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ABSTRACT

We present the first results from the 2 mm Mapping Obscuration to Reionization (MORA) survey,
the largest ALMA blank-field contiguous survey to-date (184 arcmin2) and the only at 2 mm to search

for dusty star-forming galaxies (DSFGs). We use the 13 sources detected above 5σ to estimate the

first ALMA galaxy number counts at this wavelength. These number counts are then combined with

the state-of-the-art galaxy number counts at 1.2 mm and 3 mm and with a backward evolution model
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to place constraints on the evolution of the IR luminosity function and dust-obscured star formation

in the last 13 billion years. Our results suggest a steep redshift evolution on the space density of

DSFGs and confirm the flattening of the IR luminosity function at faint luminosities, with a slope of

αLF = −0.42+0.02
−0.04. We conclude that the dust-obscured component, which peaks at z ≈ 2 − 2.5, has

dominated the cosmic history of star formation for the past ∼ 12 billion years, back to z ∼ 4. At

z = 5, the dust-obscured star formation is estimated to be ∼ 35% of the total star formation rate

density and decreases to 25% − 20% at z = 6 − 7, implying a minor contribution of dust-enshrouded

star formation in the first billion years of the Universe. With the dust-obscured star formation history

constrained up to the end of the epoch of reionization, our results provide a benchmark to test galaxy
formation models, to study the galaxy mass assembly history, and to understand the dust and metal

enrichment of the Universe at early times.

Keywords: Galaxy evolution — High-redshift galaxies — Star formation — Galaxy counts — Lumi-

nosity function — Dust continuum emission

1. INTRODUCTION

Mapping the cosmic history of star-formation is of

fundamental importance in our understanding of galaxy

formation and evolution not only because it contains

the galaxy mass assembly history but also because it
represents the footprint of the metal enrichment of the

Universe.

A complete, unbiased determination of the star for-

mation rate density (SFRD) requires a multi-wavelength

approach to directly probe the stellar emission of new-
born stars as well as the starlight that has been ab-

sorbed (then re-emitted) in dust-enshrouded regions.

The former is efficiently measured using rest-frame ul-

traviolet (UV) observations and the latter using far-
infrared (FIR) and (sub-)millimeter surveys that trace

the dust re-processed emission from young stars (see

Madau & Dickinson 2014 for a review).

The current UV census of star formation reaches out

to z ∼ 11, close to the formation epoch of the first
galaxies (Oesch et al. 2018). Nevertheless, despite some

individual detections of dust in galaxies up to z ∼ 8

(Watson et al. 2015; Laporte et al. 2017), studies of the

global dust-obscured star formation rate density from
FIR/sub-mm surveys are very limited at z > 3.

The highest redshift estimations of the SFRD from

FIR-to-mm surveys, at z = 4.5−5.5, are uncertain even

at the ≈ 1.0−1.5 dex level (Rowan-Robinson et al. 2016;

Williams et al. 2019; Loiacono et al. 2020) and differ by
up to two order of magnitudes (Micha lowski et al. 2017

cf. Rowan-Robinson et al. 2016). This is mostly due

to the low number statistics since most of the samples

used to derive these measurements range from only one
(Williams et al. 2019; Loiacono et al. 2020) to a hand-

ful of objects (Dudzevičiūtė et al. 2020; Gruppioni et al.

2020). This implies that the total amount of dust-

enshrouded star formation in the earliest epochs of the

Universe has remained unknown and, therefore, our cur-

rent picture of the history of cosmic star formation re-

mains incomplete.
This study aims at estimating the history of dust-

obscured star formation back to z ∼ 7 by combin-

ing a backward galaxy evolution model of the dusty

star-forming galaxy (DSFG) population (Casey et al.

2018a,b) with the state-of-the-art Atacama Large Mil-
limeter/submillimeter Array (ALMA) surveys.

We infer constraints on the prevalence and character-

istics of these galaxies through measurements of galaxy

number counts at different wavelengths. Despite its rela-
tive conceptual simplicity, number counts have proven to

be a very powerful tool to test and constrain galaxy for-

mation models (e.g. Baugh et al. 2005; Hayward et al.

2013), and consequently, represent an essential measure-

ment in any long-wavelength survey.
The galaxy number counts used in this work in-

clude the first arcsecond-resolution interferometric num-

ber counts at 2 mm achieved with ALMA and the most

recent estimations at 1.2 mm and 3 mm. The former is
from our new 2 mm Mapping Obscuration to Reioniza-

tion (MORA) survey described in §2, the first ALMA

large map at this wavelength with a total area of

184 arcmin2 (an order of magnitude larger than previous

interferometric blind surveys). At 3 mm, the measure-
ments come from the ∼ 200 arcmin2 ALMA archival pro-

gram reported in Zavala et al. (2018), which we revise

in this work after finding three false detections in their

sample (see §3). These number counts are also com-
plemented with those from the 4.2 arcmin2 deep ALMA

large program ASPECS survey (at 1.2 mm and 3 mm;

González-López et al. 2019, 2020), in which 40 contin-

uum sources were detected. All these surveys represent
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the state-of-the-art observations at long wavelengths,

comprising not only the deepest measurements at those

wavebands (beyond those assisted by gravitational am-

plification), but also the only interferometric surveys at
2 and 3 mm, which are crucial to constraining the in-

frared (IR) luminosity function (IRLF) at high-redshift

(see discussion by Bethermin et al. 2015; Casey et al.

2018a,b; Zavala et al. 2018, and Wilner & Wright 1997

for a pioneering ∼ 3 mm survey).
The constraints provided by these surveys and by all

the far-infrared and sub-millimeter data aggregated over

the last two decades, allow us to infer the IR luminosity

function and dust-obscured star formation in the last 13
billion years of the Universe, pushing the current redshift

limits from z ∼ 4 − 5 to z ∼ 7. Our constraints are

discussed in §4 and summarized in §5.

Trough this work we assume H0 = 67.7 km s−1 Mpc−1

and Ωλ = 0.69 (Planck Collaboration et al. 2016), and a
Chabrier initial mass function (Chabrier 2003) for SFR

estimations.

2. MAPPING OBSCURATION TO REIONIZATION

ALMA (MORA) SURVEY

The MORA survey (ALMA project code:

2018.1.00231.S, PI: C. Casey) was originally designed

to cover a contiguous area of 230 arcmin2 in two differ-
ent tunings in the 2 mm band (centered at 147.3 GHz

and 139 GHz, respectively). The project was only par-

tially observed, covering 184 arcmin2 in two separate

mosaics of 156 arcmin2 and 28 arcmin2, respectively.
The largest mosaic, which covers the positions 10 to

20 from the original design and so-called P10-P20, is

centered at α ≈ 10 h 00 m 17 s, δ ≈ +02◦ 22′ 30′′ and

covers an area of 6.6′ × 23.6′. The smaller one (P03) is

centered at α ≈ 10 h 00 m 44 s, δ ≈ +02◦ 22′ 30′′ and has
1.2′× 23.6′ dimensions (see Figure 1). The deepest por-

tion of the mosaics has an RMS of σ2mm = 60µJy beam,

with 101 arcmin2 covered at or below the proposed map

depth of 90µJy beam (see Figures 1 and 2), with a
typical beamsize of θFWHM ≈ 1.8′′ × 1.4′′. This project

represents the largest ALMA blank-field survey to-date

and the only at 2 mm to search for dusty star-forming

galaxies.

