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Abstract — Within archaeological prospection, Deep Learning al-

gorithms are developed to detect objects within large remotely-

sensed datasets. These approaches are generally tested in an (ideal)

experimental setting, but have not been applied in different con-

texts or ‘in the wild’, i.e., incorporated in archaeological prospec-

tion. This research explores the applicability, knowledge discovery—

on both a quantitative and qualitative level—and efficiency gain re-

sulting from employing an automated detection tool called WODAN

within (Dutch) archaeological practice. WODAN has been used to de-

tect barrows and Celtic fields in LiDAR data from the Dutch Midden-
Limburg area, which differs in archaeology, geo-morphology, and land-

use from the Veluwe in which it was developed. The results show

that WODAN was able to detect potential barrows and Celtic fields,

including previously unknown examples, and provided information

about the structuring of the landscape in the past. Based on the

results, combined Human–Computer strategies are argued, in which

automated detection has a complementary, rather than a substitute

role, to manual analysis. This can offset the inherent biases in man-

ual analysis and deal with the problem that current automated de-

tection methods only detect objects similar to the pre-defined target

class(es). The incorporation of automated detection into archaeologi-

cal prospection, in which the results of automated detection are used

to highlight areas of interest and to enhance and add detail to existing

archaeological predictive maps seems logical and feasible.

This chapter has been published as:

Verschoof-van der Vaart, W. B. & K. Lambers (2021), “Applying automated object detection in

archaeological practice: a case study from the southern Netherlands”, Archaeological Prospec-
tion, DOI: 10.1002/ARP.1833.

https://doi.org/10.1002/ARP.1833
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“R2-D2, you know better than to trust a

strange computer.”

C-3PO
(Star Wars: Episode V, The Empire Strikes

Back, Lucasfilm Ltd., 1980)

4.1 Introduction
In the Netherlands, archaeological prospection—sometimes called archaeological

evaluation in other countries—generally follows a stepped scheme of: 1) a desk-

based assessment; followed by 2) a field survey, i.e., borehole surveys and/or field

walking; and finally, 3) test trenches (Lauwerier et al., 2017). Only sporadically this

strategy is supplemented with geophysical surveys (Rensink, 2019), although at-

tempts are made to further incorporate geophysics in Dutch archaeological prac-

tice (Jelsma et al., 2021). While remote sensing normally plays an important role

within archaeological prospection, in the Netherlands the focus has always been on

using coring and field walking. This limited application of remote sensing techniques

ismainly due to the geo(morph)ology of theNetherlands (where archaeological traces

are frequently covered by thick layers of subsoil; see Berendsen, 2004) and the com-

plex development and long-term, dynamic land-use (Risbøl, 2013), although practical

and financial factors also have played a role (Waldus, 2006). This changed with the

release of the Actueel Hoogtebestand Nederland or AHN—a LiDAR (Light Detecting

And Ranging; Crutchley & Crow, 2018) dataset covering the entire Netherlands—in

2003. Nowadays, consulting the AHN is common practice within desk-based assess-

ments. However, this LiDAR data is generally only superficially analyzed on a site

level, while the full potential of this data source for large-scale landscape analyses

has been underutilized. This is mainly due to the complications surroundingmanually

documenting and analyzing the overwhelming amount of potential archaeological

objects within these large, continually improving and expanding datasets (Bennett

et al., 2014; Bevan, 2015).

The last decade has seen an increase in the development of research strategies

that either rely on crowd-sourced and expert-led manual brute force methods or

on computational approaches to (semi-)automatically detect archaeological objects

in remotely-sensed data (Casana, 2014, 2020). Recent applications of the former

mainly involve the use of citizen science for the classification of remotely-sensed

data (Forest et al., 2020; Lambers et al., 2019; Stewart et al., 2020). Within the latter

a trend towards Deep Learning (Goodfellow et al., 2016; LeCun et al., 2015) can be

observed (Fiorucci et al., 2020). This subfield of Machine Learning predominantly

utilizes Convolutional Neural Networks (CNNs), hierarchically structured algorithms

that generally consist of a (image) feature extractor and classifier, and are loosely

inspired by the animal visual cortex (Ball et al., 2017; Guo, 2017). These algorithms

learn to generalize from given examples, i.e., a large set of labeled images, rather than

relying on a human operator to set parameters or formulate rules. A major advan-

tage of CNNs is the possibility to use transfer-learning (Razavian et al., 2014), where

a CNN is pre-trained on a large, generic dataset and subsequently is fine-tuned on

a small, specific dataset. In archaeology, transfer-learning has been successfully im-

plemented on different types of remotely-sensed data from Europe (Bonhage et al.,

2021; Gallwey et al., 2019; Guyot et al., 2021b; Kazimi et al., 2019; Trier et al., 2019;
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Verschoof-van der Vaart & Lambers, 2019; Verschoof-van der Vaart et al., 2020;

Verschoof-van der Vaart & Landauer, 2021; Zingman, 2016; Zingman et al., 2016)

and further abroad (Bundzel et al., 2020; Caspari & Crespo, 2019; Somrak et al.,

2020; Soroush et al., 2020; Trier et al., 2021, 2018). To date these approaches are

generally tested in an (ideal) experimental setting, but have not been applied in differ-

ent contexts or ‘in the wild’, i.e., incorporated in archaeological prospection, although

the latter is themain aim of most initiatives (see Trier et al., 2019). However, research

has shown that when these approaches are used beyond an ideal experimental set-

ting, the performance decreases (Chapter 3). Furthermore, one of themain questions

that remains is the transferability of thesemethods (Cowley et al., 2020; Kermit et al.,

2018). Therefore, studies ‘in the wild’ and in different environments are important to

investigate the true potential of automated approaches for archaeological practice.

4.1.1 Aim

In this chapter, the application of a Deep Learning tool within archaeological practice

will be addressed. Furthermore, the knowledge discovery—on both a quantitative

and qualitative level—and efficiency gain resulting from applying an object detection

model will be explored. The object detection model WODAN (Workflow for Object

Detection ofArchaeology in theNetherlands; Chapters 2 & 3), developed in one area

of the Netherlands (the Veluwe) will be used to detect two classes of archaeology

(barrows and Celtic fields) in the DutchMidden-Limburg area (Fig. 4.1). This area has
been chosen because it has different archaeological, geo(morpho)logical, and land-

use conditions (Section 4.2). The results of the automated detection (Section 4.3) will

be compared to two reference datasets: an inventory of documented archaeological

sites and a manual analysis of the LiDAR data, conducted in the framework of this

research. The knowledge discovery and efficiency gain will be analyzed (Section 4.3)

and discussed (Section 4.4).

