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Abstract: The penetration depth in a distributed Bragg reflector (DBR) co-determines the
resonance condition, quality factor, and mode volume of DBR-based microcavities. Recent
studies have used an incomplete description of the penetration depth and incorrect equations.
We present a complete analysis that involves three different penetration depths. We also present
a series of experiments on microcavities to accurately determine the frequency and modal
penetration depth of our DBRs and compare these results with theoretical predictions. The
obtained results are relevant for anyone who models a DBR as an effective hard mirror if lengths
of the order of the wavelength are relevant, as is the case for microcavities.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Small mode volume cavities have been used for numerous applications such as quantum informa-
tion processing with individual atoms [1] and lab-on-a-chip sensors [2]. These microcavities
typically consist of two highly reflective Distributed Bragg Reflectors (DBR) which can trap light
in a small mode volume and thereby increase the light-matter interaction. When microcavities
get smaller [3] the penetration depth in the mirrors becomes important. DBRs are also used in
many other applications [4] and even exist in nature, in the form of intricate photonic crystals [5].

DBR-based microcavities are often modeled as cavities with two hard mirrors spaced by a
cavity length that is extended by the penetration depths of the DBRs. This model is then used
to calculate the resonance condition, quality factor and mode volume. However, the optical
penetration in the DBRs is more subtle than this simple model suggests. In the literature, the
penetration depth in DBRs is ambiguously defined due to this simplified model [2,6–11].

This paper will solve these issues by introducing multiple (frequency, modal, and phase)
penetration depths and by explaining when these are relevant. The first part of the paper
presents a theoretical description that aims to provide physical insight in the origin of the various
penetration depths. It also links them to the optical properties of a microcavity. The second part
presents measurements of the penetration depth in two types of microcavities. Measurements
on the frequency tuning of the modes in a planar cavity yield the frequency penetration depth.
Measurements on the transverse mode splitting in a plano-concave cavity yields the modal
penetration depth. We compare these two results with each other and with theoretical predictions.

2. Optical penetration in DBRs

We consider the reflection of light from a thick, lossless, planar DBR. The alternating layers have
refractive indices nL and nH for the low and high index material and layer thicknesses dL and dH
such that nLdL = nHdH = λc/4 for vacuum resonance wavelength λc. Light is incident from a
medium with index nin (typically air with nin = 1).

The most prominent feature of DBRs is the existence of a stopband, or bandgap, which is a
frequency range where light cannot propagate and where a thick lossless DBR reflects all incident
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light. The full spectral width of the stopband is [12,13]

∆ωgap = ωc
4
π

arcsin (
nH − nL

nH + nL
) ≈ ωc

2
π

∆n
n

(1)

where ωc = 2πc/λc is the resonance frequency. The approximation is valid for small to modest
index contrast, where ∆n ≡ nH − nL ≪ n with average index n = (nL + nH)/2. [13]

At resonance, in the center of the stopband, the forward-propagating field decays exponentially
into the DBR, such that its amplitude decreases by a factor nL/nH per DBR pair [12,13]. The
associated 1/e penetration depth LI of the optical intensity is

LI =
1
2
(
λc

4nL
+
λc

4nH
) ln (

nH

nL
) ≈

λc

4∆n
. (2)

The approximation again applies to the limit of small index contrast, ∆n ≪ n.
It seems natural to call LI “the penetration depth” of the DBR and to model the DBR as an

effective hard mirror positioned at a distance LI behind the front surface of the DBR. But this is
wrong for several reasons. First and most important, there is no single position at which a hard
mirror can mimic all reflection properties of the DBR simultaneously. Below we will argue that
one actually needs three different penetration depths to mimic either (i) the reflection phase, or
(ii) the time delay upon reflection, or (iii) the imaging of a focused beam upon reflection. Second,
these penetration depths depend on the refractive index nin of the incident medium. Finally, they
also depend on whether the DBR starts with a high-index layer (H-DBR) or a low-index layer
(L-DBR). Only if one considers the time delay upon reflection from a H-DBR does one obtain
the easy “natural” result Lτ = LI (see below).