The signal-to-noise ratio (SNR) maps are well mod-
elled by Gaussian statistics within −4.5 . SNR . 4.5

(see Figure 3). Above 4.5σ the excess of positive pix-

els comes from the detection of astronomical sources, as

expected. Interestingly, there is also an excess of nega-
tive pixels with SNR < −5. All these pixels (identified

in orange in the figure) come from the same region and

are associated with a single noise peak at −6σ (plus the

effect of beam smearing; see Figure 1). Nevertheless,

assuming Gaussian statistics, the probability of finding

a −6σ noise peak in our mapped area is . 0.5%. An

alternative explanation might be the Sunayev-Zeldovich

(SZ) effect (Sunyaev & Zeldovich 1970) since its peak
decrement is expected close to the observed frequency

of our maps (∼ 145 GHz). A thorough discussion of the

nature of this negative detection will be presented in a

future work, after carrying out the required follow-up

observations.
Casey et al. (in preparation) will present further de-

tails of the survey along with a description of the source

catalog and other physical characteristics of the 2 mm-

selected galaxies. Briefly, we first create a noise map
using two different approaches. In the first one, we mea-

sure the standard deviation of all the pixels with primary

beam responses between 0.95 and 1, which give us the

minimum noise in our mosaic (or maximum depth); then

we multiply the inverse of the primary beam response
map by this minimum noise vale, whose result is adopted

as the noise map. In the second approach, we use a 2D

boxcar-like function across the primary beam corrected

flux mosaic (after applying a sigma clipping procedure
to remove the bright sources) to estimate the noise in

each pixel, measured as the standard deviation of the

pixels within the squared region of the boxcar-like func-

tion. Both procedures give us consistent results within

∼ 1%. Once we have a noise map, we simply divide the
primary beam corrected flux map by this noise mosaic

in order to obtain a SNR map (which is shown in Figure

1). This SNR map is then used to find source candidates

by searching for pixels above a SNR threshold. Here, we
use the sources detected at > 5σ (where the false detec-

tion rate is expected to be . 8%; see §2.1) to calculate

the first ALMA number counts at 2 mm, as described

below.

2.1. The 2mm number counts

The cumulative number counts – i.e. the number of

galaxies above a certain flux density threshold, S, per
unit area – can be directly estimated by counting the

number of detected galaxies as a function of flux density

and making the required corrections for contamination,

completeness and flux boosting.

Previous blind ALMA surveys have estimated a min-
imum, close-to-zero, contamination fraction due to false

detections (noise peaks) for SNR thresholds in the range

of ≈ 4 − 5 (e.g. Fujimoto et al. 2016; Oteo et al. 2016).

Nevertheless, despite adopting a conservative threshold
of 5σ in our analysis (see Figure 3), a thorough charac-

terization of the contamination rate is required given the

large area covered by the MORA survey and the large

number of independent beams in the maps.
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Figure 1. The MORA 2 mm SNR maps and the 13 sources detected above 5σ (orange squares). The noise variations across
the mosaics are illustrated by the contours, which range from 60µJy to 240µJy in steps of 30µJy . The typical size of the
primary beam response at the frequency of our observations (θFWHM ≈ 43′′) is represented by the orange circle (note that the
synthesized beamsize of θFWHM ∼ 1.5′′ is significantly smaller). The −6σ peak is also identified with the pale green diamond.
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Figure 2. The cumulative distribution of 1σ survey depth
and over what solid angle that RMS depth is achieved. The
P03 mosaic alone (covering 28 arcmin2) is represented in pale
green, while the P10–P20 mosaic (covering 156 arcmin2) is
shown in blue. The proposed map depth (90µJy) is illus-
trated by the orange dashed line. With a total area of
184 arcmin2 (orange line), the MORA program represents
the largest ALMA blank-field survey to-date and the only at
2 mm to search for dusty star-forming galaxies.

The false detection rate of the MORA survey is char-
acterized as follows: first, we create noise maps with

the same dimensions as the original maps under the

assumption that the noise in the ALMA observations

is well represented by Gaussian statistics (as has been

shown before for other ALMA data, e.g. Franco et al.
2018, and demonstrated in Figure 3). Second, the maps

are convolved with a beam representative of the average

synthesized beam in our observations. Then, to char-

acterize the contamination rate as a function of SNR,
the map is scaled such that the final standard devia-

tion of the whole distribution of pixels is equal to one.

This is equivalent to a SNR map with no astronom-

ical sources. Finally, we simply quantify the number

of peaks above the adopted detection threshold using
the same algorithm used to find the real sources. This

process is repeated 100 times in order to measure the

expected number of false sources and its corresponding

uncertainty. At our adopted threshold of 5σ, the ex-
pected number of false detections in the MORA catalog

is 0.8± 0.2. This is in good agreement with the findings

in Casey et al. in preparation, who found near-IR coun-

terparts for all the MORA detections with the exception

of the lowest significance source in the catalog.
To take into account this false detection rate in the

number counts calculation, a statistical approach is
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Figure 3. Histogram of pixel values in the SNR maps. The
distribution of pixel values within −4.5 . SNR . 4.5 is very
well fitted by a Gaussian function (pale green solid line),
which confirms the Gaussian properties of the map’s noise.
Above ∼ 4.5σ the distribution starts to diverge due to the
presence of positive sources. Our 5σ threshold to identify
robust sources is indicated by the dashed orange line and
arrow. All the pixels highlighted in orange, which have values
below −5σ, lie within a region spanning approximately a
beamsize. This negative signal could be associated with a
single noise peak at −6σ or with a detection of the SZ effect,
as discussed in §2.

adopted in which the contamination fraction is dis-

tributed among the 13 sources according to their SNRs
with a proportionality given by a normal probability dis-

tribution (i.e. estimating the probability that a normal

random variable is greater than the sources’ SNRs). As

expected, this procedure gives a higher probability of
false detection to the sources with the lowest SNRs and

an (almost) negligible probability to those detected at

& 5.5σ.

The survey completeness is calculated in a similar

fashion in which artificial sources are inserted in the real
maps (after removing the bright detections) followed by

computing the ratio between the recovered sources and

inserted sources. The artificial sources are inserted, one

at a time, at random positions around the whole mosaic
and then they are recovered with the same source extrac-

tion procedure used to build the real source catalog. The

survey completeness can be estimated as a function of

input flux density, recovered flux density, detected SNR,

local noise RMS, or a combination of these parameters.
A source is considered recovered if it is detected within

a synthesized beam from the input position (∼ 1.5′′).

In each flux density bin of 25µJy, we repeat this pro-
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cess 10,000 times in order to sample the noise variation

across the maps.

The same set of simulations are used to examine the

flux-boosting effects (meaning sources’ flux densities sys-
tematically biased upwards by noise and the presence of

fainter undetected sources). This is done by estimat-

ing the average ratio between the sources’ intrinsic flux

density and the recovered flux density in the simula-

tions. Again, this value depends on the flux density and
on the local noise of each source (or similarly, SNR),

and therefore, several flux boosting factors can be de-

rived as a function of these parameters. In average, we

find flux boosting factors of around 5% for those source
detected just above our SNR threshold. These factors,

which decrease with increasing SNR, are however much

lower than the uncertainties on the measured flux den-

sities (∼ 20% for a 5σ detection).

