
Atmospheric characterization of terrestrial
exoplanets in the mid-infrared: biosignatures,
habitability, and diversity
Quanz, S.P.; Absil, O.; Benz, W.; Bonfils, X.; Berger, J.-P.; Defrère, D.;
... ; Wyatt, M.

Citation
Quanz, S. P., Absil, O., Benz, W., Bonfils, X., Berger, J. -P., Defrère,
D., … Wyatt, M. (2021). Atmospheric characterization of terrestrial
exoplanets in the mid-infrared: biosignatures, habitability, and
diversity. Experimental Astronomy. doi:10.1007/s10686-021-09791-z
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3256409
 
Note: To cite this publication please use the final published version
(if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3256409


ORIGINAL ARTICLE Open Access

Atmospheric characterization of terrestrial exoplanets
in the mid-infrared: biosignatures, habitability,
and diversity

Sascha P. Quanz1 & Olivier Absil2 & Willy Benz3 & Xavier Bonfils4 &

Jean-Philippe Berger4 & Denis Defrère24
& Ewine van Dishoeck5 &

David Ehrenreich6
& Jonathan Fortney7 & Adrian Glauser8 & John Lee Grenfell9 &

Markus Janson10
& Stefan Kraus11 & Oliver Krause12 & Lucas Labadie13

&

Sylvestre Lacour14 & Michael Line15 & Hendrik Linz12 & Jérôme Loicq16
&

Yamila Miguel5 & Enric Pallé17 & Didier Queloz18 & Heike Rauer9 & Ignasi Ribas19 &

Sarah Rugheimer20 & Franck Selsis21 & Ignas Snellen5
& Alessandro Sozzetti22 &

Karl R. Stapelfeldt23 & Stephane Udry6 & Mark Wyatt18

Received: 29 July 2020 /Accepted: 20 August 2021/
# The Author(s) 2021

Abstract
Exoplanet science is one of the most thriving fields of modern astrophysics. A major
goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in
order to search for signatures in their atmospheres that indicate biological activity,
assess their ability to provide conditions for life as we know it, and investigate their
expected atmospheric diversity. None of the currently adopted projects or missions,
from ground or in space, can address these goals. In this White Paper, submitted to
ESA in response to the Voyage 2050 Call, we argue that a large space-based mission
designed to detect and investigate thermal emission spectra of terrestrial exoplanets in
the mid-infrared wavelength range provides unique scientific potential to address these
goals and surpasses the capabilities of other approaches. While NASA might be
focusing on large missions that aim to detect terrestrial planets in reflected light, ESA
has the opportunity to take leadership and spearhead the development of a large mid-
infrared exoplanet mission within the scope of the “Voyage 2050” long-term plan
establishing Europe at the forefront of exoplanet science for decades to come. Given
the ambitious science goals of such a mission, additional international partners might be
interested in participating and contributing to a roadmap that, in the long run, leads to a
successful implementation. A new, dedicated development program funded by ESA to
help reduce development and implementation cost and further push some of the
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required key technologies would be a first important step in this direction.
Ultimately, a large mid-infrared exoplanet imaging mission will be needed to help
answer one of humankind’s most fundamental questions: “How unique is our
Earth?”

Keywords Extrasolar planets . Planetary atmospheres . Direct imaging .Mid-infrared .

Space interferometry . Habitability

1 Scientific motivation and objectives

1.1 Driving questions

Exoplanet research is a focal point in modern astrophysics and one of the long-term
primary objectives is the investigation of the atmospheric properties of dozens of small
and terrestrial exoplanets. This is partially driven by the goal to search for and identify
potentially habitable or even inhabited exoplanets. In addition, such a dataset is
invaluable for investigating and understanding the diversity of planetary bodies.
Exoplanet science is already omnipresent on the roadmaps of all major space
agencies. However, none of the currently selected missions, neither in Europe nor
in the US, will be able to deliver the above-mentioned comprehensive dataset of
terrestrial exoplanet atmospheres as we will further detail below. The same is true
for current and future ground-based observatories including the 30–40 m Extreme-
ly Large Telescopes (ELTs). Therefore, tackling a prime objective of exoplanet
science and understanding how unique or common planets like our Earth are in
our galactic neighborhood will require a new, dedicated approach. Now is the
right time to start investigating how a statistically relevant number of terrestrial
exoplanet atmospheres can be analyzed and discuss how the guiding scientific
objectives should be formulated. In fact, thanks to NASA’s Kepler and TESS
missions, ESA’s upcoming PLATO mission, and ongoing and future radial veloc-
ity (RV) surveys from the ground, by 2030 we will have a robust statistical
understanding of the occurrence rate of terrestrial exoplanets and their radius,
mass, and period distributions out to the habitable zone around main sequence
stars, and we will have identified dozens of exoplanets in the immediate vicinity
of the Sun including potentially habitable ones.

The next logical step is to address the following questions:
(Q1) How many exoplanets exhibit (atmospheric) signatures of potential biological

activity?
(Q2) What fraction of terrestrial exoplanets provide (surface) conditions so that

liquid water and life as we know it could in principle exist?
(Q3) How diverse are (terrestrial) exoplanet atmospheres in their composition across

a range of relevant parameters (e.g., planet mass and radius, host star spectral type,
orbital period) and how does this compare to theories for planet and atmosphere
formation and evolution?

The sequence of these questions is deliberately chosen such as to go from
the most specific (the search for biosignatures) to the most general (atmospheric
diversity).
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1.2 The mid-infrared opportunity

While in-situ and/or fly-by measurements can in principle be carried out for Solar
System bodies, this is not possible for exoplanets because of their distance. Instead, we
have to rely on remote sensing techniques. These include investigations in reflected
light (at optical and near-infrared (NIR) wavelengths), transmitted light (if the planet is
transiting in front of its host star), or thermal emission (either through secondary
eclipse, phase curve measurements or spatially resolved observations, all done at NIR
to mid-infrared (MIR) wavelengths). We will argue in the following that spatially
resolved observations in the MIR that aim to detect exoplanet thermal emission spectra
are likely the most promising and powerful approach to address Q1-Q3 listed above
and are hence the focus of this White Paper. The scientific potential of studying
(terrestrial) exoplanets in reflected light is discussed in the complementary White Paper
by Snellen et al.

