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Abstract

Age has a major effect on brain volume. However, the normative studies available are
constrained by small sample sizes, restricted age coverage and significant methodo-
logical variability. These limitations introduce inconsistencies and may obscure or dis-
tort the lifespan trajectories of brain morphometry. In response, we capitalized on the
resources of the Enhancing Neuroimaging Genetics through Meta-Analysis
(ENIGMA) Consortium to examine age-related trajectories inferred from cross-
sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum,
and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic
resonance imaging data obtained from 18,605 individuals aged 3-90 years. All sub-
cortical structure volumes were at their maximum value early in life. The volume of
the basal ganglia showed a monotonic negative association with age thereafter; there
was no significant association between age and the volumes of the thalamus, amyg-
dala and the hippocampus (with some degree of decline in thalamus) until the sixth
decade of life after which they also showed a steep negative association with age.
The lateral ventricles showed continuous enlargement throughout the lifespan. Age
was positively associated with inter-individual variability in the hippocampus and
amygdala and the lateral ventricles. These results were robust to potential con-
founders and could be used to examine the functional significance of deviations from

typical age-related morphometric patterns.

KEYWORDS

brain morphometry, ENIGMA, longitudinal trajectories, multisite
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1 | INTRODUCTION

Over the last 20 years, studies using structural magnetic resonance
imaging (MRI) have confirmed that brain morphometric measures
change with age. In general, whole brain, global and regional gray mat-
ter volumes increase during development and decrease with aging
(Brain Development Cooperative Group, 2012; Driscoll et al., 2009;
Fotenos, Snyder, Girton, Morris, & Buckner, 2005; Good et al., 2001;
Pfefferbaum et al., 2013; Pomponio et al., 2019; Raz et al., 2005;
Raznahan et al., 2014; Resnick, Pham, Kraut, Zonderman, &
Davatzikos, 2003; Walhovd et al., 2011). However, most published
studies are constrained by small sample sizes, restricted age coverage
and methodological variability. These limitations introduce inconsis-
tencies and may obscure or distort the lifespan trajectories of brain
structures. To address these limitations, we formed the Lifespan
Working group of the Enhancing Neuroimaging Genetics through
Meta-Analysis (ENIGMA) Consortium (Thompson et al., 2014, 2017)
to perform large-scale analyses of brain morphometric data extracted
from MRI images using standardized protocols and unified quality
control procedures, harmonized and validated across all participating
sites.

Here we focus on ventricular, striatal (caudate, putamen, nucleus
accumbens), pallidal, thalamic, hippocampal and amygdala volumes.
Subcortical structures are crucial for normal cognitive and emotional
adaptation (Grossberg, 2009). The striatum and pallidum (together
referred to as basal ganglia) are best known for their role in action
selection and movement coordination (Calabresi, Picconi, Tozzi,
Ghiglieri, & Di Filippo, 2014) but they are also involved in other
aspects of cognition particularly memory, inhibitory control, reward
and salience processing (Chudasama & Robbins, 2006; Richard, Cas-
tro, Difeliceantonio, Robinson, & Berridge, 2013; Scimeca &
Badre, 2012; Tremblay, Worbe, Thobois, Sgambato-Faure, &
Féger, 2015). The role of the hippocampus has been most clearly
defined in connection to declarative memory (Eichenbaum, 2004;
Shohamy & Turk-Browne, 2013) while the amygdala has been histori-
cally linked to affect processing (Kober et al., 2008). The thalamus is
centrally located in the brain and acts as a key hub for the integration
of motor and sensory information with higher-order functions
(Sherman, 2005; Zhang, Snyder, Shimony, Fox, & Raichle, 2010). The
role of subcortical structures extends beyond normal cognition
because changes in the volume of these regions have been reliably
identified in developmental (Ecker, Bookheimer, & Murphy, 2015;
Krain & Castellanos, 2006), psychiatric (Hibar et al., 2016; Kempton

et al., 2011; Schmaal et al., 2016; van Erp et al., 2016) and degenera-
tive disorders (Risacher et al., 2009).