The number counts can then be directly estimated by
counting the number of detected galaxies as a function

of flux density and making the appropriate corrections

for contamination, completeness and flux boosting. We

estimate the contribution of a source with a deboosted
flux density, Si, and measured SNR, σi, to the cumula-

tive number counts to be:

ηi(Si, σi) =
1 − fcont(σi)

ζ(Si)Aeff
, (1)

where fcont(σi) is the estimated fraction of contamina-
tion at the measured SNR (σi) of the source, ζ is the

corresponding completeness for a deboosted flux den-

sity Si, and Aeff is the total area of the MORA maps

used for source extraction (i.e. 184 sq. arcmin2; see Fig-
ure 2). Finally, the cumulative number counts, N(> S),

are estimated by the sum over all sources with a flux

density higher than S, i.e. N(> S) =
∑

i

ηi(Si, σi).

In order to take into account the uncertainties associ-

ated with the correction factors (completeness and false

detection) and flux densities in the estimation of the

number counts, we perform a Monte Carlo simulation.
In each realization, the adopted measured flux density

for each source, Si, is extracted from a Gaussian distri-

bution with a standard deviation equal to the measured

error and centered at the observed value. Then, this

new flux density is used to estimate a new SNR, σi,
by dividing by the local noise. These SNRs are then

used to update the contamination fraction and com-

pleteness accordingly, whose new values are drawn from

Gaussian distributions. This procedure is repeated 100
times, with the mean values representing the final num-

ber counts and the 16th and 85th percentiles their asso-

ciated confidence interval. Finally, given the relatively

small number of sources in our catalog, Poisson uncer-
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Figure 4. The cumulative number counts derived from our
main sample (SNR> 5σ) are represented by the blue solid
circles. Previous estimation of the number counts using the
GISMO camera on the IRAM telescope are represented by
the pale green and orange squares (Magnelli et al. 2019) and
the yellow stars (Staguhn et al. 2014). Additionally, the pre-
dictions from the shark galaxy evolution model (Lagos et al.
2020) are illustrated by the gray line.

tainties are added in quadrature according to Gehrels

(1986). The MORA 2 mm number counts derived in this

work are reported in Table 1 and are show in Figure 4.

Given that the 2 mm flux density of one of our
sources, MORA-10, was found to be contaminated by

synchrotron emission (at a ∼ 40% level; Casey et al. in

preparation), we repeat all the process described above

after removing this source, aiming at providing the 2 mm

number counts of star-forming galaxies only (note that
the source would have been fallen below our detection

threshold without the synchrotron emission). This is

particularly important since the model used in §4.1 does

no take into account non-thermal emission, nevertheless,
we highlight that the difference between the two estima-

tions is not significant (see Table 1).

At this wavelength, the only determinations of

the number counts reported in the literature be-

yond our MORA survey measurements come from
the GISMO/IRAM surveys reported in Staguhn et al.

(2014) and Magnelli et al. (2019), covering 31 arcmin2

and 250 arcmin2, respectively. The latter are in very

good agreement with our estimations while the former
lie above by a factor of ≈ 2.0−2.5. This over-estimation

is thought to be caused by the uncertainties in the

flux deboosting factors in the confusion-limited map
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Table 1. MORA survey 2 mm number counts.

Raw number counts Star-forming galaxies number counts

S2mm N(> Sν) δN− δN+ S2mm N(> Sν) δN− δN+

(mJy) (deg−2) (deg−2) (deg−2) (mJy) (deg−2) (deg−2) (deg−2)

0.33 440 120 60 0.33 380 110 150

0.36 370 110 140 0.36 320 100 130

0.39 310 90 130 0.39 270 80 110

0.41 260 80 110 0.48 220 70 100

0.48 220 70 100 0.52 185 64 91

0.52 185 64 91 0.54 157 59 85

0.54 157 59 85 0.57 131 53 79

0.57 131 53 79 0.61 106 47 72

0.61 106 47 72 0.68 83 41 65

0.68 83 41 65 0.78 60 34 59

0.78 60 34 59 0.88 41 27 53

0.88 41 27 53 1.03 21 17 47

1.03 21 17 47

Note—The star-forming galaxy number counts are estimated after removing source MORA-10, whose flux density falls below
our detection threshold after removing the contribution from synchrotron emission.

of Staguhn et al. (2014), as discussed in Magnelli et al.

(2019), although cosmic variance might be also impor-

tant given the relatively small mapped area. The pre-

dictions from the shark semi-analytic model of galaxy

formation (Lagos et al. 2020) are also plotted in the fig-
ure, which are indeed in very good agreement with our

estimations.

3. REVISING THE 3 MM NUMBER COUNTS

Zavala et al. (2018) compiled archival ALMA band
3 observations toward three extragalactic legacy fields:

COSMOS, CDF-S, and the UDS, resulting in a to-

tal of 135 individual maps adding up a total area of

≈ 200 arcmin2. After masking out the original targets
of these observations and any galaxies that were poten-

tially physically associated with them, they derived the

first ALMA galaxy number counts at 3 mm using a total

of 13 sources detected above 5σ.

Our recent ALMA 2mm + 3mm follow-up observa-
tions on this sample (ALMA projects: 2018.1.00478.S

and 2019.1.00838.S; PI: J. Zavala) show that three

of these sources (ALMA-3mm.14, ALMA-3mm.15, and

ALMA-3mm.16) are not recovered, meaning they are
likely spurious detections. Two of these sources were in-

deed noted to have a spectral index which might be in-

consistent with thermal emission in Zavala et al. (2018),

nevertheless, without further data at the time, the low

SNRs (5.0− 5.2) prevented a firm conclusion and there-

fore they were included in the previous number counts

estimation.

Thus, we have revised the false detection rate to be

higher than the value reported in the original work of
Zavala et al. (2018), for which only one source was ex-

pected to be false. This highlights the complexity of

the interferometric data, particularly when using obser-

vations with different beamsizes, integration times, and
array configurations, as is typical for datasets derived

from archival projects.

Here, we revised the 3 mm number counts fol-

lowing exactly the same procedure as described in

Zavala et al. (2018) but removing the three spurious
sources. Additionally, we updated the flux density of

the source ALMA-3mm.03 (a.k.a. ASPECS-3mm.1)

since the reported value in Zavala et al. (2018) seems

to be contaminated by a bright CO emission line
(González-López et al. 2019); we thus adopt the flux

density reported in the ASPECS catalog.

The revised 3 mm number counts are reported in Ta-

ble 2 and shown in Figure 5. The new values are sig-

nificantly different at the bright end (S3mm > 0.2 mJy)
since two of the false detections were the brightest galax-
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Table 2. Revised ALMA archival 3 mm
number counts.

S3mm N(> Sν) δN− δN+

(µJy) (deg−2) (deg−2) (deg−2)

33 4440 1200 1990

52 2140 640 1000

63 1420 470 710

79 990 360 540

98 750 290 450

109 550 230 370

117 410 190 320

127 290 150 280

137 170 110 230

167 74 55 170

ies in the sample1. At fainter flux densities, the up-

dated number counts are a factor of ∼ 1.5× lower,
and thus, in better agreement with the ASPECS results

(González-López et al. 2019), although still a factor of

∼ 2× higher. Nevertheless, the two number counts are

consistent with each other within the uncertainties. The

difference is thus not statistically significant.

4. CONSTRAINING THE IR LUMINOSITY

FUNCTION AND DUST-OBSCURED STAR

FORMATION RATE DENSITY

In this section we use a backward evolution model in

combination with the state-of-the-art FIR/mm surveys
to constrain the IR luminosity function. The model

draws spectral energy distributions (SEDs) from the

known breadth and characteristics of dusty galaxies,

then works backward to discriminate between different

luminosity function scenarios using the galaxy number
counts as constraints. Finally, the dust-obscured star

formation rate density is estimated by integrating the

best-fit IR luminosity function (see Zavala et al. 2018

for a similar analysis).

