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ABSTRACT

We present a method of selecting quasars up to redshift ≈ 6 with random forests, a supervised

machine learning method, applied to Pan-STARRS1 and WISE data. We find that, thanks to the

increasing set of known quasars we can assemble a training set that enables supervised machine learning

algorithms to become a competitive alternative to other methods up to this redshift. We present a

candidate set for the redshift range 4.8 to 6.3 which includes the region around z = 5.5 where quasars are

difficult to select due to photometric similarity to red and brown dwarfs. We demonstrate that under

our survey restrictions we can reach a high completeness (66 ± 7% below redshift 5.6 / 83+6
−9% above

redshift 5.6) while maintaining a high selection efficiency (78+10
−8 % / 94+5

−8%). Our selection efficiency

is estimated via a novel method based on the different distributions of quasars and contaminants on

the sky. The final catalog of 515 candidates includes 225 known quasars. We predict the candidate

catalog to contain additional 148+41
−33 new quasars below redshift 5.6 and 45+5

−8 above and make the

catalog publicly available. Spectroscopic follow-up observations of 37 candidates lead us to discover 20

new high redshift quasars (18 at 4.6 ≤ z ≤ 5.5, 2 z ∼ 5.7). These observations are consistent with our

predictions on efficiency. We argue that random forests can lead to higher completeness because our

candidate set contains a number of objects that would be rejected by common color cuts, including

one of the newly discovered redshift 5.7 quasars.

Keywords: galaxies: active – galaxies: high-redshift – galaxies: nuclei – quasars: general - quasars:

search

1. INTRODUCTION

Large samples of luminous high redshift quasars not

only allow us to study the onset of black hole growth

and supermassive black hole formation (Volonteri 2012).

They are essential probes to study the evolution of the

intergalactic medium when the universe was only around

a billion years old. For example, measurements of the

Gunn-Peterson trough in spectra of quasars at z ≈ 6

indicate a rapid increase in the fraction of neutral Hy-

∗ ESO Fellow

drogen between redshift 5.5 and 6, putting strong con-

straints on the end of cosmic re-ionization (Gunn & Pe-

terson 1965; Becker et al. 2001; Fan et al. 2006; McGreer

et al. 2015).

The Quasar Luminosity Function (QLF) traces the

spatial density of quasars throughout cosmic time and

helps us to understand the evolution of supermassive

black holes (Schmidt 1968; Boyle et al. 2000; Croom

et al. 2004; Ross et al. 2013). At high redshift, small

sample sizes lead to large uncertainties in the determina-

tion of the exact shape and evolution of the QLF (Jiang

et al. 2008; Venemans et al. 2013; Kashikawa et al. 2015;
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Matsuoka et al. 2018a; Wang et al. 2019; Yang et al.

2019). Nonetheless, current results still allow for physi-

cal conclusions: for example, quasars are likely not the

main producers of re-ionization photons (Willott et al.

2010; McGreer et al. 2013). The QLF can also be used

to estimate the number of quasars future surveys will be

able to find (e.g. Willott et al. 2010).

All of these studies rely on well-defined spectroscopi-

cally confirmed quasar samples. Therefore, we must be

able to identify and confirm high redshift quasars with a

well-defined selection function and maximize efficiency

and completeness to best use limited observational re-

sources.

To date around 8 ·105 quasars have been spectroscopi-

cally identified through a wide range of efforts (Schmidt

1963; Hewett et al. 1995; Boyle et al. 2000; Richards

et al. 2002; Dawson et al. 2013, 2016; Lyke et al. 2020).

While most of them are found at low to intermediate

redshifts there have been several specialized efforts to

find high redshift quasars in large-area surveys. For

this work, we define high redshift to mean z > 4.7.

This class of high redshift quasars has now thousands

of known objects with contributions among others from

Fan et al. (2000), McGreer et al. (2013), Wang et al.

(2016), Bañados et al. (2016), Jiang et al. (2016), Yang

et al. (2017), Matsuoka et al. (2018b), and Yang et al.

(2019).

At redshifts above z = 4.7 the Lyman-α emission

line is significantly redshifted into the i band and even

redder wavelengths. Furthermore, the blue-ward flux

is absorbed by the intervening hydrogen creating the

so-called Lyman break in the spectrum. It is there-

fore essential to use infrared photometry to constrain

the quasar continuum. Combining infrared with optical

photometry then enables one to detect the Lyman break

differentiating these quasars further from other objects.

Many selection methods for high redshift quasars

make use of the broadband colors and magnitudes of

large photometric catalogs and combine them with infor-

mation about the morphology, time variability, X-ray or

radio detections, position and proper motion (Bañados

et al. 2016; Palanque-Delabrouille et al. 2011; Assef et al.

2011; Koz lowski et al. 2019; Bañados et al. 2015, 2018;

McGreer et al. 2009; Bailer-Jones et al. 2019). Sophis-

ticated color cuts define selection regions in color-color

space to separate quasar and contaminant distributions

(e.g. Richards et al. 2002). This leads to well-defined

selections that are easily reproducible and can be jus-

tified with physical reasoning (e.g. the redshift evolu-

tion of the Lyman-α emission through the broadband

filters). However, color cuts might not make use of all

the available information by ignoring correlations in the

full high dimensional color space. Furthermore, they

represent hard cuts potentially missing quasars scatter-

ing out of the selection regions, which could be remedied

by a more probabilistic approach (e.g. Mortlock et al.

2012). On the other hand, the majority of high redshift

quasars have been found by using color selection criteria

(Bañados et al. 2016; Yang et al. 2017). Often, simula-

tions of high redshift quasars were used to inform these

color cuts (McGreer et al. 2013).

Another method to exploit the photometric infor-

mation of large surveys is spectral energy distribution

(SED) fitting. The best fits to templates of appropri-

ately red-shifted quasar spectra are often compared with

best fits of their main contaminants (Reed et al. 2017).

This method relies on a correct understanding of the

evolution of quasars and also the most common con-

taminants but makes effective use of the photometric

information.

Machine learning methods have been successfully em-

ployed to select quasars up to intermediate redshift

z ∼4.7 (Richards et al. 2009; Bovy et al. 2011; Jin

et al. 2019; Khramtsov et al. 2019a). From a range

of available methods, we adopt random forests, a su-

pervised machine learning approach that has been used

for quasar selection successfully (Schindler et al. 2017;

Nakoneczny et al. 2019; Yèche et al. 2020). We choose

random forests for their robustness and fast training but

expect that we could achieve comparable results with

other common approaches. In recent comparisons for

quasar searches, random forest achieved similar results

as Support Vector Machines, XGBoost, and Artificial

Neural Networks (Schindler et al. 2017; Khramtsov et al.

2019b; Nakoneczny et al. 2020). Our main focus will be

to demonstrate that we can successfully extend a super-

vised machine learning approach to the high-redshift do-

main even though the training samples are significantly

smaller than at lower redshift.

In the following, we will demonstrate that there are

enough known objects in this class to effectively train

a random forest algorithm to select these quasars using

photometric data from the Panoramic Survey Telescope

and Rapid Response System (Pan-STARRS; Chambers

et al. 2016) and the Wide-field Infrared Survey Explorer

(WISE; Wright et al. 2010) up to redshifts of 6 while

only missing objects in a relatively small range around

z ≈ 5.4. In Section 2 we discuss the catalog data we

use and how we assemble our training set. In Section 3

we introduce the random forest selection approach and

evaluate it via cross-validation. In Section 4 we discuss

a method to predict the efficiency of our selection and

in Section 5 we present the resulting high-z quasar se-

lection. In Section 6 we present the results of the ob-
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servation of some of our candidates. These include the

discovery of 20 new high-z quasars. We discuss our re-

sults and summarize our findings in Section 7.

Unless otherwise noted all magnitudes are given in

the AB system and are already corrected for galactic

extinction using the Schlegel et al. (1998) dust map

with the updated filter corrections from Schlafly &

Finkbeiner (2011)1. Furthermore we use a standard

flat ΛCDM cosmology with ΩΛ = 0.7, Ωm = 0.3 and

H0 = 70 km s−1Mpc−1.

2. DATA PREPARATION

2.1. Catalog data

The data we are mining for quasars is a cross-match

between the publicly available Pan-STARRS DR1 de-

scribed in Chambers et al. (2016) and ALLWISE (Cutri

& et al. 2014) catalogs. The ALLWISE survey is a re-

lease of the aggregated data from WISE and its extended

mission NEOWISE (Mainzer et al. 2011) up until 2013.

From Pan-STARRS we use the five stacked PSF mag-

nitudes (gPSF, rPSF, iPSF, zPSF and yPSF), stacked aper-

ture magnitude in the z band (zAPERTURE), mean posi-

tion and the objectinfoFlag. From WISE we use the 3.4

and 4.6µm broadband magnitudes (W1, W2), their sig-

nal to noise ratio (W1s/n,W2s/n), position, the active

deblending flag (na) and the number of PSF components

used for the PSF fitting (nb).