Using data from 18,605 individuals aged 3-90 years from the
ENIGMA Lifespan working group we delineated the association
between age and subcortical volumes from early to late life in order to
(a) identify periods of volume change or stability, (b) provide normative,
age-adjusted centile curves of subcortical volumes and (c) quantify
inter-individual variability in subcortical volumes which is considered a
major source of inter-study differences (Dickie et al., 2013; Raz,
Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010).

2 | MATERIALS AND METHODS

21 | Studysamples

The study data derive from 88 samples comprising 18,605 healthy
participants, aged 3-90 years, with near equal representation of men
and women (48% and 52%) (Table 1, Figure 1). At the time of scan-
ning, participating individuals were screened to exclude the presence
of mental disorders, cognitive impairment or significant medical mor-
bidity. Details of the screening process and eligibility criteria for each

research group are shown in Table S1).

2.2 | Neuroimaging
Detailed information on scanner vendor, magnet strength and acquisi-
tion parameters for each sample are presented in Table S1. For each
sample, the intracranial volume (ICV) and the volume of the basal
ganglia (caudate, putamen, pallidum, nucleus accumbens), thalamus,
hippocampus, amygdala and lateral ventricles were extracted using
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) from high-resolution
T1-weighted MRI brain scans (Fischl, 2012; Fischl et al., 2002). Prior
to data pooling, images were visually inspected at each site to exclude
participants whose scans were improperly segmented. After merging
the samples, only individuals with complete data were included out-
liers were identified and excluded using Mahalanobis distances. All
analyses described below were repeated for ICV-unadjusted volumet-
ric measures which yielded identical results and are only presented as
a separate supplement.

Approximately 20% of the samples had a multi-scanner design.

During data harmonization the scanner was modeled as a site. In each
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TABLE 1 Characteristics of the included samples

Age, mean, Age, SD, Number of Number of
Sample years years Agerange Sample size N males females
ABIDE 17 7.8 6 56 534 439 95
ADHD NF 13 1 12 15 13 7 6
ADNI 76 51 60 90 150 70 80
ADNI2GO 73 6.1 56 89 133 55 78
AMC 23 34 17 32 92 60 32
Barcelona 1.5T 15 1.8 11 17 30 14 16
Barcelona 3T 15 21 1 17 44 24 20
Betula 61 12.9 25 81 234 104 130
BIG 1.5T 28 133 13 77 1,288 628 660
BIG 3T 24 7.9 18 69 1,276 540 736
BIL&GIN 27 7.8 18 57 444 217 227
Bonn 39 6.5 29 50 174 174 0
BRAINSCALE 10 14 9 15 270 125 145
BRCATLAS 38 15.8 18 80 153 77 76
CAMH 41 17.6 18 86 128 65 63
Cardiff 25 7.4 18 58 316 87 229
CEG 16 1.7 13 19 32 32 0
CIAM 27 5 19 40 30 16 14
CLING 25 53 18 58 320 131 189
CODE 40 13.3 20 64 74 31 43
COMPULS/TS Eurotrain 11 1 9 13 53 36 17
Dublin (1) 37 13 17 65 52 23 29
Dublin (2) 30 8.3 19 52 92 51 41
Edinburgh 24 2.9 19 31 55 35 20
ENIGMA-HIV 25 44 19 33 31 16 15
ENIGMA-OCD (AMC/Huyser) 14 2.6 9 17 23 9 14
ENIGMA-OCD (IDIBELL) 33 10.1 18 61 65 29 36
ENIGMA-OCD (Kyushu/Nakao) 39 125 22 63 40 15 25
ENIGMA-OCD (London Cohort/Mataix- 37 11.2 21 63 32 11 21
Cols)
ENIGMA-OCD (van den Heuvel 1.5T) 31 7.6 21 53 48 18 30
ENIGMA-OCD (van den Heuvel 3T) 39 11.2 22 64 35 16 19
ENIGMA-OCD-3T-CONTROLS 31 10.6 19 56 27 10 17
FBIRN 37 11.2 19 60 173 123 50
FIDMAG 38 10.2 19 64 122 53 69
GSP 26 14.9 18 89 1962 860 1,102
HMS 40 12.2 19 64 55 21 34
HUBIN 42 8.9 19 56 99 66 33
IDIVAL (1) 65 10.2 49 87 31 10 21
IDIVAL (3) 30 7.7 19 50 114 69 45
IDIVAL(2) 28 7.6 15 52 79 49 30
IMAGEN 14 04 13 16 1744 864 880
IMH 32 10 20 59 79 50 29
IMpACT-NL 37 12 19 63 134 52 82
Indiana 1.5T 60 11 37 79 41 7 34
Indiana 3T 27 18.8 6 73 197 95 102

