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ABSTRACT

The Low Frequency Array (LOFAR) is an ideal instrument to conduct deep extragalactic surveys. It has a large field of view and
is sensitive to large scale and compact emission. It is, however, very challenging to synthesize thermal noise limited maps at full
resolution, mainly because of the complexity of the low-frequency sky and the direction dependent effects (phased array beams and
ionosphere). In this first paper of a series we present a new calibration and imaging pipeline that aims at producing high fidelity, high
dynamic range images with LOFAR High Band Antenna data, while being computationally efficient and robust against the absorption
of unmodeled radio emission. We apply this calibration and imaging strategy to synthesize deep images of the Boötes and Lockman
Hole fields at ∼ 150 MHz, totaling ∼ 80 and ∼ 100 hours of integration respectively and reaching unprecedented noise levels at these
low frequencies of . 30 and . 23 µJy.beam−1 in the inner ∼ 3 deg2. This approach is also being used to reduce the LoTSS-wide data
for the second data release.

1. Introduction

With its low observing frequency, wide fields of view, high sensi-
tivity, large fractional bandwidth and high spatial resolution, the
Low Frequency Array (LOFAR, see van Haarlem et al. 2013) is
well suited to conduct deep extragalactic surveys. The LOFAR
Surveys Key Science Project is building tiered extragalactic sur-
veys with LOFAR, of different depth and areas, and at frequen-

cies ranging from ∼ 30 to ∼ 200 MHz. Specifically the LO-
FAR LBA Sky Survey (LoLSS) aims at surveying the northern
hemisphere using the LOFAR LBA antennas while the LOFAR
Two Meter Sky Survey (LoTSS) uses the High Band Antennas
(HBA). Its widest component (LoTSS-wide) has been described
by Shimwell et al. (2017a, 2019), and aims at reaching noise
levels of . 100 µJy.beam−1 over the whole northern hemisphere.
While the bright sources identified in LoTSS-wide are largely ra-
dio loud Active Galactic Nuclei (AGN), the population of faint
sources consists of star forming galaxies and radio quiet AGN
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Fig. 1: This figure shows the effective noise in the LoTSS-Deep
continuum maps as compared to other existing and future sur-
veys. A spectral index of α = −0.7 has been used to convert flux
densities to the 1.4 GHz reference frequency.

(see Padovani 2016, and references therein). The LoTSS-Deep
Fields target noise levels of ultimately . 10 µJy.beam−1, thereby
entering a new fainter, higher redshift regime where star forming
galaxies and radio quiet AGN will outnumber the population of
radio loud AGN, and thereby probing the evolution of those pop-
ulations over cosmic time. Fig. 1 is inspired by that of Smolvcić
et al. (2017a) and shows a sensitivity and surveyed area compar-
ison between various existing and future surveys. These include
TGSS (Intema et al. 2017), FIRST (Becker et al. 1995), NVSS
(Condon et al. 1998), VLA-COSMOS (Schinnerer et al. 2004;
Smolvcić et al. 2017b), VLASS (Lacy et al. 2020), EMU (Norris
2010), VLA-SWIRE (Owen & Morrison 2008), SSA13 (Foma-
lont et al. 2006), Stripe-82 (Heywood et al. 2016), XXL (Butler
et al. 2018, and references therein), DEEP2 (Mauch et al. 2020),
LOTSS-DR1 (Shimwell et al. 2017b), HDF-N (Richards 2000),
WENSS (Rengelink et al. 1997), GLEAM (Wayth et al. 2015),
and SKA (Prandoni & Seymour 2015a).

The depth of the LoTSS-Deep Fields is unlikely to be rou-
tinely surpassed at these low frequencies even into the era of the
first phase of the Square Kilometer Array (SKA, Dewdney et al.
2009) because, although the SKA will have the raw sensitivity
to easily reach such depths, the confusion noise of the SKA-low
will likely increase the image rms to values exceeding the tar-
get depth of the LoTSS-deep images (see e.g. Zwart et al. 2015;
Prandoni & Seymour 2015b). In order to construct the LoTSS-
Deep Fields, we have selected the Boötes, Lockman Hole, and
ELAIS-N1 fields, together with the North Ecliptic Pole (NEP).
Each of them is covered by a wealth of multiwavelength data,
necessary to derive photometric redshifts and low frequency ra-
dio luminosities, thereby providing an efficient way to estimate
Star Formation Rate (SFR hereafter) in galaxies for example. To-
gether, these four multiwavelength fields allow us to probe a total
sky area of & 30 deg2, in order to probe all galaxy environments
at z > 1.

It is, however, quite challenging to make thermal noise lim-
ited images at low frequencies because of the presence of Di-
rection Dependent Effects (dde), such as the ionospheric distor-
tions, and the complex primary beam shapes of phased arrays.
We have shown (Shimwell et al. 2019) that using a novel set of

calibration and imaging algorithms developed by Tasse (2014a),
Smirnov & Tasse (2015) and Tasse et al. (2018) we were able
to estimate and compensate for the dde, and thus use LOFAR to
produce thermal noise limited maps from 8-hour LOFAR obser-
vations in a systematic and automated way, while keeping the
computational efficiency high enough to be able to deal with the
high LOFAR data rates.

In this first paper of a series we present an improved strategy
to reach thermal noise limited images after hundreds of hours of
integration on the Boötes and Lockman Hole extragalactic fields,
reaching ∼ 30 µJy.beam−1 noise levels, while being more ro-
bust against absorbing faint unmodeled extended emission and
dynamic range issues. In Sec. 2 we introduce the dd calibration
and imaging problem, together with the existing software that we
use to tackle it. . In Sec. 4 we use ddf-pipeline-v2 to synthesize
deep images over the Boötes and Lockman Hole extragalactic
fields and present these deep low frequency images. The sub-
sequent papers in this series will present the deeper ELAIS-N1
data products (Sabater et al. 2020, in prep.), the multiwavelength
cross matching (Kondapally et al. 2020, in prep.) and the photo-
metric redshifts and galaxy characterisation (Duncan et al. 2020,
in prep.).

2. LoTSS and the third generation calibration and
imaging problem

Calibration and imaging techniques have greatly evolved
since the first radio interferometers have become operational.
First generation calibration is commonly refered as direction-
independent (di) calibration, where calibration solutions are
transferred to the target from an amplitude and/or phase calibra-
tor field. Second generation calibration is the innovation, begin-
ning in the mid-1970s, of using the target field to calibrate itself
(self-calibration: Pearson & Readhead 1984). Third generation
calibration and imaging consists in estimating and compensat-
ing for direction-dependent effects (dde).

As mentioned above, it is challenging to synthesize high res-
olution thermal noise limited images with LOFAR (van Haarlem
et al. 2013). Specifically, LOFAR (i) operates at very low fre-
quency (ν < 250 MHz), (ii) has very large fields of view (fwhm
of 2 – 10 degrees), and (iii) combines short (∼ 100 m) and long
(∼ 2000 km) baselines to provide sensitivity to both the compact
and extended emission. Because of the presence of the iono-
sphere and the usage of phased array beams, the combination
of (i) and (ii) make the calibration problem direction-dependent
by nature. In Sec. 2.1 we introduce the mathematical formalism
used throughout this paper, while in Sec. 2.2 and 2.3 we describe
the algorithms and software used for di and dd calibration and
imaging.