4.2 Materials and Methods

4.2.1 Research Areas

The Veluwe area (Table 4.1) comprises the western part of the province of Gelder-

land in the Netherlands (Fig. 4.1, Red). It consists of ice-pushed ridges formed in

the Saale glacial period (ca. 350,000 to 130,000 BP), which were subsequently par-

tially covered with coversand during the Weichselian glacial period (ca. 115,000 to

11,500 BP; Berendsen, 2004). Nowadays, this area, ca. 1100 km
2
, is predominantly

covered by forest and heath, interspersed with villages and towns of various size,

and agricultural fields (for a detailed overview of the area see Lambers et al., 2019).

The Midden-Limburg area (ca. 265 km
2
, Table 4.1) covers the municipalities Echt-

Susteren, Roerdalen, and Roermond in the province of Limburg in the southern part

of the Netherlands (Fig. 4.1, Black). The western boundary of the area consists of the

Meuse river, while the area is demarcated in the east by the Dutch-German border

(Fig. 4.1).
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Figure 4.1: The Midden-Limburg (outlined in black) and Veluwe (outlined in red) areas on a

height model of the Netherlands (source of the height model: Nationaal Georegister, 2021;

coordinates in Amersfoort/RD New, EPSG: 28992).

Table 4.1: Main characteristics of the Veluwe and Midden-Limburg research areas.

Area Area (km2) Images General terrain Main land-use

Veluwe 375 1152
Ice-pushed ridges, partly covered

with coversand

Forest and

heath

Midden-

Limburg

265 4405
River terraces, partly covered with

coversand, loess, and river deposits

Agricultural

fields

TheMidden-Limburg area comprises a highly diverse landscape, which results from

eolian, fluvial, and tectonic processes (Fig. 4.2). In the north, the area is dissected

by a northwest-southeast orientated geological fault line, the Peelrandbreuk. Imme-

diately to the south of the research area lies another fault line, the Feldbissbreuk.
Therefore, the majority of the region is part of the subsiding Roerdalslenk or Roer

Valley Graben, while the northeastern part lies on the Peelhorst, which experiences

tectonic uplift (Berendsen, 2004). The subsoil and landscape in the research area

mainly formed by repeated deposition and incision of the Meuse river, starting in the

Holstein interglacial (ca. 400,000 till 380,000 BP) up till the present (Fig. 4.2). This

has resulted in a series of river terraces and escarpments: the higher terrace con-

sists of coarse river deposits from the Middle Pleistocene (ca. 400,000 till 130,000

BP). This terrace mainly follows the Dutch-German border and is only found in the

extreme northeastern and eastern part, theMeinweg nature reserve, of the research
area. A steep escarpment, spanning a height difference of up to 23 m, separates the

higher terrace from the middle terrace.
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The latter can be divided into a higher part, formed in theMiddle and Late Pleistocene

(ca. 380,000 till 15,000 BP), and a (few meters) lower part which was formed during

the warmer period at the end of the Weichselian (ca. 15,000 till 11,500 BP). The

middle terrace consists of Meuse river deposits (coarse sand and gravel). During the

Late Pleistocene (ca. 130,000 till 11,500 BP) the higher part of the middle terrace

and the higher terracewere subjected to eolian processes and became partly covered

with coversand and loess. Finally, the lower terrace contains the active stream valley

of the Meuse river and mostly consists of clay (Ellenkamp & Tichelman, 2008). In

the Holocene (ca. 11,500 BP till the present) stream valleys were formed by smaller

river courses such as the Roer or the Swalm, which deposited loam and sand. To a

lesser extent the area was covered by peat formations (Berendsen, 2004). Today,

the research area is predominately covered by agricultural fields, urbanized areas of

various size, and to a lesser extent with forest (Fig. 4.2).

Figure 4.2: Overview of the geology (left) and current land-use (right) of the Midden-Limburg

research area; amended from Ellenkamp & Tichelman (2008).

4.2.2 Datasets
LiDAR Data
LiDAR data of both research areas is freely available as an interpolated Digital Terrain

Model (DTM) from the online repository PDOK (Nationaal Georegister, 2021). The

data has an average ground point density of 6–10 per m
2
, a spatial resolution of

50 cm, and a vertical and planimetric accuracy of 5 cm (van der Zon, 2013). In this

research the second generation of Dutch LiDAR data (AHN2, released in 2012) is

used. The third generation (AHN3), with equal resolution but with a higher accuracy

compared to prior generations is currently being made available on a nation-wide

level. For the training of our object detection model (see Section 4.2.3), a dataset of

1152 LiDAR images (600 by 600 pixels) was used. This is a selection of images that

contain archaeological objects, from various parts of the Veluwe (spread over an area
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of ca. 375 km
2
). Images without archaeological objects from this area were excluded

from the training dataset. The total Midden-Limburg area (ca. 265 km
2
) was used to

form a test dataset of 4405 LiDAR images (600 by 600 pixels).

Archaeological Inventory
TheMidden-Limburg area is rich in archaeology frommany time periods. The follow-

ing overview is limited to the Neolithic period until the start of the Roman period (ca.

4900–12 BC; Louwe Kooijmans et al., 2005), focusing on three types of archaeolog-

ical sites: settlements, burial sites, and Celtic fields (Fig. 4.3). These types were se-

lected as they are either objects detected byWODAN (barrows, urnfields, and Celtic

fields) or are related to detected objects (settlements, other burials sites). There-

fore, comparing this overview with the results of the object detection can provide

information about the knowledge gain (see Section 4.3.4). The overview was assem-

bled by consulting the two principal Dutch archaeological databases (ArchIS and the

AMK; Rijksdienst voor het Cultureel Erfgoed, 2021b), the archaeological predictive

maps of the three municipalities (Ellenkamp & Tichelman, 2008; Verhoeven et al.,

2010a,b), and recent archaeological grey literature (Arnoldussen, 2013; Arnoldussen

et al., 2014; Meurkens & Tol, 2016; Verhart & Janssen, 2010).