For mature (>Gyr old) planets orbiting in the inner few AU around their host stars
the energy budget of their atmospheres is typically dominated by the absorption and re-
radiation of stellar energy. The temperature structure of the atmosphere, i.e., the
temperature as a function of height or pressure, is a key diagnostic and a driver of
chemistry and climate. An emission spectrum encodes information about this temper-
ature structure as well as the re-radiated luminosity of the planet, which – in combina-
tion with the observed effective temperature – strongly constrains the planet radius.
Taking the Earth as reference, certain atmospheric windows in the MIR may even allow
a direct measurement of the surface temperature of a terrestrial exoplanet (e.g., [1]).
Furthermore, the MIR wavelength regime offers an unparalleled diagnostic potential to
determine the atmospheric composition as multiple major molecules required to ex-
plore planetary conditions present strong absorption bands in the MIR. Thermal
emission observations are also less influenced by (though not insensitive to) the
presence of clouds (e.g., [2]). Mitigating the role of uncertain cloud properties is
imperative to our understanding of atmospheric composition. In particular for the
detection of biosignature gases and chemical disequilibrium, the MIR is an ideal
spectral regime (e.g., [1, 3]). The MIR includes absorption bands from ozone (O3)
and methane (CH4) and the presence of both molecules in the Earth’s atmosphere,
which unless continuously replenished would quickly react with each other, can
only be explained by biological activity. Furthermore, nitrous oxide (N2O), an-
other potential biosignature present in the Earth’s atmosphere, has strong bands in
the MIR, but, similar to methane, no equally strong bands at optical or NIR
wavelengths. Molecular oxygen (O2) can be detected in the optical regime (around
760–765 nm) and not in the MIR, but interpreting oxygen as a potential biomarker
requires additional contextual information [4]. The unique richness of the MIR
spectral range in general, but in particular in the context of potential biosignature
gases, is summarized in Fig. 1.

The following three sub-sections provide more quantitative information regarding
the driving questions listed in section 1.1 above. Section 1.2.1 deals with the admittedly
hypothetical case of observing an Earth-twin and searching for biosignatures (Q1). In
section 1.2.2 we discuss how one could statistically address the fundamental question
how common or rare terrestrial exoplanets with Earth-like (surface) conditions are
(Q2). Finally, in section 1.2.3 we show how many exoplanets covering a broad range of
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sizes and orbital periods could be detected by an MIR exoplanet imaging mission in
order to investigate atmospheric diversity in the most general sense (Q3).

1.2.1 Atmospheric modeling and retrieval of key parameters for an earth-twin (Q1)

We carried out a spectral retrieval study (see, e.g., [6], for a recent review on
atmospheric retrieval for exoplanets), where Earth’s emission spectrum was modeled
over a certain wavelength range assuming a certain spectral resolution (R) and signal-
to-noise (SNR) per resolution element (cf. [7, 8]). Taking such a model spectrum, i.e., a
simulated observation of an Earth-twin, as input, the retrieval framework allows us to
derive posterior distributions for key atmospheric parameters including the pressure-
temperature profile, abundances of key atmospheric constituents as well as the radius of
the planet. We acknowledge that the choice of an Earth-twin exoplanet is a special case

Fig. 1 Molecules relevant to terrestrial planet characterization between 3 and 20 μm (adapted from Catling
et al. [5] and Schwieterman et al. [3]). Potential biosignature gases are listed in the top-half (green background)
and other possible constituents in the lower half (yellow background). Strong bands in Earth’s modern
spectrum are highlighted in red. In particular the existence of significant CH4 and N2O bands is important
to highlight as they have no strong counterparts at optical or NIR wavelengths. We also note the strong CO
band around 4.67 μm, which can serve as an “anti-biosignature” gas under certain circumstances
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and it seems unlikely that the formation and subsequent evolution processes that led to
the Earth’s present-day atmosphere took place also on another nearby exoplanet.
However, we argue that any mission that aims to detect potential biosignatures in an
exoplanet’s atmosphere should be able to identify such signatures in our Earth’s
atmosphere, the only planet we know to harbor life. Hence, taking an Earth-twin as
starting point, as is also frequently done in other publications (e.g., [2, 9, 10]), appears
justifiable.

Our results from one specific simulation are shown in Fig. 2. Here, we assumed a
wavelength range of 3–30 μm, R = 100 and SNR = 20; however, the results would
hardly change if the wavelength range were limited to 3–20 μm. The values for R and
SNR were chosen to quantitatively compare the results to those derived in a published
retrieval study by Feng et al. [12] who investigated the diagnostic potential of reflected
light observations of an Earth-twin in the 0.4–1.0 μm range.1

Figure 2 clearly demonstrates that if one were able to obtain a high-quality MIR
spectrum of an Earth twin, the atmospheric composition, but also surface pressure,
surface temperature, and planetary radius could be constrained with high precision and
accuracy.

This is further illustrated in Fig. 3 where the best-fit values as well as the 68%
confidence range for the retrieved parameters are plotted (red data points) and com-
pared to the ‘ground-truth’, i.e., the input value in the simulated spectrum (black lines).
In all cases, the input value is well within the 68% confidence range and this confidence
range typically corresponds to a factor of 3 (∼0.5 dex) uncertainty for the molecular
abundances. Furthermore, the radius is constrained to much better than a few percent,
the surface pressure to 0.1 dex, and the surface temperature to better than 5 K. We
emphasize that the radius was determined solely from the emission spectrum and no
additional information from, e.g., transit observations, were required. With such a
dataset in hand, assessing the atmospheric conditions – and potentially the surface
conditions – of this planet would easily be feasible. The existence of atmospheric
biosignatures could be detected with high confidence.

In addition to the results from our retrieval study, Fig. 3 also shows the same
analysis using the results found by Feng et al. [12] for reflected light (blue data points)
instead of thermal emission. The key take-away messages from this comparison are the
following:

(a) The atmospheric abundances that can be constrained using thermal emission are
retrieved with similar accuracy and precision as those accessible in reflected light.

(b) The biosignature gases CH4 and N2O are only accessible in the thermal emission
spectrum as is the anti-biosignature gas CO.

(c) O2 is only accessible in reflected light, but in the MIR emission spectrum O3,
which is an atmospheric by-product of O2, serves as a robust proxy for the existence of
oxygen.

(d) The constraints on the planetary radius are much stronger in thermal emission
(uncertainties are of order 5%) compared to reflected light (uncertainties are of order
30%) as there is a degeneracy between the planet’s albedo and its radius in reflected
light.

1 Feng et al. [12] presented different scenarios and for the comparison we selected the case where they
assumed R = 140 and SNR = 20 (at 550 nm), i.e., comparable to the values we assume.
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(e) While surface temperature and pressure can be well constrained with thermal
emission spectra, reflected light does not provide immediate information about surface
temperature and constraints on pressure are weaker.