2.1. Measurement equation formalism

The Radio Interferometry Measurement Equation (rime, see
Hamaker et al. 1996) describes how the underlying electric
field coherence (the sky model), and the the various direction-
independent and direction-dependent Jones matrices (denoted G
and J respectively), map to the measured visibilities. In the fol-
lowing, we consider the electric field in linear notation (along
the x and y axes), at frequency ν in direction s = [l,m, n =
√

1 − l2 − m2 ]T (where T is the matrix transpose) and write
the 4 × 1 sky coherency matrix as xsν = [xx, xy, yx, yy]T

sν. If
Gb = G∗qtν ⊗ Gptν and J s

b = Js∗qtν ⊗ Jsptν are the direction-
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independent and direction-dependent 4× 4 Mueller matrices1 on
a baseline b ↔ {pqt} → [u, v, w]T between antenna p and q at
time t, then the 4-visibility vb is given by

vb =Gb

∫
s

J
s
bB

s
bxsνksbds + nb (1)

with ksb = exp
(
−2iπ

ν

c

(
bT

pq,t(s − s0)
))

(2)

and bpq,t =

upq,t
vpq,t
wpq,t

 =

up,t
vp,t
wp,t

 −
uq,t
vq,t
wq,t

 (3)

and s =

 l
m
n

 and s0 =

00
1

 (4)

where c is the speed of light in the vacuum, and nb is a 4 × 1
random matrix following a normal distribution N (0, σb). De-
pending on the context, in the rest of this paper we will either
make use of the antenna-based Jones matrices or the baseline-
based Mueller matrices.

The elements of Gb describe the direction-independent ef-
fects such as the individual station electronics (the bandpass), or
their clock drifts and offsets. The J s

b models the dde including
the ionospheric distortion (phase shift, Faraday rotation, scin-
tillative decoherence) and phased array station beam that depend
on time, frequency, and antenna. Importantly, in order to esti-
mate the intrisic flux densities we use a description of the LO-
FAR station primary beam that is built from semi-analytic mod-
els2, and write it as Bs

b in Eq. 1.
Solving for the third generation calibration and imaging

problem consists of estimating the terms on the right-hand side
of Eq. 1, namely the Mueller matrices Gb and J s

b and the sky
model xν from the set of visibilities vb. Due to the bilinear struc-
ture of the rime, instead of estimating all these parameters at
once, inverting Eq. 1 is split into two steps. In the first step, the
sky term xν is assumed to be constant, and the Jones matrices are
estimated. The step is referred as "calibration" and as the dd-C-
rime system later in this text (or simply C-rime depending on the
context). In the second step the Jones matrices are assumed to be
constant, and the sky term xν is estimated. This step is commonly
called "imaging" and is referred as solving the dd-I-rime system
later in the text. The C-rime and I-rime problems constitute two
sub-steps in inverting the rime system. We will later describe the
idea of alternating between dd-C-rime and dd-I-rime as dd-self-
calibration.

While the vast majority of modern developments in the field
of algorithmic research for radio interferometry aim at address-
ing either the dd-C-rime (direction dependent calibration, see
Yatawatta et al. 2008; Kazemi et al. 2011; Tasse 2014a; Smirnov
& Tasse 2015) or dd-I-rime (direction-dependent imaging, see
Bhatnagar et al. 2008; Tasse et al. 2010, 2018), in this article we
aim at developing a robust approach using existing dd-C-rime
and dd-I-rime algorithms to tackle the complete rime inversion
problem.

1 As described by Hamaker et al. (1996), the Mueller matrices and the
Jones matrices can be related to each other using the Vec operator. In
the context of the rime, if Jp and Jq are 2 × 2 Jones matrices of antenna
p and q, and X is the 2 × 2 source’s coherency matrix then we have
Vec

{
JpXJq

}
=

(
J∗q ⊗ Jp

)
Vec {X}, where ⊗ is the Kronecker product.

2 https://github.com/lofar-astron/LOFARBeam

2.2. Direction-independent calibration

The standard LoTSS HBA observations consist of a 10 minute
scan on a bright calibrator source (in general 3C 196 or 3C 295)
before observing the target field for 8 hours. On both calibrator
and target fields, the visibilities of the 240 subbands (SB) are
regularly distributed across the 120-168 MHz bandpass, with 64
channels per 195.3 kHz subband and 1 sec integration time. The
data are first flagged using AOFlagger3 (Offringa et al. 2012)
and averaged to 16ch/sb and 1s.

The interferometric data taken on the calibrator field are
used to estimate the direction independent Jones matrices G that
are, to first order, the same in the target and calibrator fields.
These include (i) the individual LOFAR station electronics and
(ii) the clock offsets and drifts. This first pass of calibration is
conducted using the PreFactor software package4 (de Gasperin
et al. 2019). Specifically, as the calibrator field essentially con-
sists of a single bright source, the measurement equation is di-
rection independent and the visibilities are modeled as

v̂cal
b

=Ĝ0
bvmodel

b (5)

where vmodel
b

=
∫
s

xsν ksb ds is the skymodel of the calibrator. We
cannot just use G0

b to calibrate the target field, since the iono-
sphere is different for the calibrator and target fields. Instead, we
want to extract (i) the bandpass and (ii) the clock offsets from the
calibrator field, these being valid for the target field. The effec-
tive Mueller matrix of a given baselineG0

b can be decomposed as
the product of a direction independent and direction dependent
term

Ĝ
0
b =ĜbĴ

0
b (6)

with Ĝpν =Âpν exp
(
iν∆̂t

p

)
(7)

and Ĵ0
pν = exp

(
iKν−1∆̂T

p

)
(8)

where K = 8.44 × 109 m3s−2, and Apν, ∆t
p and ∆T

p are real-
valued and represent respectively the bandpass, the clock and
ionospheric Total Electron Content offset with respect to a refer-
ence antenna. The terms ∆t

p and ∆T
p can be disentangled from the

frequency dependent phases because the former are linear with
ν while the latter are non-linear.

Assuming the clocks and bandpass are the same for the cali-
brator and for the target field, the corrected visibilities vc

b
for the

target field can be built from the raw data vb as vc
b

= Ĝb

−1
vb. In

order to calibrate for the remaining phase errors, the target field
is di calibrated against the TIFR GMRT Sky Survey (tgss) cata-
logs (Intema et al. 2017) and visibilities are averaged to 2 ch/sb
and 8s.

2.3. Direction-dependent calibration and imaging

As discussed by Tasse (2014b) there are two families of calibra-
tion algorithms. “Physics-based” solvers aim at estimating the
underlying Jones matrices whose product gives the effective Gs

ptν
and Jsptν. Depending on the observing frequency and instrumen-
tal setup, these can be the product of the ionospheric Faraday
rotation matrix, the scalar phase shift, and the individual station

3 https://sourceforge.net/p/aoflagger/wiki/Home
4 https://github.com/lofar-astron/prefactor
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primary beams. This approach has the great advantage of con-
straining the free parameters to a low number, but it requires one
to model analytically the physics of the various effects over the
{sptν} space to be able to disentangle them. The second fam-
ily of algorithms directly estimate the effective Jones matrices
over piecewise constant domains in {sptν} space. These “Jones-
based” solvers have the advantage of not requiring any physi-
cal modeling of the DDE. However, this makes the number of
degrees of freedom increase dramatically, typically by a few or-
ders of magnitude. These additional degrees of freedom can of-
ten make the inverse problem to be ill-posed5. This means in
practice that the dd solvers can overfit the data, leading to the
unmodeled sky flux being absorbed by the calibration solutions.
This happens differently at different scales, and has a greater ef-
fect on the extended emission, which is measured only by the
less numerous shorter baselines. Similar to linear problems, the
situation depends on the sizes of the parameter space, and also
on the shape of the neighboring domains in the {sptν} spaces.
Also, as explained by Shimwell et al. (2019), experience shows
that we need to split the sky model into a few tens of directions
(“facets") to be able to properly describe the spatial variation of
the dd Jones matrices. This effect is amplified by the difficulty
of properly modeling the extended emission itself. Indeed, even
in the absence of calibration errors, the deconvolution problem
consisting of inverting Eq. 1 by estimating xsν for given G, J
and v is ill-posed. Furthermore the situation is more severe when
the Point Spread Function (psf) is less point-like (i.e. when the uv
plane is not well sampled). While the true measured visibilities
are described by Eq. 1, the ("model") visibilities v̂b that are es-
timated6 over the piecewise constant domains p,Ωϕ,∆t,∆ν can
be written as

v̂b =Ĝbv̂Σ
b

(9)

with v̂Σ
b

=
∑
ϕ

v̂ϕ
b

(10)

and v̂ϕ
b

=Ĵ
ϕ

b
B
ϕ

b

∫
s∈Ωϕ

x̂sν ksb ds (11)

where Ωϕ is the set of directions s for a facet ϕ, x̂sν is the esti-

mated underlying sky, and Ĝb and Ĵ ϕ

b
are the di and ddMueller

matrices for baseline b, built from the corresponding estimated
Jones matrices in p,∆t,∆ν.