(Continues)
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TABLE 1 (Continued)

Sample
Johns Hopkins
KaSP

Leiden

MAS

MCIC
Melbourne
METHCT
MHRC
Moods
NCNG
NESDA
NeurolMAGE
Neuroventure
NTR (1)

NTR (2)

NTR (3)

NU

NUIG

NYU

OATS (1)
OATS (2)
OATS (3)
OATS (4)
OLIN

Oxford

PING

QTIM

Sao Paolo 1
Sao Paolo 3
SCORE

SHIP 2

SHIP TREND
StagedDep
Stanford
STROKEMRI
Sydney
TOP
Tuebingen
UMC Utrecht 1.5T
UMCU 3T
UNIBA
UPENN

Yale

Total

DIMA ET AL

Age, mean, Age, SD, Number of Number of
years years Agerange Samplesize N males females
44 125 20 65 87 41 46
27 57 20 43 32 15 17
17 4.8 8 29 565 274 291
78 45 70 89 361 137 224
33 12 18 60 93 63 30
20 3 15 26 102 54 48
27 7.3 18 583 62 48 14
22 29 16 28 52 52 0
33 9.8 18 51 310 146 164
50 16.7 19 79 311 92 219
40 9.8 21 56 65 22 43
17 3.7 8 29 376 172 204
14 0.6 12 15 137 62 75
15 14 11 18 34 11 23
34 10.3 19 57 105 39 66
30 59 20 42 29 11 18
41 18.8 17 68 15 1 14
37 11.5 18 58 89 50 39
31 8.7 19 52 51 31 20
71 53 65 84 94 27 67
68 44 65 81 33 13 20
69 4.3 65 81 128 44 84
70 4.6 65 89 95 23 72
36 12.8 21 87 594 236 358
16 14 14 19 38 18 20
12 4.9 3 21 518 271 247
23 3.4 16 30 342 112 230
27 5.8 17 43 69 45 24
30 8.1 18 50 83 44 39
25 4.3 19 39 44 17 27
55 12.3 31 84 368 206 162
50 13.9 21 81 788 439 349
47 8 27 59 84 20 64
37 10.7 19 61 54 20 34
42 213 18 77 47 17 30
37 211 122 79 147 58 89
35 9.8 18 73 296 155 141
40 121 24 61 53 24 29
32 121 17 66 289 171 118
45 15.2 19 81 109 52 57
27 8.7 18 63 130 66 64
36 13.6 16 85 185 85 100
14 22 10 18 23 12 11
31 184 3 90 18,605 8,980 9,625
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Abbreviations: ABIDE = Autism Brain Imaging Data Exchange; ADNI = Alzheimer's Disease Neuroimaging Initiative; ADNI2GO = ADNI-GO and ADNI-2;
ADHD-NF = Attention Deficit Hyperactivity Disorder-Neurofeedback Study; AMC = Amsterdam Medisch Centrum; Basel = University of Basel;
Barcelona = University of Barcelona; Betula = Swedish longitudinal study on aging, memory, and dementia; BIG = Brain Imaging Genetics; BIL&GIN = a
multimodal multidimensional database for investigating hemispheric specialization; Bonn = University of Bonn; BrainSCALE = Brain Structure and
Cognition: an Adolescence Longitudinal twin study; CAMH = Centre for Addiction and Mental Health; Cardiff = Cardiff University; CEG = Cognitive-
experimental and Genetic study of ADHD and Control Sibling Pairs; CIAM = Cortical Inhibition and Attentional Modulation study; CLING = Clinical
Neuroscience Géttingen; CODE = formerly Cognitive Behavioral Analysis System of Psychotherapy (CBASP) study; Dublin = Trinity College Dublin;
Edinburgh = The University of Edinburgh; ENIGMA-HIV = Enhancing Neurolmaging Genetics through Meta-Analysis-Human Immunodeficiency Virus
Working Group; ENIGMA-OCD = Enhancing Neurolmaging Genetics through Meta-Analysis- Obsessive Compulsive Disorder Working Group;

