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ABSTRACT

On-demand indistinguishable single-photon sources are essential for quantum networking and communication. Semiconductor quantum
dots are among the most promising candidates, but their typical emission wavelength renders them unsuitable for use in fiber networks.
Here, we present quantum frequency conversion of near-infrared photons from a bright quantum dot to the telecommunication C-band,
allowing integration with existing fiber architectures. We use a custom-built, tunable 2400 nm seed laser to convert single photons from
942 nm to 1550 nm in a difference-frequency generation process. We achieve an end-to-end conversion efficiency of ’35%, demonstrate
count rates approaching 1MHz at 1550 nm with gð2Þð0Þ ¼ 0:043ð1Þ, and achieve Hong-Ou-Mandel (HOM) visibilities of 60%. We expect
this scheme to be preferable to quantum dot sources directly emitting at telecom wavelengths for fiber-based quantum networking.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045413

Semiconductor quantum dots (QDs) are a leading technology for
bright, indistinguishable single-photon sources. QDs emitting in the
920nm–980nm window have been used as a source of single photons
with count rates upward of 10MHz, indistinguishability greater than
95%, and low multi-photon contributions on the order of 1%.1–3 Yet,
in order to be compatible with existing telecommunication technology,
an ideal single-photon source should operate in the telecommunica-
tion C-band, around 1550nm, where fiber loss is minimal. While there
has been recent progress in producing QD sources that directly emit
single photons in the C-band,4–6 achieving high-quality single-photon
emission at high rates remains an open challenge, with the best-
performing single-photon sources to date being confined to near-
infrared (NIR)7 wavelengths.

One route to bridge the gap to the C-band is quantum frequency
conversion (QFC), converting single photons from an NIR QD to tele-
communication wavelengths. This can be done in a nonlinear three-
wave mixing process where a single-photon input is mixed with a
strong seed beam producing a single-photon output at either the sum
or difference frequency. QFC can, in principle, be noise free and
therefore preserve the quantum statistics of near-infrared emitters.
Initial experiments on quantum dot QFC focused on upconversion to
leverage superior detectors at NIR wavelengths.8 This allowed the
demonstration of noise free conversion and two-photon interference
between independent dots at visible wavelengths.9 Frequency down-
conversion of QD sources has been demonstrated from 700nm to the
telecommunication O-band10 and from 900nm to the C-band,11,12
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culminating in the remote two-photon interference between indepen-
dent downconverted QD sources.13 Spin-photon entanglement
between a 910nm QD and a 1560nm photon has been demonstrated
using frequency conversion seeded by ultrafast pulses.14,15 QFC of
QDs has also been demonstrated in nano-photonic circuits using four-
wave mixing in silicon nitride.16 However, a single photon source that
is simultaneously bright, pure, and coherent has not been demon-
strated at telecom wavelengths. Here, we demonstrate a frequency-
converted InGaAs quantum dot source approaching 1MHz count
rates at 1550nm, with gð2Þð0Þ around 4% and Hong-Ou-Mandel
(HOM) visibilities of 60%.

For difference-frequency generation, energy conservation
demands ð1=kin � 1=kseedÞ�1 ¼ kout. Our 942nm InGaAs QD source
requires a seed wavelength of 2401nm to generate output photons at
1550nm. The seed beam is produced in a chromium doped zinc sele-
nide (Cr:ZnSe) laser, while the difference frequency generation occurs
in a periodically poled lithium niobate (ppLN) waveguide. Near-
infrared photons are generated by a single self-assembled InGaAs/
GaAs QD coupled to a high quality (Q � 4:4� 104) oxide-apertured
micropillar cavity, as shown in Fig. 1. The QDs are embedded in a
p–i–n diode structure,17,18 which enables charge control and tuning of
the QD emission to the cavity mode via the quantum-confined Stark
effect. The sample is kept at a temperature of 4K in a closed-cycle
helium flow cryostat. A dark-field confocal microscope is used to
excite and collect the scattered photons from the QD while filtering in
a cross-polarization scheme with an ’107 extinction ratio to suppress
the excitation laser.