Specifically, in order to solve for the dde, the size and shape
of the domains are critical. Intuitively, if the domains are too
small, not enough data points are used, and the solutions are sub-
ject to ill-conditioning. On the other hand if the domains are too
large the true Jones matrices can vary within the domain and the
piecewise constant approximation cannot account for the physics
that underlies the measurement. Due to (i) the non-linear nature
of Eq. 1, and (ii) the complexity of the background radio sky,
optimising over the shape of these piecewise constant domains
is a difficult problem (and is non-differentiable to some extent).

The faceted Jones-based approach is to find sky x̂sν as well as
the di Ĝptν and the dd piecewise constant Ĵϕptν for all {sϕptν} such
that v̂b ∼ vb (we remain intentionally vague here, since the cost
function that is minimised depends on the specific dd algorithm).
In practice, inverting Eq. 1 (estimating the Jones matrices and

5 Linear and non-linear problems can be ill-posed, meaning that non-
unique solutions can be found.
6 Throughout this paper the notation x̂ should be read as "the estimate
of x".

sky terms) is done by (i) solving for the Jones matrices assuming
the sky is known (the calibration step), and (ii) solving for the
sky-term assuming the Jones matrices are given (imaging step).
Using this skymodel and repeating steps (i) and (ii) is known
as self-calibration, but in a third-generation approach we must
explicitly model the DD aspects.

Since the computing time evolves as ∼ n3
d, where nd is

the number of directions in the dd-solvers, the problem of dd-
calibration has in general been tackled using direction alter-
nating peeling-like techniques. Major breakthroughs have been
made in the field of dd-C-rime solvers in the past decade
by Yatawatta et al. (2008); Kazemi et al. (2011) making this
dd-calibration computationally affordable. In addition, Tasse
(2014a) and Smirnov & Tasse (2015) have described an alter-
native way to write the Jacobian of the cost function by using
the Wirtinger differentiation method. The Jacobian and Hessian
harbor a different structure and shortcuts can be taken to invert
the calibration problem. The net gain over the classical method
is not trivial, but can be as high as n2

a (Smirnov & Tasse 2015)
where na is the number of antennas in the interferometer. This
Jones-based approach is therefore fast, but is still subject to the
same flaws as any Jones-based solvers.

Only a very few CI-rime algorithms using a full dd self-
calibration loop have been described and implemented. They
include pointing self-calibration (Bhatnagar & Cornwell 2017),
or peeling-based techniques such as MFImage (implemented in
the obit7 package) and factor (van Weeren et al. 2016, see also
Sec. 4.3). Similar to peeling, and developed for reducing LO-
FAR data, factor is sequential along the direction axis. Looping
over the different facets it consists of (i) subtracting all sources
besides calibration sources in that one facet, and (ii) di-self-
calibrating in that direction. In addition to the ill conditioning is-
sues discussed above on dd-C-rime and dd-I-rime solvers, an ex-
pensive computational problem arises when estimating the Ĵϕptν.

The approach presented by Shimwell et al. (2019) (also de-
scribed in detail Sec. A and referred to as ddf-pipeline-v1 in the
following) is based on the kms dd-C-rime solver (Tasse 2014a;
Smirnov & Tasse 2015) and ddfacet dd-I-rime imager (Tasse
et al. 2018), and is algebraically simultaneous in directions. The
direction dependent pipeline ddf-pipeline8 is a high level wrap-
per that mainly calls ddfacet9 and kms10 for direction dependent
self-calibration. This type of algorithm has a number of advan-
tages. Specifically, the interaction terms between the different
directions are properly taken into account within the dd-C-rime
solver, i.e. the dd affected sidelobes leaking from any facet to
any other facet are accounted for within the algebraic operations
of the algorithm. Another advantage compared to the factor ap-
proach is that the data need only to be read rather than modified,
making the ddf-pipeline more I/O efficient.

3. Calibration and imaging robustness

3.1. Dynamic range issue

With LOFAR’s very large field of view, it is quite common
to observe bright sources within the station’s primary beam.
As explained in Sec. 2.2 the initial phase calibration is done
against tgss at 150 MHz (Intema et al. 2017). However, since
LoTSS resolution is much higher than tgss’s (6′′×6′′against

7 https://www.cv.nrao.edu/~bcotton/Obit.html
8 https://github.com/mhardcastle/ddf-pipeline
9 https://github.com/saopicc/DDFacet

10 https://github.com/saopicc/killMS
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Fig. 2: Some of the images produced at different steps in the dd-self-calibration loop implemented as Alg. 1. The maps correspond
(from left to right, top to bottom) to Steps 1.1, 1.8, 1.12 and 1.18 respectively. The white lines show the facets’ locations. The
colorscale is the same on all panels, and diplayed using an inverse hyperbolic sine function to render both the low level artifacts and
some bright sources.

25′′×25′′respectively), small spatial uncertainties on how the in-
dividual bright sources are modeled lead to large Jones matrix
errors.

Solution time and frequency variability is however hard to
interpret. Indeed, because the rime formalism is subject to uni-
tary ambiguity (see Hamaker 2000, for a detailed discussion),
the off-diagonal or absolute phase terms found by a solver are
not meaningful. Instead, these are given with respect to a ref-
erence antenna. When Jones matrices are scalar, this amounts
to zeroing the phases ϕ0 of the reference antenna, by subtract-
ing ϕ0 from all phases of all antennas. To do this in the general

case of non-diagonal Jones matrices, we use a polar decompo-
sition on the Jones matrix J0 of the reference antenna such that
J0 = UP0 where U is a unitary matrix11. We then apply U to
all Jones matrices as Jp ← UHJp. Intuitively, when the Jones
matrices are all scalar, the unitary matrix U is simply exp (iϕ0)I,
and that step makes the phases of all Jp relative to the reference
antenna (and specifically zeros the phases of J0). In the case of
non-trivial 2 × 2 Jones matrices, finding and applying U has the

11 The unitary matrix U is found by doing a singular value decomposi-
tion J0 = WΣV and is then built as U = WVH
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Algorithm 1: Overview of the algorithm imple-
mented in ddf-pipeline-v2. The function I represents
the imaging step and takes as input the visibility vec-
tor v together with the beam model BΩn and kms-
estimated Jones matrices JΩn at locations Ωn. The
functionK abstracts the dd calibration step, and takes
as arguments the visibilities v, the skymodel x̂ν, a
solver mode (estimating for either scalar or full Jones
matrices), a time-frequency solution interval (in min
and MHz), and a set of directions Ωn in which to solve
for. The extra functions C, B, and F represent the
clustering, bootstrapping and smoothing steps respec-
tively.