Figure 1 shows the calculated frequency dependence of the reflectivity |r |2 and reflection
phase φ at normal incidence for a typical DBR, similar to the ones used in our experiments. This
figure shows that the reflectivity is approximately constant inside the stopband. The interesting
physics is contained in the reflection phase φ(ω), which is defined relative to the front facet and
scales as φ ∝ (ω − ωc). The insets show the physical origin of this phase change: the node of
the standing wave, which resides at the DBR surface at resonance, shifts into (φ>0) or out of
(φ<0) the DBR at frequencies ω>ωc and ω<ωc, respectively. Note the deviations from this
linear behavior towards the edges of the stopband, where the maximum shift is approximately
half a layer thickness for a H-BDR (see Supplement 1).

To describe the reflection of a general (non-monochromatic non-planar) beam of light, we
decompose the incident light in its Fourier components. We label these components by their
frequency ω and transverse wavevector kρ = kin sin θin, where kin = nink0 is the wavevector in
the incident medium and k0 = 2π/λ0 and λ0 are the wavevector and wavelength in vacuum.
Each monochromatic plane-wave component will reflect with its own reflection amplitude
r(ω, kρ) exp [iφ(ω, kρ)].

Inside the stopband, r(ω, kρ) is approximately constant and equal to rc ≈ ±1. The optical field
has an anti-node (rc = 1) at the front facet for a L-DBR and a node (rc = −1) for a H-DBR. For
frequencies near ωc and small incident angles, the reflection phase φ(ω, kρ) can be approximated
by [14–16]

φ(ω, kρ) = 2kinLϕ ≈
∂φ

∂ω
(ω − ωc) +

1
2
∂2φ

∂k2
ρ

k2
ρ

= 2(kin − kc)Lτ −
k2
ρ

kin
LD .

(3)

The approximation is a Taylor expansion, where ∂φ/∂kρ = 0 due to mirror symmetry. The
final equation defines the frequency penetration depth Lτ and the modal penetration depth LD in
terms of derivations of the reflection phase. We prefer to call Lτ the frequency penetration depth,

https://doi.org/10.6084/m9.figshare.13901132
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Fig. 1. Calculated reflectivity (blue) and reflection phase (red) of DBR versus frequency,
normalized to the center frequency. The DBR starts and ends with high-index material,
comprises 31 layers with nL = 1.46 and nH = 2.09, is deposited on a nL substrate and
embedded in air (nin = 1). The insets sketch how the nodes in the electric field shift into/out
of the DBR when the frequency is higher/lower than the center frequency.

whereas others have called it the phase penetration depth [14], because our name links Lτ with
frequency tuning (see below).

The frequency penetration depth Lτ = cτ/(2nin) quantifies the group delay τ = ∂φ/∂ω that an
optical pulse experiences upon reflection from a DBR when its optical spectrum fits well within
the stopband. A hard mirror positioned at a distance Lτ in the incident medium will produce the
same group delay and will hence mimic the time/frequency properties of the DBR.

The modal penetration depth LD quantifies the imaging properties of the DBR reflection. A
hard mirror positioned at a distance LD in the incident medium will reflect light with the same
angle dependence and will hence produce the same imaging as the DBR. Note that the reflection
of the DBR depends on angle because the center of the stopband shifts to higher frequencies
at non-zero angles of incidence as ωc(kρ) − ωc(kρ = 0) ∝ k2

ρ. This dependence results in the
relation LD/Lτ = β = n2

in(n
−2
L + n−2

H )/2 ≈ (nin/n)2 [14]. This relation is intuitive, because Lτ

is associated with a time delay, which scales with n/nin, and LD is associated with an imaging
shift, which scales with nin/n (see Supplement 1). With the factor β we can rewrite the phase
penetration in Eq. (3) depth in terms of Lτ ,

Lϕ =

(︃
kin − kc

kin
−

1
2
βθ2in

)︃
Lτ . (4)

This equation shows that small angles θin only have a small impact on Lϕ , because β is typically
small for nin = 1.