Figure 4.3: The distribution of burial sites (circles), Celtic fields (triangles), and settlement

sites (rectangles) in the research area (red outline) on a recent aerial photograph; sites visible

in LiDAR data are outlined in black (source of the photograph: Nationaal Georegister, 2021;

coordinates in Amersfoort/RD New, EPSG: 28992).
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Every site in the overview has a different confidence level, based on the source (or

step in the Dutch archaeological prospection scheme, see Section 4.1) from which

the information about the site derives: 3) from indirect sources, such as (historical)

literature; 2) minimal destructive (archaeological) research, such as coring and field-

walking; or 1) archaeological test-trenches or excavations. As expected the accuracy

of the interpretation of these sites varies between these methods: through excava-

tions (1) the site type and date can be specifically determined, while an interpretation

based on field-walking (2) or indirect sources (3) is much less certain. Tables 4.2, 4.3,

and 4.4 show the known settlements, burial sites, and Celtic fields in the research

area divided per time period: Neolithic (4900-2000 BC), Bronze Age (2000-800 BC),

Late Bronze Age-Early Iron Age (Niederrheinische Grabhügelkultur or NGK; 1100-500
BC), and Iron Age (800-12 BC). Furthermore, the tables show whether the archaeo-

logical sites are visible in the LiDAR data (see also Fig. 4.3). In the case of settlement

sites, none are discernible, while only 23 of the burial sites and one of the Celtic fields

(ca. 0.24 km
2
) show up in the LiDAR data. In the results of the automated detection,

only these visible archaeological sites will be used. Besides, settlements, burial sites,

and Celtic fields are generally hard to discern in the field, but are sometimes visible

in other remotely-sensed data, e.g., aerial imagery (see for example Brongers, 1976).

As can be seen in Table 4.2, an abundance of settlement sites (170 in total) are

known from the research area. Upon excavation, these areas of habitation gener-

ally contain traces of houses or other buildings, additional pits and postholes, and

domestic refuse (Louwe Kooijmans et al., 2005). Most of these sites are located

within agricultural areas (Fig. 4.3). The table shows an uneven distribution with a

higher number of settlements dated in the Neolithic and Iron Age, as compared to

the Bronze Age. However, most of these sites have only been roughly dated, as the

majority are known from field-walking (ca. 60%), while only about a quarter of these

sites have been excavated. On the other hand, most of the burial sites (72 in total)

in the research area (Table 4.3) are known from indirect sources (ca. 38%) and exca-

vations (ca. 45%). The majority of these sites concern urnfields (ca. 37%) or barrows

(ca. 35%), although isolated burials (ca. 24%) without clear above-ground features,

are also known. The high number of urnfields, or barrow cemeteries, is related to the

fact that these are one of the most characteristic archaeological phenomena in this

region and thus have a rich research history (Theuws & Roymans, 1999). Most burial

sites can be dated to the Late Bronze Age or Iron Age. Interestingly, while there is an

abundance of settlement- and burial sites from late prehistory, only two (potential)

Celtic fields are known from the research area (Fig. 4.3; Table 4.4). One of these con-

cerns the well-investigated Celtic field near the village of Herkenbosch (Arnoldussen,

2013; Verhart & Janssen, 2010). The other site, near the village of Nieuwstadt,

is based on anthropogenic soil layers and small pottery fragments in corings. The

scarcity of Celtic fields in this region, as compared to other Dutch regions such as

the Veluwe, has been attributed to the abundance of natural boundaries—making

formal boundaries redundant (van Beek, 2011)—and the predominant geology, sub-

soil, and hydrology (Spek, 2004), although a lack of research and intensive, degrading

agricultural practices also seems to have been of influence (Arnoldussen, 2013).
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Table 4.2: Documented settlement sites in the Midden-Limburg research area.

Confidence levelArchaeological
period 3 2 1

Number of
archaeological objects

Objects visible
in LiDAR data

Neolithic 13 40 9 62 0

Bronze Age 2 15 8 25 0

NGK 1 4 1 6 0

Iron Age 14 44 19 77 0

total 30 103 37 170 0

percentage 18% 60% 22% 100% 0%

Table 4.3: Documented burial sites in the Midden-Limburg research area.

Confidence levelArchaeological
period 3 2 1

Number of
archaeological objects

Objects visible
in LiDAR data

Neolithic 9 4

barrow 0 0 7

unknown 2 0 0

Bronze Age 10 7

barrow 0 0 7

burial 2 0 1

NGK 23 2

burial 2 0 0

urnfield 8 4 9

Iron Age 17 2

barrow 0 0 1

burial 6 3 1

urnfield 3 2 1

Unknown 13 8

barrow 3 2 6

burial 0 1 0

unknown 1 0 0

total 27 12 33 72 23

percentage 38% 17% 45% 100% 32%

Table 4.4: Documented Celtic fields in the Midden-Limburg research area.

Confidence levelArchaeological
period 3 2 1

Number of
archaeological objects

Objects visible
in LiDAR data

NGK 0 0 1 1 1

Iron Age 0 1 0 1 0

total 0 1 1 2 1

percentage 0% 50% 50% 100% 50%
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Manual Analysis
In the framework of this research, the LiDAR data from the Midden-Limburg area

was manually investigated by a researcher with abundant experience in analyzing

remotely-sensed data and considerable knowledge of the archaeology of the re-

search area. This analysis enables the comparison between the performance and

efficiency of automated detection versus manual analysis. During the analysis the

LiDAR data was loaded into QGIS 3.4 Madeira (QGIS Development Team, 2017) and

visualized with the Simple Local Relief Model visualization (Hesse, 2010) from the

Relief Visualisation Toolbox 2.0 (Kokalj & Hesse, 2017) and all settlement sites, burial

sites, and Celtic fields were annotated (Fig. 4.4). The data was evaluated in com-

bination with aerial imagery (25 cm resolution) and geo(morph)logical maps of the

research area (source: Nationaal Georegister, 2021).

The manual analysis took 6.75 hours (405 minutes) and resulted in 135 potential

barrows. Interestingly, only 16 of the 23 visible barrows on record (see Table 4.3)

were recognized as such during the manual analysis. Furthermore, 31 new, demar-

cated areas of Celtic fields, totaling 3.37 km
2
have been annotated. No settlement

sites were annotated during the manual analysis.

Figure 4.4: The results of the manual analysis with barrows (green) and Celtic fields (blue) in

the research area (red outline) on a recent aerial photograph; registered archaeological

objects are outlined in black (source of the photograph: Nationaal Georegister, 2021;

coordinates in Amersfoort/RD New, EPSG: 28992).
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4.2.3 WODAN
In this research the object detection modelWODAN—the result of a PhD in the Data

Science Research Programme at the Faculty of Archaeology, LeidenUniversity (Chap-

ters 2 & 3)—was used to detect archaeological objects in the Midden-Limburg area.