Data: Visibilities v calibrated from di effects using
PreFactor.

/* On 60 LOFAR HBA subbands */
/* DI initial deconv and clustering */

1.1 x̂ν ← I
(
v6, JΩr = 1,BΩr

)
;

1.2 Ωn ← C
(
x̂ν

)
;

/* DI calibration and imaging */
1.3 x̂ν ← I

(
v6,BΩn

)
;

1.4 vc
6 ← K

(
v6, x̂ν,BΩn |full, δt0, δν0,Ω0

)
;

1.5 x̂ν ← I
(
vc

6,BΩn

)
;

/* Bootstrapping the flux density scale */

1.6 vc ← B
(
vc

6

)
;

/* Phase only DD calibration and imaging
*/

1.7 Ĵ← ϕ ◦ F ◦ K
(
vc

6, x̂ν,BΩn |scalar, 1min, 2MHz,Ωn

)
;

1.8 x̂ν ← I
(
vc

6, ĴBΩn

)
;

/* DD calibration and imaging */

1.9 Ĵ← F ◦ K
(
vc

6,BΩn , x̂ν|scalar, 1min, 2MHz,Ωn

)
;

1.10 x̂ν ← I
(
v6, ĴBΩn

)
;

/* DI calibration and imaging */

1.11 vc
6 ← K

(
v6, ĴBΩn , x̂ν|full, δt0, δν0,Ω0

)
;

1.12 x̂ν ← I
(
vc

6, ĴBΩn

)
;

/* On 240 LOFAR HBA subbands */
/* DD calibration */

1.13 Ĵ← F ◦ K
(
v24,BΩn , x̂ν|scalar, 1min, 2MHz,Ωn

)
;

/* DI calibration */

1.14 vc
24 ← K

(
v24, ĴBΩn , x̂ν|full, δt0, δν0,Ω0

)
;

/* DD imaging */

1.15 x̂ν ← I
(
vc

24, ĴBΩn

)
;

/* DD calibration */

1.16 Ĵ← F ◦ K
(
vc

24,BΩn , x̂ν|scalar, 1min, 2MHz,Ωn

)
;

/* Slow DD calibration */

1.17 Ĵs ← K
(
vc

24, ĴBΩn , x̂ν|scalar, 43min, 2MHz,Ωn

)
;

/* Final imaging steps */

1.18 x̂ν ← I
(
vc

24, ĴŝJBΩn

)
;

1.19 Facet-based astrometric correction (see Shimwell et al.
2019, for details);

effect of removing a common rotation from all Jones matrices,
and orthogonalises them.

Fig. 3:

Since the polar transform has been applied, the variations
of the amplitude of the off-diagonal Jones matrices are genuine.
These are interpretable in terms of differential Faraday rotation:
the rotation of the electric field polarisation changes across the
LOFAR array. This demonstrates the need to conduct a full-
Jones calibration on the PreFactor-calibrated LoTSS data.

Therefore in Step 1.4 the visibilities are calibrated against
modeled visibilities generated by ddfacet in Step 1.3. The sky
being mostly unpolarised, in this full-Jones di calibration step,
we assume Q = U = V = 0 Jy (see Sec. 3.4 for a discussion
of polarisation related data products). The solution intervals δt0
and δν0 along time and frequency are determined such that nb ∝

(T/ 〈|xν|〉)2 Var{n} where nb is the number of points in the δt0 ×
δν0 time-frequency domain, T is the target solution SNR, and
Var{n} is the variance of the visibilities’ noise (see Mbou Sob et
al. in preparation for a justification).

Note that after the initial dd calibration solutions have been
obtained in Steps 1.7 and 1.9, a more accurate di calibration can
be performed. Specifically, in the di calibration Steps 1.11 and
1.14, on any baseline b the model visibilities v̂Σ

b
(Eq. 10) are

predicted based on the previously estimated dd-Jones matrices Ĵ
(as is done by Smirnov 2011).

3.2. Regularisation

The absorption of unmodeled flux by calibration is a well known
issue connected to the calibration of dde. Intuitively speaking,
when real flux is missing from the modeled sky x̂i of x at step i,
and since the rime inversion is often ill-posed, the estimates Ĵi of
J can be biased in a systematic way. Experience and simulations
show that building a new estimate x̂i+1 from Ĵi can be biased in
that the unmodeled emission is not and will never be recovered
(Fig. 5). This effect is especially severe when the extended emis-
sion is poorly modeled or unmodeled since this is detected only
by the shortest baselines. Effectively, during the inversion of the
rime system of equations, the dd-self-calibration algorithm has
fallen into the wrong (local) minimum.

In order to address this problem, one idea is to reduce the
effective number of free parameters used to describe the Jones
matrices in the {pdtν}-space (see for example Tasse 2014a;
Yatawatta 2015; van Weeren et al. 2016; Repetti et al. 2017;
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Fig. 4: This figure shows the amplitude and phase (top/bottom respectively) of a scalar Jones matrix for a given station in a given
direction in the example observation. The left panel shows the solution as estimated by the kms solver. The right panel shows the
regularised solution, as updated by the F function. The amplitude color scale ranges from 0 to 1.5.

Fig. 5: In order to test the robustness of the algorithm described in Sec. 3 and implemented in ddf-pipeline-v2, we have simulated
an unmodeled extended emission (left panel). The emission is absorbed by the dd-calibration step (middle), while it can be partially
recovered (right panel) by decreasing the effective size of the unknown solutions space (Sec. 3.2 and 3.3).

Birdi et al. 2020). Forcing the estimated Jones matrices’ shape
to look like that of the real underlying ones improves the condi-
tioning of the inverse problem. In Alg. 1 (implemented in ddf-
pipeline-v2) we have replaced that normalisation method by a
smoothing of the kms-estimated Jones matrices. This function F
updates the Jones matrices J ← F (J) by imposing on them
a certain behavior in the time-frequency space , effectively re-
ducing the size of the unknown stochastic process. This can be
thought of as a regularisation. This is done independently on the
phases and amplitudes on the scalar Jones matrices generated at
Steps 1.9, 1.13, 1.16. The updated Jones matrices take the ana-
lytical form

Ĵpd,tν =âpd,tP
(
t, θ̂pd,ν

)
exp

(
iKν−1∆̂T

pd,t

)
I (12)

where ∆̂T
pd,t is the differential tec (see also Sec. 2.2 and Eq. 8), P

is a polynomial parametrised by the coefficients in θpd,ν (of size
10), and âpd,t is a scalar meant to describe the loss of correlation

due to ionospheric scintillation as seen in the left panel of Fig.
4. Typically, for the ∼ 8 hours’ integration of LoTSS pointings
and solving every 30 sec. and 2 MHz, this parametrisation of the
Jones matrices reduces the number of free parameters by a factor
& 20.

To assess the recovery of unmodelled flux in ddf-pipeline-v2
a series of simulations were conducted in which faint simulated
sources of various fluxes and extents were injected into real LO-
FAR data that had been fully processed with the ddf-pipeline-
v2 strategy. The properties of the injected sources were chosen
to be typical for large extragalactic objects such as radio halos
of galaxy clusters. After the injection of the artificial extended
sources the steps 1.16 and 1.17 were repeated using the sky
model derived at step 1.18 prior to the injection of the sources.
These simulations will be discussed further by Shimwell et al.
(in preparation) but in each simulation the recovered flux of the
completely unmodelled emission exceeded 60%. Examples of
the injected and recovered emission are shown in Fig 5.
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As suggested by the results of simulations, the effect on real
data is in general very satisfactory and allows us to recover the
unmodeled extended emission even when it is quite faint and ex-
tended. This is shown in Fig. 6 for a typical LoTSS observation.
Here the extended emission is about 10′ across, with a mean flux
density at the peak of only 0.7 of the local standard deviation.