4.1. Model description

The adopted backwards evolution model is described

in detail in Casey et al. (2018a,b), where the specifics of

the model and the assumed values for each parameter

1 Given the inhomogeneous observations in the archival data, a
low signal-to-noise ratio does not necessary imply a low flux den-
sity since each map has a different noise r.m.s. depth. The two
brightest false detections were indeed detected in areas with large
r.m.s values.

can be found. A summary of the salient characteristics

and assumptions follows.

The model combines a parameterized evolving galaxy

IR luminosity function with the thermal SED properties
of galaxies’ dust emission to make predictions for galaxy

(sub-)millimeter surveys.

Galaxies’ SEDs are described by a modified

black-body function of the form Sν ∝ (1 −

e−(ν/ν0)
βem

)Bν(Tdust) with an extra mid-infrared power

law to account for hotter dust emission at T ≫ Tdust

(e.g. Casey 2012). The SED library follows the well-

known luminosity-temperature relationship in terms of

LIR − λpeak and takes into account the observed dis-

persion in this relation. We highlight that using the

peak wavelength rather than dust temperature mini-
mizes the impact of the assumed effective dust opacity

in the model (τ = 1 at λrest = 100µm), which could

change the derived dust temperature but has a minor

impact on the measured λpeak. Note that although this
relation is not assumed to evolve with redshift (which

is supported by the current data at least up to z ∼ 4.5

Casey et al. 2018b; Dudzevičiūtė et al. 2020), if one se-

lects galaxies on the main sequence, a redshift evolution

of λpeak (proportionally to dust temperature) naturally
arises. This evolution, which is driven by the under-

lying evolution of the main sequence of star-forming

galaxies, is in line with recent results from the litera-

ture (e.g. Bethermin et al. 2015; Schreiber et al. 2015;
Magdis et al. 2017).

As is common practice in the literature (e.g.

Sanders et al. 2003; Magnelli et al. 2011, 2013;

Lim et al. 2020), the assumed IR luminosity function

in the model is described by a double power law of the
form:

Φ(L, z) =







Φ⋆(z)
(

L
L⋆(z)

)αLF

, if L < L⋆,

Φ⋆(z)
(

L
L⋆(z)

)βLF

, if L ≥ L⋆,
(2)

where αLF and βLF, represent the slopes at faint and
bright luminosities, respectively, while L⋆ and Φ⋆ are

the characteristic galaxy luminosity and characteristic

number density, two fundamental parameters that are

allowed to evolve with redshift.
Following previous works from the literature, the char-

acteristic number density is assumed to evolve as:

Φ⋆ ∝







(1 + z)Ψ1 , if z < zturn,

(1 + z)Ψ2 , if z ≥ zturn.
(3)

Significant observational efforts have provided good

constraints on the evolution of Φ⋆ at low redshifts, re-

vealing a flat trend with Ψ1 close to zero and a turnover
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redshift of zturn ≈ 2, in-line with the peak of the cos-

mic star formation rate density (CSFRD; Magnelli et al.

2011; Gruppioni et al. 2013; Lim et al. 2020). Although

it is clear that at higher redshifts the evolution is signif-
icantly steeper, the current estimations are highly un-

certain and limited to z . 4, with values ranging from

Ψ2 ∼ −6 (or lower; Koprowski et al. 2017) to −2 (or

even higher; Rowan-Robinson et al. 2016), with a few

measurements in between. Indeed, Zavala et al. (2018)
found an intermediate value of Ψ2 ≈ −4.2 using the

initial 3 mm sample.

In this work, we aim to constrain two of the most

important unknowns of the galaxy luminosity function:
the faint-end slope, αLF, and the redshift evolution of

the characteristic number density at high redshift driven

by Ψ2 (since Φ⋆ ∝ (1 + z)Ψ2 for z & 2). We also explore

different values of the dust emissivity index, βem, in or-

der to minimize any possible bias and to test possible
degeneracies between the different parameters.

For the rest of the model parameters, we adopt the

same values as in Casey et al. (2018b) and Zavala et al.

(2018). We refer the reader to Casey et al. (2018b, and
particularly to its appendix A.1) for a detail discussion

about these choices and their impact on the model. In

short, the bright-end slope of the luminosity function is

fixed to be βLF = −3.0. This value is relatively well-

constrained (at least up to z ∼ 4) with a measured dis-
persion of 1σ ≈ 0.15. The evolution of the characteris-

tic luminosity, L⋆, follows L⋆ ∝ (1 + z)γ1 for z < zturn
and L⋆ ∝ (1 + z)γ2 for z ≥ zturn. While the evolution

at lower redshifts (z < zturn) is well-characterized (we
adopt γ1 = 2.8), the evolution of L⋆ beyond zturn is

more uncertain. The model adopts γ2 = 1.0, implying

that L⋆ continues to evolve upward toward higher red-

shifts, in line with expectations for hierarchical structure

formation and cosmic downsizing. Additionally, adopt-
ing γ2 = 1.0 makes the L⋆ evolution consistent with

the L⋆ of the quasar luminosity function (Hopkins et al.

2007). Adopting a reversal evolution (γ2 ≤ 0) under-

predicts the number counts at wavelengths longer than
∼ 850µm, regardless of the adopted number density

(for any Ψ2 < −1.5), while a more rapid evolution with

γ2 ≥ 1.5 would imply very bright values for L⋆ at z ∼ 5,

which might even exceed the luminosity of the bright-

est DSGFs known to-date. Moreover, in order to match
the contribution from LIRGs and ULIRGs to the cos-

mic SFRD at z < 2.5 to those reported in the litera-

ture, a modest dependence of zturn on Ψ2 of the form

zturn = 1.6− 0.09Ψ2 has to be adopted (see Casey et al.
2018b for details).

This model has some caveats that the reader should

keep in mind. The exact values of L0 and Φ0 are cor-

related with γ1 and Ψ1, respectively2. As discussed in

detailed by Casey et al. (2018b). The adopted values

(L0 = 1011.1L⊙, Φo = 10−3.5 Mpc−3 dex−1, γ1 = 2.8,

and Ψ1 = 0) were chosen to simultaneously reproduce:
(i) the IRLF at z . 2; (ii) the reported values of L⋆

and Φ⋆ from the literature; and (iii) the relative con-

tribution from LIRGs and ULIRGs to the total SFRD

within 0 < z < 2. This combination of values are,

however, not necessarily unique. Another caveat that
the reader should keep in mind is the assumption of

a fixed emissivity spectral index at all redshifts, and al-

though several values were explored in the analysis (from

β = 1.6 to 2.6, see Figure 6), each realization adopts a
single value across all redshifts for all sources. This is

not necessarily in disagreement with previous literature,

given the current limited data. Although a spread on β

has been found across different galaxies, these variations

have not yet been shown to correlate with redshift or
other galaxy characteristics that may impact the model.

Indeed, there are clear examples of β ∼ 1.5 to ∼ 2.0 in

both local galaxies (e.g. Remy-Ruyer et al. 2013) and

high-redshift systems (e.g. Jin et al. 2019). The same
is true for the adopted slopes of the luminosity function

at both the faint and bright ends (αLF and βLF, respec-

tively). Although a redshift evolution is possible given

that we know similar parameters do evolve for the UV

luminosity function (e.g. Finkelstein et al. 2015), the
lack of samples of galaxies with spectroscopic redshifts

covering a wide range of IR luminosities prevents its

confirmation (or rejection). Indeed, non-evolving slopes

have been been adopted in several works in the literature
(e.g. Magnelli et al. 2011, 2013; Gruppioni et al. 2013;

Lim et al. 2020). Therefore, in the absence of more in-

formation, we choose to fix these quantities. The impact

of these assumptions on our results are further discussed

below.