The phase penetration depth Lϕ = φ/(2kin) that we define in Eq. (3) is new in literature. We
explicitly define this quantity because Lϕ determines the resonance condition of DBR-based
microcavities, rather than Lτ or LD; see Eqs. (6) and (8) below. Lϕ also determines the locations
of the anti-nodes in the microcavities, where light-matter coupling is maximal. Equation (4)
shows that Lϕ(ω)/Lτ = (ω − ωc)/ω at normal incidence for nin = 1.

Babic et al. [15] have calculated the frequency penetration depth Lτ = cτ/(2nin), using transfer
matrices. Although Babic et al. only analyzed so-called “matched DBRs”, where all reflections

https://doi.org/10.6084/m9.figshare.13901132
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interfere constructively, their results

τ =

(︃
nin

nH

)︃ (︃
nH

nH − nL

)︃ (︃
π

ωc

)︃
(H-DBR) or τ =

(︃
nL

nin

)︃ (︃
nH

nH − nL

)︃ (︃
π

ωc

)︃
(L-DBR) (5)

also apply to the general case. The delay time τ is different for high-index and low-index DBRs
due to the interference of the reflection from the first interface of the DBR with the reflections
from the bulk (see Supplement 1). We have checked both Eqs. (5) with numerical calculations
based on transfer matrices (see Supplement 1). Brovelli et al. [17] have performed similar
calculations, using coupled-mode theory for DBRs with small index contrast. Their results agree
with the ones obtained by Babic [15] in the limit of small index contrast (see Supplement 1).

We like to finish this section by noting that the theory described above is based on several
assumptions. First of all, the truncated Taylor expansion in Eq. (3) is valid only for small
frequency detunings and small angles. Second, we have neglected polarization effects. These
will play a role at larger angles where the Fresnel reflection coefficients depend on polarization.
As a result, the spectral width of the stopband will increase for s-polarized light and decrease for
p-polarized light. Finally, we have neglected dispersion effects. For our DBRs and wavelength,
the ratio between the group and phase refractive index is ≈ 1.013 for the SiO2 layers and ≈ 1.058
for the Ta2O5 layers [18]. The combined effect of dispersion, as a weighted average of these
values, results in a modest 3 % reduction of the spectral width of the stopband and an associated
3 % increase of the penetration depth. We have neglected this effect in most of our analysis.

2.1. Consequences for cavity resonances

The resonances of any optical cavity are determined by the condition that the round-trip phase
delay is a multiple of 2π. For a cavity with two planar DBRs illuminated at normal incidence
this results in

2kinLcav + φ1 + φ2 = nink0(2Lcav + 2Lϕ1 + 2Lϕ2) = q 2π (6)

where Lcav is the distance between the front facets of the two DBRs and φ1 and φ2 are the
reflection phases of the two DBRs (note that φ = 2kinLϕ). The longitudinal mode number q
counts the number of half wavelengths in the standing wave pattern between the mirrors. This
number q is integer when both mirrors are either H-DBR or L-DBR and hence both have an
anti-node or node close to their front facet. For cavities with one H-DBR and one L-DBR we need
to replace q by q + 1

2 to keep q integer and still account for the sign difference in the reflection
rc = ±1 of the two mirrors.

Now suppose we change the cavity length and measure the resulting change in resonance
frequency/wavelength at fixed q. We calculate this change by substituting Lcav(k0) in Eq. (6) and
taking the derivative of this equation with respect to k0 to arrive at Eq. (7). In the process we use
dφ/dk0 = 2Lτ/nin in the left Eq. (6) or Lϕ(ω)/Lτ ≈ (ω − ωc)/ω in the middle Eq. (6). When we
rewrite the end result in terms of λ we find a normalized slope

λdLcav(λ)/dλ = Lcav + Lτ1 + Lτ2, (7)

This equation shows that the relevant penetration depth for a frequency scan is Lτ and not Lϕ .
The combination Lcav + Lτ1 + Lτ2 also determines the quality factor Q of the optical resonances
and the associated cavity loss rate ω0/Q.