This comparison demonstrates the enormous characterization potential contained in
the thermal emission spectra of terrestrial exoplanets. Not included in this analysis is
the possibility of detecting N2-N2 collision-induced absorption features in the MIR (see,
Fig. 1; [13]), which could help constrain the absolute abundances of the different

Fig. 2 Results of a retrieval study of an Earth-twin atmosphere observed over a wavelength range of 3–30 μm
with R = 100 and SNR = 20. The inlay in the top right corner shows the model in blue, the simulated
observational data in black and a black-body curve representing surface emission in red. Below, the
corresponding pressure-temperature profile is plotted with the model again in blue, the best-fit retrieved
profile in black and the red band indicating the 68% confidence range. The corner plot shows the marginalized
distributions for the abundance of major molecules detected in the atmosphere as well as for the radius of the
planet, all of which were free parameters in the retrieval (with flat priors). All parameters are well constrained.
We note that also the planet’s mass was a free parameter in the retrieval analysis (with a flat prior confined to
the range 0.1–10 M⊕). As expected, it could not be accurately estimated from the spectrum alone and
complementary RV measurements or an empirically calibrated mass-radius relationship (e.g., [11]) would
be needed to provide constraints
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components in N2-dominated atmospheres. For reflected light studies at optical wave-
lengths surface features such as ‘glint’ from water oceans could be detected under
certain conditions (e.g., [14]) and also the so-called ‘red-edge’, the specific spectral
reflectance of chlorophyll in plants, is observable – at least in case of the Earth (e.g.,
[15]).

1.2.2 Statistical significance and possible null-result (Q2)

Already the detection of a single exoplanet spectrum with clear indications of biolog-
ically induced disequilibrium chemistry would be a breakthrough result that warrants
special care in interpreting [5]. However, one must be prepared for a null-result and a
future mission should be able to address more general – and scientifically equally
important – questions related to the population of (terrestrial) exoplanets, their atmo-
spheres and climates. Q2 and Q3 listed above capture such questions and require a
sample of exoplanets to be investigated. In particular for Q2 the sample size should be
defined in such a way that the null-result, i.e., that none of the planets that are
characterized turns out to provide conditions similar to those on Earth, is a major
scientific result and robustly quantifies the rareness of “Earth-like” planets. A possible
approach is to re-formulate this question in the following hypothesis:

“The fraction of terrestrial exoplanets that reside in the empirical habitable zone
around their host star and provide conditions for liquid water to exist is ηhab.”

We emphasize that ηhab is not identical to the commonly used η⊕ parameter that
quantifies the fraction of stars that harbor terrestrial exoplanets in their habitable zone

Fig. 3 Comparing the retrieval results for the simulated thermal emission spectrum shown in Fig. 2 and those
found in Feng et al. [12] for reflected light to the input values used for the different parameters in the
atmospheric models. The black vertical lines represent the ‘true’ value for each parameter, the yellow areas
indicate the ±0.5 dex range for the atmospheric constituents and for the surface pressure, the ±0.3 R⊕ range for
the planet radius and the ±10 K range for the surface temperature. The red and blue data points show the
location of the retrieved best-fit parameters, for thermal emission and reflected light, respectively, and the error
bars indicate their 68% confidence range
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and ηhab is also ignorant of the potential existence of biosignatures in the atmospheres.
In the context of the hypothesis above we define “terrestrial exoplanets” as planets with
a radius Rplanet with 0.5 R⊕ ≤ Rplanet ≤ 1.5 R⊕ and the “empirical habitable zone” as the
separation range where the incoming stellar insolation Splanet is 0.35 S⊕ ≤ Splanet ≤
1.75 S⊕ with S⊕ being the solar constant, i.e., the average insolation received at Earth
(cf. [16]). The small end of the radius range is defined by the size of Mars, which is
assumed to be the minimum planet size/mass that can retain an atmosphere, and the
large end by the transition between rocky and gas dominated planets [11, 17, 18]. The
insolation range is defined by the so-called “Early Mars limit” at the outer edge and the
“Recent Venus limit” at the inner edge [19]. We acknowledge that the concept of
“(exoplanet) habitability” is complex (e.g., [20]) and extends beyond the radius and
insolation ranges considered here (e.g., [21, 22]). However, similar to the case of the
Earth-twin considered in section 1.2.1, we think that our choices are a reasonable and
justifiable starting point that can be modified going forward as our understanding of
“habitability” and exoplanet properties further progresses.

For the radius and insolation ranges considered here, two planets in the Solar
System, Earth and Mars, qualify. Hence, the fraction of terrestrial exoplanets that reside
in the empirical habitable zone in the Solar System and allow for the existence of liquid
water is one (Earth) out of two, i.e., ηhab = 50%.

In Fig. 4 we show the significance that a certain value for ηhab can be rejected in case
a certain number of planets (50, 30, 20, or 10) were observed and none of them
provides favorable conditions. These numbers are based on Poisson statistics and
assume that the occurrence of terrestrial exoplanets orbiting in the habitable zones of
different stars can be treated as statistically uncorrelated events. It shows that, if 30

Fig. 4 The statistical power of a null-result: in case 50 (red curve), 30 (blue curve), 20 (green curve), or 10
(yellow curve) exoplanets with radii between 0.5 R⊕ and 1.5 R⊕ and receiving between 0.35 and 1.7 times the
insolation of the Earth are investigated with high-quality thermal emission spectra and not a single one is
found to support conditions that allow for the existence of liquid water, then the null-hypothesis – shown on
the x-axis – can be rejected with the significance shown on the y-axis. In the Solar System, one out of two
planets within the empirical habitable zone provides (surface) conditions for liquid water to exist; hence,
ηhab = 50% for the Solar System
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planets are observed, ηhab = 20% and ηhab = 50% can be rejected with ≈3σ and ≈5σ,
respectively. For 50 planets, ηhab = 10% and ηhab = 30% can be rejected with the same
confidence levels. These results suggest that, in case of a null-result, several tens of
planets would be required in order to derive statistically significant limits on the
rareness of “Earth-like” planets.

To date we do not yet have a large enough sample of exoplanets detected that fulfill
the criteria used in the analysis (cf. section 4.2). However, steady progress is being
made by ongoing surveys and missions to increase the number of relevant planets.
Alternatively, a mission that can address Q1 and Q2 and the objectives formulated
above could be split in two phases: (1) a “search phase”, aiming at quickly detecting a
sufficient number of planets in the above-mentioned radius and insolation range; and
(2) a “characterization phase”, where a sub-set of the detected planets would be re-
observed and investigated with high SNR in sufficient detail. To make the search phase
time-efficient, a broad-band photometry mode, e.g., by collapsing the MIR spectra over
certain wavelength ranges to increase the SNR, could be applied. As we will detail
below, it is important to mention that during the search phase many more planets, with
properties outside the parameter range defined above, would be detected “for free”. It
turns out that if the occurrence rates of exoplanets (including their radius and period
distributions), as found by NASA’s Kepler mission, are applicable to exoplanets
orbiting stars in the vicinity of the Sun, several hundred planets may be detected.