4.2. Fitting methodology and data constraints

To find the best-fit model parameters, first, the dif-
ferent evolutionary scenarios of the IRLF are combined

with galaxies’ SEDs to create mock observations that

resemble the real surveys in terms of wavelength, noise

depth, and angular resolution, with the CMB heat-
ing effects taken into account (following da Cunha et al.

2013). Second, the respective number counts are esti-

mated in a similar fashion as in the real observational

works. These simulated number counts are then com-

pared to the measured number counts in a joint analysis

2 We refer the reader to equations 8 and 9 from Casey et al.
(2018b) for the exact parametrization of the evolution of L⋆ and
Φ⋆ and the role of L0 and Φ0.
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that combines multiple observations at different wave-

lengths simultaneously. Finally, the best-fit model pa-

rameters that better reproduce all the observed number

counts are derived.
The cumulative number counts are preferred over the

differential number counts since the latter suffer from

larger uncertainties due to the relative small number of

sources in each flux density bin. Though we test that

adopting the differential number counts instead do not
change significantly our results.

As discussed in Casey et al. (2018a,b), observations at

long-wavelengths (λ & 1 mm) are ideal to distinguish be-

tween the different scenarios of the model since the ma-
jority of constraining data sets at shorter wavelengths

only inform about the evolution of the IRLF at z . 3.0,

where the model parameters are already relatively well

understood. Therefore, here we only use number counts

at 1.2 mm, 2 mm and 3 mm as constraints, which also
reduces significantly the computational cost of the fit-

ting analysis, which would be prohibitive otherwise. We

adopt the MORA 2 mm number counts described above

(see §2.1), the updated 3 mm number counts reported
in this work (see §3), and the 1.2 mm and 3 mm number

counts from the ASPECS survey (González-López et al.

2019, 2020). Altogether, these surveys add a total of

∼ 400 sq. arcmin surveyed area and around 60 detected

galaxies. Note that AGN contribution or non-thermal
emission (e.g. synchrotron emission) is expected to be

negligible at these wavebands and at the flux density

ranges explored here3 (see discussion in Casey et al.

2018a; Zavala et al. 2018).
Once the fiducial number counts have been defined, to

derive the best-fit model parameters that better repro-

duce these number counts we use two different meth-

ods: a maximum likelihood approach and a multi-

dimensional minimization algorithm.
The maximum likelihood approach is done in a simi-

lar fashion as reported by Zavala et al. (2018). We cre-

ate a three-dimensional grid, representing the parameter

space formed by αLF, Ψ2, and βem, with values ranging
from αLF : [−0.6,−0.2] in steps of 0.05, Ψ2 : [−8.8,−2.2]

in steps of 0.4, and βem : [1.5, 2.6] in steps of 0.05. For

each combination of the parameters subset (correspond-

ing to different points in the grid), the likelihood func-

tion of the measured cumulative number counts relative
to the simulated number counts is estimated. Finally,

the best-fit model is assumed to be the one with the

3 From all the sources used in this work, we found a non-negligible
contamination from synchrotron emission only in one source,
namely MORA-10. This source has been removed from our anal-
ysis (see §2.1).

highest probability, and the confidence intervals at 68%,

95%, and 99.7% are obtained by integrating the normal-

ized likelihood distribution.

The Nelder–Mead optimization method (a.k.a the
Amoeba method; Nelder & Mead 1965; Press et al.

1992) relies on a downhill simplex algorithm to perform

a multidimensional minimization of a given parameter,

in this case, the square differences (χ2) between the real

and the modeled cumulative number counts. In each re-
alization, we randomly vary the initial starting point of

the search, with each search limited to 100 evaluations.

During this analysis, we introduce a fourth parameter,

zcutoff , following Zavala et al. (2018), which represents
the redshift above which no more dusty galaxies exist

(with a range of zcutoff = 5.5 − 9.0). Nevertheless, we

find that zcutoff is not well constrained by the data and

has a minor impact on the analysis.

As shown in Figure 5, the best-fit number counts re-
covered from the model are in good agreement with the

measured values, reproducing simultaneously not only

the data used in the fitting but also the rest of measure-

ments reported in the literature, as discussed below.
At 1.2 mm, beyond the ASPECS number counts,

the model predictions nicely reproduce the number

counts from the 1.6 deg2 AzTEC surveys reported in

Scott et al. (2012) and those from the ALMA follow-

up survey of SCUBA-2 galaxies detected over ∼ 1 deg2

reported by Stach et al. (2018)4, which probe the

brightest flux densities. At fainter flux densities, the

model also reproduces the more recent ALMA results

from Dunlop et al. (2017) and Umehata et al. (2017).
The number counts from the GOODS-ALMA survey

(Franco et al. 2018; covering the flux density range of

S1.2mm ≈ 0.5 − 2 mJy) are, however, lower than our es-

timations, and those reported by Fujimoto et al. (2016)

(which probe the faintest flux densities in the figure)
lie above our estimations. Note, however, that the mea-

surements reported by Fujimoto et al. (2016) come from

gravitationally lensed fields, and therefore, these dis-

crepancies might be caused by the uncertainties in the
magnification factors and small survey area (see discus-

sion in González-López et al. 2020). The discrepancy

with the Franco et al. (2018) results is likely related to

the relatively low completeness associated with their

high angular resolution observations (θFWHM = 0.29′′

and θFWHM = 0.60′′ after filtering the data).

4 The results from AzTEC observations and other ALMA surveys
at 1.1mm were scaled by a factor of 0.8 while those from the
ALMA/SCUBA-2 survey at 850µm were scaled by a factor of
0.4.
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Figure 5. Cumulative number counts – galaxies above a given flux density per unit area – at 1.2 mm (left panel), 2 mm
(middle panel), and 3 mm (right panel). The data points used for the fitting analysis are illustrated as blue points while other
measurements from the literature are plotted as green squares. The best-fit number counts from the model, represented by the
gray lines, nicely reproduce the number counts at the three different wavelengths simultaneously, including those not used in the
fitting procedure as well as number counts at shorter wavelengths (see Appendix A), spanning more than a decade in wavelength
and order of magnitudes in flux density. The best-fit number counts from the model are also broken down into two ranges of
luminosity and three redshift bins. Galaxies with LIR > 1012 L⊙ are shown in solid lines while those with LIR < 1012 L⊙ are
shown in dotted lines. Similarly, the three different redshift ranges are illustrated by different colors: blue for z < 3, gold for
3 < z < 6, and orange for z >6.

At 2 mm, the only determinations of the num-

ber counts reported in the literature beyond

our MORA survey measurements come from the
GISMO/IRAM surveys reported in Staguhn et al.

(2014) and Magnelli et al. (2019), covering 31 arcmin2

and 250 arcmin2, respectively. The latter are in very

good agreement with the model predictions while the
former lie above by a factor of ≈ 2.0 − 2.5. This dif-

ference is thought to be caused by the uncertainties in

the flux deboosting factors in the confusion-limited map

of Staguhn et al. (2014), as discussed in Magnelli et al.
(2019), plus the possible effects of cosmic variance (see

§2.1).

At 3 mm, the only measurement plotted in Figure 5

which was not used in our analysis, is the brightest bin

of the ASPECS survey, which represents only an upper
limit. This value is, however, in good agreement with

the model predictions.