Pulsed excitation of the QD is performed using a mode-locked
titanium:sapphire laser with a repetition rate of 80.3MHz and a pulse
duration of 10 ps. The QD output is then detected using supercon-
ducting nanowire single-photon detectors (SNSPDs), with a nominal
quantum efficiency of ’90% at 950nm. We exploit a neutral exciton
QD transition (X0), resonantly coupled to the cavity with a Purcell fac-
tor of�4 and an emission wavelength of 942.33 nm. The T2 coherence

time of the emission, measured using standard Fourier spectroscopy
under p-pulse resonant excitation, shows T2 ¼ 0:348 ð2Þ ns, corre-
sponding to a linewidth of 915 ð5ÞMHz. This value is �1:5 times
larger than the transform-limited linewidth (h=T1 ¼ 607MHz), with
an independently measured lifetime of T1 ¼ 0:2622 ð1Þ ns.

The seed laser for the QFC stage consists of a z-cavity resonator
with a Cr:ZnSe crystal, a gain medium with an emission spectrum
spanning 1900–3300nm19–21 (see inset in Fig. 1). This laser design
allows for both continuous-wave22 and mode-locked operation gener-
ating pulses as short as 43 fs.23 Here, we operate with a narrowband
CW seed to drive the QFC. Our 2401nm laser system is pumped by a
thulium-doped fiber laser (IPG Photonics TLR-20-LP), which has a
maximum CW output power of 20W at 1900nm. The pump light is
focused into the Cr:ZnSe crystal using a 100mm CaF2 lens. The cavity
consists of a dichroic input coupler (50mm radius of curvature
(ROC), transmissive at 1900nm, and reflective at 2400 nm), a gold
mirror (50mm ROC), two-plane silver mirrors, and the Cr:ZnSe
crystal. The crystal is placed at the Brewster angle to minimize losses
due to reflection. A diffraction grating (450 lines/mm) is inserted into
the cavity to control the emission wavelength. The output coupler
(Layertec) has a transmission of 60% at 2401nm, allowing a good
trade-off between the cavity enhancement and available output power.

Figure 1 shows our difference-frequency generation (DFG) setup.
The DFG, one special case of QFC, takes place in a 48mm ppLN
crystal (NTT electronics). The chip contains multiple ridge waveguides
with poling periods ranging from 26.00lm to 26.25lm. These poling
periods are designed for type-0 DFG from 942nm to 1550nm.
Quarter- and half-wave plates are used to align the polarization of the
incoming single photons at 942nm and the generated pump light at
2401nm to the extraordinary axis of the crystal. Seed light from the
laser is overlapped with single photons from the QD using a dichroic
mirror (Omega Optical) and coupled into the waveguide using an
NIR-coated aspheric lens with a focal length of 11mm. A NIR-coated
lens is used to match the beam size of the single photons to the seed

FIG. 1. Difference-frequency generation schematic. Blue lines indicate the optical path of the QD photons. Pink lines represent the path of the 2401 nm seed light. The polariza-
tion of both beams is aligned to the extraordinary axis of the ppLN crystal with a quarter-wave plate (QWP) and a half-wave plate (HWP). A 100mm focal length lens is used
in the QD beam path to mode match the seed beam at the waveguide facet. The green lines represent the converted 1550 nm light after the frequency conversion. The con-
verted light is sent through two short-pass filters at 2050 nm (SP 2050), a 1400 nm long-pass filter (LP 1400), and a bandpass filter at 1550 nm (BP 1550) before being col-
lected in a single-mode fiber for detection. The inset shows the experimental layout used to produce the 2401 nm laser light for QFC. The seed laser is pumped by a
commercial Thulium fiber laser (yellow lines). The pump beam polarization is prepared with an HWP to reduce loss in the laser cavity due to Fresnel reflections. The light
enters the cavity through a partially reflective curved mirror, which acts as the input coupler at 1900 nm and a focusing mirror at 2401 nm. A long-pass filter with a cutoff wave-
length of 2000 nm (LP 2000) is placed after the output coupler to remove unabsorbed 1900 nm pump light.
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beam and to compensate for the chromatic aberration of the aspheric
lenses. The converted 1550nm light is collimated with an 11mmNIR-
coated aspheric lens and sent toward a filtering stage.

