen Science for archaeological remote sensing. Recently, Citizen Science has been

successfully implemented for the detection of archaeological objects in remotely-

sensed data (Forest et al., 2020; Lambers et al., 2019; Lin et al., 2014a; Stewart et

al., 2020). As discussed by Lambers et al. (2019), Citizen Sciencemight offer solutions

to the professional bottleneck apparent in the creation of large training datasets (see

Green et al., 2020; Herfort et al., 2019; Keshavan et al., 2018; Willi et al., 2019)

and the (field) validation of detections made by automated detection methods. Fur-

thermore, applying Citizen Science and Deep Learning approaches on the same data

might offer possibilities to combine results, enhance performance, and alleviate some

of the challenges of both methods (Conrad & Hilchey, 2011; Muenich et al., 2016).
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7.6.3 Collaboration
The field of Deep Learning moves at an exceptional pace, and original, potentially

ground-breaking research is published on a daily basis. This necessitates a con-

siderable time investment in the monitoring of the state-of-the-art, and an ability

to properly evaluate recent, often not thoroughly evaluated, research papers and

techniques (Olivier & Verschoof-van der Vaart, 2021). Consequently, in archaeolog-

ical automated detection, generally architectures and methods are ‘borrowed’ that

are proven and currently easily available, but are not necessarily fully understood

or state-of-the-art (Cowley et al., 2021). Therefore, for the future development of

archaeological automated detection, close collaborations between the field of Ar-

chaeology and Computer Science might be very fruitful. Computer scientists have

the most up-to-date view of the possibilities of methods, while archaeologists are

necessary for defining exact goals of the project, the incorporation of methods and

results in digital archaeological practice (e.g., GIS), and for providing domain knowl-

edge (see for instance Fiorucci et al., n.d.). The first competition on the segmenta-

tion of Maya structures in LiDAR data (Discover the mysteries of the Maya) seems

to have sparked the interest of computer scientists. Hopefully, with the release of

archaeological datasets and benchmarks (see below) this interest can result in further

collaboration.

7.6.4 Availability of Benchmarks, Datasets, and Methods
In order to further the development of automated detectionmethods in archaeology,

freely available, large, annotated archaeological benchmark datasets are needed (see

Opitz & Herrmann, 2018). These could not only offer a performance baseline and

equal comparison for existing methods, but could also be used to train and evaluate

newly developed methods. Ideally, specific guidelines are drafted, which ensure the

compatibility between different datasets through conventions on data formats and

annotations. This would offer the opportunity to combine different datasets with

a variety of archaeological object classes. The variation in the data would also en-

hance the generalization capabilities of Deep Learning approaches. In the meantime,

research projects should aim to release the developed datasets, although we need to

be aware of potential issues with giving up positional data of archaeological objects

and looting (see McCoy, 2017).

Finally, next to the availability of datasets, developed techniques and methods

(e.g., code, hyperparameters, etc.) should also be made available to enhance future

research and to prevent the reinvention of the Deep Learning wheel (Schmidt &Mar-

wick, 2020). Therefore, the datasets and methods created in this research will be

made freely available in the near future. Till that time, these are available upon re-

quest.

https://biasvariancelabs.github.io/maya_challenge