The latest version, WODAN2.5 (Chapter 3.8), consists of four parts (Fig. 4.5): 1) A

preprocessing part that converts LiDAR data into input images; 2) an object detection

part; 3) a post-processing part that turns the results of the prior step into geospa-

tial vectors, directly usable in a GIS; and 4) an additional post-processing step called

Location-Based Ranking (LBR; see Section 4.2.3) that incorporates domain knowl-

edge into the workflow, to reduce false positives caused by specific zones within the

research area (Chapter 3).

Figure 4.5: Schematic representation of the WODAN2.5 workflow; after

Verschoof-van der Vaart et al. (2020).

The object detection part of theWODANworkflow consists of an adapted version

of the Faster R-CNNarchitecture (Ren et al., 2017). This so-called Region-basedCNN

or R-CNN (Girshick et al., 2014) is able to localize and classify multiple, adjacent or

even overlapping objects within a single image—as opposed to general CNNs that

give a single classification for the entire input image (Guo et al., 2016). Faster R-CNN

consists of two parts: a fully connected convolution Region Proposal Network (RPN)

and the Fast R-CNN model (Girshick, 2015). The former generates object proposals,

i.e., it selects regions within the image that potentially contain an object of interest.

The latter model is used for feature extraction and classification of these candidate

regions. Both the RPN and Fast R-CNN are trained simultaneously during the training

of Faster R-CNN (for an detailed overview of Faster R-CNN, see Ren et al., 2017).

Location-Based Ranking
In order to use WODAN in large-scale archaeological mapping over different types

of complex terrain, Location-Based Ranking (LBR) was developed to reduce false

positives caused by ‘objects of confusion’ with morphology comparable to the ar-

chaeological objects of interest (Chapter 3). LBR involves determining, ranking, and

mapping of (present-day) landscape characteristics, such as subsoil and current land-

use, which have had an impact on the preservation and/or visibility of archaeological

objects of interest. These characteristics can be determined based on prior research

in the formation of the archaeological landscape and/or by a broad-brush landscape

characterization (Cowley, 2011) of the research area. The subsequently assigned

ranks, from 3 (low) to 1 (high), correspond to the potential for the occurrence of spe-

cific types of archaeological objects within that zone (for a detailed overview of LBR,

see Chapter 3).
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For the Midden-Limburg area five landscape features were identified: disturbed ar-

eas (quarries, etc.), agricultural fields, urbanized or built-up areas, areas with (late)

Holocene deposits (stream valleys, driftsand), and modern roads (Fig. 4.6; Table 4.5).

The most detrimental are disturbed areas and agricultural fields. Built-up areas, ar-

eas with Holocene deposits, and roads have had a less negative impact. While Celtic

fields are generally intersected by roads, this has had a limited negative impact on

the preservation of the overall objects. The best chance for survival of archaeological

objects can be found in the remaining areas (Table 4.5, other), such as forest.

Table 4.5: Different landscape features and their rank in the Location-Based Ranking map for

Midden-Limburg research area.

Landscape Features Rank
Type Area (km2) Ratio of Research Area (%) Barrow Celtic Fields

disturbed areas 2.49 0.94 3 3

agricultural fields 122.96 46.38 3 2

built-up areas 34.95 13.18 2 2

holocene deposits 18.77 7.08 2 2

roads 8.73 3.29 2 1

other 77.24 29.13 1 1

total 265.14 100%

Figure 4.6: Location-Based Ranking map for the Midden-Limburg research area showing the

ranks of the zones for barrows in shades of blue (see legend; coordinates in Amersfoort/RD

New, EPSG: 28992).
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Based on the above a ranked map of theMidden-Limburg area was created based on

open-source geo(morph)ological and topographical data from the online spatial data

repository PDOK (Nationaal Georegister, 2021). The assigned ranks correspond to

the potential for the occurrence of archaeological objects within that zone. Subse-

quently, all detections fromWODANwere compared to thismap and assigned to one

of the ranks. Detections in high-ranking zones (Rank 1) are more likely to be archae-

ological objects, while detections in low-ranking zones (Rank 2 or 3) have a much

higher likelihood of being false positives. Therefore, LBR can be used to reduce the

number of false positives by ignoring detections in low-ranking zones (Chapter 3).

4.3 Results
4.3.1 Implementation Details
To investigate the application of WODAN, the workflow was trained on data from

the Veluwe and used to detect barrows and Celtic fields in theMidden-Limburg area,

which has different archaeological, geo(morpho)logical, and land-use conditions as

compared to the Veluwe (Table 4.1). In recent research a difference in the perfor-

mance of CNNs was observed when trained and tested on particular LiDAR visu-

alizations (Kazimi et al., 2020b; Somrak et al., 2020, Chapter 5). In prior research

withWODAN, data visualized with Simple Local Relief Model (Hesse, 2010) was suc-

cessfully used, while recent research showed promising results using un-visualized

Digital Terrain Model data (Chapter 5). Therefore, two versions of WODAN were

used: one model was trained and tested on the un-visualized Digital Terrain Model

(WODAN_DTM), and one on data visualized with Simple Local Relief Model

(WODAN_LRM). For both versions the LiDAR data was turned into input images fol-

lowing the same pre-processing approach as in Chapter 3.8. In addition, the input

images were normalized by subtraction of the central pixel value so that each snip-

pet has pixel (or grayscale) values between 0 and 255 (following Chapter 3.8). For

the object detection, the Faster R-CNN architecture (Ren et al., 2017) was used with

VGG16 (Simonyan & Zisserman, 2015), pretrained on the ImageNet dataset (Rus-

sakovsky et al., 2015), as the backbone network. Faster R-CNNwas transfer-learned

using Stochastic Gradient Descent with the Adam optimizer (Kingma & Ba, 2015),

implemented in Keras (Chollet, 2015). Additionally, Focal Loss (Chen et al., 2018; Lin

et al., 2020) was implemented in the RPN (see Chapter 3.8). Empirically the learning

rate was adjusted to 1×10−5 and the number of epochs to 18 (see Goodfellow et al.,

2016). In the training process, the sizes of the anchor boxes were adjusted following

Chapter 3.3.1. During training, the input images were randomly flipped horizontally

and vertically, as well as rotated to augment the data. In the post-processing step the

detections were turned into geospatial vectors and subsequently ranked with LBR,

based on their location (for a detailed overview, see Chapter 3).
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4.3.2 General Results
After training both versions of WODAN were tested on the entire Midden-Limburg

area (see Fig. 4.7). On average it took only 50 minutes to run the model on the

test dataset (on a single GPU per version of WODAN), post-process the results into

geospatial vectors, and to implement LBR. Table 4.6 and 4.7 show a comparison of

the results of the automated detection in the Midden-Limburg area and the two

reference datasets (the archaeological inventory and the manual analysis, see Sec-

tion 4.2.2). Contrary to other research the performance of WODAN is not evaluated

through metrics such as F1-score or Accuracy as we lack a (field) validated base-

line to determine performance. Furthermore, the scope of this research is not to

evaluate performance, but to investigate the application, efficiency, and knowledge

discovery of using automated detection. Therefore, the ratio of overlap between the

results of the automated detection and the two reference datasets is given. For in-

stance, WODAN_DTM detected 40.9% of the barrows on record and visible in the

LiDAR data, and 30.7% (35) of the barrows annotated during the manual analysis.