We use the python framework Large Survey Database

(Juric 2012) to cross-match the two catalogs applying

the following selection criteria:

14 < zPSF ≤ 20.5 (1)

yPSF is not None (2)

−0.3 ≤ zPSF − zAPERTURE ≤ 0.3 (3)

galactic latitude > 20◦ or < −20◦ (4)

objinfoFlag has GOOD and GOOD STACK (5)

2.′′0 match in ALLWISE (6)

W1s/n ≥ 5 (7)

W2s/n ≥ 3 (8)

na = 0, nb = 1 (9)

The resulting catalog has around 72 million objects. The

z band is used to select the brightness range from 14 to

20.5 in magnitude. Since the brightest quasar at z ≥ 4.7

in our training data (see Section 2.2) has a z band mag-

nitude of zPSF = 17.3, there is only a remote chance to

1 The filter corrections for WISE W1 and W2 are ex-
trapolated values taken from IRSA, see for example
irsa.ipac.caltech.edu/workspace/TMP toDGRk 31798/

miss quasar lenses by adopting a bright limit for our se-

lection. We also choose a faint limiting magnitude on the

z band that is well above the detection limit to ensure

the reliability of the photometry. The 5 sigma detection

limit for the Pan-STARRS survey in the stacked z band

for point sources is 22.3 mag in AB (see Table 11, Cham-

bers et al. 2016). They also showed that in the z band

the 98% source completeness limit is fainter than 20.5

mag on most of the sky, especially away from the galac-

tic plane (see Figure 17, Chambers et al. 2016). The

criteria on the z band automatically remove all objects

with a missing z band detection. We further require the

y band not to be ”None”. However, the other bands

of Pan-STARRS (g, r and i) can be missing because we

expect the targeted high redshift quasars to have very

little flux in these bluer bands.

We use the difference of the PSF and aperture mag-

nitude in the z band to actively exclude sources with

extended morphologies from our selection. The cutoff

of zPSF − zAPERTURE = ±0.3 is informed by Fig. 3 in

Bañados et al. (2016), where the magnitude difference

is compared for stars, quasars, and galaxies. This cut

is designed to effectively remove galaxies from our se-

lection, however, it may also reduce our sensitivity to

lensed quasars. In our final candidate selection (see Sec-

tion 5) there are only a few remaining galaxies that were

removed during visual selection, so this approach is suf-

ficient for our purpose.

We furthermore restrict our selection to Galactic lat-

itudes of |b| ≥ 20◦, where the contamination by galac-

tic stars decreases significantly. We require the pho-

tometry to fulfill the GOOD and GOOD STACK flags in the

objectinfoFlag from Pan-STARRS. These are quality

flags provided by Pan-STARRS to indicate that the ob-

ject has a good-quality measurement in the data and a

good-quality object in the stack (> 1 good stack mea-

surement). We matched our objects with ALLWISE

with a radius of 2.′′0 using only the closest match. We

require that W1 and W2 are detected with a signal-

to-noise of 5 and 3 respectively. We exclude obviously

blended sources via the active deblending flag (na) and

the number of PSF components used for the PSF fitting

(nb) from WISE. These WISE flags ensure more reliable

photometry but we note that they reduce our sensitiv-

ity to lensed quasars and may remove some quasars with

close-by sources.

To determine which survey limits our quasar selection

we consider the set of Additional High Redshift Quasars,

discussed in the next section. Of a total of 1001 quasars,

936 have a Pan-STARRS match, 657 full-fill conditions

(1-3) mostly limited by the brightness cut in the z band.

https://irsa.ipac.caltech.edu/workspace/TMP_toDGRk_31798/DUST/M_31.v0001/extinction.html
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We contrast this with 710 objects that have an ALL-

WISE match and full-fill ALLWISE photometry condi-

tions (6,7), 647 additionally full-fill condition (8). Both

the Pan-STARRS and ALLWISE photometry require-

ments remove a similar fraction of known quasars and

the remaining objects have a large overlap: 565 objects

full-fill conditions (1-3,6-8). This shows that our require-

ments on both surveys are well balanced for our targeted

class. To use fainter objects in the Pan-STARRS data

we would also require deeper infrared data. We note

that in Table 2 we only list additional quasars that are

not already in the other set.

2.2. Training data

Random forests are a supervised machine learning

algorithm and therefore heavily rely on representative

training sets. It is essential to assemble a training set

consisting of spectroscopically identified objects repre-

senting the wide range of different objects in our catalog

data. For a reliable selection of high redshift quasars at

z = 4.7−6 we need to make sure to construct a represen-

tative training set. This means that we need to include

all potential contaminants that populate the same color

space, like M-, L-, and T-dwarfs. We do not include

galaxies in our training set since we already removed

extended sources from our data set (see selection crite-

rion 3). The training classes used in our random forest

selection are listed in Table 1.

—— stars —— ——————– quasars ——————–

A F G K M L T vlow-z low-z mid-z high-z

(0, 1.5] (1.5, 3.5] (3.5, 4.7] z > 4.7

Table 1. Classes used for the random forest classification:
A to T type stars and 4 redshift bins for quasars (redshift
ranges given below the classes). The goal is to find objects
in the high-z bin.

We do not include O and B type stars as they are far

from high redshift quasars in color space. These classes

are irrelevant since they likely get assigned the label of

the most similar star class, but are not confused with

our targeted quasars. We exclude the Y type brown

dwarfs since we do not have many objects of that class

and they are also not relevant contaminants for quasars

with z ∼ 5 − 6. Similarly, there are classes of objects

that are underrepresented in our training set like low

redshift BAL quasars which are known contaminants for

high redshift quasars.

We built our training set with the spectroscopic train-

ing set from Schindler et al. (2019). It is based on the

spectroscopically confirmed quasars from the Sloan Dig-

# of stars and quasars

Description A-K M L,T z ≤ 4.7 z > 4.7

Schindler+2019 2.0E5 5.8E4 1145 1.6E5 129

Dwarfs - 34 436 - -

Additional High
Redshift Quasars

- - - 137 337

Table 2. The data for the training set full-filling our photo-
metric restrictions. The main part is adapted from Schindler
et al. (2019) based on SDSS data. The additional red and
brown dwarfs are from the Dwarf Archive and the Additional
High Redshift Quasars are an assemblage of recent surveys.

0 1 2 3 4 5 6 7
Redshift

16

18

20

22

24

z m
ag

ni
tu

de

Figure 1. Dust corrected Pan-STARRS PSF magnitude in
the z band vs redshift for all known quasars in the training
data. In grey the Schindler et al. (2019) dataset with the
densest part shown as density contours. In black the addi-
tional quasars from high redshift surveys. We note that there
is an under density of known quasars around redshift 5.5.

ital Sky Survey (SDSS) DR7 and DR12 quasar catalogs

as well as the spectroscopically confirmed stars from

SDSS DR 13. The SDSS data was matched to Pan-

STARRS within 3.′′98, using only the closest match. For

a full discussion of the data processing, see the refer-

enced paper. We take only the Pan-STARRS position,

classification as well as the redshift for the quasars and

reprocess the rest of the data for internal consistency.

We expand this training set with more objects in the rel-

evant color space region. To increase the number of red

and brown dwarfs the Dwarf Archive2 is used. We match

2 dwarfarchives.org/

http://dwarfarchives.org/
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L - Stars
High-z quasar candidates
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Figure 2. Summary plot highlighting the color information we use to separate stars and quasars as well as to estimate the
redshift of quasar candidates. We show color-color plots for the Pan-STARRS and WISE bands we use. All magnitudes are in
AB and extinction corrected. We show ellipses for each stellar class containing about 95% of the training set. The T class is
not shown as its ellipse would be too large. The quasar track in black shows the redshift evolution of quasar in color space. To
find the track we averaged quasar colors in our training set binned in steps of ∆z = 0.1. Finally, as grey pluses, we show the
high-z candidate set that we publish with this paper and describe in Section 5. It contains 515 promising quasar candidates at
high redshift. Candidates that are missing detections in the g, r or i bands are not shown.

their positions to Pan-STARRS within 2.′′0. This should

be sufficient for our purposes but we acknowledge that

a more careful cross-match considering proper motion

would increase the number of dwarfs further. To sup-

plement our training set with additional high-z quasars,

we added a comprehensive list of quasars known as of

mid-2018. Again we cross-match the position to Pan-

STARRS within 2.′′0. The major sources are Wang et al.

(2016), Bañados et al. (2016), Jiang et al. (2016), Mc-

Greer et al. (2013), Matsuoka et al. (2018b), Yang et al.

(2017), and the preliminary results of Yang et al. (2019)

as of mid 2018.

For each of our three datasets, we download the Pan-

STARRS data from MAST using the CasJobs3 inter-

face. We cross-match with ALLWISE with a radius of

3 casjobs.sdss.org/CasJobs

2.′′0 using IRSA4 and only using the closest match. To

include as many training objects as possible, we omit

some of our photometric selection criteria used for the

full catalog data. The classification information added

outweighs the downside of them not being fully repre-

sentative of the catalog data we collected. We require

conditions (2, 6-7) as well as a detection in the Pan-

STARRS z and WISE W2 bands which means a value

entry in the catalog. Finally, we remove duplicates be-

tween our three datasets based on the Pan-STARRS Ob-

jID.

In total the Schindler et al. (2019) dataset gives us

259,240 stars and 164,318 quasars that full-fill our pho-

tometric requirements. In addition to the SDSS DR7

and DR12 quasars, we add a total of 474 additional

quasars from high redshift surveys. We also add an addi-

4 irsa.ipac.caltech.edu/applications/Gator/

http://casjobs.sdss.org/CasJobs
https://irsa.ipac.caltech.edu/applications/Gator/
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tional 470 dwarfs from the Dwarf Archive. Table 2 lists

the different sources and classifications for the training

set with the number of usable objects they add. In Fig. 1

we show a plot of the dust corrected z band magnitude

from Pan-STARRS vs redshift for all training quasars.

Outliers beyond magnitude 25 are cut off. At the high

redshift end, the additional quasars from recent surveys

significantly extend the training set. We note that there

is a visible under-density of known quasars around red-

shift 5.5. At this redshift quasars are challenging to find

as their colors in common bands are very similar to those

of M stars (Yang et al. 2019).

In Fig. 2 we show color-color plots for the objects in

our training set. This highlights that the Pan-STARRS

and WISE bands contain information that will allow us

to differentiate the classes listed in Table 1. We note

that this visualization emphasizes how the average color

information of quasars differs from stars and evolves

with redshift, but hides the complexity of applying this

to real data. The 5% of stars with larger scatter than the

ellipses shown far outnumber the high-z quasars and the

quasars themselves are also scattered. To reliably clas-

sify new objects we need the full high dimensional color

information.