FBIRN = Function Biomedical Informatics Research Network; FIDMAG = Fundacién para la Investigacion y Docencia Maria Angustias Giménez;

GSP = Brain Genomics Superstruct Project; HMS = Homburg Multidiagnosis Study; HUBIN = Human Brain Informatics; IDIVAL = Valdecilla Biomedical
Research Institute; IMAGEN = the IMAGEN Consortium; IMH=Institute of Mental Health, Singapore; IMpACT = The International Multicentre persistent
ADHD Genetics Collaboration; Indiana = Indiana University School of Medicine; Johns Hopkins = Johns Hopkins University; KaSP = The Karolinska
Schizophrenia Project; Leiden = Leiden University; MAS = Memory and Ageing Study; MCIC = MIND Clinical Imaging Consortium formed by the Mental
lliness and Neuroscience Discovery (MIND) Institute now the Mind Research Network; Melbourne = University of Melbourne; Meth-CT = study of
methamphetamine users, University of Cape Town; MHRC = Mental Health Research Center; Muenster = Muenster University; N = number;

NESDA = The Netherlands Study of Depression and Anxiety; NeurolMAGE = Dutch part of the International Multicenter ADHD Genetics (IMAGE) study;
Neuroventure: the imaging part of the Co-Venture Trial funded by the Canadian Institutes of Health Research (CIHR); NCNG = Norwegian Cognitive
NeuroGenetics sample; NTR = Netherlands Twin Register; NU = Northwestern University; NUIG = National University of Ireland Galway; NYU = New
York University; OATS = Older Australian Twins Study; Olin = Olin Neuropsychiatric Research Center; Oxford = Oxford University; QTIM = Queensland
Twin Imaging; Sao Paulo = University of Sao Paulo; SCORE = University of Basel Study; SHIP-2 and SHIP TREND = Study of Health in Pomerania; Staged-
Dep = Stages of Depression Study; Stanford = Stanford University; StrokeMRI = Stroke Magnetic Resonance Imaging; Sydney = University of Sydney;
TOP = Tematisk Omrade Psykoser (Thematically Organized Psychosis Research); TS-EUROTRAIN = European-Wide Investigation and Training Network on
the Etiology and Pathophysiology of Gilles de la Tourette Syndrome; Tuebingen = University of Tuebingen; UMCU = Universitair Medisch Centrum
Utrecht; UNIBA = University of Bari Aldo Moro; UPENN = University of Pennsylvania; Yale = Yale University.

site, the intracranial volume (Figure S1) was used to adjust the subcortical
volumes via a formula based on the analysis of the covariance approach:
“adjusted volume = raw volume - b x (ICV - mean ICV)”, where b is the
slope of regression of a region of interest volume on ICV (Raz et al., 2005).
The values of the subcortical volumes were then harmonized between
sites using the ComBat method in R (Fortin et al., 2017, 2018; Radua
et al,, 2020). Originally developed to adjust for batch effect in genetic
studies, ComBat uses an empirical Bayes to adjust for inter-site variability
in the data, while preserving variability related to the variables of interest.