3.3. Conditioning and solution interval

The additional issue of arcmin-scale negative haloes appearing
around bright compact sources (at a level of . 1% or the peak)
could be seen however in ∼ 10 − 20% of the LoTSS pointings
processed with ddf-pipeline-v1. As shown in Fig. 6, we believe
this to be connected to the solution regularisation itself. This is-
sue is hard to understand in detail because of the non-linearity
in the C-rime inversion, but is likely to be due to the pointings
showing these issues being more severely affected by the incom-
pleteness of the sky model. Specifically, conducting several ex-
periments, we were able to observe that the situation was im-
proved by deconvolving deeper or taking into account sources
outside the synthesized image field of view.

An additional way to improve the conditioning of the prob-
lem is to increase the amount of data used to contrain the esti-
mated Jones matrices. For the dd calibration steps presented in
Alg. 1 we use solution intervals of 0.5 − 1 minute.

3.4. Data products

3.4.1. Unpolarised flux

Once the estimated dd-Jones matrices and skymodel x̂ν have
been obtained at the highest available spatial resolution follow-
ing the di/dd-self-calibration steps presented in Alg. 1, additional
data products are formed.

Users can adapt the weighting scheme depending on the sci-
entific exploitation they want to make of the interferometric data.
This is very much tied to how the calibration and deconvolution
algorithms are working, and concurrent effects take place along
the self calibration loop. Extended emission is hard to properly
model since the deconvolution problem is more ill-posed in these
cases (more pixels are non-zero). To tackle this issue the psf can
be modified to make the convolution matrix more diagonal and
the deconvolution problem correspondingly better conditioned.

For all these concurring reasons the faint and extended flux in
the highest resolution maps produced by Alg. 1 is either poorly
modeled or not deconvolved at all. Since the pixel values of ex-
tended sources are not interpretable in the residual maps, the flux
density of the radio sources cannot be measured if they are not
deconvolved. We therefore intentionally degrade the resolution
of some of the imaging to allow survey users to choose a reso-
lution based on the broad scientific topic that they need to ad-
dress. Also, we store the sub-space deconvolution masks (ssd
hereafter, see Tasse et al. 2018) as residual images so the end
user can know if any given source has been deconvolved. With
this in mind, the following Stokes I products are generated:

1. High resolution (6′′, 20.000×20.000 pixels) wide-bandwidth
Stokes I image (Step 1.18)

2. Low resolution (20′′) wide-bandwidth Stokes I image (Step
2b.1)

3. High resolution (6′′) Stokes I image in 3 frequency chunks
spread over the whole HBA bandwidth (Step 2b.2)

The di-calibrated visibilities as well as the final skymodels
and dd calibration solutions are stored. This allows for additional

postprocessing to be made such as better calibration towards a
particular point on the sky (van Weeren et al in prep.), and also
reimaging at different resolutions if required.

3.4.2. QUV images

The ddfacet dd-imager only deals with I-Stokes deconvolution.
As discussed by Tasse et al. (2018), estimating the QUV Stokes
parameters is complex in the context of dd-imaging due to the
leakage terms. Indeed, for the problem to be properly addressed,
16 psf have to be computed (as there are 16 terms in the quadar-
tic mean of the Mueller matrices). As most of the sources are
unpolarised, the leakage terms are properly taken into account
in the dd-predict . Instead of deconvolving the polarised flux,
we grid the IQUV residual data. The polarised flux is directly
interpretable when the sources are unresolved. Hence we also
generate the following additional products:

4. Low resolution (20′′) spectral Stokes QU cubes (480 planes
- Step 2b.3)

5. Very low resolution Stokes QU cubes (480 planes - Step
2b.4), by cutting the baselines > 1.6 km, giving an effective
resolution of ∼ 3′

6. Low resolution (20′′) wide-bandwidth Stokes V image (Step
2b.5)

The output QU cubes are processed using Faraday rotation
measure (RM) synthesis (Brentjens & de Bruyn 2005) to find
polarised sources and their RM with the sensitivity of the full
bandwidth. The wide bandwidth (120 to 168 MHz) combined
with the narrow channel width (97.6 kHz) provides a resolution
in RM space of ∼1.1 rad/m2 and an ability to measure RMs of
up to ∼450 rad/m2 (e.g. O’Sullivan et al. 2020).

The 3′ QU cubes are sensitive to the large-scale polarised
emission from the Milky Way, while the 20′′ QU cubes are ex-
cellent for finding compact polarised sources. However, detailed
studies of the polarisation and RM structure of resolved extra-
galactic sources will require deconvolution of the Q and U data.
The ddf-pipeline-v2 output provides significantly better perfor-
mance in correcting for the effect of the instrumental polarisation
(Fig. 8), which is typically at the level of 1% or less for bright
total intensity sources (O’Sullivan et al., in prep).

There is no absolute polarisation angle calibration for each
LoTSS observation, meaning that while the RM values of
sources in overlapping fields are consistent, the polarisation an-
gles are not. Therefore, to avoid unnecessary depolarisation for
both mosaicing and the deep fields, the polarisation angles be-
tween the observations need to be aligned. The simplest way to
do this is by choosing a reference angle of a polarised source in
a single observation and applying a polarisation angle correction
to all other observations to align with this reference angle, as
presented in Herrera Ruiz et al. (2020). An alternative approach
is to use the diffuse polarised emission that is present in the ∼ 3′
QU cubes.

Bright polarised sources are rare in the LoTSS data, with
only three sources having a polarised intensity greater than 50
mJy beam−1 in the DR1 HETDEX sky area (Van Eck et al. 2018;
O’Sullivan et al. 2018). However, in the fields containing these
bright polarised sources the ddf-pipeline-v2 output becomes un-
reliable for polarised sources. This limitation likely arises from
assuming Q = U = V = 0 Jy for a field in the di calibration step.
While only a few percent of fields are strongly affected, the exact
extent of this issue is being investigated further through simula-
tions, where bright polarised sources are inserted into existing
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Fig. 6: Conserving the unmodeled extended emission while keeping high dynamic range is extremely challenging in the context of
dd calibration and imaging. The left panel shows that a faint and unmodeled extended emission (on the level of ∼ 0.7σ here) can
be totally absorbed. While regularising the dd calibration solutions can help in recovering the unmodeled emission (typically after
Step 1.16), it can also produce negative imaging artifacts and ’holes’ around bright sources (middle panel). The right panel shows
that solving the residuals on longer time intervals (Step 1.17) corrects for this issue.

LoTSS uv-datasets. Possible solutions will be tested in future
pipeline developments.

3.5. Comparison between ddf-pipeline-v1 and ddf-pipeline-v2

3.6. ddf-pipeline-v2 robustness and performance

As explained above ddf-pipeline-v2 is a high level script interfac-
ing kms and ddfacet. Both of the underlying software packages
are efficiently parallelised using a custom version of the Python
multiprocessing package for process-level parallelism, and
using the SharedArray12 module. As explained by Tasse et al.
(2018), this pythonic approach minimizes the process intercon-
nections for both the kms and ddfacet software.