The filtering stage consists of two shortpass filters at 2050nm
(>OD 4), which are used to remove seed light impinging on the col-
lection fiber; a longpass filter at 1400nm (>OD 5) to remove weakly
phase-matched second-harmonic generation from the seed beam and
unconverted quantum dot light; and finally, a 2.8 nm full-width-at-
half-maximum (FWHM) bandpass filter (>OD 4) to isolate the con-
verted single photons. The converted 1550nm light is collected into a
single-mode fiber with a coupling efficiency of 86% and sent to
SNSPDs with a nominal quantum efficiency greater than 80%.

The DFG conversion efficiency is characterized by sending CW
coherent light from a 942nm laser (Toptica DL Pro) into the QFC
setup. For CW-seeded QFC, the conversion efficiency is almost inde-
pendent of the temporal mode of the input light.24 This allows charac-
terization with a CW beam despite the single photons’ decaying
exponential wavepacket. Under the approximation that the seed beam
is unamplified and has considerably higher intensity than all other
modes, QFC is expressed as a beam-splitter Hamiltonian between dif-
ferent frequency modes.25 These two factors ensure that the conver-
sion efficiency measured with a low power ð500lWÞ CW coherent
field is equivalent to the single-photon conversion efficiency.

Figure 2 shows the internal conversion efficiency for 942nm
light, measured by comparing output 1550nm light with the 942nm
coupled through the waveguide with the seed laser blocked. This
factors outcoupling losses into the waveguide, which are measured to
be 17%. The data is fitted with27

g ¼ gmax sin
2

ffiffiffiffiffiffiffiffiffiffiffi
gnorP

p
L

� �
; (1)

where gmax is the maximum possible conversion efficiency, gnor is the
normalized conversion efficiency of the process, P is the input power,
and L is the waveguide length. The fit gives a normalized conversion
efficiency (to waveguide length in the limit of small pump powers27)
of gnor ¼ 44ð1Þ% =ðWcm2Þ. The maximal external conversion effi-
ciency, the ratio of photons collected into single-mode fiber after the
conversion stage to the number of NIR photons impinging on the
waveguide, is gmax ¼ 38%, leading to a maximum internal conversion
efficiency of 56:7ð4Þ% when taking losses into account. This gmax is
higher than previously reported values for NIR QD frequency conver-
sion to 1550nm with similar waveguides.13 We would like to highlight
that we achieve SNRs> 250 for all seed powers (inset in Fig. 2), mean-
ing that the noise contribution of the DFG process toward the
converted single photons is minimal.

We now compare the characteristics of the converted telecom
photons with the QD NIR photons. We tune the QD into resonance
with the first cavity mode and excite either resonantly or non-
resonantly into the third cavity mode; see Fig. 3 for spectral properties
of the cavity under 820nm excitation. The inset in Fig. 3 shows the
detected count rates for these two excitation scenarios as a function of
power: Rabi oscillations are observed for resonant excitation, while a
clear maximum is observed for non-resonant excitation. For non-
resonant characterization, the QD photons are spectrally filtered with
a grating filter with a 30GHz FWHM to suppress the excitation laser.
We detect a count rate of 1:85ð5ÞMHz at an excitation power of
6:8 lW. The grating filter was removed when characterizing the con-
verted photons as low-loss bandpass filters were used at 1550nm. For
resonant driving, we optimize the excitation power to the p-pulse and
detect a count rate of 1:46ð4ÞMHz. This value is slightly lower than
for off-resonant excitation due to the presence of spectral fluctua-
tions.28 After QFC, the detected count rate at 1550nm, for the off-
resonant and on-resonant case, is 856ð18Þ kHz and 456ð14Þ kHz,
respectively. Comparing the NIR and telecom counts under resonant
excitation gives an end-to-end conversion efficiency of �35%, after
accounting for the difference in the detection efficiency of both NIR