2.3 | Fractional polynomial regression analyses

The effect of age on each ICV- and site-adjusted subcortical volume was
modeled using high order fractional polynomial regression (Royston &
Altman, 1994; Sauerbrei, Meier-Hirmer, Benner, & Royston, 2006) in
each hemisphere. Because the effect of site (scanner and Freesurfer ver-
sion) was adjusted using ComBat, we only included sex as a covariate in
the regression models. Fractional polynomial regression is currently con-
sidered the most advantageous modeling strategy for continuous vari-
ables (Moore, Hanley, Turgeon, & Lavoie, 2011) as it allows testing for a
wider range of trajectory shapes than conventional lower-order polyno-
mials (e.g., linear or quadratic) and for multiple turning points (Royston &
Altman, 1994; Royston, Ambler, & Sauerbrei, 1999). For each subcortical
structure, the best model was obtained by comparing competing models
of up to three power combinations. The powers used to identify the best
fitting model were -2, -1, —0.5, 0.5, 1, 2, 3 and the natural logarithm
(In) function. The optimal model describing the association between age
and each of the volumes was selected as the lowest degree model based
on the partial F-test (if linear) or the likelihood-ratio test. To avoid over-

fitting at ages with more data points, we used the stricter .01 level of

significance as the cut-off for each respective likelihood-ratio tests,
rather than adding powers, until the .05 level was reached. For ease of
interpretation we centered the volume of each structure so that the
intercept of a fractional polynomial was represented as the effect at zero
for sex. Fractional polynomial regression models were fitted using Stata/
IC software v.13.1 (Stata Corp., College Station, TX). Standard errors
were also adjusted for the effect of site in the FP regression.

We conducted two supplemental analyses: (a) we specified addi-
tional FP models separately for males and females and, (b) we calcu-
lated Pearson's correlation coefficient between subcortical volumes
and age in the early (6-29 years), middle (30-59 years), and late-life
(60-90 years) age-group. The results of these analyses have been

included in the supplemental material.

2.4 | Inter-individual variability

Inter-individual variability was assessed using two complimentary
approaches. First, for each subcortical structure we compared the
early (6-29 years), middle (30-59 years) and late-life (60-90 years)
age-groups in terms of their mean inter-individual variability; these
groups were defined following conventional notions regarding periods
of development, midlife and aging. The variance of each structure in

each age-group was calculated as

/e
Inf ——
Nt

where e represents the residual variance of each individual (i) around

the nonlinear best fitting regression line, and n the number of
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observations in each age-group (t). The residuals (e;) were nor-
mally distributed suggesting good fit of the model without having
over- or under-fitted the data. Upon calculating the square root of
the squared residuals we used the natural logarithm to account for the
positive skewness of the new distribution. Then the mean inter-
individual variability between early (6-29 years), middle (30-59 years)
and late-life (60-90 years) age-groups was compared using between-

80 90 100

groups omnibus tests for the residual variance around the identified
best-fitting nonlinear fractional polynomial model of each structure.
We conducted 16 tests (one for each structure) and accordingly the
critical alpha value was set at 0.003 following Bonferroni correction for
multiple comparisons.

The second approach entailed the quantification of the mean indi-

vidual variability of each subcortical structure through a meta-analysis
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of the SD of the adjusted volumes according to the method proposed
by Senior, Gosby, Lu, Simpson, and Raubenheimer (2016).