These results indicate that WODAN is able to detect barrows and Celtic fields in

the Midden-Limburg area, when trained on data from a different area in the Nether-

lands, i.e., the Veluwe. However, the performance of WODAN still has room for

improvement, especially when compared to the overlap between the results and the

reference datasets (Table 4.6 & 4.7). This level of performance can partly be ex-

plained by the fact that WODAN was tested on the entire Midden-Limburg area,

which generally causes a decrease in performance (see Chapter 3). Furthermore,

other research in which the transferability of comparable methods was tested also

observed a decrease in performance when object detection model was tested on

an unrelated area (Chapter 6). The different versions of WODAN, using either DTM

or SLRM data, seem to have a different performance. Using DTM data, instead of

data visualized with SLRM, improves the detection of barrows (compare Table 4.6

and 4.8). However, for Celtic fields the use of DTM data seems detrimental to the

performance (compare Table 4.7 and 4.8). This is contrary to the results of prior re-

search on the detection of hollow roads (Chapter 5), but in line with research on the

effectiveness of different visualizations (Kazimi et al., 2020b). These results indicate

that the performance of CNNs, using different visualizations, is not only related to

the visualization itself but also to the type of archaeological object that is detected

(see also Chapter 7).

Table 4.6: The results of the automated detection of barrows in the Midden-Limburg area.

Rank Overlap

Method Total 1 2 3 Archaeological
inventory

Manual
analysis

arch. inventory 23 21 1 1 100% —

manual analysis 135 114 20 1 69.6% 100%

WODAN_LRM 696 323 325 41 30.4% 28.9%

WODAN_DTM 780 267 374 139 43.5% 30.7%
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Figure 4.7: The results of the automated detection (top: WODAN_LRM; bottom:

WODAN_DTM) showing all Rank 1 detections of barrows in green and Celtic fields in blue in

the research area (red outline) on a recent aerial photograph (source of the

photograph: Nationaal Georegister, 2021; coordinates in Amersfoort/RD New, EPSG:

28992).
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Table 4.7: The results of the automated detection of Celtic fields (in m
2
) in the

Midden-Limburg area.

Rank Overlap

Method Total 1 2 3
Archaeo-
logical

inventory
Manual
analysis

arch. inventory 235881 235881 0 0 100% —

manual analysis 3372470 3277094 95376 0 100% 100%

WODAN_LRM 4290724 2780730 1503210 6784 66.2% 24.4%

WODAN_DTM 12638926 3325880 9210820 102226 58.4% 13.6%

4.3.3 Efficiency Gain
In this research the duration of the manual analysis (405 minutes) and the two ver-

sions of WODAN (on average 50 minutes) was recorded. For the latter the time

includes testing, post-processing, and implementing LBR. It does not include the

preprocessing—as for both the automated detection and the manual analysis the

LiDAR data needed to be pre-processed, e.g., visualized—or the training time of

WODAN, as the latter could be compared to the training of an operator to analyze Li-

DAR data. As shown, WODAN (on average 50 minutes) is ca. eight times faster than

the manual analysis (405 minutes). Moreover, during the actual running of WODAN

on the test dataset the operator does not need to be actively involved, which makes

the automated detection even more time efficient. This shows the major potential

of automated object detection as a tool to assist in the rapid mapping of archaeo-

logical objects over extensive areas (see Soroush et al., 2020). It can reduce the time

invested in actually mapping objects, so that the operator’s time can be reallocated

to analysis, validation, and interpretation of the results.

4.3.4 Knowledge Discovery
In the following the knowledge discovery, i.e., the extraction of implicit, previously

unknown, and potentially useful information (McCoy, 2017), resulting from using

automated detection in theMidden-Limburg area is presented. Knowledge discovery

can be either of a quantitative or a qualitative nature (Huggett, 2020a). The former

concerns the locating of hitherto undocumented archaeological objects. The latter

concerns a better understanding of the patterns and relations between the uncovered
archaeological objects and between these objects and the surrounding landscape,

through the interpretation of the gained data (Cowley, 2011).

Quantitative Knowledge Gain
Obviously, employing automated detection leads to new information on the loca-

tion of previously unknown archaeological objects, especially if new data sources,

e.g., LiDAR, and/or unexplored regions within the research area, for instance forest,

are analyzed (see Kenzler & Lambers, 2015). For this analysis, all Rank 1 detections

(see Table 4.6 and 4.7) were manually investigated and compared to the reference

datasets.
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In Table 4.8 the amount of new potential archaeological objects found through the

use of automated detection in the Midden-Limburg area is shown. Instead of square

meters, Table 4.8 shows the number of demarcated Celtic field areas. This unit is used

because in generalWODAN locates a number of individual plots within a demarcated

Celtic field, but does not detect the entire area. In that sense, using the coverage

gives a skewed image of the performance of WODAN. For instance, WODAN_LRM

(Table 4.7) only had 24.4% overlap between the detected Celtic field areas and the

manually annotated areas. However, it did detect a number of plots within 26 of

the 32 manually mapped Celtic fields. Thereby, WODAN adequately indicates the

location of Celtic fields in the research area, although the full extent and coverage

of these areas is not well presented. Furthermore, Table 4.8 shows (in brackets) how

many of potential archaeological objects were not found during the manual analysis.

These objects—that are neither in the archaeological inventory nor annotated dur-

ing the manual analysis—are of special interest, as these show the added benefit of

simultaneously using manual and computational methods (see Section 4.4).