FIG. 2. Conversion efficiency of the difference-frequency generation process as a
function of seed power coupled into the waveguide. The power in the waveguide is
determined by measuring the pump power after the waveguide and factoring out
the loss through the NIR-coated aspheric collimation lens. The transmission through
this lens is measured to be 64% at the pump wavelength. The data is fitted with
Eq. (1). The inset shows the signal-to-noise (SNR) ratio for off-resonant excitation
with a measured noise count rate of 12 ð1ÞHz/mW. Frequency conversion with
similar ppLN devices, in a regime where anti-Stokes scattering is expected to
dominate, has demonstrated a noise flux rate per unit filter bandwidth of
5.8 Hz/mW/nm,26 comparable to our noise flux rate of 5:3ð4ÞHz/mW/nm.

FIG. 3. Photo-luminescence emission profile of the QD under 820 nm excitation
shows cavity modes up to the fifth order. The QD is resonantly coupled to the first
cavity mode. The inset shows the detected count rate as a function of the excitation
power when the excitation laser is resonant to the first (resonant, blue) or third
(non-resonant, green) cavity mode.
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(�90%) and telecom C-band (�80%) detectors. This agrees well with
the measured loss budget through the optical components including
the conversion efficiency. The difference in efficiency for off-resonant
excitation is accounted for by the loss of the grating filter.

Figure 4 shows the comparison between the performance of the
QD signal before and after QFC. The lifetime measured under reso-
nant excitation in Fig. 4(a) remains unchanged within experimental
error after conversion. The oscillation in the time-resolved emission,
indicative of the quantum beating of the X0 fine-structure splitting,
shows a frequency of 4:807 ð3ÞGHz extracted from a fit of
exp ð�t=T1Þ ð1þ A sin ðDfSStÞÞ to the data.29 The equivalent oscilla-
tion after the QFC process is unchanged (DfSS ¼ 4:803 ð1Þ GHz),
indicating that the CW-seeded frequency conversion preserves the
temporal mode of the input photons.

Next, we measure the second-order intensity correlation gð2Þ

using a Hanbury-Brown and Twiss (HBT) interferometer. For a per-
fect single-photon source, gð2Þð0Þ ¼ 0, indicating the absence of
multi-photon emissions. Under off-resonant driving, Fig. 4(b), we
observe a slight increase from gð2Þð0Þ ¼ 0:045 ð0Þ to gð2Þð0Þ
¼ 0:051 ð1Þ before and after the QFC process, respectively. We
observe similar values under resonant driving, Fig. 4(c), demonstrating
near-ideal single-photon emission with gð2Þð0Þ ¼ 0:040 ð0Þ and
gð2Þð0Þ ¼ 0:043 ð1Þ before and after the QFC process, respectively.
The slight increase in the normalized coincidences in the uncorrelated
side peaks in the HBT histogram is due to blinking of the emitters, a
common effect resulting from QD coupling to the solid-state charge
environment.30 The imperfection in gð2Þð0Þ can be due to imperfect
suppression of the cavity emission due to cavity feeding,31–33 slight
imperfection in the wave-plate retarders used in our confocal micro-
scope, and the presence of multi-photon capture processes.34,35

Nevertheless, with a modest increase in gð2Þð0Þ after the QFC process,
we have demonstrated near background-free single-photon frequency
conversion from the NIR to telecom C-band, with the photon-number
purity predominately limited by the quantum dot.