2.3. Data pre-processing

We correct both our catalog data and training set for

galactic extinction based on the dust map of Schlegel

et al. (1998), using the sfdmap5 python package. The

Vega magnitudes in the ALLWISE catalog are con-

verted to AB magnitudes using the constants W1AB −
W1Vega = 2.699 and W2AB−W2Vega = 3.339 (Sec IV

4h, Cutri et al. 2012). All magnitudes are then converted

to flux density in Jansky units. Our catalog restrictions

allow objects with non-detections in the g, r and i bands

to be considered. However, the random forest method
can not handle null values. We work around this by

replacing the missing values with a fixed value that is

fainter than the detection limit of the catalog. This way

the resulting flux density ratios will be close to the true

values. We choose 1e-10 Jy or a magnitude of 33.90 in

the AB system as the replacement value. We replace all

missing g, r and i band measurements with this value.

For our analysis we consider the flux densities Fg, Fr,

Fi, Fz, Fy, FW1, FW2 and flux density ratios Fg/Fr,

Fr/Fi, Fi/Fz, Fz/Fy, Fy/FW1, FW1/FW2 as features. In

Section 3.3 we choose a subset of these based on their

individual information contribution.

3. RANDOM FOREST SELECTION

5 github.com/kbarbary/sfdmap

In this section, we present our approach of selecting

candidates with random forests, a popular method for

supervised machine learning (Ho 1995; Breiman 2001).

We first use a random forest classifier to separate our

catalog data into the classes from Table 1 and then a

random forest regressor to find a redshift estimate for

the most promising candidates. We briefly describe how

the algorithm works, introduce the common metrics to

evaluate the classification/regression, and then discuss

our cross-validation results.

3.1. Random Forests introduction

The random forest algorithm trains a large set of bi-

nary decision trees using a training set with a set of

features and known classes or redshift. Each binary tree

makes a prediction for the probability distribution of

classes or the expected redshift for our quasar candi-

dates. In the sci-kit learn implementation (Pedregosa

et al. 2011) adopted here, the final pseudo-probability

distribution for the classes or the expected redshift is

the average of the prediction from each tree. We decide

to use the photometric information in the form of flux

density ratios as well as the two flux densities, resulting

in k=8 features.

The binary decision trees are built from the training

set by determining the best cut along one feature axis

via a minimization problem. For the classification, we

minimize the Gini impurity
(
G := 1−∑k

i p
2
i

)
and for

the regression the sum of squared errors in redshift. This

cut will split the sample in the current node of the tree

into two subsamples, its children. The remaining objects

in each child give the probabilities for each class as their

percentage share of the leaf (pi) or the redshift estimate

through the average redshift of the objects in the child.

The tree will be developed until a stopping condition is

reached (e.g. a specified minimum sample size per child

node or the maximum depth of the tree). For a quasar

candidate, the prediction is based on the pi or average

redshift of the deepest child it belongs to.

Single decision trees are prone to overfit the training

data. Hence, a random forest uses ensembles of ran-

domly built decision trees to counteract overfitting. The

source of randomization is two-fold: 1) Individual boot-

strap samples from the training set are drawn to build

the trees. 2) Only a subset (b
√
kc in our case) of all

k features is considered to find the best split for each

internal node. This decreases the running time and re-

duces the correlation between the individual trees fur-

ther than just training on the bootstrap samples of the

training data. Otherwise, features that are strong pre-

dictors would be cut very similar for most trees and

thereby result in correlated trees. This was empirically

https://github.com/kbarbary/sfdmap
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demonstrated by Ho (1998). Correlated trees are un-

desired since the underlying assumption to be able to

average the trees is that they are independent.

One of the main advantages of random forests is that

their training is relatively fast. They can run in parallel

since the different decision trees can be calculated inde-

pendently and they scale well. A random forest with T

trees and N training objects takes O(T N logN) time to

build and can be applied in O(T logN) time.

More details about the random forest algorithm used

can be found in Bishop (2006, Chapter 14) and Ivezić

et al. (2014, Chapter 9). For this work the imple-

mentation of the random forest classifier and regres-

sor in scikit-learn (version 0.19.1) by Pedregosa et al.

(2011) for python is used. The hyper-parameters

min sample split, max depth and n estimators were

optimized for the training set using scikit-learn’s

GridSearch function. All unmentioned other hyper-

parameters are left at their default values.

3.2. Terminology

To evaluate the performance of the classification we

use the two measures recall and precision. To evalu-

ate them we use cross-validation. For this we split our

training set into two parts, train the random forest on

one part and then predict the classes for the other part.

Considering the resulting true positives (Tp), false posi-

tives (Fp) and false negatives (Fn) recall is defined as

R :=
Tp

Tp + Fn
(10)

and precision is defined as

P :=
Tp

Tp + Fp
. (11)

We are only interested in objects in the high-z class,

so we consider the objects put into this class as the pos-

itives and all others as the negatives. Each candidate is

given a probability to belong to the high-z class by the

random forest classification. We set a cut-off probability

for the high-z class to decide whether an object will be

a valid candidate in our selection. Changing this cutoff

probability allows us to increase the recall. However, in

return, this will lower the precision of our classification.

This is why we need both parameters to evaluate the

performance of the random forest fully.

We interpret the recall as an estimate of the com-

pleteness of our selection, i.e. the fraction of all high-z

quasars inherent in our photometric selection the ran-

dom forest correctly classifies. Similarly, we interpret

the precision as an upper limit of the efficiency, where

the efficiency is the fraction of the final candidates that

Feature Importance [%]

Fg/Fr 17

Fy/FW1 17

Fr/Fi 14

Fi/Fz 9

Fz/Fy 9

FW1/FW2 8

Fi 4

FW2 4

Fy 4

FW1 4

Fz 4

Fr 3

Fg 3

Table 3. To select the features we run the random forest
classification with all available flux densities and ratios. The
importance is calculated as the (normalized) total reduction
of the splitting criterion brought by that feature. We decide
to use all flux density ratios as well as Fz and FW1.

are high-z quasars. We will use the terms completeness

and upper limit on efficiency in the following and give a

justification for our interpretation in Section 3.5.

3.3. Feature selection

To determine which features to use for our analysis

we run the random forest classification with all 13 avail-

able flux densities and flux density ratios. In Table. 3

we show how much information gain each feature gives

relative to the others. We calculate these importances

as the (normalized) total reduction of the splitting cri-

terion. As visualized in Fig. 2 the different classes can

be distinguished by their colors, we see this reflected in

the feature importances: the flux density ratios lead to

the most information gain for the random forest (see

Table. 3). The flux density ratios alone however remove

the brightness information which would capture a lu-

minosity evolution for different classes. To capture the

brightness information we choose to use one flux density

per survey. Since each flux density has approximately

equal importance we choose the z and W1 bands where

our targeted quasars have the most reliable detections

in Pan-STARRS and ALLWISE. Therefore, we choose

to use all flux density ratios as well as Fz and FW1.

3.4. Class selection

Our training data is labeled with the classes given in

Table 5. It is worth investigating if reformulating the

problem as a binary problem (high-z quasar vs other)

or three class problem (high-z quasar vs other quasar

vs star) would improve our results. For each case, we
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recall [%] precision [%]

classes macro high-z macro highz

all 74 ± 5 83 ± 3 78 ± 4 89 ± 10

three 93 ± 2 79 ± 5 96 ± 4 88 ± 12

binary 87 ± 2 74 ± 5 94 ± 6 88 ± 12

Table 4. To select the number of classes to use for the
classification we compare the results when using all classes
from Table 1 to using only three classes (high-z, other quasar,
star) or binary classes (high-z or other). The macro values
for precision and recall improve for fewer classes as expected
but for the targeted high-z class there is no benefit so we will
use the full set of classes.

run a 5 fold cross-validation with our random forest.

We calculate a range of statistics summarized in Ta-

ble 4 with errors giving the standard deviation of the

5 runs. Precision and recall are calculated as defined

in Section 3.2. The ”macro” sub-column is the average

over all classes weighted equally and the ”high-z” sub-

column is the precision and recall just for our targeted

class. As we reduce the complexity of the classification

problem by using fewer classes the macro metrics should

get better since confusion between classes that we com-

bine gets ignored. This is the case: for both the binary

and three class problems the macro statistics are signif-

icantly better. However the recall and precision for the

high-z class are not getting better, in fact, the recall in

the binary case is actually lower with 1.6 sigma. We

conclude that in our analysis we do not see an improve-

ment from reducing the number of classes so we will use

the full set of classes as defined in Table 1.

3.5. Cross-validation

Under the assumption that the training sample rep-

resents the true distribution of objects on the sky and

all sources are real, cross-validation of our training sam-

ple can predict the performance of the algorithm. This

means that under the assumption that our training set

contains a representative set of quasars, our definition

of completeness is a reasonable measure for the fraction

of all findable quasars that our random forest correctly

identifies. However, we will overestimate the efficiency

of our algorithm if we measure it with the precision be-

cause the number of M stars is even more dominating on

the sky than in our training data and we are neglecting

artifacts in the Pan-STARRS+WISE dataset. This is

why we identify the precision as an upper limit for the

efficiency and will use a different approach to get a more

realistic estimate in Section 4.

Still, cross-validation lets us evaluate the strengths

and weaknesses of the algorithm. We train the random

forest classification and regression on a random subsam-

ple of 80% of the training set and apply it to the remain-

ing 20%. We can then compare the predicted class and

redshift with the true ones. By separating the data for

training and testing, cross-validation avoids biased re-

sults from overfitting the data.