Table 4.8: Quantitative knowledge gain of using automated detection on the

Midden-Limburg area, showing the number of new potential archaeological objects. In

brackets are the number of objects not annotated during the manual analysis.

Model Potential barrows Potential Celtic Field
areas

WODAN_LRM 38 (8) 36 (11)

WODAN_DTM 35 (7) 32 (8)

Prior to this research 72 burial sites were known in the Midden-Limburg area, of

which 63 sites were either barrows or urnfields (see Table 4.3). Using automated de-

tection resulted in 35–38newpotential barrows (either individualmounds ormounds

within an urnfield), of which 7–8 were not mapped during the manual analysis (Ta-

ble 4.8); an increase of more than 50% of the known burial mounds in the area. In

general, the detected burial mounds appear clearly in the LiDAR data (Fig. 4.8, a–b).

However, some of the detected mounds proved almost indiscernible in the visual-

ized LiDAR maps, and were only recognized in vertical profiles of the LiDAR data

(see Fig. 4.8, c).

Using automated detection resulted in a large increase of the number and ex-

tent of potential Celtic fields in the research area (Fig. 4.8, d–f). Prior to this re-

search only two Celtic field areas were known of which only one, near Hercken-

bosch (Arnoldussen, 2013; Verhart & Janssen, 2010), was well-documented (see Ta-

ble 4.4). Based on the automated detection 32–36 new potential Celtic field areas

were detected, of which 8–11 were not mapped during the manual analysis. About

half of these potential Celtic fields are located in the vicinity of the known Celtic field

at Herckenbosch (Fig. 4.7), which could indicate that this was once a single, much

larger system, spanning over three square kilometers. Another concentration of po-

tential Celtic fields has been found between the villages of Maria Hoop, Montfort,

and Posterholt.
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Most of the potential archaeological objects are found on the higher middle ter-

race in the eastern and southern part of the area (Fig. 4.7) although some objects

can also be found in the central part of the research area: some of the potential bar-

rows seem to be located along the edge of stream valleys, while some of the potential

Celtic fields extend onto the riverdunes in the center of the area. However, the ques-

tion remains to what extent this distribution is the result from the (current) land-use

in the area (see Section 4.3.4). For instance, within the part of the research area

covered by loess, only one potential barrow was found. Presumably, the absence of

archaeological objects within this part is due to intensive agriculture.

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Excerpts of LiDAR data, visualized with Simple Local Relief Model (Hesse, 2010),

showing barrows (a–c) and Celtic fields (d–f) detections by WODAN (blue) and Celtic fields

annotated during the manual analysis (green; source of the height model: Nationaal

Georegister, 2021).
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Qualitative Knowledge Gain
As shown, the use of automated detection results in the discovery of previously un-

known archaeological objects and contributes to a more complete view (of the dis-

tribution) of archaeological objects in the landscape. This data can be used to inves-

tigate patterns between these archaeological objects and/or the landscape. It also

offers opportunities to investigate the structuring of landscape in the past, especially

when archaeological objects such as Celtic fields or hollow roads are mapped. More-

over, it offers insight into the current archaeological research practice and possible

biases that result from certain methods and/or interpretations. In the following this

is highlighted by two examples.

An example of amore complete viewof the patterns and relations between archae-

ological objects and the surrounding landscape, based on the results of automated

detection, is the barrow cluster near the town of Swalmen in the northeastern part of

the Midden-Limburg area (Fig. 4.9). Prior to this research 22 burial sites (20 barrows

and 2 urnfields), dating between the Late Neolithic and Iron Age, were known from

this region. These sites were clustered into several distinct groups. The automated

detection and manual analysis yielded 8 and 6 potential barrows in this region re-

spectively. When the region was subsequently manually reexamined an additional 7

potential barrows were discovered, missed during both the manual analysis and the

automated detection. The resulting distribution of barrows appears not to be ran-

dom, but concentrated in a narrow, southwest-northeast orientated zone (Fig. 4.9).

Similar formations of barrows, called barrow alignments or barrow lines, are known

in the Netherlands, especially from the Veluwe (Bourgeois, 2013). They originate

from the Late Neolithic A (2800-2500 cal. BC), and in later periods barrows are

added upon it albeit in a more dispersed manner. The different alignments on the

Veluwe are comparable in terms of length (a minimum distance of 1–1.5 km) and

exhibit a similar placement of barrows, at a fairly regular interval and along a sin-

gle axis (Bourgeois, 2013). The Swalmen barrow cluster displays several of these

characteristics, such as the length (minimum of 2.2 km and maximum of 3.9 km) and

placement along a general axis (ca. 240°). However, a regular interval between bar-

rows cannot be observed. Also, it is uncertain which of these barrows date from

the Late Neolithic A and form the origin of the potential alignment, as many of the

sites are unvalidated, undated and/or of debatable date (see Lanting &Waals, 1974).

Therefore, it remains unclear whether the Swalmen barrow cluster concerns a true

barrow alignment. Even though, several notions about the cluster might point to

a general concern with movement and a predetermined placement of the barrows

in the landscape (Løvschal, 2013). For instance, when a simple viewshed analy-

sis (Gillings & Wheatley, 2020) is calculated, using the Visibility Analysis plugin (ob-

server height: 1.6 m, target heigth 0.3 m) in QGIS, a person standing on top of the

most southwestern potential barrow, situated on the lower terrace of the Meuse

river (see Section 4.2.1), would be able to see the group of barrows on the middle

terrace and on the group on the high terrace, while the rest of the area is obscured.

Furthermore, the line of barrows crosses the Swalm stream (valley) at the pointwhere,

up until the 1930s, one of the only crossing points of this streamwas situated. A sim-

ilar observation was made for the barrow alignment between Niersen and Epe on the

Veluwe, which also led to one and possibly two crossing points (Bourgeois, 2013).
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Figure 4.9: Excerpt of LiDAR data, visualized with Simple Local Relief Model (Hesse, 2010),

blended with a recent aerial photograph, showing the recorded barrows (hemispheres) and

potential new barrows (circles) near Swalmen and a binary viewshed (blue) from the most

southwestern potential barrow (observer height: 1.6 m, target height 0.3 m). Note the

Roman road running southwest-northeast through the right of the center of the image

(source of the height model and aerial photograph: Nationaal Georegister, 2021).