To demonstrate that our QFC setup preserves photon coherence,
we perform HOM interference between photons emitted from two
consecutive excitation pulses. We use an unbalanced Mach–Zehnder
interferometer with a delay of 12.5 ns to match photons temporally on
a 50/50 beam splitter. We measure the coincidence counts for
parallel and perpendicular polarized photons and evaluate the visibility
as VHOM ¼ 1� gð2Þk =gð2Þ? . For a pair of indistinguishable photons,
VHOM ¼ 1. For resonant excitation, we achieve an interference
visibility of VHOM ¼ 0:88 ð1Þ before QFC. We expect a reduced
VHOM ! T2=2T1 � 0:66 at longer delays, inferred from the coher-
ence time, T2 measured using a Michelson interferometer.36,37 We
calculate the single-photon indistinguishability Ms as Ms ¼ ðVHOM

þ gð2Þð0ÞÞ=ð1� gð2Þð0ÞÞ.38 This gives an upper bound to the HOM
visibility taking the finite gð2Þð0Þ into account. Before conversion, the
Ms value is equal to 0:95 ð1Þ. After conversion, we find the raw visibil-
ity and corrected indistinguishability to be 0:60 ð1Þ and 0:67 ð2Þ,
respectively. The results of lifetime, HBT, and HOM measurements
are summarized in Table I.

The reduced interference visibility originates in spectral instabil-
ity introduced by fluctuating power in multiple longitudinal modes of
the seed laser. The linewidth of the seed laser is around 4GHz with a
free spectral range estimated to be 177MHz, corresponding to
approximately 22 modes. Despite this, we show that our QFC setup
indeed preserves the coherence of single photons as measured from
HOM interference, which can be improved by increased control over
the cavity dispersion and active stabilization of the cavity length.

FIG. 4. Characterization of the single-photon properties before (upper row) and after (lower row) QFC. (a) Time-resolved emission spectra under pulsed resonant excitation
reveal an exponential decay, which gives the emitter’s lifetime T1 and a fast oscillation, indicating the quantum beating between the fine-structure peaks of the neutral exciton
emission, Dfss ¼ 4:807 ð3ÞGHz. (b) and (c) Second-order intensity correlation histogram gð2Þ, of the emitted photons under off-resonant (b) and resonant (c) excitation. The
lack of coincidences in the central peak indicates the low probability of multi-photon emission. (d) Two-photon interference of consecutively scattered photons delayed by

12:5 ns, prepared in cross (gð2? ) and parallel (gð2k ) polarizations, under resonant p-pulse excitation. The extracted photon indistinguishability, given by the ratio of zero-delay

coincidences from both configurations, along with the extracted values (T1 and gð2Þð0Þ) from the fits (solid lines), is summarized in Table I.
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Modest improvements to the current QFC system will allow us
to improve the converted two-photon interference visibility to equal
the unconverted visibility. The external conversion efficiency could be
further improved with lower-loss filtering and improved mode match-
ing between the single-mode fiber and the waveguide mode.

Quantum-dot sources emitting directly at telecom wavelengths
have demonstrated gð2Þð0Þ ’ 4� 10�4 with count rates on the order
of 200 kHz39 but have not demonstrated the HOM interference visibili-
ties of frequency-converted sources,13,40 which typically have lower
brightness and higher noise contributions. While a fair comparison
between our source and other works is difficult to make due to the
incomplete information in the reported data, we believe that the com-
bined brightness, multiphoton suppression, and indistinguishability
demonstrated by this source are marked improvements over other
telecom-wavelength quantum-dot sources. This source will find appli-
cations in fiber-based quantum communication where a source of
bright and highly pure single photons in the C-band is required. This
can lead to demonstrations of various quantum communication proto-
cols including measurement device-independent quantum key distribu-
tion, teleportation, and entanglement swapping between distant
quantum nodes.
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