1.2.3 Atmospheric diversity and total planet yield (Q3)

Similar to the diversity in planet radii and orbital periods, as revealed by NASA’s
Kepler mission, we can expect a great diversity in atmospheric properties of (terrestrial)
exoplanets (e.g., [23]). It is hence important to understand how many exoplanets in
general, i.e., over a large region in the radius vs. stellar insolation parameter space,
could be detected, e.g., during the search phase of an MIR exoplanet imaging mission.
The detection of a large sample would enhance the value of the mission and the
potential science legacy by enabling the exploration of (unbiased) planetary system
architectures and the constraints they put on planet formation theory and atmospheric
models. At the same time, the feasibility of detecting tens of “Earth-like” exoplanets as
defined above in section 1.2.2 needs to be investigated.

We hence updated Monte Carlo simulations that were first presented in Kammerer
& Quanz [24] and Quanz et al. [25] to quantify the exoplanet yield during the search
phase mentioned above. The technical specifications used in these simulations are
based on earlier concept studies for a space-based MIR interferometry mission [26],
but updated with more recent estimates for sensitivity limits similar to those of the
MIRI instrument on the James Webb Space Telescope (JWST). For more details on
sensitivity and spatial resolution requirements we refer to section 2.2. For the under-
lying planet population around FGK stars, in terms of planet occurrence rate and radius
and period distributions, we used the statistics published by NASA’s working group
SAG13.2 These statistics were also used for recent studies for reflected light missions
[27]. For M stars the statistics from Dressing & Charbonneau [28] were used. In
general, Kepler and other ongoing missions and projects have impressively

2 https://exoplanets.nasa.gov/exep/exopag/sag/#sag13
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demonstrated that planetary systems are ubiquitous, including exoplanets close to or in
the habitable zone (e.g., [29–32]). We now know that planets with sizes in the Earth
and Super-Earth regime populate nearly every star and that systems consisting of
multiple planets are very abundant (e.g., [33]).

The stellar sample we used in our simulations consisted of 320 F, G, K, and M stars
all within 20 pc from the Sun [24, 34].3 This is only a small subset of all stars within
this distance limit (see, Fig. 5) and refining the possible target sample is subject of
ongoing work. One important piece of information that needs to be carefully considered
is the number of binary star systems that can in principle be included. Stellar binarity,
over a certain range of separations, has been shown to have a negative impact on the
occurrence of small planets [35]. A first rough estimate would suggest that no more
than 20–30% of the stars shown in Fig. 5 should be eliminated, leaving more than 600
potential targets within only 15 pc.

For each target star that we consider in our simulations, 5000 planetary systems were
created with properties randomly drawn from the distributions mentioned above and
randomly oriented orbits and planetary positions thereon. Based on their apparent
separation and estimated flux levels (from randomly drawn Bond albedos and assuming
black-body emission) we count all planets that are detectable according to the technical
specifications (see section 2.2). We assume that the search phase could be carried out
simultaneously in broad spectral bands centered at 5.6, 10, and 15 μm (e.g., by
collapsing the observed spectra around these wavelength ranges) and that all 320 stars
are observed for an equal amount of time (35,000 s). In total this amounts to less than
0.5 years and hence it seems realistic that even if overheads (e.g., slewing from one star
to the next) and additional noise sources (e.g., stellar leakage or extra-zodiacal light) are
considered, a potential search phase would not exceed 3 years. Figure 6 shows the
results: the total number of detectable planets exceeds 400 and these planets cover a
broad range of radii (0.5–6.0 R⊕) and stellar insolation levels (≈0.1–1000 S⊕). In fact,
as shown in the left panel of Fig. 6, in each of the radius bins covering 0.5–1.25, 1.25–
2.0, and 2.0–4.0 R⊕ more than 120 exoplanets should be detectable. Such a database
would be an excellent starting point to address Q3 listed above, the diversity of
planetary atmospheres. Furthermore, among those > 400 exoplanets, the number of
detectable terrestrial planets located in the empirical habitable zone, as defined in
section 1.2.2, is ∼30, which is the minimum number of planets needed for a meaningful
statistical interpretation of a null-result (cf. Figure 4). This number can be further
increased by optimizing the distribution of observing time across the stellar target list in
order to maximize the number of detectable terrestrial planets located in the empirical
habitable zone (cf. [36]). Further optimization potential lies in the selection of the stellar
target sample.

2 The need for a large space mission

In the previous sections we already alluded to a possible mission scenario that would
enable the science described above: an MIR exoplanet mission that would consist of (1)
a search phase to detect a large sample of exoplanets in certain broad spectral bands,

3 Only 3 stars in the sample are of spectral type M6; all other stars have earlier spectral types.
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and (2) a follow-up characterization phase to investigate the (atmospheric) properties of
a sub-set of these exoplanets with high-fidelity MIR low-resolution spectroscopy over
the 3–20 μm range. In the following we argue that this can only be achieved from space
in the context of a large mission.

Fig. 6 Estimated exoplanet yield in a hypothetical 3-year search phase for a space-based MIR exoplanet
imaging mission targeting 320 stars within 20 pc and assuming planet statistics as derived by NASA’s Kepler
mission (cf. [24]). Left: Number of expected exoplanet detections per bin in the radius vs. stellar insolation
plane. Right: The integrated number of expected exoplanets (423) broken down into sub-sets that are either
detected in only one, two, or all three of the assumed bands centered at 5.6, 10, and 15 μm. Planets detected
around FGK stars are shown in orange, planets around M stars in red bars

Fig. 5 All known GKM main-sequence stars within 15 pc from the Sun as a function of their apparent
magnitude MG (in the Gaia filter). The left y-axis shows the number per bin in the black histogram, the right
axis the cumulative number indicated by the blue line (∼900 objects in total). The axis on the top shows the
approximate location of different spectral types relative to G magnitudes. In addition to the stars shown here,
there are 21 F-type stars known within 15 pc
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2.1 Why space?

Detecting thermal emission from celestial bodies between 3 and 20 μm wavelength
from the ground is severely hampered by the thermal background emission caused by
the Earth’s atmosphere (>100 Jy/arcsec2 for wavelengths >8 μm on Cerro Paranal,
ESO’s site for the Very Large Telescope (VLT); [37]), the telescope’s primary mirror,
and any additional non-cryogenic optical component in the light-path. For comparison,
the Earth’s emission spectrum peaks around 10 μm (Fig. 2), but seen from a distance of
10 pc our planet emits only ∼0.4 μJy at these wavelength ranges [1]. Consequently,
even with the upcoming 30–40 m ELTs, only a handful of terrestrial exoplanets around
the very nearest stars will be detectable at 10 μm wavelength within a reasonable
amount of observing time [38]. Furthermore, the science described above requires a
continuous wavelength coverage to measure the luminosity of the exoplanets and
search for various atmospheric key components. In particular the water band at
6.2 μm, and methane (CH4) and nitrous oxide (N2O) at 7.7 μm and 7.8 μm, respec-
tively, are not detectable from the ground. The two latter molecules are, however,
important biosignatures (Fig. 1) that are key for addressing Q1. In conclusion, achiev-
ing the science goals of this White Paper requires going to space.