The resonance condition of plano-concave cavities differs from that of planar cavities by
the so-called Gouy phase. For planar-concave cavities with hard mirrors, the resonant modes
are Hermite-Gaussian TEMn,m modes with flat wavefronts at the planar mirror and matched
curved wavefronts at the concave mirror. Upon propagation, these modes experience a phase lag
relatively to a plane wave. This phase lag is proportional to (n + m + 1) and to the Gouy phase

https://doi.org/10.6084/m9.figshare.13901132
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θGouy = arcsin(
√︁

L/R) of the fundamental TEM00 mode, where L and R are the cavity length and
mirror radius.

The resonant optical modes of a planar-concave cavity with DBR mirrors are also TEMn,m
modes. Their (round-trip) resonance condition

nink0(Lcav + Lϕ1 + Lϕ2) − (n + m + 1)θGouy = q π, (8)

again includes the phase penetration depth Lϕ of both mirrors. It also includes a Gouy phase that
is now given by θGouy = arcsin(

√︁
(Lcav + 2LD)/R). Note that the relevant penetration depth in

this equation is LD, because the Gouy phase is associated with phase fronts and thereby linked to
imaging properties. We assume that the value of LD for the curved mirror and the flat mirror
are the same, and therefore use 2LD. The radius of curvature R is an effective radius, which
includes all small variations of the mirror curvature in the fabrication process [19]. The Gouy
phase co-determines the Rayleigh range and waist of the cavity modes and hence also the optical
mode volume and attainable atom-field interaction.

2.2. Comparison with literature

A comparison of our results with literature shows that the subtleties of multiple penetration
depths are often overlooked. We will give a few examples of how equations would have been
different if our theory would have been used.

First, our Eqs. (6) and (8) show that the resonance condition depends on the phase penetration
depth Lϕ , which is typically small and zero at resonance. But Eqs. (2) and (3) in Ref. [2] state
that the resonance condition contains a single wavelength independent penetration depth. The
authors later use the same quantity to describe the frequency tuning of the resonances, whereas
our Eq. (7) shows that frequency tuning depends on the frequency penetration depth Lτ .

Second our Eqs. (6) and (7) show that the frequency spacing between consecutive longitudinal
modes depends on the frequency penetration depth Lτ . But the authors in [7] determine the
longitudinal mode value by taking q = 2 ∂Lcav

∂λ and hence forget the contribution of Lτ .
Third, our Eq. (8) shows that the frequency spacing between the transverse modes depends

on the modal penetration depth LD. Equation (3) in Ref. [2] uses the expression θGouy =

arccos
√︁

1 − Lcav/R for the Gouy phase and hence does not take any penetration into account.
Reference [7] makes the same mistake in their Eq. (1). Reference [10] uses the frequency
penetration depth in their Eq. (2) for the Gouy phase. But the correct equation should have been
θGouy = arccos

√︁
1 − (qλ/2 + 2LD)/R at Lϕ = 0.

Finally, incorrect use of the penetration depths also affects the Purcell effect. Our analysis
shows that the Purcell factor FP depends primarily on the modal penetration depth LD, as the
increase in mode volume due to the field penetration into the DBRs is compensated by a similar
increase of the quality factor. The effect of LD on the Purcell factor is typically small but can still
be relevant when the cavity length is order λ. The consequence of using Lτ instead of LD is a
small underestimation of the Purcell enhancement [9].

3. Methods

Our planar and patterned mirrors were produced by Oxford High-Q. The patterned substrate
is fabricated with a focused-ion-beam-etching technique that creates a series of high-quality
concave structures with typical radii of curvature of 2-20 µm [2,8,19]. The SiO2 substrates were
coated with 31 and 35 alternating layers of SiO2 and Ta2O5, to produce two DBRs that both end
with high-index material and hence have virtually identical reflection properties. These DBRs
have a stopband with a width ∆λ ≈ 150 nm centered around λc = 640 nm, as expected for a DBR
with nL ≈ 1.46 and nH ≈ 2.09. The transmission of the patterned mirror is (3.4 ± 0.2) × 10−5

and the transmission of the flat mirror is (1.1 ± 0.1) × 10−4 at the centre of the stopband. The
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transmission through the plano-concave cavity is only ≈ 1%, due to scattering losses on the
mirrors. These losses are not relevant for the analysis presented in this paper.