Figure 4.10: Excerpt of LiDAR data, visualized with Simple Local Relief Model (Hesse, 2010),

blended with a recent aerial photograph, showing the location of potential Celtic field areas

(green) and settlement sites (black; source of the height model and aerial

photograph: Nationaal Georegister, 2021).
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Certainly one of the major outcomes of this research are the many new potential

Celtic fields discovered in theMidden-Limburg area. It shows that, at least in the way

areas were parcellated, a comparable agricultural use-strategy was employed in the

sand and loess covered Midden-Limburg area as in the sandy regions of the central

and northern Netherlands (Arnoldussen, 2018). This significantly changes our view

of the Midden-Limburg landscape in later prehistory, as it was assumed that none or

a few Celtic fields were present in the area due to the different geology, subsoil, and

hydrology (Spek, 2004) and the occurrence of many natural boundaries (van Beek,

2011). If present at all, the Celtic fields were assumed to have been destroyed by

(sub)modern agriculture (Arnoldussen, 2013). Although the latter has certainly been

the case, as can be seen by the sharp transitions in the presence of Celtic fields in

forest and adjacent agricultural fields, it appears that the suggested paucity of re-

search is the main contributing factor (Arnoldussen, 2013). The discovery of the

many potential Celtic fields emphasizes a deficiency in the current, local archaeolog-

ical research practice, which has a primary reliance on field-walking, resulting in an

uneven distribution in both site type and site location (see Section 4.2.2), with a clear

overrepresentation of settlement sites inmodern agricultural areas (see Fig. 4.3). This

research, which instead relies on remotely-sensed data, shows an abundance of un-

derrepresented archaeological sites, e.g., Celtic fields, in landscape types, such as

forest, that have had little research attention. However, no settlement sites were

discovered in the LiDARdata, which shows that a reliance on a single type of archaeo-

logical method is detrimental for the knowledge about the archaeology in a particular

region. Furthermore, the location of the Celtic fields in relation to modern agricul-

tural fields, necessitates the reconsideration of earlier archaeological interpretations

done on the basis of field-walking (Fig. 4.10). For instance, pottery fragments found

in the ploughed topsoil of agricultural fields in the vicinity of the detected Celtic fields

should not a priori be interpreted as settlements, but alternatively as part of debris

found in the banks of Celtic field, which were in later periods leveled by agricultural

practices. This could especially be the case if only a small amount and/or (strongly)

fragmented pieces of pottery are found. Even though, habitation within a Celtic field,

such as is attested at other locations in the Netherlands (Arnoldussen & de Vries,

2014), cannot be excluded due to the long period of use of Celtic fields (Arnoldussen,

2018).

4.4 Discussion
In this research the transferability and usability of a Deep Learning object detection

tool within archaeological practice was explored by using the WODAN workflow

(Chapters 2 & 3), developed in one area of the Netherlands (the Veluwe), on an un-

related area (Midden-Limburg; Fig. 4.1) with a different archaeological record and

research history, topography, geo(morpho)logy, and land-use. The results show that

WODAN is able to detect barrows and Celtic fields in LiDAR data from the Midden-

Limburg area, showing that the workflow can adequately generalize to the new sit-

uation.
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However, the performance of WODAN still has room for improvement, especially

when compared to the overlap between the results and the reference datasets (Ta-

ble 4.6 & 4.7). This difference between a human and computer in the ability to detect

archaeological objects in remotely-sensed data, as shown by the difference between

the manual analysis and the results of WODAN, has been noted in earlier research

(Chapter 3) and can partly be explained by the fact that a human interpreter, aside

from relying on a certain amount of prior experience, archaeological-, and geologi-

cal knowledge, can observe the vicinity of potential objects, and has the opportu-

nity to consult additional data sources, e.g., aerial imagery (Chapter 3.6.2). Contrary,

WODAN has access to a single data source, i.e., LiDAR data. It is therefore hardly

surprising that it struggles with certain landscape elements, such as sand dunes and

modern field boundaries, that have a comparable appearance in the LiDAR data as

barrows and Celtic fields respectively.

4.4.1 Performance and Completeness
Based on the difference between human and computer performance, the question

arises what level of performance is acceptable from an object detection tool (see

Cowley et al., 2020; Chapter 3.6.3). While this is obviously dependent on the (envi-

sioned) users (see Opitz & Herrmann, 2018, Chapter 3.6.3), the intended task of the

tool and the incorporation of the tool (and its results) within the wider archaeological

research framework are also of importance (see for instance Banaszek et al., 2018;

Cowley et al., 2020; Lambers et al., 2019). Related to this is the question of the level

of completeness—how accurately the results reflect the extent of the archaeological

objects—that is required. As shown,WODAN is able to detect themajority of demar-

cated areas of Celtic fields within the Midden-Limburg area, but generally does not

detect the full extent, i.e., all the plots within the Celtic field. The same occurs with

urnfields, where only several of all barrowswithin the group are detected. This exclu-

sion of nearby objects might have a technical cause, related to the functioning of the

RPNwithin the Faster R-CNN architecture, e.g., the stride or non-maximum suppres-

sion (see Ren et al., 2017). Either way, the exclusion of these objects means a lower

level of completeness, which results in low(er) performance when calculating metrics

based on the number of objects or the square meters of coverage, even though the

method did point to the location of archaeological objects. If automated detection

is used independently as the sole source of information, high levels of performance

(and completeness) are required. Especially when landscape patterns, such as field

systems or roads, are detected. On the other hand, if the method is used to help

target limited manual inspection of the data or is used in conjunction with a manual

analysis, to enhance the results, a certain degree of exclusion can be afforded.
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4.4.2 Combined Human–Computer Strategies for Large-Scale Mapping
This research has shown the potential of automated detection in a complementary,

rather than a substitute role, to manual analysis. For instance, WODAN detected

additional archaeological objects that were missed during the manual analysis (see

Table 4.8). Furthermore, when the northeastern part of the area was reexamined,

based on the results of the automated detection, even more potential archaeological

objects were discovered, overlooked during both the manual analysis and the auto-

mated detection (see for instance Section 4.3.4). This shows that combining these

two strategies for large-scale mapping has an added benefit. Furthermore, the feasi-

bility of combined Human–Computer strategies becomes even more apparent when

the variability in human detection accuracy (Risbøl et al., 2013) is considered. This

variability can lead to a multiplicity of interpretations between different interpreters

of the same data (Quintus et al., 2017). Inevitably, manual analysis is biased towards

the expectations, experience, knowledge, and observational abilities of the inter-

preter(s), with the risk of missing or dismissing objects (Halliday, 2013). Contrary,

an automated approach, which detects all objects with specific criteria, can offset

the aforementioned bias (Bennett et al., 2014), although the pre-defined criteria of

the automated detection also come with an inherent bias (see below). Considering

the fast run-time of WODAN, it is even possible and efficient to run multiple auto-

mated detection models, that can detect different archaeological classes, or multiple

versions of the same model (see Chapter 3) during the same time as the manual anal-

ysis. Besides, a certain degree of involvement from an archaeological expert is and

should remain necessary, in the least to interpret the automated detection results,

as the goal of these methods is not to entirely replace the archaeological expert or

‘automate archaeology’ (Traviglia et al., 2016).