2.2 Why L-class?

The direct detection of dozens of (small) exoplanets around nearby stars in the MIR
wavelength regime requires both high spatial resolution and high sensitivity. An Earth-
like planet seen at 10 pc has an apparent separation of only 0.1′′ from a solar-type host
star and planets orbiting around M-stars must be even closer to their stars in order to be
located in the habitable zone. Even JWST with its 6.5 m primary mirror does not
provide sufficient spatial resolution (∼0.45′′ at 10 μm). Furthermore, the low flux levels
from terrestrial exoplanets (see above the example of Earth) set some important
constraints on the collecting area of the telescope. To our knowledge, the only way to
achieve both sufficient spatial resolution and sensitivity is a mid-infrared nulling
interferometer. It would consist of several spacecraft (‘collector telescopes’) that
together provide enough collecting area, but are sufficiently far separated from each
other so that the baselines between them provide the required spatial resolution. The
beam combination would be done in a separate spacecraft where light from the central
star interferes destructively (‘nulling’) so as to provide sufficient contrast to detect the
much fainter signal from the planets (typically of order 10−7–10−6 fainter at 10 μm.).

For the exoplanet yield estimate in section 1.2.3 we assumed a nulling baseline
between the collector telescopes of up to ∼170 m. As a starting point for the achievable
sensitivity limits, we took those from JWST/MIRI [39], but reduced the overall
instrument throughput by a factor of 3.5 (an interferometer will likely have a lower
throughput than a single-dish instrument, cf. [24]). This means, however, that implicitly
a collecting area similar to the effective aperture size of JWST was assumed. In case of
4 collector telescopes this translates into individual aperture sizes of the order 2.5 m in
diameter (note: the primary mirror of the Hubble Space Telescope is 2.4 m and that of
the Herschel Space Observatory was 3.5 m). The smaller the combined aperture size of
the collector telescopes (or the smaller the number of collector telescopes), the longer
the mission search phase to detect a large sample of exoplanets and the longer also the
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time needed to do high-SNR follow-up observations for in-depth atmospheric charac-
terization. Indeed, decreasing the aperture size of the 4 collector telescopes from 2.5 m
to 1.5 m or 0.75 m would reduce the total planet yield during the search phase from 423
(see section 1.2.3) to 281 or 155, respectively; a 2-telescope interferometer with
apertures of a few tens of centimeters may only be able to search for planets around
a few nearby stars [40]. In these cases, and because the time to carry out high signal-to-
noise follow-up observations during the characterization phase would also require
significantly more observing time, a large exoplanet sample that allows for a robust
statistical analysis, as needed to address Q2 and Q3, would be more difficult to obtain.

This suggests that, very likely, a mission designed to address the science objectives
described above can only be implemented in the framework of an ESA L-class mission.
However, given the ambitious science goals and unique scientific capabilities of such a
mission delivering truly ground-breaking results, other international partners might be
interested in a joint effort (see also below).

2.3 Timing for a space-based mid-infrared interferometer mission

The idea for a space-based infrared interferometer for exoplanet science is not new. In
fact, on both sides of the Atlantic, mission concepts were studied between the late 90s
and the mid 2000s (Darwin on ESA’s side and TPF-I on NASA’s side). While
conceived as too risky and ahead of their time back then, the landscape for such a
mission has completely changed – as we will further detail below – and the timing of
ESA’s “Voyage 2050” long-term plan could not be more ideal. One of the most
fundamental scientific results from the past years, with immediate relevance for the
science discussed here, came from NASA’s Kepler mission, namely that the statistical
occurrence rate of small (terrestrial) planets around solar-type and also M-type stars is
extremely high, with – on average –more than one planet orbiting each star. This led to
a number of new exoplanet missions to be proposed to both ESA and NASA, possibly
culminating in a new exoplanet-driven flagship mission on the US side aiming at the
direct detection of (small) exoplanets in reflected light (see section 3.2; see also White
Paper by Snellen et al.). However, while the recently published “Exoplanet Science
Strategy” report from the US National Academies of Sciences4 puts a strong emphasis
on future missions detecting planets in reflected light in a first step, mid-infrared
interferometry is considered to be key in the long-run. One of the findings states:
“Technology development support in the next decade for future characterization
concepts such as mid-infrared (MIR) interferometers [...] will be needed to enable
strategic exoplanet missions beyond 2040.” Even more important is the following
statement: “That said, the common (although often unspoken) belief is that such a
nulling, near-infrared (NIR) interferometer would be a necessary follow-up to any
reflected light direct imaging mission, as detecting the exoplanet in thermal emission
is not only required to measure the temperature of the planet, but is also needed to
measure its radius, and so (with an astrometric or radial velocity detection of [...] the
mass of the planet) measure its density and thus determine if it is truly terrestrial.” In
combination with the results shown in Fig. 3, underlining the unique characterization
potential of thermal emission spectra, these statements re-emphasize not only the

4 https://www.nap.edu/catalog/25187/exoplanet-science-strategy
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scientific importance, but also the timeliness for a space-based infrared nulling
interferometer in the context of ESA’s “Voyage 2050” long-term plan. We note that
it is not necessarily required that a reflected light mission has to be carried out first as
shown by our yield analysis above. Finding and characterizing dozens of terrestrial
exoplanets is feasible with a large MIR interferometer mission alone. It is, however,
also clear that combining reflected light and thermal emission data for a given
exoplanet expands the characterization potential significantly (see, e.g., section 1.2.1).

3 Exoplanet science in the 2030s–2040s

Since the first detection of a planet orbiting a main-sequence star other than our Sun
[41], the field of exoplanet science has been growing at a breathtaking speed: to date we
know more than 5000 exoplanets and exoplanet candidates.5 The overwhelming
majority of these objects were detected via dedicated long-term surveys using indirect
techniques (the RV or the transit technique) from both the ground (e.g., the HARPS
survey or the California Planet Survey) and from space (e.g., NASA’s Kepler mission).
Thanks to the statistics derived from these surveys, we have a first quantitative
understanding of the occurrence rate of different planet types as a function of their
radius / mass, orbital period and also spectral type of the host star (e.g., [42–44]). In
addition, we can put constraints on where the transition occurs between rock-dominated
exoplanets and gas/atm-dominated exoplanets (e.g., [11, 17, 18]). The RV and transit
techniques were also the techniques that revealed the first, rocky exoplanets orbiting
within or close to the habitable zone of their (very) low-mass host stars located in the
Solar neighborhood [29, 31]. For some exoplanets, transit spectroscopy and/or second-
ary eclipse measurements (primarily done from space with the Hubble Space Telescope
and the Spitzer Space Telescope) provide empirical constraints on their atmospheric
composition (e.g., [45, 46]). With a few exceptions (e.g., [47, 48]), up to now these
investigations targeted primarily so-called hot Jupiters, gas-giant planets on orbits with
periods of a few days only. In the following we will summarize what developments
from ground and space we can expect in the coming ∼20 years. The focus will be on
developments with immediate relevance for the science proposed here, i.e., the direct
detection and (atmospheric) characterization of terrestrial exoplanets using thermal
emission spectra.