This paper considers the application of ddf-pipeline-v2 to the
LoTSS-Deep Fields. The pipeline is also being used to process
data from the wider and shallower LoTSS survey. The LoTSS
project is presently observing at a rate of up to 1,500 hrs ev-
ery 6 month cycle which corresponds to approximately two 8 hr
pointings (observed simultaneously) each day. The ddf-pipeline-
v2 compute time is roughly split equally between calibration and
imaging tasks (see Fig. 9). The total run time for an 8 hour point-
ing is ∼ 5 days (on a node equipped with 192 GBytes RAM
and 2 Intel Xeon Gold 6130 CPU@2.10GHz, giving 32 physical
compute cores), and takes an extra ∼ 30% of computing time to
completion as compared to ddf-pipeline-v1. Hence 10 compute
nodes are sufficient to keep up with the observing rate. However,
in practice more compute nodes are used because LoTSS has
been observing since 2014 and as of June 1st 2019 over 1,000
pointings exist in the archive. Over ∼ 1000 pointings and ∼ 12
PB of averaged and compressed LOFAR data (∼ 40 PB uncom-
pressed) have now been processed with ddf-pipeline-v2.

4. LoTSS deep fields data and processing

4.1. Observations

LoTSS-Deep Fields observations are being carried out over the
four northern fields with high-Galactic latitude and the highest-
12 https://pypi.python.org/pypi/SharedArray

quality multi-degree-scale ancillary data across the electromag-
netic spectrum: the Boötes field, the Lockman Hole, ELAIS-
N1 and the North Ecliptic Pole fields. The ultimate aim of the
LoTSS Deep Fields project is to reach noise levels of 10-15
µJy.beam−1 in each of these fields (requiring ∼ 500 hours of in-
tegration). The first LoTSS-Deep Fields data release consists of
initial observations in three of these fields: Boötes (∼ 80 hrs) and
Lockman Hole (∼ 112 hrs) presented in the current paper, and
ELAIS-N1 (presented by Sabater et al. 2020, for an integration
time of ∼ 170 hrs in paper 2). This first data release also includes
an extensive effort of optical/IR cross-matching, which has ob-
tained host galaxy identifications for over 97% of the ∼80,000
radio sources detected within the ∼ 25 deg2 overlap with the
high-quality multi-wavelength data (Kondapally et al. 2020, Pa-
per 3). This is supplemented by high quality photometric red-
shifts, and characterisation of host galaxy properties (Duncan et
al. 2020, Paper 4), and source classification (e.g. star-forming vs
AGN: Best et al. 2020, Paper 5).

In order to put the LoTSS-deep observations in a wider con-
text, in this section we briefly describe the multi-wavelength data
available on the Boötes and Lockman Hole fields, focusing on
the radio coverage (for a more detailed description see Konda-
pally et al. 2020, Paper 3).

4.1.1. Boötes field

The Boötes field is one of the NOAO Deep Wide Field Survey
(NDWFS Jannuzi & Dey 1999) fields covering ∼ 9.2 deg2. It
contains multi-wavelength data including infrared (Spitzer space
telescope, see Ashby et al. 2009; Jannuzi et al. 2010), X-rays
(Chandra space telescope, see Murray et al. 2005; Kenter et al.
2005), optical data (Jannuzi & Dey 1999; Cool 2007; Brown
et al. 2007, 2008) . At radio frequencies it has been mapped
with the Westerbork Radio Telescope (WSRT, see de Vries et al.
2002), the Very Large Array (VLA, see Croft et al. 2008; Coppe-
jans et al. 2015), the Giant Meterwave Radio Telescope (GMRT,
see Intema et al. 2011; Williams et al. 2013) and LOFAR (van
Weeren et al. 2014; Williams et al. 2016; Retana-Montenegro
et al. 2018) at various depths, frequencies, resolutions and cov-
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(a) The central part of the P26Hetdex03 8 hours LOFAR-HBA scan as imaged
by Alg. 0.

(b) Region (1) as imaged by Alg. 0

(c) Region (1) as imaged by Alg. 1

(d) The central part of the P26Hetdex03 8 hours LOFAR-HBA scan as imaged
by Alg. 1.

(e) Region (2) as imaged by Alg. 0

(f) Region (2) as imaged by Alg. 1

Fig. 7: This figure shows the differences between the maps produced by Alg. 0 and Alg. 1 from a typical 8 hour scans (here the
P26Hetdex03 pointing in the HETDEX field, see Shimwell et al. 2017a). The colorscale is the same on all panels, and diplayed
using an inverse hyperbolic sine function to render both the low level artifacts and some bright sources.
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Table 1: Overview of the deep fields pointings used to synthetise the images on the Boötes and Lockman Hole extragalactic fields.
Columns f f lag and nMS stand for the fraction of flagged data and number of measurement sets present in the archives.

Project ID LOFAR Obs. ID Obs. Date Start time Integration νmin νmax f f lag nMS
UTC time [h] [MHz] [MHz]

Boötes
LC2_038 L236786 21/07/2014 10:44:00 8.0 120.0 168.7 37.8 25
LC2_038 L243561 15/09/2014 10:22:42 8.0 120.0 168.7 19.2 25
LC4_034 L346004 11/06/2015 16:04:35 8.0 120.2 167.0 10.9 24
LC4_034 L373377 17/09/2015 10:21:18 8.0 120.2 168.9 20.1 25
LC4_034 L374583 24/09/2015 10:09:57 8.0 120.2 168.9 10.6 25
LC4_034 L387597 29/09/2015 09:13:00 8.0 120.2 168.9 27.4 25
LC4_034 L387569 01/10/2015 09:00:00 8.0 120.2 168.9 32.3 25
LC4_034 L400135 10/10/2015 08:46:22 8.0 120.2 168.9 13.6 25
LC4_034 L401825 21/10/2015 08:00:30 8.0 120.2 168.9 9.0 25
LC4_034 L401839 22/10/2015 07:55:23 8.0 120.2 168.9 8.0 25

Lockman Hole
LC3_008 L274099 08/03/2015 20:11:00 8.7 120.2 168.9 12.4 25
LC3_008 L281008 14/03/2015 18:26:39 8.7 120.4 169.1 8.1 25
LC3_008 L294287 21/03/2015 19:11:00 8.7 120.2 168.9 18.7 25
LC3_008 L299961 24/03/2015 17:47:20 8.7 120.2 168.9 12.1 25
LC3_008 L340794 25/04/2015 17:08:00 8.7 120.2 168.9 14.5 25
LC3_008 L342938 08/05/2015 14:50:24 8.7 120.2 168.9 16.6 25
LT10_012 L659554 10/07/2018 11:11:00 8.0 120.2 168.9 9.9 25
LT10_012 L659948 12/07/2018 11:08:10 8.0 120.2 168.9 11.9 25
LT10_012 L664320 15/08/2018 08:49:00 8.0 120.2 168.9 11.0 25
LT10_012 L664480 19/08/2018 08:38:46 8.0 120.2 168.9 11.3 25
LT10_012 L667204 12/09/2018 07:06:09 8.0 120.2 168.9 11.2 25
LT10_012 L667218 13/09/2018 07:05:12 8.0 120.2 168.9 10.3 25

Fig. 8: A plot of the Faraday depth spectrum, or Faraday dis-
persion function (FDF), for a radio galaxy in both DR1 and DR2
datasets, showing the improvement in the suppression of the in-
strumental polarisation signal. The blue dashed line shows the
FDF from the DR1 data with a strong instrumental polarisation
feature near Faraday depths of φ ∼ 0 rad/m2, while the orange
solid line shows the FDF from the DR2 data in which the instru-
mental feature is suppressed below the noise level. In both cases,
the Faraday depth of the real astrophysical signal is the same.

ered areas (see Fig. 10 for an overview of the available radio
data).

The Boötes pointings data that are presented in this paper
are centered on (α, δ) =(14h32m00s,+34◦30′00′′) and were ob-
served with the LOFAR-HBA in hba_dual_inner mode during
Cycle 2 and Cycle 4, with a bandwidth of 48 MHz (see Tab. 1).