2.5 | Centile curves

Reference curves for each structure by sex and hemisphere were pro-
duced from ICV- and site-adjusted volumes as normalized growth centiles
using the parametric Lambda (1), Mu (u), Sigma () (LMS) method (Cole &
Green, 1992) implemented using the Generalized Additive Models for
Location, Scale and Shape (GAMLSS) in R (http://cran.r-project.org/web/
packages/gamlss/index.html) (Rigby & Stasinopoulos, 2005; Stasinopoulos
& Rigby, 2007). LMS allows for the estimation of the distribution at each
covariate value after a suitable transformation and is summarized using
three smoothing parameters, the Box-Cox power 4, the mean u and the
coefficient of variation 6. GAMLSS uses an iterative maximum (penalized)
likelihood estimation method to estimate 4, 4 and ¢ as well as distribution
dependent smoothing parameters and provides optimal values for effec-
tive degrees of freedom (edf) for every parameter (Indrayan, 2014). This
procedure minimizes the Generalized Akaike Information Criterion (GAIC)
goodness of fit index; smaller GAIC values indicate better fit of the model
to the data. GAMLSS is a flexible way to derive normalized centile curves
as it allows each curve to have its own number of edf while overcoming

biased estimates resulting from skewed data

3 | RESULTS

3.1 | Fractional polynomial regression analyses

The volume of the caudate, putamen, globus pallidus and nucleus

accumbens peaked early during the first decade of life and showed a

Volume-All Subjects

Volume-All Subjects

linear decline immediately thereafter (Figure 2, Figures $2-5S4). The
association between age and the volumes of the thalamus, hippocam-
pus and amygdala formed a flattened, inverted U-curve (Figure 3,
Figures S5 and Sé). Specifically, the volumes of these structures were
largest during the first 2-3 decades of life, remained largely stable
until the sixth decade and declined gradually thereafter (Table S2).
The volume of the lateral ventricles increased steadily with age bilat-
erally (Figure S7). The smallest proportion of variance explained by
age and its FP derivatives was noted in the right amygdala (7%) and
the largest in the lateral ventricles bilaterally (38%) (Table S2).

Striatal volumes correlated negatively with age throughout the
lifespan with the largest coefficients observed in the middle-life age-
group (r = —0.39 to —0.20) and the lowest (|r| < 0.05) in the late-life
age-group, particularly in the caudate. The volumes of the thalamus,
the hippocampus and the amygdala showed small positive correlations
with age (r = 0.16) in the early-life age-group. In the middle-life age-
group, the correlation between age and subcortical volumes became
negative (r = —0.30 to —0.27) for the thalamus but remained largely
unchanged for the amygdala and the hippocampus. In the late-life
age-group, the largest negative correlation coefficients between age
and volume were observed for the hippocampus bilaterally
(r = =0.44 to —0.39). The correlation between age and lateral ven-
tricular volumes bilaterally increased throughout the lifespan from
r=0.19 to 0.20 in early-life age-group to r = 0.40 to 0.45 in the late-
life age-group (Table S3). No effect of sex was noted for any pattern
of correlation between subcortical volumes and age in any age-
group.

Inter-individual variability: For each structure, the mean inter-
individual variability in volume in each age-group is shown in
Table S5. Inter-individual variance was significantly higher for the hip-
pocampus, thalamus amygdala and lateral ventricles bilaterally in the
late-life age-group compared to both the early- and middle-life group.

Volume-All Subjects
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FIGURE 2 Fractional polynomial plots for the volume of the basal ganglia. Fractional Polynomial plots of adjusted volumes (mm®) against age

(years) with a fitted regression line (solid line) and 95% confidence intervals (shaded area)
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FIGURE 3 Fractional polynomial plots for the volume of the thalamus, hippocampus and amygdala. Fractional polynomial plots of adjusted
volumes (mm°®) against age (years) with a fitted regression line (solid line) and 95% confidence intervals (shaded area)

These findings were recapitulated when data were analyzed using a regions, as observed in other studies (Jernigan et al., 2001; Pomponio
meta-analytic approach (Figure S8). etal.,, 2019; Raz et al., 2010).