3.1 Expected developments on the ground

RV: Ongoing (large) programs with high-precision, high-resolution spectrographs (e.g.,
HARPS, HIRES) continue to search for and detect exoplanets over a range of masses
and orbital periods. New spectrographs specifically designed to detect small, rocky
planets either around nearby, red, low-mass stars (e.g., CARMENES, SPIRou) or even
aiming at reaching the detection threshold for an Earth-twin around a solar-type star of
∼0.1 m/s (e.g., ESPRESSO) are in operations now and have the potential to reveal new
(small) exoplanets in the vicinity of the Sun (see also section 4.2). More spectrographs
(e.g., NIRPS, HARPS3, EXPRES, NEID) with similar capabilities and science goals

5 https://exoplanets.nasa.gov
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are currently in development and will support the search for low-mass, rocky planets in
the solar neighborhood. Coupling a high-resolution spectrograph with an adaptive
optics system on an 8 m telescope may, in principle and under best conditions, allow
for the detection of the nearest exoplanet, Proxima b, in reflected light [49]. Similar
science is expected for a few more objects with upcoming high-resolution spectro-
graphs in the era of 30–40 m Extremely Large Telescopes (ELTs) (e.g., [50, 51]).

Transit: The majority of ground-based exoplanet transit searches (e.g., WASP,
KELT, MAS- CARA, HAT, TrES) are focusing on the detection of hot and warm
gas giant planets. However, other projects (e.g., NGTS, MEarth, Trappist,
SPECULOOS) are designed to look for smaller and terrestrial exoplanets. The latter
ones are only detectable around (very) low-mass stars, but can be located within their
empirical habitable zone [31]. Given the random orientation of planetary orbits in the
plane of the sky, only a small minority of the existing exoplanets can be detected this
way; most planets do not transit. Consequently, for a given planet type, transiting
planets have statistically a larger distance from the Sun compared to non-transiting
planets rendering possible follow-up observations with, e.g., direct imaging techniques,
more challenging.

High-contrast imaging: All leading ground-based 8 m class observatories are
equipped with high-contrast imaging instruments designed to directly detect massive
gas giant planets (>2–3 MJupiter at large orbital separations (>20 AU) (e.g., [52]). ESO
and the Breakthrough Foundation just concluded a first experiment to directly detect
thermal emission around 10 μm from small planets around alpha Cen A with an
upgraded MIR instrument at the VLT in Chile.6 However, even with 8 m telescopes,
detecting thermal emission from a true Earth-analog around the nearest stars is prohib-
itively expensive in terms of observing time and only with the advent of the ELTs a few
terrestrial exoplanets orbiting very nearby stars would come within reach if they existed
[38].

Microlensing: Large ground-based networks of dedicated telescopes continue to
identify and monitor microlensing events and give access to a unique part of the
exoplanet mass-separation parameter space as, in principle, they can constrain the
occurrence rate of planets as a function of their mass (down to Super-Earths) out to
separations of around 10 AU (e.g., [53]). There is a strong detection bias towards
finding planets around M-stars. The number of detections is still modest, compared to
RV and transit searches, and hence the uncertainties are large, but in order to map out
the exoplanet population – in a statistical sense – microlensing is indispensable. A
drawback is that the majority of the events are located too far away from the Sun for
any follow-up observations to be feasible.

3.2 Expected developments in space

Both ESA and NASA are preparing to launch a suite of missions dedicated or related to
exoplanet science in the coming 10–20 years that will join other already ongoing
exoplanet missions (see Figs. 7 and 8). In addition to the dedicated exoplanet missions
described below, ESA’s Gaia mission will reveal thousands of exoplanets based on the
astrometric motion of their host stars providing a rich dataset for exoplanet population

6 https://www.eso.org/public/news/eso1911/
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studies and targets for future imaging studies from ground and space [54]. Whether
Gaia can reveal Super-Earth exoplanets around some very nearby stars depends on the

Fig. 7 Adopted space missions related to exoplanet science from ESA. Image credit: ESA; https://sci.esa.int/s/
w7gy4Yw (accessed July 4, 2019)

Fig. 8 Space missions related to exoplanet science from NASA including potential future missions that are
part of the current Decadal Survey and also an MIR interferometer as discussed here. Image credit:
NASA/JPL/Caltech; https: // exoplanets. Nasa. gov/ exep/ technology/ technology-overview/ (accessed July 4,
2019)
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achievable astrometric accuracy at the end of the mission and remains to be seen. Not
listed is ESA’s EUCLID mission, which, while its primary mission is not exoplanet
science, will deliver a large catalog of microlensing events, significantly extending the
statistical power of this method.

ESA: CHEOPS (Characterizing Exoplanet Satellite; [55]); launched in December
2019, is the first ESA S-class science mission with the goal of measuring the size of
known transiting planets with high accuracy and searching for transit signals of well-
selected exoplanets initially discovered with the RV technique. In the mid 2020s,
PLATO (Planetary Transits and Oscillations of stars; [56]) will follow as the third
M-class mission in ESA’s Cosmic Vision Program. Similar to Kepler, albeit targeting
brighter stars with higher precision and longer time baseline, PLATO will uncover
hundreds of new Earth-sized exoplanets and provide unprecedented constraints on the
occurrence rate of terrestrial planets in the habitable zone of Solar-type stars. Ariel
(Atmospheric Remote sensing Infrared Exoplanet Large survey mission; [57]), another
M-class exoplanet mission from ESA, will follow in 2028. Ariel will provide trans-
mission and secondary eclipse measurements for hundreds of (mostly transiting)
exoplanets at visible and NIR wavelengths allowing investigations of the atmospheric
composition of a large, well-defined and diverse sample of known exoplanets. The vast
majority of Ariel’s targets will be warm and hot transiting gas giants and Neptunes.
Some Super-Earths may also be within reach but studying the atmospheres of temper-
ate terrestrial exoplanets similar to Earth is beyond Ariel’s scope.