One of the mirrors is fixed while the other mirror can be moved with 6 degrees of freedom on
a hexapod system. We align the mirrors to the point where they are parallel and touch each other.
This point is referred to as ’touch down’. We scan the mirror position from touch down to over
>2 µm distance with sub-nm precision.

The non-linearity of the piezo scan and the point of touch down are determined by measuring
the microcavity transmission outside the stopband with a green laser (λ = 520 nm). A CCD
image of the microcavity confirms the parallelism when no fringes are visible. The point of touch
down is determined from the part in the scan where the transmitted intensity is constant.

In the next section, we will present accurate measurements of penetration depths on a planar
and a plano-concave microcavity, as indicated in the section titles. Figure 2 shows that we use the
same mirrors in both experiment, but we focus light on different parts. The planar microcavity
transmission spectra presented in Fig. 3 are obtained with a spatially-filtered Xenon lamp and
a fiber-coupled spectrometer. The experimental results on the transverse mode splitting of the
plano-concave microcavity, presented in Figs. 4 and 5, are obtained by measuring the microcavity
transmission of a HeNe laser (λ = 633 nm) with a photo-multiplier tube. The light was coupled
in with an f = 7.5 mm lens and coupled out with an f = 8 mm lens.

Fig. 2. Illustration of the planar and plano-concave cavity modes. The blue and red areas
correspond to the high and low index materials of the DBR, with a flat mirror at the bottom
and a patterned mirror at the top. The green areas indicate standing waves in the cavity. To
excite the planar or plano-concave cavity we focus light either on the flat or on the curved
part of the patterned mirror. The indentation at the patterned mirror is referred to as "feature
depth".

4. Results

4.1. Frequency penetration depth Lτ (planar cavity)

In the first experiment, we measure the transmission spectrum P(λ; L) of the planar cavity. For
each wavelength λ, the transmitted power varies between Pmin(λ) and Pmax(λ) with L. We use
these extrema to normalize the transmission spectrum between 0 and 1 and show the results
as false-color plot in Fig. 3. Due to this normalization, this figure does not show the 4 orders
of magnitude difference between the very low transmission (10−4) for wavelengths inside the
stopband and the order unity transmission outside the stopband.



Research Article Vol. 29, No. 5 / 1 March 2021 / Optics Express 6885

The cavity length is varied from just below touch down (red dashed line indicated by LTD) to a
mirror position ≈ 3.6 µm. Below the point of touch down, the cavity length is constant and close
to zero. This part is only included to show the derived quantities Lcav = 0 and Lb (see below).

The slanted lines in the central region of the spectrum show the planar-cavity modes in the
stopband. These lines become non-linear towards the edges of the stopband, where the reflection
phase φ makes a phase jump, in agreement with the theoretical Fig. 1. The planar-cavity modes
are labeled by their longitudinal mode number q.

The slanted dashed lines in Fig. 3 result from a simultaneous constrained linear fit of the
q = 1 − 7 longitudinal cavity modes in the linear part of the stopband (600-680 nm). This fit is
heavily constrained and contains only one fit parameter, Lb, because all fit lines are λ/2 apart and
hence cross at the same point Lb for λ = 0. Small deviations from the fit lines observable for
q = 2 − 5 originate from an imperfect correction of the non-linearity of the piezo scan. These fits
also allow us to extrapolate to the virtual q = 0 mode. At the center wavelength, where φ = 0,
the q = 0 line coincides with the point Lcav = 0, indicated by the middle red dashed line.

Fig. 3. False-color plot of the normalized transmission spectrum for a planar cavity. We
scan the mirror position from 1.0 to >3.6 µm, which includes the point of ’touch down’
(vertical line labeled LTD) and repeat the spectra below 1.0 µm for aesthetic reasons. The
slanted lines in the central region of the spectrum show the planar cavity modes in the
stopband. These modes are labeled by their mode number q and are fitted with straight
(dashed orange) lines. We add the calculated q = 0 mode, which per definition intersects the
vertical Lcav = 0 at the central wavelength λc. All fits are constrained to cross λ = 0 at the
same mirror position Lb (see text).