Another benefit of these combined Human–Computer strategies is that it deals

with one of the caveats of current automated detection methods: these tools can

only detect objects similar to the pre-defined target class(es) while other objects are

ignored (Lambers et al., 2019). While automated detection can extend our knowl-

edge on known archaeological classes, it is unable to find potential new and/or unique

types of archaeology. This process might unintentionally reinforce the dominance of

the objects of interest in the archaeological record, by vastly multiplying the num-

ber of examples, while further marginalizing archaeological objects that are not de-

tected (Nuninger et al., 2020b). Especially when automated detection is the sole

source of information. For instance, the LiDAR data of the Midden-Limburg area

is littered with archaeology from many periods, including modern traces of conflict,

e.g, gun emplacements, tank traps, and trenches. These objects belong to amajor de-

fense line, theMaas-Rur-Steilhang-Elmpter-Wald-Stellung that was constructed in the

last part of the Second World War to halt the allied advance into Germany (van der

Schriek & Beex, 2017). These traces are not detected by the current model, at least

not intentionally, and remain undocumented. The detection of all archaeological ob-

jects of interest within an certain area would require either many different models, a

model detecting a multitude of classes, or a model that detects a more general class

of ‘archaeological anomalies’. Recently, attempts at developing the latter have been

made (Guyot et al., 2021b).
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However, questions remain how applicable these models are in complex terrain, e.g.,

the Veluwe, where many objects of confusion are present, and how useful such a

catch-all category would be in terms of both archaeological research and heritage

management (see Trier et al., 2019).

4.4.3 Incorporating Automated Detection into Archaeological Practice
The incorporation of automated detection in the first step of the archaeological pro-

spection scheme, i.e., the desk-based assessment, seems logical. The results of auto-

mated detection can be regarded as showing highlighted areas of interest—containing

potential archaeological objects that require (field) verification. When used in this

way, the results are very comparable, in type and value, to archaeological predictive

maps. Thesemaps, used commonly in Dutch archaeological practice (Lauwerier et al.,

2017), are based on a quantitative analysis and prior knowledge of the archaeological

record, and give a change—low, middle-high, or high—on the occurrence of archae-

ology within certain, often geomorphological zones (Rijksdienst voor het Cultureel

Erfgoed, 2021a). The results of automated detection could be used to add further

detail to these maps. When used in this way, the level of competence and espe-

cially completeness of an automated detection tool does not have to be extremely

high (also see Opitz & Cowley, 2013) as the results are merely one of multiple con-

sulted data sources, that form the basis for subsequent fieldwork.

This research has shown that the employment of automated detection can lead

to both quantitative and qualitative knowledge gain of the archaeological record of a

certain region. Undeniably, the ability to rapidly map (multiple classes of) archaeolog-

ical objects in large remote sensing datasets can radically transform archaeological

practice, and has broadly positive implications for both research and cultural her-

itage management (Gattiglia, 2015; Opitz & Herrmann, 2018). Although we should

not lose sight of the problems surrounding this shift to a data-intensive approach to

science (Huggett, 2020b), from a research standpoint it offers opportunities for spa-

tial analysis and landscape archaeology (Gillings et al., 2020). Through the efficient

detecting and mapping of the presence and location of archaeological objects, it fa-

cilitates the investigating of trends within the distribution and interrelationship of

these objects in the landscape, the emerging of large-scale patterns between differ-

ent types of objects, and the structuring of the landscape in the past. Understanding

this spatial relation between archaeological objects and their surroundings, i.e., the

landscape, lies at the core of landscape archaeology (Verhoeven, 2017). The pos-

sibility to effectively investigate ‘Big’ datasets not only means that a phenomenon

can be investigated on a wider scale, but also that all available data can be used,

instead of a sample, which will let us see details we never could when we were lim-

ited to smaller quantities (Gattiglia, 2015). Such a knowledge base is fundamental to

effective archaeological research and cultural heritage management (Cowley & Sig-

urdardóttir, 2011). The obvious benefit for the latter is the possibility to rapidly eval-

uate a certain region. It can also highlight biases in the existing archaeological record

(see Risbøl, 2013), by adding information about underrepresented areas, leading to

more appropriate conservation and heritage policy.
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4.5 Conclusion
This paper presents the results, efficiency gain, and knowledge discovery of employ-

ing a Deep Learning automated detection tool within archaeological practice. The

WODAN workflow (Chapters 2 & 3) that has been developed in one area of the

Netherlands (the Veluwe), was used to detect two classes of archaeology (barrows

and Celtic fields) in the Dutch Midden-Limburg area, which differs in archaeolog-

ical record and research history, topography, geo(morpho)logy, and land-use from

the Veluwe. The results of the automated detection were compared to an inventory

of documented archaeological sites and a manual analysis, conducted in the frame-

work of this research, of the same area. The results show that WODAN is able to

detect barrows and Celtic fields in LiDAR data from the Midden-Limburg area, and

can therefore generalize to this new situation, while being about eighth times faster

than the manual analysis. Furthermore, using WODAN led to both a quantitative

and qualitative archaeological knowledge gain, by mapping previously unknown po-

tential archaeological objects and by contributing to a more complete view (of the

distribution) of archaeological objects in the landscape. The latter can be used to

investigate patterns between these archaeological objects and/or the landscape and

the structuring of the landscape in the past. Moreover, it offered insight into poten-

tial biases within the current archaeological research practice. Future research will

focus on improving the performance of WODAN, for instance by combining Citizen

Science and automated detection (Lambers et al., 2019).

This research has shown the potential of combining Human–Computer mapping

strategies—with automated detection in a complementary, rather than a substitute

role, to manual analysis—for the efficient and effective analysis of remotely-sensed

datasets of large-scale, complex landscapes. Within current archaeological practice

the implementation of automated detection within desk-based assessments seems

logical. The results of these methods offer opportunities to enhance and refine ex-

isting archaeological predictive maps, which are commonly used in Dutch archaeo-

logical practice.