The random forest classification assigns each test ob-

ject probabilities for each class. Later we can simply

select our high-z candidates by applying a threshold on

the high-z probability. First, however, we are interested

in a comparison of all classes, so the most logical choice

is to assign each object to the class with the highest

probability. In Fig. 3 (a) we show the results of the

classification on the cross-validation set in form of a

confusion matrix. The matrix depicts how many ob-

jects of the true label class on the y-axis are classified

to belong to the predicted label class on the x-axis. The

majority of objects fall into the diagonal fields, demon-

strating that our classifier assigned the correct label to

them. The confusion between different types of stars is

not concerning for our goal. Confusion between neigh-

boring redshift bins is largely the result of objects right

at the border between them and therefore also not con-

cerning. As expected the most relevant contaminants for

high-z quasars are M, L, and T dwarfs, as the random

forest classifies more than 15% of high-z quasars into

those classes. In this case, there is only one star labeled

as a high-z quasar, but the balance between complete-

ness and efficiency depends on how we define the cutoff

probability for a high-z classification. The highest prob-

ability approach chosen here, therefore, maximizes effi-

ciency for lower completeness. Since M, L and T dwarfs

far outnumber the high-z quasars on the sky, the con-

tamination will become significant at the redshift region

of the strongest overlap in color space at around z ≈ 5.4.

Since the random forest regression will predict these ob-

jects around the same redshift, we will be able to exclude
a large fraction of contaminants based on the regression

by excluding highly contaminated redshift regions. A

common approach to quantify the balance between com-

pleteness and efficiency is the ROC curve, which in our

case is an almost perfect step function. The ROC score

(area under the curve) for the high-z class vs the others

is 0.99993.

We further analyze how accurate the random forest

regression predicts the redshift for a cross-validation set

of 20%. We will differentiate two versions of the ran-

dom forest regression. First, the full regression where

we train on quasars from the full range and can predict

the redshift of any quasar. Second, the high redshift re-

gression where we only train with z > 4.5 quasars and

use it to predict the redshift of objects with class high-

z. While the former covers a larger redshift range, the
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Figure 3. (a) Confusion matrix for the random forest classification on the cross-validation set. Overall the color information
given to the random forest enables it to differentiate the classes for the majority of objects. For high-z quasars, we identify
the main contaminants as M, L and T dwarfs. The probabilities do not represent the performance of observations since the
ratio of stars to quasars is underrepresented. (b) Cross-validation results for the photometric estimate of the redshift based on
random forest regression for quasars with z ≥ 4.5. The upper plot shows a histogram of the deviation between predicted and
true redshift. The mean deviation, 0.015, is shown as an orange line. The lower plot shows the dependence on redshift as an
absolute error vs redshift plot. The length of the line indicates the redshift bin used for averaging, chosen so that the number
of objects per bin is constant.

latter provides more accurate redshift estimates for the

high-z class candidates, because low redshift outliers in

the full regression training set can skew the result to

lower redshifts.

The top of Fig. 3 (b) shows the distribution of the

difference between the predicted and true redshifts for

the high redshift regression when applied to the 20% test

set of the training data. 90% of objects have predictions

within 0.2 of the true redshift. Since the algorithm can

only find new quasars that look similar in color space

to the training set, it is to be expected that this repre-

sents the performance of observations. As we will see in

Section 6 this accuracy is consistent with test observa-

tions. It should be noted that the accuracy of our red-

shift estimate is a strong function of the redshift. This

is highlighted in Fig. 3 (b) bottom. Here we show the

absolute error of the prediction vs the true redshift. For

this, we ran the prediction multiple times with different

training set splits and then averaged the error over bins

with equal amounts of objects. One outlier around red-

shift 4.7 was removed. We expected this increase of error

with redshift because 1) there are fewer training objects

at higher redshift and 2) higher redshift quasars appear

fainter and thus have higher photometric uncertainties.

We also note that especially towards the high redshift

end the number of training and test objects becomes

very small, so overfitting and redshift gaps in the train-

ing set can lead to significant additional inaccuracy in

the redshift estimate when applying it to new data that

is not captured in our cross-validation. The total train-

ing set for the high redshift regression has 695 objects,

only 50 are above redshift 6. The full regression applied
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to the same cross-validation set of z ≥ 4.5 quasars gives

similar results, but with a bias towards lower redshifts.

In this case, only 69% of cross-validation objects have

predicted redshifts within 0.2 of the true redshift. In

addition, the mean of the predicted redshifts is too low

by δz = −0.24, because some objects are incorrectly

predicted to be very low redshift quasars. Therefore,

we decided to use the high redshift regression for our

candidate selection.

4. ESTIMATING THE SELECTION EFFICIENCY

While the random forest approach returns a reason-

able estimate for the completeness, the efficiency is over-

estimated due to the under-representation of contami-

nants in the training set. One way to deal with class

imbalance is to use priors for the different classes as

for example done in Bailer-Jones et al. (2019), however

the random forest approach we use here does not nec-

essarily produce reliable probabilities even for the case

of balanced classes which would be necessary (Olson &

Wyner 2018).

Therefore, we turn to a different approach to indepen-

dently estimate the efficiency by exploiting the position

information of our candidates which we have not used for

the random forest. When averaging over large enough

scales the distribution of stars on the sky is a function of

galactic latitude, with more stars near the galactic plane.

Quasars are more uniformly distributed over the sky, at

least when averaging relatively large areas so small scale

clustering averages out. So the idea is to estimate the

distribution of target quasars and the dominant contam-

inants along the galactic latitude. This then allows us

to estimate the efficiency by determining which combi-

nation of the two best recovers the distribution of our

candidate set.

Any model of the stellar distribution on the sky will

be dependent on the sensitivity limit of the survey and

the stellar type. Therefore, we refrain from building a

model of the stellar sky distribution but instead extract

the distribution from our catalog data. The dominant

contaminant for our targeted high-z quasars are M stars

(see Fig 3 (a)). To have enough objects we make use of

our random forest classification by taking 1 million ob-

jects that are predicted to be M stars (i.e. the M-star

class has the highest probability). We note that this

sample is not perfect and likely contains some artifacts,

residual galaxies that were missed by our morphology

cut and miss-classified quasars. Our cross-validation in

Section 3.5 has however shown that the M star classi-

fication is quite reliable making this adequate for our

purposes. This allows us to estimate the distribution of

contaminants of our selection (STARS). We model the

quasar distribution (QUASARS) by uniformly sampling

sources on a sphere, applying the same restrictions on

the sky area.

We now calculate normalized histograms (h) as a

function of galactic latitude for the candidate sample

(CAND), the uniform distribution (QUASARS) and the

M-stars (STARS) using the same bins in galactic lati-

tude. Now we assume that the distribution of quasar

candidates can be modeled as a linear combination of

the uniform distribution and the M-stars:

hCAND,i = αhQUASARS,i + (1− α)hSTARS,i (12)

The suffix i indicates the galactic latitude bins and α is

the ratio of quasars to stars in our candidate set. The ef-

ficiency of our candidate set is equivalent to the fraction

of quasars to stars in our candidate set. Therefore, de-

termining α provides a direct estimate of the efficiency

of our candidate set.

To do this, we perform a minimization algorithm to

find α. In particular, we minimize the sum of the ab-

solute differences between the left and right-hand side.

Fig. 4 shows an example from our test of the method.

For very large bin sizes there is no information content

left since any slope gets averaged out. For very small

bin sizes the quasars start to show measurable cluster-

ing, many bins of candidates are empty and the local

depth variations in the survey do not average out any-

more.

We sample a range of different bin sizes, randomly

distributed between 20 and 100 bins and determine α for

each realization. We quote the median of all determined

quasar-to-star ratios and the 16th and 84th percentiles

as the error. We implicitly assume that the estimates are

independent of each other. For our test with SDSS data

below we did not observe any concerning correlation.

Still, this error only quantifies the statistical error.

Our assumptions on the distribution of quasars and

contaminants may introduce systematic errors. We as-

sume that the contaminants are mainly M stars, ne-

glecting L and T dwarfs which might have slightly dif-

ferent distributions in our dataset. By construction, this

method estimates the fraction of uniformly distributed

objects, so it does not differentiate between quasars in

our targeted redshift range and outside of it. Since in

Section 3.5 we saw lower redshift quasars can be con-

taminants for our high-z selection this has to be kept

in mind. Furthermore, regions of high Galactic dust

extinction may attenuate the quasar flux beyond our

brightness requirements, making our quasar distribution

dependent on dust and thereby dependent on galactic

latitude. To minimize this effect we apply a cutoff in

E(B − V ) for all selections as discussed below.
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Figure 4. Test of the efficiency estimate for a subsample
of the Richards et al. (2002) selection with 30.5 % efficiency
(number of spectroscopically confirmed quasars/number of
candidates). Our estimate for this dataset gives 29.1+1.9

−3.4%
for the efficiency, showing that our method works for this test
case. The plot shows a normalized histogram of the candi-
dates in Galactic latitude. The fit shown in orange is the
weighted combination of the M-star (blue dots) and uniform
(violet dashed) distributions, weighted by the efficiency. The
lower plot shows the difference of the distributions to the can-
didate set. In the corner, a sky plot shows the area covered
by our test sample in galactic coordinates.

We test our approach by showing that we can recover

the efficiency of a set of quasar candidates where we

have spectroscopic follow-up and therefore know the true

efficiency. For this test, we use the original high red-

shift quasar selection from SDSS described in Richards

et al. (2002). This survey works well for our pur-

poses since it was spectroscopically observed completely

in a well-defined area. We simplify the footprint to

140 < ra < 240 and 0 < dec < 60 where there is

complete coverage. We also remove a suspicious region

with a large over-density of objects (09h 00m 49s +47d

15m 34s with a radius of 5◦) and apply a dust cutoff of

E(B − V ) < 0.1. We take the objects classified as stars

and the objects classified as quasars with z > 0.5. This

gives 15706 stars as well as 6889 quasars. Therefore, the

true efficiency of this test dataset is 6889
6889+15706 ≈ 30.5%.