The total integration time of ∼ 80 hours is spread over 10 scans
of 8 hours.

4.1.2. Lockman hole

The Lockman Hole field is also covered by a large variety of
multiwavelength data. Specifically, it has been observed by the
Spitzer Wide-area Infrared Extragalactic survey (SWIRE Lons-
dale et al. 2003) over ∼ 11 deg2, and over 16 deg2 by the
Herschel Multi-tiered Extragalactic Survey (Oliver et al. 2012).
It has also been observed in UV (Martin & GALEX Team
2005), optical (González-Solares et al. 2011), near IR (UK In-
frared Deep Sky Survey Deep Extragalactic Survey UKIDSS-
DXS, see Lawrence et al. 2007), and with the Submillimetre
Common-User Bolometer Array (Coppin et al. 2006; Geach
et al. 2017). At higher energy, it has been observed with XMM-
Newton (Brunner et al. 2008), and Chandra (Polletta et al. 2006).
In the radio domain, the Lockman Hole has been observed over
the two deep aforementioned X-ray fields over small sub-deg2

areas (de Ruiter et al. 1997; Ciliegi et al. 2003; Biggs & Ivison
2006; Ibar et al. 2009). Wide surveys of the Lockman Hole have
been done with GMRT (Garn et al. 2010), VLA (Owen et al.
2009), WSRT (Guglielmino et al. 2012; Prandoni et al. 2018)
and LOFAR at 150 MHz (Mahony et al. 2016). Fig. 10 presents
an overview of the available radio data on the Lockman Hole.

Our Lockman Hole observation that we are presenting in
this paper consists of 12 pointings of ∼ 8 hours centered on
(α, δ) =(10h47m00s,+58◦05′00′′) and observed from March
2015 (Cycle 3) to November 2018 (Cycle 4). As for the Boötes
field observation, we observe in hba_dual_inner with ∼ 48 MHz
bandwidth, while the integration time depends on the LOFAR
cycle (8.7 hours in cycle 3, 8 hours in cycle 10, see Tab. 1). The
total integration time is ∼ 100 hours.
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Fig. 9: This pie graph shows the nature and ordering of the
different steps of Alg. 1 and how the computing time is dis-
tributed across them. The lighter and darker grey areas represent
the imaging and calibration steps respectively. The black area are
the miscellaneous tasks (additional data products, see Sec. 3.4)
that are done once the di and dd self-calibration loops have com-
pleted. It has been created from a ddf-pipeline-v2 run on a node
equipped with 192 GBytes RAM and 2 Intel Xeon Gold 6130
CPU@2.10GHz, giving 32 physical compute cores. The dashed
area is a quadrant representing a day, while the inner pie shows
the total contributions of the imaging, calibration and miscella-
neous tasks.

4.2. Image synthesis

The Lockman Hole and Boötes fields data have been both re-
duced using Alg. 2. In this approach we first build a wide-band
di+dd self-calibrated sky model xν from a single wide band ∼ 8
hours observation using Alg. 1. This model is then used to di+dd
calibrate all the np pointings (with np = 10 and np = 12 for
the Boötes and Lockman Hole datasets respectively) following
Alg. 2. This amounts to repeating Steps 1.13 to 1.18 of Alg. 1 on
a larger dataset. A comparison between the images synthetised
from 8 and 80 hours datasets is presented in Fig. 11. On a sin-
gle node equipped with ∼ 500 GB of 2.4 GHz RAM and 2 Intel
Xeon CPU E5-2660 v4@2.00GHz with 14 physical cores each,
Alg. 2 took ∼ 21 days to process the 80 hours of Boötes data.
Fig. 12 (further discussed in Sec. 4.3) and 13 show the central
parts of the of these deep LOFAR Boötes and Lockman Hole
observations.

Estimating the noise in radio maps is not straightforward
since noise is correlated and non-Gaussian. Also, while the co-
variance matrix should be entirely described by the psf, the real
covariance matrix is hard to estimate due to the calibration arti-
facts (see Tasse et al. 2018; Bonnassieux et al. 2018, for a de-
tailed discussion). Here, in order to estimate the local noise we
use the statistics of the min {.} estimator (that returns the min-
imum value of a given sample). Intuitively, while the I-Stokes

Fig. 10: The sensitivity of the various deep dedicated surveys
covering the Boötes (top) and Lockman Hole fields (bottom) as
a function of observing frequency. The resolution of the various
surveys corresponds to the radius of the black dot, while the di-
ameter of the corresponding surveyed area is encoded in the size
of the gray circle. The LoTSS-deep pointings are marked with
a red cross, the dashed line corresponding to a source having a
spectral index of −0.7.

image max {.} statistics has contributions from both artifacts and
real sources, the min {.} only accounts for the artifacts. A min {.}
filter with a given box size is therefore run through a restored
image, and depending on the box size13, the effective standard
deviation is derived.

Fig. 14 shows the cumulative distribution of the local noise
in the Lockman Hole and Boötes fields maps, reaching . 23 and
. 30 µJy.beam−1 respectively. Taking into account the number
of pointings with their respective amount of flagged data, we get
total integration times of ∼ 65 and ∼ 88 hours on the Boötes and
Lockman Hole fields respectively, giving a theoretical thermal
noise difference of a factor ∼ 1.16 compatible with the observed

13 The cumulative distribution F of Y = min {X} with X ∼ N{µ =

0, σ = 1} is F {y} = 1 −
[

1
2

(
1 − erf

{
y
√

2

})]n
, where n in the number

of pixels in a given box. Finding yσ such that F {yσ} = 1/2 given the
box size gives us a conversion factor from the minimum estimate to the
standard deviation.
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Fig. 11: This figure shows the restored high resolution image
towards the center of the Boötes field for the 8 hours image pro-
duced with Alg. 1 (top panel) and the 80 hours image produced
with Alg. 2 (bottom panel). Both images are thermal noise lim-
ited, with the same colorscale being used on both.

value of ∼ 1.3. Other factors to be taken into account to compare
noise properties include the bootstrapping errors, the individual
fields’ average elevation, and the Galactic noise differences.

4.3. Comparison with deep factor image synthesis

The image of the Boötes field based on 55 hours of LOFAR HBA
data and presented Retana-Montenegro et al. (2018) reaches an
unprecedented noise level image of ∼ 55 µJy.beam−1 at 150
MHz. To achieve such high sensitivity, Retana-Montenegro et al.
(2018) have applied third generation calibration and imaging to

Algorithm 2: Overview of the algorithm imple-
mented in ddf-pipeline-v2. The function I repre-
sents the imaging step and takes as input the vis-
ibility vector v together with the beam model BΩn

and kms-estimated Jones matrices JΩn at locations
Ωn. The functionK abstracts the dd calibration step,
and takes as arguments the visibilities v, the sky-
model x̂ν, a solver mode (estimating for either scalar
or full Jones matrices), a time-frequency solution in-
terval (in min and MHz), and a set of directions Ωn in
which to solve for. The extra functions C, B, and F
represent the clustering, bootstrapping and smooth-
ing steps respectively.

Data: Visibilities v calibrated from di effects using
PreFactor of np × 8 hours observations (each
with 240 LOFAR-HBA subbands), as well as
the high resolution skymodel built in step 1.18.