The success of the model can also be illustrated by its

predicting power at other wavelengths. The model does
reproduce the number counts at shorter wavelengths,

from 70µm to 850µm spanning over two decades of

observations over hundreds of square degrees (see Ap-

pendix A).

4.3. The IRLF and best-fit parameters

As it is clearly shown in Figure 6, both methods

provide consistent results and good constraints on the

model parameters governing the IRLF while successfully
reproducing the observed number counts (see Figures 5

and 9).

The faint-end slope of the infrared luminosity function

is found to be flat, with αLF = −0.42+0.02
−0.04. This is in line

with recent studies based on the deepest single-dish ob-

servations and interferometric surveys (although those

were limited to lower redshifts), with reported values

of αLF = −0.4 (Koprowski et al. 2017) and −0.5 ± 0.7
(Lim et al. 2020), and with the observed flattening in

the 1.1 mm luminosity function (Popping et al. 2020).

Although the faint-end slope is fixed for all redshifts

in our model, we highlight that an evolution to steeper

values with increasing redshift is inconsistent with our
data and with the very low number of z > 4 galaxies

detected in the deepest ALMA surveys (Dunlop et al.

2017; Hatsukade et al. 2018; Aravena et al. 2020). In-

deed, most of the sources in the ASPECS survey lie at
z < 3 (Aravena et al. 2020), in good agreement with

our model predictions (see Figure 5). This IR flat slope

contrasts with the steep faint-end slope of the UV lumi-

nosity function at high redshift, which ranges from −1.6

at z ∼ 4 to −2.0 at z ∼ 7 (e.g. McLure et al. 2013;
Finkelstein et al. 2015). As a consequence, deep pencil-

beam observations at (sub-)mm wavelengths would not
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Figure 6. Constraints on the IRLF model parameters αLF (the faint-end slope of the luminosity function), Ψ2 (which governs
the evolution of Φ⋆ at high redshift given Φ⋆ ∝ (1 + z)Ψ2), and βem (the dust emissivity index). The confidence regions at
the 68%, 95%, and 99.7% for each parameter derived using the maximum likelihood approach are represented by the blue
contours (from dark blue to light blue). Additionally, the best-fit values extracted from 100 realizations of the Nelder–Mead
multidimensional minimization algorithm (amoeba) are illustrated with the green solid circles. On the top of each column, we
show the respective 1D marginalized probability distribution derived from the maximum likelihood approach (solid blue line),
and the histogram of best-fit values found by the Nelder–Mead method (green dashed histograms). The best-fit values derived
from both methods and their corresponding 1σ uncertainties (68% C.I.) are shown on the top of each row. Consistent results
are derived from the two different approaches.

significantly increase the number of detected sources, as
is commonly the case in the rest-frame UV/optical ob-

servations (e.g. Ferguson et al. 2000).

Regarding the evolution of the characteristic number

density at high redshift, the best-fit Ψ2 value of −6.5+0.8
−1.8

implies a steep redshift evolution of the IR number den-

sity (Φ⋆ ∝ (1+z)−6.5+0.8
−1.8), which disfavours the dust-rich

hypothetical model discussed in Casey et al. (2018b), for

which a value of Φ⋆ ∝ (1 + z)−2.5 was adopted. This in-

dicates that dusty star-forming galaxies are indeed rare

at early epochs. This steep evolution is also in line with
the rapid drop-off of the quasar luminosity function at

high redshift (Hopkins et al. 2007) and similar to the
number density evolution of UV-bright (MUV = −21)

galaxies (∝ (1 + z)−5.9; Finkelstein et al. 2015), which

might suggest that these galaxies occupy similar dark

matter halos.

There is, though, a caveat related to the effective dust
optical opacity of our SEDs that the reader should keep

in mind. Although, as mentioned before, the SEDs are

parameterized in term of λpeak rather than dust tem-

perature, incorporating the CMB effects on the heating
and detectability of the sources requires an estimation

of the dust temperature (da Cunha et al. 2013). As-

suming an optically thin opacity form would result in
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lower dust temperatures for the same λpeak than those

derived from the optically thick model, decreasing the

contrast between the dust emission and the CMB. This

implies that, in order to match the measured number
counts, a higher number of galaxies would be required

compared to the optically thick model, i.e. a higher Ψ2

value (see discussion in Zavala et al. 2018). Neverthe-

less, this effect is only important if the number counts

are dominated by very high-redshift (z > 6) sources,
which our results suggest is likely not the case.

Finally, Figure 6 shows that the dust emissivity spec-

tral index is well-constrained to be βem = 1.8 ± 0.1, in

very good agreement with the values reported in the
literature (e.g. Dunne et al. 2011; Galliano et al. 2018;

although we note that measurements of this parameter

at high redshifts are scarce). This figure also reveals,

unsurprisingly, a mild correlation between βem and Ψ2

since higher values of βem imply lower flux densities at
long wavelengths (for a given IR luminosity, redshift,

and dust temperature).

We highlight that despite the large range of values

explored for the three different parameters and despite
the caveats described above, αLF and βem are well-

constrained, and while the uncertainties on Ψ2 seem

large, our constrains rule out values grater than Ψ2 ∼

−4, which would imply a significantly larger number of

DSFGs at high-redshifts.

4.4. The history of dust-obscured star formation

The star formation rate density as a function of red-
shift can now be calculated by integrating the best-fit in-

frared galaxy luminosity function5 and propagating the

associated uncertainties.

An important source of uncertainty is the field-to-

field variation due to the large scale structure of the
Universe, which is known as cosmic variance. To in-

fer its impact in our estimations, we adopt the results

from a model for the dust continuum number counts

of galaxies (Popping et al. 2020) that builds upon the
UniverseMachine model (Behroozi et al. 2019), from

which 1000 different light cones of 400 sq. arcmin (ap-

proximately the combined area the MORA, ASPECS,

and the 3 mm archival surveys) are used to measure the

variance in the number of detected sources. The cosmic
variance is then defined following Moster et al. (2011):

σ2 ≡
〈N2〉 − 〈N〉2

〈N〉2
−

1

〈N〉
, (4)

5 The IR luminosity function is integrated over the interval
log(L/L⊙) : [9, 13.8]. A change of these limits has a minor impact
on our results since the majority of the contribution arise from
galaxies with luminosities in the range of LIR = 1011 − 1013 L⊙

(see Figure 7).

where 〈N2〉 and 〈N〉 are the variance and mean num-

ber of sources in the light cones. At the most critical

redshifts of our work (z > 3), the cosmic variance is es-

timated to be ≈ 35%. At z ≈ 7.0, the cosmic variance
increases significantly and our data-sets suffer a loss of

constraining power. Furthermore, an increasing frac-

tion of the star formation activity is expected to be in

highly clustered structures (i.e. galaxy proto-clusters;

Chiang et al. 2017) that might have been missed in our
surveys. Therefore, the model predictions presented in

this work are limited to z . 7.0.

The inferred dust-obscured star-formation history and

its associated uncertainty, including that from cosmic
variance, is presented in Figure 7. As can be seen,

it is dominated by galaxies with LIR ≈ 1011 − 1013,

a population that our surveys are particularly sen-

sitive to (see Figure 10 in Appendix B). Figure 7

also includes other determinations of the CSFRD
from the literature, which are split in two groups:

FIR/sub-mm and UV/optical-based measurements.

The first set includes the works by Magnelli et al.

(2011); Gruppioni et al. (2013); Magnelli et al.
(2013); Casey et al. (2012); Swinbank et al. (2014);

Bourne et al. (2017); Koprowski et al. (2017);

Liu et al. (2018); Williams et al. (2019); Magnelli et al.