We note that this number is different from the published

results since we applied a redshift cut for the quasars,

ignored galaxies and only use a part of the observed

area. Now we take this test dataset and apply our effi-

ciency estimation to it. As described above we compare

the distribution of candidates vs galactic latitude with

a uniform distribution and the distribution of our M-

star sample. The best fit to the data gives an efficiency

of 29.1+1.9
−3.4%, with errors indicating the 68% confidence

interval. This shows that our method can recover the ef-

ficiency of the test dataset. The approach is visualized

in Fig. 4 by showing the distributions for the candidates,
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Figure 5. Testing the efficiency estimate with SDSS spec-
troscopic data from Richards et al. (2002). We combine sam-
ples of quasars and stars from the spectroscopic set to create
datasets with a range of true efficiencies. The plot shows
estimates for the efficiency from our method vs the true effi-
ciency for these datasets. The black line indicates the correct
result. The errors on the data-points are the 68% confidence
intervals which only capture the statistical error. This plot
shows that there is also a systematic error but overall the
method is working.

M stars, a sample of uniformly sampled objects and our

best fit. Since we are using a large number of sources

the statistical error we give is relatively small. We note

that using the M star distribution that we extracted

from Pan-STARRS data to estimate the distribution of

contaminants in the SDSS candidate set is a strong as-

sumption and it is therefore quite surprising that the es-

timated efficiency matches the true value so well. This

might indicate that our method can still give realistic

results for the efficiency even when our modeling of the

distribution of contaminants is quite rough.

To further test if our method also works for higher

and lower efficiencies we take the SDSS test dataset from

above and artificially create candidate sets with differ-

ent ratios of quasars to stars. Specifically, we remove

stars/quasars to increase/decrease the true efficiency of

the test dataset, creating efficiencies between 10% and

100%. Then for each of these, we apply our estimate of

the efficiency and compare it to the true value. Fig. 5

shows the results. Between true efficiencies of 10% and

50% our estimate is reasonably consistent with the cor-

rect value. For high efficiencies a systematic underesti-
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mation of the true efficiency is apparent. The accuracy

at low efficiencies indicates that our star distribution is

sufficiently similar to the stars in the selection. The de-

viation at high efficiencies indicates that the distribution

of quasars in the selection is not quite consistent with

our assumption of a uniform distribution. We identify

two likely explanations for this behavior. It could be a

physical difference, for example, small scale clustering of

the quasars disturbing our result. The other possibility

is that the selection was not made completely uniform.

Spatial differences in the depth of the photometric sur-

vey data during the selection or in the follow-up obser-

vations may introduce these kinds of effects. For our

analysis in this work, we are using a relatively conser-

vative faint magnitude limit on the z band. This should

ensure that the detection limit over the entire survey

region is fainter than our requirement, giving relatively

uniform coverage and thereby mitigating this issue.

In summary, this method of estimating the efficiency

of a quasar candidate selection is sensitive to any over-

densities in the selection and non-uniformity, e.g. intro-

duced by large scale variations in the survey depth. To

avoid this when using the method on our high-z can-

didate set below we check for and remove strong over-

densities of candidates and make sure our targeted sky

area is well defined. Under these conditions, our test

with the SDSS test dataset indicates that the method

can predict the efficiency of a quasar candidate set up to

a systematic error of less than 15% between efficiencies

of 20% and 80%.

5. HIGH-Z CANDIDATE SELECTION

5.1. Defining the selection

We now apply the random forest classification and

regression algorithms to our full Pan-STARRS+WISE

photometric catalog data. To evaluate the completeness

of our selection, we again split our training data into

two parts one for training and one for evaluating the

completeness. We decide to use the objects within two

stripes (ra ≤ 60◦ or ra ≥ 300) as well as (−1.26 ≤ dec ≤
1.26) for the evaluation. This includes the Stripe 82

area which has been carefully surveyed for high redshift

quasars and thus makes our completeness estimate more

reliable (McGreer et al. 2013). Overall we use about

∼ 22% of the training set for evaluation and the rest to

train the algorithm.

Our selection picks up larger numbers of candidates in

regions of high Galactic extinction and near Andromeda.

Therefore, we decide to apply additional restrictions on

our photometric catalog data. We require a separation

of at least 30◦ from the galactic center, a separation of 5◦

from Andromeda (0h 42m 44s +41d 16m 9s) and apply

a dust extinction cut of EB−V < 0.1.

After we removed the described areas our final photo-

metric catalog includes around 59 million objects, cov-

ering 45% of the sky6. Table 5 shows the results of our

random forest classification when assigning the class of

the highest probability to the source. As expected the

A 144,221 T 475

F 12,786,096 vlow-z 719,129

G 1,525,230 low-z 973,060

K 17,709,898 mid-z 1,217,562

M 26,648,920 high-z 5,175

L 25,835

Table 5. Random forest classification results for the Pan-
STARRS+WISE catalog data of about 59 million point like
objects that represents about 45% of the sky for our bright-
ness limits. The objects are assigned a class from Table 1
based on the highest probability. The number of quasars is
likely inflated. Data artifacts and blended sources are not
yet accounted for.

predicted M-stars far outnumber our predicted quasars

in the high-z class. Yet, our training set over-represents

high-z quasars, therefore, we expect the number of good

high-z quasar candidates to be even lower. Similarly,

since our training set under-represents L- and T-dwarfs

in comparison to high-z quasars, the number of pre-

dicted brown dwarfs is much less than high-z quasars

even though from observations we know it is the other

way around.

The random forest classification algorithm provides us

with a pseudo probability for each class. So far we sim-

ply assigned the class of highest probability, but now we

instead look at the probability for high-z quasar directly.

Putting a cutoff on this pseudo probability lets us make

a candidate selection where the cutoff can be tuned to

our choice of efficiency vs completeness. While these

pseudo probabilities provided by the random forest de-

pend on the input training set and can not be trusted

to represent an absolute measure, a higher high-z class

probability makes for a better quasar candidate. There-

fore, we can improve the efficiency of our selection by

increasing the cutoff on the high-z class probability. At

the same time, an increase in the cutoff will reduce the

completeness since we are excluding more objects.

Fig. 6 shows the probability for the high-z class vs the

predicted redshift using the high redshift regression. We

6 Sky coverage is measured as the fraction of a set of objects sam-
pled uniformly on the sky that fulfill our restrictions on area and
dust content.
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Figure 6. Probability for the high-z redshift class vs predicted redshift for our catalog data. The low limit is from the transition
to the mid-z class and the high limit from our brightness requirement on the z band. The candidates, including known objects
and artifacts, are shown in black. The majority is shown via a contour plot with 3 logarithmic density levels (the normalization
of the numbers is arbitrary). The remaining objects are shown as black dots. Empty orange circles show the cross-validation
quasars with which we estimate the completeness of the selection. Orange crosses show all known stars from the training set
that are erroneously still in the selection. We show our high-z candidate set (Section 5) as a blue line. The observation results
are shown as blue markers (Section 6), including preliminary ones not in the final selection.
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Figure 7. The grey points show the estimated efficiency for
different cutoffs on the high-z probability. We separate the
data into two ranges of predicted redshift: 4.8 < z ≤ 5.6
and 5.6 < z ≤ 6.3. Our choices are cutoffs of 0.8 and 0.4
respectively and are marked light blue, these cutoffs define
the high-z candidate set. Since our candidate set contains
known quasars we know that the efficiency is at least as big
as the fraction of known quasars. We show this fraction of
known quasars for different cutoffs as an orange line.

show the majority of candidates with a contour plot to

visualize where the density of candidates is highest. To

estimate the probability density we use a gaussian kernel

density estimation applied to all candidates with high-z

probabilities above 15%. We then show the probabil-

ity density contours for 3 arbitrary density levels that

are increasing by factors of 10. This way we can di-

rectly see that there is a large overdensity of candidates

around redshift 5.4 and high-z probabilities around 20%.

All candidates outside of the lowest probability contour

are directly plotted as black dots. At the low redshift

edge, the number of objects with large high-z probabil-

ity drops off due to the transition from the high-z to

the mid-z class. We also find only few high-z candi-

dates beyond redshift 6.2. This is expected as only one

of our known z ≥ 6.3 quasars passes our photometric

requirements on the Pan-STARRS+WISE catalog data.

In general, we expect a monotonous decrease in candi-

dates with redshift since they are fainter. We identify

an overdensity of high-z quasar candidates at z ∼ 5.4.

There the trend of monotonous decrease in candidates

is interrupted and towards low high-z probability the

number of candidates goes up much faster than at lower

or higher redshift. There is no physical reason to expect

much more quasars at that redshift, therefore we are
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likely seeing significant contamination from stars with

similar colors. This is consistent with our evaluation of

the cross-validation of the random forest classification

(Section 3.5): Around z ∼ 5.4 the contamination frac-

tion rises, because of the photometric similarity between

M stars and quasars at this redshift.

For the quasar candidate selection presented here, we

have chosen to divide all candidates into two separate

redshift ranges and treat them separately: 4.8 < z ≤ 5.6

and 5.6 < z ≤ 6.3. Our choice is motivated by the sharp

drop of candidate density around z = 5.6. In our final

selection, no cross-validation quasar is predicted to be

in the wrong redshift range, allowing us to calculate the

completeness for both sections separately.

We decide on the cutoff for the high-z probability for

each range by evaluating the efficiencies for a range of

cutoffs. For our method of estimating the efficiency

based on the sky distribution discussed in Section 4,

we need to first remove remaining artifacts and blended

or extended sources. For this, we visually inspect im-

age cutouts of the Pan-STARRS and WISE photometry

for a manageable amount of objects. We inspect the

objects with high-z probability above 0.6/0.4 for the

lower/higher redshift range. We remove an object if

one of its Pan-STARRS images has an artifact interfer-

ing with the observation. We consider a nearby Pan-

STARRS source detected in the z or y band as blended

if it is within the 1σ radius of the PSF fit to the WISE

source. We also remove all objects that are clearly ex-

tended in multiple bands of the Pan-STARRS imaging.