NASA: The currently operating missions Hubble, Spitzer, and the recently retired
Kepler/K2 have revolutionized our understanding of exoplanet abundance and diversity
through discovering and characterizing transiting systems. TESS launched successfully
in 2018 and will bring another step forward in our understanding of exoplanet
occurrence rates, especially around bright, nearby stars. Recently, NASA decided to
extend the nominal 2-year mission lifetime by at least another 2 years significantly
increasing TESS’ discovery space.7 JWST (planned for a launch in 2021) will include
the capability to perform infrared transit and eclipse spectroscopy of exoplanets as well
as phase curve measurements (e.g., [58]). The investigation of small planets orbiting
close-to or within the habitable zone of their host stars will remain very challenging and
time-demanding, though (e.g., [59–61]). The Roman Space Telescope (previously
known as WFIRST) is planned for launch in the mid 2020s with a high-contrast
coronagraph instrument (CGI). It will allow the direct detection of a few known giant
exoplanets that were discovered by indirect techniques and perform an essential
technology demonstration for future missions. A starshade could be launched to
rendezvous with Roman, which would enable direct imaging of a few Earth-like
exoplanets (pending recommendations of the 2020 Decadal Survey). Furthermore,
the primary mission of Roman will, similar to EUCLID, deliver a wealth of
microlensing events. If recommended, large missions like LUVOIR (Large UV/Opti-
cal/IR Surveyor) and HabEx (Habitable Exoplanet Observatory Mission) will be
capable of directly imaging and spectrally characterizing up to a few tens of Earth-
like exoplanets in reflected light ([27], see also the White Paper by Snellen et al.). They
may search for the spectral signature of gases like water vapor and oxygen (see, Fig. 3;
[12]). The Origins Space Telescope (OST) plans to develop the capability to search for

7 https://science.nasa.gov/astrophysics/2019-senior-review-operating-missions
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biosignature gases in the atmosphere of rocky exoplanets transiting M dwarfs. Any of
these latter missions could be capable of discovering the first indications for signs of
life on a nearby terrestrial exoplanet. However, they are all part of NASA’s ongoing
Decadal Survey and none of the missions is approved yet.

3.3 Implications for atmospheric studies of terrestrial exoplanets

All of the currently adopted ground- or space-based projects and missions have exciting
and challenging scientific objectives that will deliver important results in various areas
of exoplanet research. However, none of them will enable the science proposed in this
White Paper. JWST may be able to check for the existence of an atmosphere around a
couple of nearby, terrestrial (transiting) exoplanets; a handful of terrestrial exoplanets
may be also within reach of the ELTs for basic atmospheric characterization. As
summarized on ESA’s web-pages: “With this suite of space telescopes launching
within the next decade, we can expect to come closer to finding Earth 2.0”.8 However,
we will not have the means to find and characterize an Earth 2.0. Only a large and
focused space mission offers the potential to do that and – at the same time – will allow
us to statistically investigate the expected compositional diversity of terrestrial
exoplanet atmospheres.

4 Challenges ahead

Concepts for a space-based nulling interferometer already existed more than a decade
ago, but technical challenges paired with uncertainties related to the scientific yield of
such a mission – the occurrence rate of small exoplanets was unknown – led to the
cancellation of the projects. Since then, progress has been made in key areas, as we will
detail in the following, but additional coordinated efforts will be needed to develop and
space-qualify some components and technologies. Pushing the boundaries of what is
technically possible always requires a substantial amount of investment, but only then
scientific breakthrough results in (astro-)physics, such as the detection of gravitational
waves (e.g., [62]) or the first image of a black hole [63], can be achieved. We picked
these two examples on purpose because both of them relied on interferometric mea-
surement techniques. We note that also ESA’s LISA mission, bound to revolutionize
our understanding of the Universe using gravitational waves, will apply interferometric
measurements between free-flying spacecraft.

4.1 Technology challenges and recent progress

In recent years the field of high-precision ground-based interferometry has seen
significant progress both in Europe and the United States. In particular Europe has
gained a strong expertise in the field of fringe sensing, tracking, and stabilization with
the operation of the Very Large Telescope Interferometer (VLTI). This maturity
contributed to the first direct observation of an exoplanet with long-baseline optical
interferometry, providing record-breaking precision on the astrometry and spectrum of

8 http://sci.esa.int/exoplanets/60657-the-future-of-exoplanet-research/
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any directly imaged planet to date [64]. In parallel, new data reduction and observing
techniques have enabled unparalleled interferometric contrasts on US-based nulling
interferometers [65, 66].

In addition to these developments, most technologies required to fly a space-based
nulling interferometer have reached a Technology Readiness Level (TRL) ≥5, which
means that the components have been tested and validated in a relevant environment
(see, e.g., [67], for a recent review). In particular, key technologies that were considered
immature in 2007, when most Darwin/TPF-I activities stopped, have now been dem-
onstrated on test-benches (e.g., deep nulling beam combination) or will soon be
demonstrated in space (e.g., formation flying). Significant efforts related to effective
starlight suppression culminated in laboratory demonstrations mainly at the Jet Propul-
sion Laboratory (JPL) in the US. Work with the “Adaptive Nuller” at room temperature
indicated that MIR nulls of 10−5 are achievable with a bandwidth of 34% and a mean
wavelength of 10 μm (left panel in Fig. 9; [68]). The “Planet detection testbed”,
developed in parallel, demonstrated the main components of a high performance four
beam nulling interferometer at a level matching that needed for a space mission [69]. At
10 μm, with 10% bandwidth, it has achieved a null-depth of 8 × 10−6, and a total
starlight suppression of 10−8 after post-processing; the Earth-Sun contrast at 10 μm is of
the order 10−7.

Handling the high degree of autonomy necessary for free-flying or formation flying
missions of close-by elements in space is a complex endeavor. This is an active field of
research, with continuous progress in estimation and control algorithms, and in ways to
internally calibrate the local tie from the metrology to the scientific measurement
systems (e.g., [70], and references therein). An additional key milestone for formation
flying technology was the space-based demonstration by the PRISMA mission [71].
PRISMA demonstrated a sub-cm positioning accuracy between two spacecraft, mainly
limited by the metrology system (GPS and radio frequency ranging). The launch of
ESA’s PROBA-3 mission (right panel in Fig. 9), currently scheduled for 2023, will
mark the next step in formation flying. Its two satellites will maintain formation to
millimeter and arc second precision at distances of 150 m or more autonomously, i.e.,
without relying on guidance from the ground. This separation is of the same order as
the one needed for a space-based nulling interferometer (see above) and the formation
flying precision exceeds even the requirements (cf. [67]).

Fig. 9 Left: 6-h measurement of the null-depth achieved at 10 μm wavelength with the “Adaptive Nuller” at
JPL [68]. Right: Artist impression of ESA’s PROBA 3 spacecraft, the first mission to demonstrate autono-
mous precision formation flying (Image credit: ESA - P. Carril, 2013)
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4.2 Required technology development

As mentioned above, the science described here will likely require an L-class mission
and cost will be a key driver eventually. Hence, ideally, an ESA-supported technology
development program should be set up that supports industrial partners and academic
institutions in.

(1) identifying synergies with other planned or ongoing missions, leveraging the
heritage of past (cryogenic / MIR) missions and investigating new approaches to limit
major cost drivers during development and implementation of the new mission, and in.

(2) further pushing the readiness and availability of certain required key
technologies.