(2019); Wang et al. (2019b); Lim et al. (2020);

Dudzevičiūtė et al. (2020), and the second set
the results reported in Wyder et al. (2005);

Schiminovich et al. (2005); Robotham & Driver

(2011); Cucciati et al. (2012); Dahlen et al. (2007);

Reddy & Steidel (2009); Bouwens et al. (2012);
Schenker et al. (2013); Finkelstein et al. (2015). We

remind the reader that our model is not a fit to those

data points but are shown as a mean for comparison.

The dust-obscured component traced by the FIR-to-

mm surveys has dominated the cosmic history of star
formation for the past ∼ 12 billion years, with a peak era

between z = 2− 2.5 (∼ 10− 11 Gyr ago) and contribut-

ing around ∼ 80% of total SFRD (see middle panel in

Figure 7). Beyond this peak redshift, the dust-obscured
star formation rapidly decreases, following the strong

evolution of the number density of the IR luminosity

function (see §4.3), with values that are comparable to

the unobscured star formation traced by the rest-frame

UV/optical surveys at z ∼ 4.
At higher redshifts, the dust re-processed star forma-

tion rate density becomes less dominant than the un-

obscured star formation. This is because of the combi-

nation of the flat faint-end slope of the IR luminosity
function and the steep redshift evolution of its num-

ber density as compared to the UV luminosity function.

At z = 5, the dust-obscured star formation represents
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Figure 7. The inferred dust-obscured star formation history is illustrated by the orange shaded region in the bottom panel.
For comparison, we plot independent measurements from the literature based on IR/sub-mm and UV surveys (orange circles
and blue squares, respectively) and the average unobscured star-formation derived from rest-frame UV optical surveys (i.e. not
corrected for dust attenuation; blue shaded region; Finkelstein et al. 2015). The total inferred SFRD derived in this work is
shown in gray. The uncertainties in our estimation include those from the best-fit parameters and cosmic variance. The middle
panel represents the fraction of obscured star formation, SFobs/(SFobs + SFunobs), and its associated uncertainty (lighter shaded
area). The contribution of dust-obscured galaxies, which dominates the cosmic star-formation history through the last ∼ 12 Gyr,
rapidly decreases beyond its maximum, reaching values that are comparable to the unobscured star formation traced by the
rest-frame UV/optical surveys by z ≈ 4 − 5. The top panel represents the contribution from galaxies with different luminosity
ranges to the dust-obscured SFRD, being dominated by ULIRGs (ultra-luminous infrared galaxies; 1012 < LIR < 1013 L⊙) and
LIRGs (1011 < LIR < 1012 L⊙).
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35%+10%
−25% of the total SFRD and decreases to 25%+15%

−20%

at z = 6. Given that massive, IR bright galaxies domi-

nate the obscured component (as shown in the top panel

of Figure 7), the observed decline of the dust-obscured
star formation likely reflects the dearth of massive galax-

ies at high redshifts.

4.4.1. Comparison to other measurements and model

predictions

The SFRD described above is in line with previous

results from (sub-)mm surveys, although most of them
were limited to z . 4 − 5. For example, Dunlop et al.

2017 reported a transition from unobscured-dominated

star formation to obscured-dominated at z ≈ 4, in very

good agreement with our results. Nevertheless, the

small area of their survey (∼ 4.5 sq. arcmin) prevented
them from deriving conclusions beyond this redshift.

The results from the larger ALMA surveys presented by

Hatsukade et al. (2018) and Franco et al. (2018), cover-

ing 26 arcmin2 and 69 arcmin2, respectively, also indi-
cate a minor contribution from DSFGs in the z ≈ 4 − 5

range (see also Yamaguchi et al. 2019). More recently,

Dudzevičiūtė et al. (2020) used ALMA observations to

investigate the properties of ∼ 700 DSFGs detected over

∼ 1 deg2, and inferred a SFRD in the range of ρobs ≈
3 × 10−3 at z ≈ 4 − 5 for galaxies with S850µm > 1 mJy

(see also Koprowski et al. 2017), in very good agreement

with our results (particularly if we look at the contribu-

tion from LIR > 1012L⊙ galaxies; see Figure 8).
The ‘wedding cake’ structure of all these surveys en-

sure that the contributions from the more abundant

faint galaxies and the rare bright sources are accounted

for (with the possible exception of the most extreme

galaxies with log(LIR/L⊙) & 13.5; see Figure 10), sug-
gesting that we are not missing any significant popu-

lation of galaxies. This is also supported by the fact

that the number counts predicted by the model are in

good agreement with the deepest ALMA observations
achieved to-date and with the large-area single-dish tele-

scope surveys (see Figures 5 and 9).

Other studies based on stacking analysis on (sub-

)mm maps and using samples of UV/optically-selected

galaxies have also concluded that the fraction of star
formation that is obscured by dust decreases at high

redshifts (e.g. Capak et al. 2015; Bouwens et al. 2016;

Fudamoto et al. 2020). Indeed, Bouwens et al. (2020)

complemented previous results from the literature with
their dust-corrected SFRs to estimate the obscured and

unobscured components of the cosmic history of star

formation, and found that the CSFRD transitions from

being primarily unobscured to obscured at z ∼ 5, in

relatively good agreement with our estimations6 from

direct mm-selected samples.

Our results are also compatible with estimations from

other tracers such as radio observations. For ex-
ample, using the VLA-COSMOS 3 GHz radio survey,

Novak et al. (2017) inferred lower limits for the SFRD

up to z ∼ 5 by integrating the radio luminosity func-

tion after converting the radio luminosities to SFRs.

These VLA-COSMOS 3 GHz radio constraints are con-
sistent with our measurements. The authors also pro-

vided a completeness-corrected estimation of this quan-

tity by extrapolating the luminosity function to account

for the faintest star-forming galaxies. Their estimates
show good consistency with our total SFRD, with the

possible exception of their last bin at z ∼ 5. Never-

theless, the large extrapolations involved in this process

plus the systematic uncertainties that go into calculating

SFRD from radio data introduce very large uncertain-
ties in these measurements. The most recent estimates

of SFRD from the VLA-COSMOS 3 GHz survey pre-

sented by Leslie et al. (2020) are in better agreement

with our results.
There are, however, a few other studies that have

proposed a different picture, with the obscured com-

ponent significantly dominating the CSFRD back to

z ∼ 5. Rowan-Robinson et al. (2016) estimated the

obscured star formation rate density using a sample of
Herschel-selected galaxies over ∼ 20 deg2, finding values

far higher than the UV estimations. Their constraints,

however, cannot rule out the possibility that the UV-

based measurements are dominant given the large un-
certainties on their estimations, as mentioned by the

authors. Additionally, it is possible that their calcula-

tions might be contaminated by the effect of gravita-

tionally lensing or by overestimated Herschel flux den-

sities (in view of their extreme SFRs which extend to
20, 000M⊙ yr−1).