Then, we calculate the efficiency for a range of values

to choose an optimum probability cutoff. The efficiency

calculation follows Section 4 and uses the sky area of

our Pan-STARRS+WISE catalog data. It covers about

45% of the sky and is defined by:

• Decl. > −30 deg

• |b| ≥ 20 deg

• > 30◦ angular distance from the galactic center

• > 5◦ angular distance from Andromeda

• EB−V < 0.1

The efficiency estimates for different cutoffs on the high-

z class probability are shown in Fig. 7. The uncertain-

ties on the efficiency reflect the 50% confidence interval.

We expect lower values for the probability cutoff to in-

clude more contaminants resulting in a lower selection

efficiency.

This is exactly what we see in the lower redshift range

(4.8 < z ≤ 5.6) of our selection. The lower the proba-

bility cutoff is, the lower is our estimated efficiency. In

this redshift range, the efficiency declines steeply for ef-

ficiency cutoffs below ∼ 80%. Therefore, we choose 80%

as our lower cutoff as indicated by the blue line in Fig. 7.

In the higher redshift range (5.6 < z ≤ 6.3) much

lower cutoffs still are predicted to have high efficiency.

We choose the minimum lower limit tested: 40%. We

note that at first glance it seems like the efficiency drops

for higher cutoffs, which is not expected. However, we

argue that this just reflects the increase in uncertainty

for higher cutoffs since there are only very few objects

remaining. The full interval for each efficiency predic-

tion in the higher redshift range is consistent with 1.

The lower limit on the high-z class probability is also

indicated by the blue line in Fig. 6. We retrieve a total

of 617 candidates, of which we removed 102 during the

visual inspection above (35 image artifacts, 42 blended

sources, 25 extended sources). A total of seven known

quasars are removed in that process. However, we do

not relax our criteria on the visual inspection process,

to only select candidates with highly reliable WISE pho-

tometry. Six of the seven known quasars we removed

during visual inspection because they are blended in

WISE. The seven known quasars removed during visual

inspection represent 3.0% of the known quasars in the

candidate set, while overall 16% of the candidate set is

removed. We interpret this as an indication that the

processing step is indeed reducing the fraction of con-

taminants in the final selection.

In the end, we select a total of 515 promising quasar

candidates which we call the high-z candidate set. 226

or ∼ 43% of these are already known quasars demon-

strating the success of our selection method.

5.2. Completeness and efficiency estimate

For this sample of 515 quasar candidates, we now es-

timate the completeness and the efficiency. We estimate

the completeness with the known quasars that we with-

held from the training set. In particular, we define the

completeness as the fraction of these known quasars that

are in our final candidate set. The quoted uncertainties

represent the 1-σ confidence interval.

Since we are dealing with small sample sizes we use

the Wilson interval to estimate the confidence interval

for this binomial distribution, following the recommen-

dation of Brown et al. (2001). For large enough data-

sets this converges back to the usual standard devia-

tion of a Gaussian, for small data-sets it better cap-

tures the asymmetry in the error while retaining that

the 1-σ range captures 68.27% of data points. We cal-

culate a completeness of 66± 7% for the redshift range

of 4.8 < z ≤ 5.6 and a completeness of 83+6
−9% for the

higher redshift range (5.6 < z ≤ 6.3).
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Figure 8. The solid orange line shows the completeness as a
function of redshift for the high-z candidate set (Section 5.2).
We calculated two kde plots: both for the targeted known
cross-validation quasars, one with only the ones still in the
selection and the other for all of them. Dividing the two gives
our estimate for the completeness. For each cross-validation
quasar used, we show a black dot at its redshift at the bottom
of the figure. The average completeness of all cross-validation
quasars is 71+5

−6%, shown as a dashed grey line with the 1
sigma error as a shaded box.

We show the completeness as a function of redshift in

Fig. 8. To calculate this we applied a kernel-density esti-

mate (kde) to both the targeted known cross-validation

quasars remaining in the selection and in total. The

ratio then gives our completeness estimate. For the

kde, we used Gaussian kernels with equal weights for all

points and bandwidths chosen with Scott’s rule (Scott

1992). Below redshifts of z ≈ 5.6 the completeness is

nearly constant around a value of ∼ 67%. Above z ≈ 5.6

it rises to peak around 88% at z ≈ 5.9. This behavior

simply reflects that above predicted redshift z = 5.6 we

accept candidates with a lower high-z class probability.

Above redshift 6 however, the completeness declines

sharply. While this behavior is estimated based on only

three cross-validation quasars with z ≥ 6, it signals that

our method stops being effective at z ≥ 6. Potentially,
the small number of z ≥ 6 quasars in our training set

(52 total) might not allow for proper classification using

the random forest method.

We have fine-tuned our selection, in particular the

lower limit on the high-z class probability, to ensure high

selection efficiencies. Indeed, our selection efficiency in

the lower redshift range (4.8 < z ≤ 5.6) is on aver-

age 78+10
−8 % and for redshift of 5.6 < z ≤ 6.3 we reach

94+5
−8% (Fig. 7). The quoted uncertainties correspond to

the 68% confidence interval. It is a good check for con-

sistency that our method predicts efficiencies that are

at least as high as the fraction of known quasars in our

selection: The fraction of known quasars in the final set

is 42% and 50% in the lower and higher redshift range,

respectively.
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Figure 9. The efficiency as a function of the predicted red-
shift for our high-z candidate set (Section 5). The light blue
data points show the median efficiency estimates based on
our new methodology (Section 4). The redshift error bar de-
picts the redshift bin and the efficiency error is the 68% con-
fidence interval. The orange line highlights the lower limit
of the efficiency based on the known quasars in the selec-
tion. Where the efficiency estimate is above the lower limit
we expect to find new quasars.

Next, we estimate the redshift dependence of the effi-

ciency of our candidate set. The efficiency is the fraction

of our candidates that are actually quasars. To esti-

mate this we again use our method from Section 4. We

calculate the efficiency for bins with a width of 0.1 in

redshift. Fig 9 shows our selection efficiency as a func-

tion of redshift. Part of our candidate set are known

quasars, which tells us that the efficiency of the selec-

tion is at least as large as the fraction of known quasars

in that bin. We show this minimum efficiency in orange.

Whenever the lower efficiency limit and our estimated

efficiency agree we do not expect to find new quasars in

that redshift bin. When the estimated efficiency is larger

we do expect the candidate set to contain quasars that

are not yet known. In the redshift bin of z = 5.4 − 5.5

we see the selection efficiency drop to the lowest value in
our entire redshift range. This is likely the result of the

significant overlap in color space of quasars with M stars

at z ≈ 5.4 as we discussed in Section 3.5. Based on our

efficiency estimate we expect to find the highest redshift

quasars with this selection around 5.5 < z < 5.8, where

our predicted selection efficiency is above the lower limit.

At z ≥ 5.8 the efficiency prediction and the lower limit

are consistent with each other. Therefore, we expect to

find few new quasars at z ≥ 5.8. Finally, at the low

end of our targeted redshift range, we also expect new

quasars since the efficiency estimate is well above the

lower limit.

Based on the estimate of the efficiency we can pre-

dict that our high-z candidate sample contains 319+41
−33

quasars at 4.8 < z ≤ 5.6 and 100+5
−8 at 5.6 < z ≤ 6.3.

Subtracting the known quasars, we expect that our can-

didate set contains 148+41
−33 and 45+5

−8 new quasars in the
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Redshift range 4.8 < z ≤ 5.6 5.6 < z ≤ 6.3

Number of candidates 409 106

Completeness 66 ± 7% 83+6
−9%

Efficiency 78+10
−8 % 94+5

−8%

Known quasars 171 55

Predicted new quasars 148+41
−33 45+5

−8

Table 6. Summary for the high-z candidate set. The
calculation of these properties is discussed in Section 5. All
errors give 68% confidence intervals.

lower and higher redshift range respectively, where the

error is a 68% confidence interval. Table 6 summarises

our predictions for the selection. We deliver the paper

with a data-file containing the full high-z candidate set.

Table 7 describes the columns of the data-file.

Column name Description

WISEDesignation Name in wise catalog

RAdeg Ra in Pan-STARRS catalog

DEdeg Dec in Pan-STARRS catalog

zPSFStackMag z stacked PSF magnitude
in Pan-STARRS

HighzProb Probability for high-z class

QsoProb Summed probability for
quasar classes

MstarProb probability for M star class

PredictedRedshift high redshift regression result

SpectroscopicRedshift Redshift determined from
spectrum

KnownQuasar Boolean whether quasar is
known in literature

PhotometricFollowUp Boolean whether we obtained
photometric follow-up

Observed Boolean whether we took a
spectrum of the object

StillToObserve Boolean whether object still
has to be observed

Note—Only a portion of this table is shown here to
demonstrate its form and content. It is published in its

entirety in the machine-readable format.

Table 7. List of columns of the high-z candidate set.

6. OBSERVATIONS

During the development of our selection process, we

have followed up some of our quasar candidates with

photometry (6) and spectroscopy (37).

Photometric follow-up observations have been per-

formed with the Nordic Optical Telescope (NOT) us-

ing the NOT near-infrared Camera and spectrograph

(NOTCam; Abbott et al. 2000). The observations were

taken on 2019 May 17 to 20. We used the OB gener-

ator for scripting. For our observations in the J band,

we used 9 point dithering. We read out the detector in

ramp-sampling mode with 9 seconds between readouts,

a total of 10 times. Giving us an effective exposure time

of 90 seconds for each of the 9 pointings. Depending on

seeing and brightness of the object we executed this 1, 2

or 3 times to get enough signal to noise to measure the

magnitude.