Result: Deconvolved image x̂ν

/* On np×240 LOFAR HBA subbands */
/* DD calibration */

2.1 Ĵ← F ◦ K
(
vnp×24,BΩn , x̂ν|scalar, 1min, 2MHz,Ωn

)
;

/* DI calibration */

2.2 vc
np×24 ← K

(
vnp×24, ĴBΩn , x̂ν|full, δt0, δν0,Ω0

)
;

/* DD imaging */

2.3 x̂ν ← I
(
vc

np×24, ĴBΩn

)
;

/* DD calibration */

2.4 Ĵ← F ◦ K
(
vc

np×24,BΩn , x̂ν|scalar, 1min, 2MHz,Ωn

)
;

/* Slow DD calibration */

2.5 Ĵs ← K
(
vc

np×24, ĴBΩn , x̂ν|scalar, 43min, 2MHz,Ωn

)
;

/* Final imaging steps */

2.6 x̂ν ← I
(
vc

np×24, ĴŝJBΩn

)
;

/* Absolute flux density scale correction
(see Sabater et al. 2020, for details)
*/

2.7 x̂ν ← fcx̂ν;
2.8 Facet-based astrometric correction (see Shimwell

et al. 2019, for details);

correct for the dde using the factor package (developped by van
Weeren et al. 2016, see Sec. 2 for more detail). Because the set
of LOFAR datasets used by Retana-Montenegro et al. (2018) is
different14 the comparison can only be approximate. In Fig. 12
we compare the images produced by Retana-Montenegro et al.
(2018) and by Alg. 2. While the noise difference should be on
the order of 20%, as shown in Fig. 14 the measured one is on
the level of ∼ 60%. Consistently artifacts around bright sources
are also much less severe in the maps generated by Alg. 2 and
implemented in ddf-pipeline-v2.

4.4. Cataloguing

In order to extract astrophysical information we build a cata-
logue of radio sources from the images produced by Alg. 2
and the data described in Sec. 4. Even in the apparent flux

14 Out of the sets of 7 and 10 observations used in Retana-Montenegro
et al. (2018) and in this work respectively, 4 are common, namely
L243561, L374583, L400135, L401825.
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(a) The central & 2 deg2 part of the Bootes field as imaged by the direction
dependent factor algorithm (Retana-Montenegro et al. 2018).

(b) Zoom in on region (1) of the map
synthesised by Retana-Montenegro
et al. (2018).

(c) Zoom in on region (1) of the map
synthesised by kms-ddfacet (this
work).

(d) The same as in 12a, but imaged with Alg. 2.

(e) Zoom in on region (2) of the map
synthesised by Retana-Montenegro
et al. (2018).

(f) Zoom in on region (2) of the map
synthesised by kms-ddfacet (this
work).

Fig. 12: Comparison between the LOFAR-HBA maps generated at 150 MHz by Retana-Montenegro et al. (2018) and in the current
work. The colorscale is the same on all panels, and diplayed using an inverse hyperbolic sine function to render both the low level
artifacts and some bright sources.

maps, because of the imperfect calibration and imaging, the LoTSS-deep images have spatially variable noise, and to deal
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(a) The central & 2 deg2 part of the Lockman Hole field as imaged by Alg. 2
(Sec. 4.2).

(b) Zoom in on region (1) of the map
shown in Fig. 13a.

(c) Zoom in on region (2) of the map
shown in Fig. 13a.

Fig. 13: This figure shows the central region of the deep LOFAR-HBA maps of the Lockman Hole field generated at 150 MHz. The
colorscale is the same on all panels, and diplayed using an inverse hyperbolic sine function to render both the low level artifacts and
some bright sources.

Fig. 14: The cumulative distribution of the local noise estimates
in the various maps discussed here. As shown here, we have im-
aged a larger fraction of LOFAR’s HBA primary beam than the
image presented in Retana-Montenegro et al. (2018).

with this issue we use PyBDSF15 (Python Blob Detector and
Source Finder, see Mohan & Rafferty 2015) since it measures
noise locally rather than globally. The sources were detected

15 https://www.astron.nl/citt/pybdsf

with a 3 and 5σ for the island and peak detection threshold
respectively. The position-dependent noise was estimated us-
ing a sliding box algorithm with a size of 40 × 40 synthesised
beams, except around bright sources where the box size was
decreased to 15 × 15 beams to more accurately capture the in-
creased noise in these regions. The columns kept in the final cat-
alogue are the source position, peak and integrated flux density,
source size and orientation, the associated uncertainties, the es-
timated local rms at the source position, as well as a code de-
scribing the type of structure fitted by PyBDSF. As described
in Sabater et al. (2020), the peak and integrated flux densi-
ties of the final catalogs and images are corrected from over-
all scaling factors of 0.920 and 0.859 for the for Lockman Hole
and Boötes fields respectively. The full catalogues cover out
to 0.3 of the power primary beam and contain 36,767 entries
over 26.5 square degrees and 50,112 over 25.0 square degrees
for Boötes and Lockman Hole respectively. These raw PyBDSF
catalogues are available online on the LOFAR survey webpage
https://www.lofar-surveys.org/ and a thorough analysis
of the source catalogues will be presented by Mandal et al. in
preparation.

5. Conclusion and future plans

Imaging low-frequency LOFAR data at high resolution and over
wide fields of view is extremely challenging. This is mainly
due to the rime system being complex in this regime: the back-
ground wide-band sky is unknown, as are the time-frequency-
antenna dd-Jones matrices. Due to the high number of free pa-
rameters in that system, and to the finite amount of data points
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in the non-linear rime system, the inversion can be subject to
ill-conditioning and the dd-C-rime solver can absorb unmodeled
extended flux.

In order to address this robustness issue we have developed a
strategy that aims at conserving the unmodeled emission without
affecting the final dynamic range. The method we have devel-
oped has similarities with those presented by Yatawatta (2015);
van Weeren et al. (2016); Repetti et al. (2017); Birdi et al. (2020),
and relies on reducing the effective size of the unknown stochas-
tic process. We show that this allows us to recover most of the
faint unmodeled extended emission.

We have applied this third generation calibration and imag-
ing dd algorithm both to the wide-field imaging of the LoTSS
survey and to the synthesis of deep 150 MHz resolution images
on the Boötes and Lockman Hole fields. The synthesized images
are the deepest ever obtained at these frequencies. . In the future
we plan to continue increasing the depth of these fields: data are
already in hand, or scheduled, to double the integration time on
each field, with a further aim to increase this to 500 hours in each
field.
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Appendices
A. LoTSS first data release: overview of
ddf-pipeline-v1

The data processing strategy of the LoTSS first data release
(DR1) has been extensively described by Shimwell et al. (2019).
Since addressing the issues described in Sec. 2 involves mak-
ing improvements relative to this approach, we give here a brief
description of the data reduction strategy in ddf-pipeline-v1 (the
various steps are outlined in Alg. 0).

As discussed in Sec. 2, the calibration and imaging problem
is non-convex and ill-posed. Beyond the computational issues,
the great difficulty of the calibration of the dde is sky incom-
pleteness, because the dd-C-rime non-linear system can be sub-
ject to ill-conditioning. This is due to the fact that the extended
emission (i) is hard to model in the deconvolution step, and (ii)
is seen by only the shortest baselines, and therefore sky incom-
pleteness biases the Jones matrices in the calibration step. Expe-
rience shows that this leads to some of the unmodeled extended
emission being absorbed when running a dd deconvolution with
ddfacet.

To try to compensate for this effect, in ddf-pipeline-v1 (Alg.
0) we introduced an inner uv-distance cut during calibration, as
well as a normalization of the Jones matrix. With this the ddf-
pipeline-v1 was able to recover some of the unmodeled extended
emission. The underlying idea was to assume the sky incom-
pleteness was generating some baseline-dependent systematic
errors. However, as shown in Fig. 7a and explained by Shimwell
et al. (2019) it also produced large scale fake haloes centered on
extended sources together with artifacts around bright sources.
On fields having a bright & 1 Jy source within the primary beam
(such as 3C sources), ddf-pipeline-v1 was not able to converge.
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