The general goal of cost reduction ensures that the total mission budget fits
comfortably in the financial envelope of an L-class mission. Given that first mission
concepts were already present 15–20 years ago and that significant further progress has
been made ever since in various areas (see above), new concept studies would not have
to start from scratch and could focus on identifying those areas where learnings from
other missions or new developments and technologies would yield potential cost
savings without jeopardizing the mission’s scientific objectives.

In addition, specific areas, where additional technology development would be
required, are the following: To further push starlight suppression technology, the
next step would be to reproduce the US experiments mentioned above, but under
cryogenic conditions and with flux levels similar to those expected in space. The
Laboratory for Astronomical Instrumentation at ETH Zurich9 is currently develop-
ing designs for possible experimental setups. This will likely include the successful
validation of cryogenic spatial filters that can provide the necessary wave-front
control performance from 3 μm to around 20 μm and the implementation of a
cryogenic deformable mirror [72, 73]. The use of newly available concepts of
single-mode fibers as cryogenic spatial filters, including commercial solutions
(e.g., classes of photonic crystal fibers, low-loss hollow core fibers), should be
investigated in different ranges of the MIR spectrum because of their improved
throughput across the spectral range of interest (e.g., [74, 75]). Furthermore,
integrated optics devices for the MIR wavelength regime could significantly reduce
the complexity of the instrument if they reach the appropriate performance level.
Recent developments seem promising (e.g., [76–78]), but more work is needed. We
also expect that dedicated developments will be required in the field of MIR
detectors, although the JWST legacy will be particularly useful in this context.
However, also Mercury-Cadmium-Telluride (MCT) detectors seem to push towards
longer wavelengths [79] and it remains to be seen if this technology could reach out
to at least ∼17 μm to cover the important CO2 band at 15 μm (Fig. 1).

4.3 Astrophysical challenges

A key factor impacting the time required to detect an “Earth-like” exoplanet at MIR
wavelengths will be the level of thermal emission arising from small grains in exo-

9 https://quanz-group.ethz.ch/research/instrumentation.html
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zodiacal dust belts around the target star. This emission would provide extra thermal
background noise possibly leading to an increase in observing time for a given target
and – in the extreme case – to an extension of the overall mission search phase. For the
vast majority of stars within the immediate vicinity of the Sun (< 15–20 pc) it is not
known if they harbor such belts and – if so – what their level of thermal emission in the
MIR range is. The NASA funded HOSTS survey, carried out with the Large Binocular
Telescope Interferometer (LBTI), provides some new statistical results on the occur-
rence rate of exo-zodiacal dust, indicating that the median level for Sun-like stars
amounts to 4.5+7.5–1.5 times the level of the zodiacal light in the Solar System [80,
81]. This work has shown that for a majority of systems the dust levels can be
expected to be low enough to enable the detection of terrestrial exoplanets through
MIR interferometry. Ideally, however, a systematic observing program should be
carried out to investigate all potential target stars of a future exoplanet imaging
space mission including stars located in the Southern hemisphere that are
inaccessible with the LBTI (see, e.g., the Hi-5 project on the VLTI; [82]). In
addition to the MIR flux levels of potential dust belts also their orientation /
geometry would be good to know as this prior information can render the
exoplanet search more efficient (e.g., [83]).

Furthermore, to minimize the time devoted to an initial search phase for
detecting a sufficiently large sample of terrestrial exoplanets for in-depth atmo-
spheric characterization, current efforts to find such planets beforehand – from
the ground or from space – need to be continued. The yield estimate shown in
Fig. 6 assumes that the planet occurrence rates detected by the Kepler mission
are also applicable for exoplanets around stars in the Solar neighborhood. As
shown in Fig. 10, close to 20 small exoplanets within 15 pc are already known
that lie within the empirical habitable zone. Due to detection biases of current
surveys such planets are preferably found around cooler, i.e., smaller and lower
mass, M-stars. Not all of these planets will be rocky (the transition between
rocky and envelope-dominated exoplanets, in terms of planet mass, is expected
to occur roughly around (2.0 ± 0.7) M⊕; [11]) and some orbit too close around
their host star so that even an MIR nulling interferometer, with the baselines
and resulting spatial resolution as assumed above, could not directly detect them.
However, these numbers show that planets orbiting in the empirical zone appear to
be ubiquitous in the Solar neighborhood. We remind the reader that there are of
order 900 GKM main-sequence stars within 15 pc from the Sun (see, Fig. 5),
many of which have not yet been searched for (terrestrial) exoplanets. Recent
estimates for η⊕, i.e., the fraction of stars with terrestrial planets located within the
habitable zone, amount to roughly 0.2–0.3 for solar type stars and possibly even
higher values for M-stars (e.g., [16]). New, dedicated RV projects specifically
targeting exoplanets close-to and in the habitable zone around nearby G- and K-
type stars (such as, e.g., EXPRES10 or HARPS311) would be perfectly comple-
mentary to ongoing projects focusing on low-mass stars. Combined they will not
only provide targets for a future exoplanet imaging space mission, but also crucial
constraints on the planets’ masses.

10 http://exoplanets.astro.yale.edu/instrumentation/expres.php
11 http://www.terrahunting.org/index.html
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5 Conclusions

In this White Paper we have argued that a large space-based mission designed
to detect and investigate thermal emission spectra of terrestrial exoplanets in the
MIR wavelength range provides unique scientific potential in order to (1)
search for signatures in their atmospheres that indicate biological activity, (2)
assess their ability to provide conditions for life as we know it, and (3)
investigate their expected atmospheric diversity. Such a mission would surpass
the capabilities of other approaches. While NASA might be focusing on large
missions that aim to detect terrestrial planets in reflected light, ESA has the
opportunity to take leadership and spearhead the development of a large MIR
exoplanet mission within the scope of the “Voyage 2050” long-term plan
establishing Europe at the forefront of exoplanet science for decades to come.
Given the ambitious science goals of such a mission, additional international
partners might be interested in participating and contributing to a roadmap that,
in the long run, leads to a successful implementation. A new, dedicated
development program funded by ESA to help reduce development and imple-
mentation cost and further push some of the required key technologies would
be a first important step in this direction.

Ultimately, a large MIR exoplanet imaging mission will be needed to help answer
one of mankind’s most fundamental questions: “How unique is our Earth?”
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Fig. 10 All known exoplanets and additional unpublished candidates from the CARMENES project within 15
pc from the Sun and with minimum masses <3 M⊕ (left panel) and < 10 M⊕ (right panel) located within the
empirical habitable zone of their host stars (boundaries indicated by the red and blue line; see section 1.2.2 for
details). The x-axis shows the stellar insolation received by the exoplanets normalized to Earth’s insolation.
The y-axis shows the effective temperature of the host stars. Blue circles are planets detected via transit
observations, black triangles are planets detected via RV measurements, and the unpublished RV candidates
are shown in red triangles. The locations of Venus, Earth and Mars are shown as black circles
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