Additionally, we were able to secure optical spec-

troscopy with the Goodman High Throughput Spec-

trograph (HTS; Clemens et al. 2004) on the Southern

Astrophysical Research Telescope (SOAR), with MODS

on the Large Binocular Telescope (LBT) (Pogge et al.

2010), with the Magellan Baade telescope’s Folded port

InfraRed Echellette (FIRE; Simcoe et al. 2013), and

with FORS2 on the Very Large Telescope (VLT).

Spectra with Goodman HTS on SOAR were taken us-

ing the 400 g/mm grating with a central wavelength of

7300 Å resulting in spectra with a wavelength coverage

of∼ 5300−9300 Å (GG-495 blocking filter). All observa-

tions used the red camera in 2x2 spectral binning mode.

For the ∼ 5300− 9300 Å ”red” spectrum we exposed for

900 s using the 1.′′0 slit, which provides a resolution of

R ≈ 830. The spectra were reduced with IRAF. We took

FIRE high-throughput prism spectra using the 1.′′00 slit

over the spectral range of ∼ 8250− 25200Å with a reso-

lution of R = 300−500. For the LBT we used MODS in

the red channel only mode. We use the G670L grating

with blocking filter GG495, a slitwidth of 1.′′20 and an

exposure time of 1200sec. Spectra with FORS2 on the

VLT were taken using the GRIS 600z+23 grism with

the OG590+32 filter, a slitwidth of 1.′′30 and an expo-

sure time of 900sec.

We present 20 newly discovered high redshift quasars

and discuss them in the context of the high-z candidate

set presented in Section 5. However, some candidates

were selected before we finalized our candidate selection

methodology. We provide information on their original

selection where appropriate.

6.1. z > 5.6 High-z Candidate Follow-up

We select a subset of our final high-z candidate catalog

and require all candidates to have prediction redshifts
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Figure 10. Color-color diagram for observations of 6 quasar
candidates. The blue dots are the candidates where we ob-
served the J band with NOT (see Table 8), 5 out of 6 are
consistent with known quasars at this redshift (orange tri-
angles). In grey, a sample of contaminant red and brown
dwarfs is shown. For the known objects we only plot the
brightest objects where 2MASS gives a measurement of the
J-band. The black line gives a reasonable cut for a quasar
selection.

of zRF > 5.6 in both the full regression, using training

quasars at all redshifts, and the high redshift regression,

using training quasars at z > 4.5. We retain 59 promis-

ing quasar candidates, which nominally have a selection

efficiency of 86+11
−34% as estimated by our new method

(see Section 4). 32 of the candidates are already known

quasars at the time of our selection, leaving 27 unknown

objects. From our efficiency estimate, we expect through

error propagation that for these 27 objects our success

rate to find quasars should be 69+24
−52% with the 68% con-

fidence interval as the error. We can compare this to a

naive estimate based on Equation 11 which would lead

us to predict 100% for the efficiency since there is no

known star from our test set in our final selection (see

Figure 6).

One of these candidates, J112143.62-071839.4, was

recently identified by Yang et al. (2019) as a z=5.71

quasar.

The J-band is very effective in differentiating the

classes since red and brown dwarfs tend to have more

flux in their spectrum for this band than otherwise

similar-looking quasars. We followed-up 6 candidates

with J-band photometry using NOTCam. The results

are summarized in Table 8.

Fig. 10 shows the zJ-JW2 color-color diagram combing

the Pan-STARRS magnitudes with the J band from our

wise designation J band (VEGA) promising

J124359.84+173445.3 18.59 ± 0.06 Yes

J140531.13+735243.8 18.45 ± 0.03 Yes

J145836.16+101249.5 18.27 ± 0.02 Yes

J145950.96-181251.7 18.07 ± 0.05 No

J152055.71+431652.4 19.09 ± 0.04 Yes

J152330.66+293539.1 19.61 ± 0.13 Yes

Table 8. Results of the photometric follow-up observations.
The J band measurements are calibrated with the 2MASS
sources found in the field of view of our observations. 5 out
of 6 objects have J band magnitudes consistent with high
redshift quasars, i.e. they fulfill our color cut in Fig. 10 and
are therefore promising.

NOTCam follow-up observations (blue dots). As a point

of comparison, we also plot our known objects for which

J band information from 2MASS is available (Skrut-

skie et al. 2006)7. We note that 2MASS is shallower

than our follow-up observations. The known quasars

and stars have mean J band AB magnitudes of 17.6 and

16.5 while our 6 follow-up observations have a mean of

19.6. However, to first-order quasars at the same red-

shift have similar colors with only minor luminosity evo-

lution. Promising quasar candidates can be separated

from likely dwarf stars with a color cut shown in black

(z−J < 1.9 and J−W2 > −0.1, both in AB mag). Five

out of our six observed objects make the color cut. A

close-by source is evident in the J-band photometry of

our only non-promising candidate, J145950.96-181251.7.

Therefore, it is likely blended in WISE, which could ex-

plain the false classification. Overall our NOT photo-

metric follow-up observations indicate that our candi-

date set does contain promising candidates.

Furthermore, we were able to obtain five follow-up

spectra of our selection. These objects were not priori-

tized by the high-z probability, we observed the objects

in the candidate set with the best visibility at the ob-

servatories. We identified three objects as contaminants

and two as quasars at z ∼ 5.7.

Counting the Yang et al. (2019) quasar and the likely

quasar at lower redshift the selection efficiency would be

3 out of 6 or 50%. Since we did not observe the sixth

object, a more conservative counting would be 2 new

quasars in the targeted redshift range out of 5 observed

or a selection efficiency of 40%. From a naive approach

7 We obtained the ALLWISE data from IRSA (see Section 2.2)
where it is already cross-matched with 2MASS.
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we would have expected an efficiency of 100% while

our method for estimating efficiency predicted 69+24
−52%.

While our very small sample size does not allow conclu-

sions about the accuracy of our approach we do argue

that our method does give more realistic results that are

consistent with our small test observation.

In the following, we discuss the two newly discovered

quasars individually. We note that we observed a sixth

object: J032615.68-061358.2. The continuum looks like

a power law, however, we do not see a Lyman-α break

in our spectral range. This indicates that it likely is a

quasar but at z < 5.4 where the Lyman-α line moves out

of our spectral range. The predicted redshift of z = 5.62

was too high. We do not consider it for our efficiency

test here because we can not confirm the classification.

In Fig. 6 we show the object with a cross.

J152330.66+293539.1 - Z = 5.73

J152330.66+293539.1 is a newly discovered quasar at

redshift 5.73 based on Lyman-α emission. The predicted

redshift was 5.72 and the high-z probability was 0.83.

The object was part of our NOT photometric follow-up

observations, where we measured the J-band magnitude.

The obtained colors where J −W2 = 0.80 and z − J =

−0.32 in AB which are consistent with quasars at this

redshift as seen in Fig. 10. We observed this object with

the MODS spectrograph on the LBT and present the

spectrum in Fig. 11 together with the other discovered

quasars.

This object has a relatively blue color of i− z = 1.84,

so it would not be part of a typical color cut selection

like Bañados et al. (2016) where candidates were cut

at i − z > 2. This indicates that our method can find

quasars that are missed by traditional color cuts even if

our random forest is trained with objects largely from

these selections. Our full high-z candidate set that we

publish with this work contains a further 37 candidates

with predicted redshift above 5.6 that do not fulfill this

color cut. There are only 7 known quasars above redshift

5.6 that do not fulfill the color cut.

J163752.18+024158.1 - Z = 5.76

J163752.18+024158.1 is a newly discovered redshift

5.76 quasar based on the Lyman-α emission.

The redshift prediction in our high-z candidate cata-

log z = 5.80 (high redshift regression) is very close to the

observed redshift and the high-z probability was 0.57.

We observed this object with the GoodmanHTS on the

SOAR telescope.

6.2. z = 4.6− 5.4 High-z Candidate Follow-up

We have tested our random forest selection method

with pilot observations during the development process.

We used a preliminary version of the algorithm to make

a selection targeted at redshift 4.8 to 5.4 and obtained

31 optical spectra, out of which we successfully identi-

fied 17 new quasars. Eight of these quasars are retained

within our final high-z candidate set, but none of the

contaminant objects are selected anymore. This indi-

cates that our selection improved in robustness. The

newly discovered quasars, which did not make it into

our final selection (a total of nine) are either at lower

redshift than our targeted selection (three have observed

z <= 4.8) or are very close to the redshift boundary. A

total of eight have observed redshifts below z = 4.92

and hence their classification shifted towards the mid-z

class. Another newly discovered quasar at z = 5.03 just

barely missed the 80% cutoff on the high-z probability

(79.6%) and thus was excluded from our final candidate

list.

These preliminary observations were already very suc-

cessful with 55% of observed candidates being newly dis-

covered quasars. With the improvements to our selec-

tion discussed above the final selection is expected to be

even better in this redshift range around z ≈ 5.

Furthermore we were able to obtain follow-up obser-

vations for one additional object in the lower redshift

range of our final high-z candidate set using FORS2. We

identify the object, J110942.97-285521.0, as a quasar at

z=5.01. The predicted redshift was 5.09. In the follow-

ing, we discuss the discovered quasars.

J001150.03-244400.1 – Z = 5.41

We discovered J001150.03-244400.1 at redshift z =

5.41. While we selected and observed this object based

on the preliminary selection described above, this quasar

is also part of our final high-z candidate set. This quasar

was observed with the GoodmanHTS spectrograph. We

show the discovery spectrum in Fig. 11 and list the ob-

ject information in Table 9. The random forest regres-

sion predicted a redshift of z = 5.16, significantly lower

than its real redshift. The high-z probability was 0.95.