Normative Centile Curves: Centile normative values for each subcor- The trajectories of subcortical volumes are shaped by genetic and
tical structure stratified by sex and hemisphere are shown in Figure 4 nongenetic exposures, biological or otherwise (Eyler et al., 2011; Somel
and Tables S6-S8. et al, 2010; Wardlaw et al., 2011). Our findings of higher inter-

individual variability with age in the volumes of the thalamus, hippo-

campus and amygdala suggest that these structures may be more sus-

4 | DISCUSSION ceptible to person-specific exposures, or late-acting genes, particularly
from the sixth decade onwards.
We analyzed subcortical volumes from 18,605 healthy individuals The unique strengths of this study are the availability of age-
from multiple cross-sectional cohorts to infer age-related trajectories overlapping cross-sectional data from healthy individuals, lifespan
between the ages of 3 and 90 years. Our lifespan perspective and our coverage and the use of standardized protocols for volumetric data
large sample size complement and enrich previous age-related find- extraction across all samples. Study participants in each site were
ings in subcortical volumes. screened to ensure mental and physical wellbeing at the time of scan-
We found three distinct patterns of association between age and ning using procedures considered as standard in designating study
subcortical volumes. The volume of the lateral ventricles increased participants as healthy controls. Although health is not a permanent
monotonically with age. Striatal and pallidal volumes peaked in child- attribute, it is extremely unlikely given the size of the sample that the
hood and declined thereafter. The volumes of the thalamus, results could have been systematically biased by incipient disease
hippocampuus and amygdala peaked later and showed a prolonged A similar longitudinal design would be near infeasible in terms of
period of stability lasting until the sixth decade of life, before they also recruitment and retention both of participants and investigators.
started to decline. These findings are in line with those of Pomponio Although multisite studies have to account for differences in scanner
et al. (2019), who also used harmonized multi-site MRI data from type and acquisition, lengthy longitudinal designs encounter similar
10,323 individuals aged 3-96 years, and those reported by Douaud issues due to inevitable changes in scanner type and strength and
et al. (2014) who analyzed volumetric data from 484 healthy partici- acquisition parameters over time. In this study, the use of age-
pants aged 8 to 85 years. Notably, both studies reported similarity in overlapping samples from multiple different countries has the theoret-
the age-related changes of the thalamus, hippocampus and the amyg- ical advantage of diminishing systematic biases reflecting cohort and

dala. Our results also underscore the significantly steeper negative period effects (Glenn, 2003; Keyes, Utz, Robinson, & Li, 2010) that
association between subcortical volumes and age from the sixth are likely to operate in single site studies.
decade of life onwards. This effect seemed relatively more pro- In medicine, biological measures from each individual are typically

nounced for the hippocampus, compared to the other subcortical categorized as normal or otherwise in reference to a population
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FIGURE 4 Centile values for subcortical volumes; Additional details in Tables S6-S9

derived normative range. This approach is yet to be applied to neuro-
imaging data, despite the widespread use of structural MRI for clinical
purposes and the obvious benefit of a reference range from the early
identification of deviance (Dickie et al., 2013; Pomponio et al., 2019).
Alzheimer's disease provides an informative example as the degree of
baseline reduction in medial temporal regions, and particularly the hip-
pocampus, is one of the most significant predictors of conversion
from mild cognitive impairment to Alzheimer's disease (Risacher
et al., 2009). The data presented here demonstrate the power of inter-
national collaborations within ENIGMA for analyzing large-scale
datasets that could eventually lead to normative range for brain vol-
umes for well-defined reference populations. The centile curves pres-
ented here are a first-step in developing normative reference values
for neuroimaging phenotypes and further work is required in esta-
blishing measurement error and functional significance (see Supple-
ment). These curves are not meant to be used clinically or to provide
valid percentile measures for a single individual.

In conclusion, we used existing cross-sectional data to infer age-
related trajectories of regional subcortical volumes. The size and age-
coverage of the analysis sample has the potential to disambiguate
uncertainties regarding developmental and aging changes in subcorti-
cal volumes while the normative centile values could be further devel-

oped and evaluated.
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