The key result in Fig. 3 is the observation that the q = 0 mode is also slanted or, equivalently,
that the point Lb does not correspond to Lcav = 0. The distance between these points, indicated
by the arrow in Fig. 3, yields the frequency penetration depth Lτ = 0.28 ± 0.02 µm; see Eqs. (6)
and (7) for theory. The uncertainty estimate is based on a comparison between results from
different measurement series and different methods of analysis, both manually and by computer.
Note that the analysis presented above was based on the reasonable assumption that the first mode
after touch down is the q = 1 mode. This assumption yields a distance 0.14 ± 0.02 µm between
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touch down and zero cavity length. If the first mode would have been q = 2, this would have led to
a much larger distance of 0.46±0.02 µm and an unrealistically low value of Lτ = 0.12 ± 0.02 µm
(see discussion below).

4.2. Modal penetration depth LD (plano-concave cavity)

In the second experiment, we measure the transmission of a HeNe laser through a plano-
convave cavity while scanning the cavity length. Each group of transmission peaks contains
the fundamental TEM00 mode and multiple high-order TEMnm modes. The wavelength of the
HeNe (λ = 633 nm) is close enough to the center wavelength (λc = 640 nm) to neglect the phase
penetration depth (theory predicts 2Lϕ ≈ −0.01 µm).

Figure 4 shows the measured splitting∆L between each transverse higher-order mode (indicated
by n + m>0) and the associated fundamental mode (n + m = 0) as a function of mirror position.
We measured these splittings for 7 groups of modes, of which the first three (q = 3, 4, 5) are
indicated by dashed black lines. Below, we will explain why we start counting from q = 3.

Fig. 4. Transverse mode splitting versus mirror position L in a plano-concave cavity. This
mode splitting is expressed as the displacement ∆L between the resonance of the high-order
mode (n +m = 1 − 6) and the corresponding fundamental mode (n +m = 0). The combined
fit of these data, depicted as a set of black curves, yield the radius of curvature and a fictitious
mirror position La where all transverse modes are frequency degenerate. We add the fictitious
cavity mode (n + m = −1) to compare with the planar cavity and to find Lcav = 0 (see text).

The solid curves are based on a simultaneous fit of all measurements using two fit parameters:
the mirror radius R and the position La of full degeneracy of the transverse modes. Our fit yields
R = 10.7 ± 0.1 µm and La = 0.26 ± 0.03 µm (indicated by the left red dashed line). Figure 4
shows that these estimates require a serious extrapolation of the data. The computer-generated
error bars in Fig. 5 are based on statistical errors only and might thus be optimistic (0.03 µm
statistical error in La) as they do not take systematic errors into account. A possible systematic
error could be a deviation of the transverse mode splitting, and the associated Gouy phase, from
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the simple paraxial theory [20]. In the absence of an alternative theory, we cannot estimate
the size of this systematic errors. From an experimental point of view, we can only determine
statistical errors to find that errors of multiple measurements on multiple cavities agree with each
other (see below).

In Fig. 4, we have added an extra (black dotted) curve for the virtual n + m = −1 modes. A
comparison of Eqs. (6) and (8) shows that these virtual modes should have the same resonances
as the planar cavity modes. By extrapolation of these virtual planar modes to q = 0 we find the
point Lcav = 0, indicated as the middle dashed line.

The key result in Fig. 4 is the modal penetration depth. Equation (8) shows how this value
can be obtained from the distance 2LD between the leftmost vertical lines, assuming identical
penetration depth in the flat and curved mirror. From the analysis of Fig. 4 we thus obtain a
measured modal penetration depth LD = 0.053 ± 0.015 µm.

Finally, we note that the distance between touch down and Lcav = 0 in Fig. 4 is 0.85 ± 0.03 µm.
This value is larger than for the planar cavity because it contains the feature depth of the concave
mirror (see Fig. 2). We have measured this feature depth with an atomic force microscope (AFM)
to be 0.62-0.70 µm for different mirrors, i.e. approximately 2 × λ/2. From this we conclude that
the lowest q mode of the plano-concave cavity is q = 3, while the planar cavity has q = 1. After
subtraction of the measured feature depth, we determine the spacing between the planar parts of
the mirrors to be 0.19 ± 0.05 µm at touch down in this new alignment.