Interestingly, the spectrum shows a strong absorption

through in the Lyman-α forest at observed wavelengths

of 6300− 6500Å.

SEVENTEEN NEW QUASARS AT 4.6 ≤ Z ≤ 5.1

The spectra of the remaining 17 newly discovered

quasars at z=4.6-5.1 are also presented in Fig. 11. Fur-

ther information on the individual objects is listed in

Table 9. These quasars were selected at the low end of

our targeted redshift range. One spetrum was obtained

with the FORS2 spectrograph on the VLT and all oth-

ers were obtained with the GoodmanHTS spectrograph

on the SOAR telescope. As discussed above not all of

them are in our final high-z candidate set.
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Figure 11. The discovery spectra of the newly identified quasars sorted by spectroscopic redshift. The dark blue, orange and
red bars denote the center positions of the broad Lyα, Si IV, and C IV emission lines according to the spectroscopic redshift.
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WISE designation PS Mean ra PS Mean dec z Mag M1450 Tel/Instr Obs. date z

(deg) (deg) (AB) (AB) (YYMMDD)

J000425.84-211054.2 1.10781106 -21.18168195 19.57820624 -26.77032395 SOAR/G HTS 180604 5.09

J001150.03-244400.1 2.9585218 -24.7333892 19.30589762 -27.45251895 SOAR/G HTS 180604 5.41

J012947.32-295235.1 22.44703224 -29.87629848 19.51007577 -26.80463644 SOAR/G HTS 180603 4.83

J013539.29-212628.4 23.9137294 -21.44122046 17.84342435 -28.21850479 SOAR/G HTS 180603 4.91

J084347.77-253155.8 130.9490235 -25.53213628 18.49298484 -27.34917379 SOAR/G HTS 180404 4.72

J085943.27-003613.2 134.9301648 -0.60363371 20.32148047 -25.7887862 SOAR/G HTS 180406 5.03

J093032.56-221207.5 142.6357036 -22.20214902 18.09687224 -27.98936448 SOAR/G HTS 180406 4.86

J094135.48-061547.0 145.39785 -6.26308714 19.29794439 -26.97598817 SOAR/G HTS 180404 5.05

J094418.13-200106.4 146.0756187 -20.01850398 19.05723975 -27.20861384 SOAR/G HTS 180604 4.93

J095139.70-274210.7 147.9153819 -27.70348097 18.39840532 -27.63989338 SOAR/G HTS 180406 4.8

J100451.83-091751.7 151.2159282 -9.29779768 19.22792522 -26.8103096 SOAR/G HTS 180604 4.91

J103020.14-042105.7 157.583914 -4.3515849 18.88467506 -27.02610394 SOAR/G HTS 180404 4.66

J105541.85-103007.6 163.9243208 -10.50207368 19.99007524 -26.51733591 SOAR/G HTS 180406 5.04

J110942.97-285521.0 167.428771944 -28.9223126129 20.035114 -26.02474743 VLT/FORS2 210404 5.01

J141359.37-212713.7 213.4974405 -21.45382469 20.30688036 -25.75043534 SOAR/G HTS 180406 4.92

J142829.63-213059.9 217.1233865 -21.51677998 20.04845089 -25.97715567 SOAR/G HTS 180406 4.87

J150542.94-071718.1 226.4290075 -7.28845091 20.16459203 -26.11565751 SOAR/G HTS 180406 4.99

J152330.66+293539.1 230.8777384 29.5943535 20.17168355 -26.446892 LBT/MODS 190611 5.73

J163752.18+024158.1 249.4674059 2.6995546 19.22674035 -27.09365806 SOAR/G HTS 180602 5.76

J232952.78-200039.1 352.4699164 -20.01088649 18.43736995 -27.82847382 SOAR/G HTS 180603 5.03

Note—Table 7 is also available in the machine-readable format with spaces in column names removed.

Table 9. List of the newly discovered quasars reported in this work. The listed z band magnitude is based on the PSF stacked
magnitude from Pan-STARRS and corrected for extinction. The listed redshift is estimated from the Lyman-α emission. These
spectroscopic redshifts are accurate to about ∆z = 0.05. G HTS is short for GoodmanHTS.
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7. CONCLUSIONS

The next generation of deep photometric surveys, in-

cluding the Vera C. Rubin Observatory’s Legacy Survey

of Space and Time (LSST) and the Euclid Wide Sur-

vey, will vastly expand the amount of available data in

this field. Quasar selection at z ≈ 5 − 7 will transi-

tion from catalogs of a few hundred objects to large sets

that increasingly enable statistical evaluation. This will

constrain the statistical properties of quasars and their

host galaxies at the time of re-ionization, but it requires

robust selection methods that make optimal use of the

available data and our evolving understanding of these

quasars.

The increase of newly discovered high-redshift quasars

(z > 4.7) over recent years has paved the way to explore

high-redshift quasar selection based on supervised ma-

chine learning.

With this work we demonstrate that large enough

training samples for quasars and contaminant stars now

exist to select and discover high-redshift quasars based

on machine learning, in particular, we applied a random

forest classification and regression to Pan-STARRS and

WISE data. While the need for reasonably sized, spec-

troscopically confirmed training sets stops this method

from finding new quasars at the highest redshift end

currently possible, it does show promise to increase the

efficiency of the selection up to redshifts of about 6. This

can enable the discovery of more quasars per valuable

observing time.

Our method also shows promise in finding quasars

that would be missed by traditional approaches like

color cuts. One of our newly discovered z=5.7 quasars

(J152330.66+293539.1) would be rejected by a common

cut on the i-z color for z > 5.6 quasars (see Section 6.1).

Our high-z candidate set contains more promising candi-

dates that would be rejected by that cut. Therefore our

random forest approach shows promise to reach higher

completeness and is relevant for future quasar luminos-

ity estimates.

Carefully applied supervised machine learning meth-

ods to select high-z quasars will be crucial to success-

fully exploit the combination of future wide-area opti-

cal (LSST) and NIR (Euclid) surveys. To fully assess

the potential of machine learning quasar selection for

LSST and Euclid, applying the same methodology as in

this paper to combinations of existing optical and near-

infrared surveys (e.g. DES+VHS or KiDS+VIKING)

would be an important step, once appropriate training

sets are constructed.

In cases where spectroscopic follow-up is no longer vi-

able supervised machine learning methods make it pos-

sible to create reliable catalogs of likely quasars. These

could be used to put tight constraints on the quasar lu-

minosity function at medium to high redshift in future

work.

Nevertheless, our approach presented here has several

caveats. The presented random forest approach does not

take into account magnitude errors or make use of the

variability information from multi-epoch Pan-STARRS

observations. This should be considered in future re-

search. Additionally, the used implementation of ran-

dom forest can not handle missing values in the data.

We work around this by replacing missing values with a

lower flux limit. While forced photometry likely would

be able to extract additional information, it is beyond

the scope of this paper to perform this for all 59 mil-

lion objects in our Pan-STARRS+WISE catalog data.

Our approach also requires the use of large area surveys

to ensure enough known quasars are in the survey and

can be used to train the random forest. Using simu-

lated quasar photometry the approach could be applied

to deeper, but smaller area surveys in future research.

Furthermore, while the efficiency of our test observa-

tions is consistent with our estimate, the sample size is

quite small. A better confirmation of the novel method

to estimate the efficiency could be achieved with more

spectroscopic follow-up observations in future work.

We summarize our main conclusions from this work

below:

1. Using supervised machine learning algorithms like

random forests to photometrically select high red-

shift quasars is a data-driven method that is start-

ing to be competitive with other approaches by

making effective use of the rapidly expanding cat-

alogs of spectroscopically confirmed objects.

2. The main challenges for using random forests or

other supervised machine learning approaches are

creating a representative training set, getting re-

liable efficiency estimates and avoiding regions of

color space with strong stellar overlap.

3. We present a new method for estimating the selec-

tion efficiency based on the sky distribution of the

candidates that can give more realistic estimates,

consistent with our test observations.

4. We showed the effectiveness of our approach

through test observations from which we presented

20 new high redshift quasars (17 at 4.6 ≤ z ≤ 5.5,

2 at z ∼ 5.7).

The python code for this project is available

under github.com/lukaswenzl/High-Redshift-Quasars-

with-Random-Forests

https://github.com/lukaswenzl/High-Redshift-Quasars-with-Random-Forests
https://github.com/lukaswenzl/High-Redshift-Quasars-with-Random-Forests
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Koz lowski, S., Bañados, E., Udalski, A., et al. 2019, ApJ,

878, 115, doi: 10.3847/1538-4357/ab20d1

Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020,

ApJS, 250, 8, doi: 10.3847/1538-4365/aba623

Mainzer, A., Bauer, J., Grav, T., et al. 2011, ApJ, 731, 53,

doi: 10.1088/0004-637X/731/1/53

Matsuoka, Y., Strauss, M. A., Kashikawa, N., et al. 2018a,

ApJ, 869, 150, doi: 10.3847/1538-4357/aaee7a

Matsuoka, Y., Onoue, M., Kashikawa, N., et al. 2018b,

PASJ, 70, S35, doi: 10.1093/pasj/psx046

McGreer, I. D., Helfand, D. J., & White, R. L. 2009, AJ,

138, 1925, doi: 10.1088/0004-6256/138/6/1925

McGreer, I. D., Mesinger, A., & D’Odorico, V. 2015,

MNRAS, 447, 499, doi: 10.1093/mnras/stu2449

McGreer, I. D., Jiang, L., Fan, X., et al. 2013, ApJ, 768,

105, doi: 10.1088/0004-637X/768/2/105

McKinney, W. 2010, in Proceedings of the 9th Python in

Science Conference, ed. Stéfan van der Walt & Jarrod
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