We performed the analysis depicted in Fig. 4 on 9 data sets, obtained from 6 different cavities
on 2 different days (3 cavities were measured on both days). We only analyzed data sets that
contained at least four clearly visible transverse modes. The solid point in Fig. 5 shows the

Fig. 5. Modal penetration depth and radii of curvature for nine measures on various
plano-concave cavities. The solid point results from Fig. 4. The red and black points
are obtained in two measurement series. The horizontal lines show the averaged modal
penetration depth and the error range, corresponding to LD = 0.06 ± 0.02 µm.
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fit parameters obtained from Fig. 4. The colors of the points indicate measurement series on
different days.

The data points in Fig. 5 are divided in two groups, corresponding to cavities with R = 10−11 µm
and R = 21 − 23 µm. The distribution of the data points shows that the modal penetration depth
is approximately the same for all cavities and does not depend on mirror radius over the studied
range.

The horizontal lines show the weighted average of the modal penetration depth with its intrinsic
error LD = 0.06 ± 0.02 µm. This intrinsic error is based on the spread among the measurements,
which is slightly larger than the error bars estimated for individual measurements. This estimate
only contains statistical errors.

5. Discussion

We start the discussion by comparing experiment with theory. We have measured a frequency
penetration depth Lτ = 0.28 ± 0.02 µm and modal penetration depth LD = 0.06 ± 0.02 µm. For
our H-DBRs, with nL = 1.46 and nH = 2.09, we predict Lτ = 0.25 µm and LD = 0.09 µm. If
dispersion is taken into account, we predict Lτ = 0.26 µm and LD = 0.09 µm. Both penetration
depths are in reasonable agreement with theory.

The experimental results agree with theory despite several theoretical simplifications. The
most crucial simplification seems to be the Taylor expansion of the reflection phase in Eq. (3).
At large angles of incidence the blue shift of the resonance frequency could bring us into the
non-linear regime of the reflection phase, where an additional cubic term increases the effects
(see Refs. [21,22]). This scenario sounds reasonable, as the opening angle is ≈ 0.2 rad (e−2)
for the fundamental mode at q = 3 and much larger for the high-order modes. However, even
angles as large as 0.6 rad will shift the resonance frequency only ∆ωc/ωc ≈ (1/2)βθ2in ≈ 5 % or
≈ 30 nm, which is not enough to reach the non-linear regime. A second simplification lies in
the equal treatment of the optical penetration in the flat and curved DBR. This approximation
is valid because the penetration depth is much smaller than the curvature of the mirror. A
third simplification is the simple paraxial scalar description of the optical field. The mode
splittings predicted by an advanced nonparaxial vector description [20] are still small enough
to be neglected in our analysis. Finally, we didn’t take potential coating inhomogeneities and
thickness distortions of the mirrors into account. Small-scale distortions are likely to average out
over the mode profile. But large-scale distortions can deform the transverse modes away from
the ideal spherical case and hence result in an incorrect assignment of the radius R and the modal
penetration depth LD [23]. A discussion of all these complications is beyond the scope of the
paper.

In conclusion, we have presented an analysis of optical penetration in DBRs and accurate
measurements thereof. Our analysis shows that there are actually three penetration depths which
are relevant in different experiments. We have measured the frequency penetration depth Lτ to
find that it agrees with theory. We have also measured the modal penetration depth LD to find
that it is much smaller than Lτ , again as expected. Maybe most important, we have argued that
the effect of optical penetration on microcavity resonances is often misinterpreted. The absolute
resonance conditions depend on the reflection phase φ and hence on the phase penetration depth
Lϕ . The frequency spacing between the longitudinal modes and their quality factor depend
on the frequency penetration depth Lτ . The frequency spacing between the transverse modes
and their area/cross sections depend on the modal penetration depth LD. The Purcell factor FP
depends primarily on the modal penetration depth, as the increase in mode volume due to the
field penetration into the DBRs is compensated by an increase of the quality factor.
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