More recently, Gruppioni et al. (2020) derive the

dust-obscured SFRD using the serendipitously detected

sources in the ALPINE survey, finding values in ex-
cess to those derived from UV/optical surveys even at

z ∼ 5. While the use of highly-confused Herschel obser-

6 Note, however, that in Bouwens et al. (2020) most of the dust-
obscured star formation at z > 4 is produced by faint (UV-
selected) galaxies with LIR < 1012 L⊙. Nevertheless, those esti-
mations were done assuming SED templates whose dust temper-
atures increase with redshift. If there is no significant evolution
on the dust temperature (e.g. Dudzevičiūtė et al. 2020) then the
SFRs derived for these galaxies would be lower by a factor of
∼ 2.5, as discussed by the authors. This would decrease the
contribution of faint galaxies and bring our results into better
agreement.
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vations might also overestimate the derived luminosi-

ties and SFRs, we think that the discrepancy is mainly

due because of the possible clustering of serendipitous

detections around the original targets. The clustering
is expected since the observations’ original targets are

massive galaxies (log(M/M⋆)& 10.5) at z ≈ 4 − 6. In

this case, their measurements would be more representa-

tive of an over-dense region in the large-scale structure

of the Universe. We note, however, that a significant
fraction of their estimates comes from the extrapolation

of the IR luminosity function since the reported total

SFRD is a factor of ∼ 5 greater than the SFRD esti-

mated when using only the detected sources. Therefore,
it is also possible that the assumptions on the extrapola-

tion of the IRLF are responsible for part of the observed

discrepancy.

In Figure 8 we compare the SFRD derived in this work

with results from galaxy evolution models, including the
predictions from the cosmological hydrodynamical Illus-

trisTNG simulations (Pillepich et al. 2018), the shark

semi-analytic model (Lagos et al. 2018), and the results

from the SIDES simulations (Béthermin et al. 2017).
Generally speaking, and taking into account the associ-

ated uncertainties in these values, our results are in good

agreement with the aforementioned studies, pointing to-

wards a convergence between galaxy evolution models

and observations.
Finally, we include the density evolution of luminous

(M1450 < −26) quasars (Wang et al. 2019a) in Figure 8

(scaled for visualization). The shape of the space density

of bright quasar strongly resemble that from the bright
DSFGs with LIR > 1012L⊙ (shaded orange region in

the figure), suggesting a connection between these two

populations and, therefore, between the onset of star

formation and the growth of their massive black holes

(e.g. Wall et al. 2005).

5. DISCUSSION AND CONCLUSIONS

Exploiting the far-infrared and sub-millimeter data
aggregated over the last two decades, and particularly,

the state-of-the-art ALMA blind surveys at 1.2 mm,

2 mm, and 3 mm, we have constrained the evolution of

the IR luminosity function and dust-obscured star for-

mation in the last 13 billion years, back to z ∼ 7. This
is achieved by combining a model of the dusty star-

forming galaxy population with those long-wavelength

observations, inferring constraints on the prevalence and

characteristics of these galaxies through measurements
of galaxy number counts at different wavelengths.

By using a library of SEDs an assuming different evo-

lutionary scenarios for the IR luminosity function, the

model makes predictions for galaxy (sub-)millimeter sur-
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Figure 8. The total (obscured + unobscured) SFRD derived
in this work (gray region) in comparison to the predictions
from galaxy evolution models. The solid blue line repre-
sents the predictions from the cosmological hydrodynamical
IllustrisTNG simulations (Pillepich et al. 2018), the dashed
champagne line those from the shark semi-analytic model
(Lagos et al. 2018), and the dash-dotted green line the re-
sults from the SIDES simulations (Béthermin et al. 2017).
Additionally, we include the density evolution of luminous
quasars from Wang et al. 2019a (scaled for better visualiza-
tion), which strongly resemble the shape of the SFRD from
bright DSFGs with LIR > 1012 L⊙ illustrated by the orange
dashed region.

veys and then works backward to discriminate between

the different luminosity function scenarios through the

galaxy number counts. Finally, the dust-obscured star
formation rate density is estimated by integrating the

IR luminosity function (see also Casey et al. 2018a,b;

Zavala et al. 2018).

The model’s constraints used in this work include our
2 mm galaxy number counts derived as part of the 2

2 mm MORA survey, the largest ALMA survey to-date

sensitive to detect DSFGs and dust-obscured star for-

mation up to the epoch of reionization and the only one

carried out at a 2 mm wavelength (see also Casey et al.
in preparation). Additionally, we use the 3 mm number

counts reported in §3, which are based on our ALMA

follow-up observations on the sample of 3 mm-selected

galaxies reported by Zavala et al. (2018). Finally, we
also include the number counts from the ASPECS sur-

vey (González-López et al. 2019, 2020), a deep ALMA

large program at 1.2 mm and 3 mm. Altogether, these

surveys add a total of ∼ 400 sq. arcmin. of deep observa-

tions with arcsecond-resolution, representing the state-
of-the-art blind ALMA surveys to-date.
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All these data provide good constraints on the model

parameters, and thus, on the IR luminosity function and

its evolution with redshift. Based on our best-fit model,

which simultaneously reproduces the far-infrared and
sub-millimeter data from single-dish telescopes and in-

terferometric surveys, we constrained the faint-end slope

of the infrared luminosity function to be flat, with a

value of αLF = −0.42+0.02
−0.04 (see also Koprowski et al.

2017; Lim et al. 2020). This implies that deep pencil-
beam observations at (sub-)mm wavelengths would not

significantly increase the number of detected sources,

in line with previous results from the literature (e.g.

Popping et al. 2020). The characteristic number den-
sity of the luminosity function, Φ⋆, decreases as Φ⋆ ∝

(1+z)−6.5+0.8
−1.8 at z & 2, in a similar fashion as the quasar

luminosity function and the density evolution of UV-

bright galaxies (Hopkins et al. 2007; Finkelstein et al.

2015), which might suggest that these galaxies occupy
similar dark matter halos.

Our constraints on the dust-obscured star formation

indicate that the cosmic history of star formation had

a peak at z ≈ 2 − 2.5, and has been dominated by

the dust-obscured component during the last 12 billion
years, back to z ∼ 4, when the unobscured and obscured

contributions were comparable. Beyond this epoch, the

dust re-processed star formation rate density was less

dominant than the visible star formation, contributing
around 35%+10%

−25% at z = 5 and 25%+15%
−20% at z = 6.

This suggests that the bulk (& 80%) of the star forma-

tion activity in the first billion years of the Universe

was not dust enshrouded. Given the massive nature of

DSFGs, this drop-off of the obscured component is in
line with the decreasing number of high-mass galaxies

with increasing redshift (see also Dunlop et al. 2017;

Bouwens et al. 2020).

Our picture of the history of the cosmic star for-

mation is consistent with previous results from long-

wavelength (FIR-to-mm) surveys (e.g. Dunlop et al.

2017; Bourne et al. 2017; Hatsukade et al. 2018;

Dudzevičiūtė et al. 2020), although most of those were
limited to z . 4. Hence, our results represent a signifi-

cant progress on our understanding of the prevalence of

DSFGs during the first 1.5 billion years of the Universe,

and complement the significant efforts carried out us-
ing UV/optically selected galaxies (e.g. Bouwens et al.

2020). The inferred SFRD is also in broad agreement

with the most recent predictions from galaxy evolution

models (like IllustrisTNG and shark; Pillepich et al.

2018; Lagos et al. 2020), which point towards a conver-
gence between models and observations.

With estimations for both the obscured and unob-

scured components, the shape of the cosmic history of

star formation is now constrained out to the end of the

epoch of reionization. This measurement, which pre-
serves the galaxy mass assembly history of the Universe,

provides a benchmark against which to compare galaxy

formation models and simulations, and a step forward

in our understanding of the dust and metal enrichment

of the early Universe.
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arXiv e-prints, arXiv:2006.04284.

https://arxiv.org/abs/2006.04284

Baugh, C. M., Lacey, C. G., Frenk, C. S., et al. 2005,

MNRAS, 356, 1191,

doi: 10.1111/j.1365-2966.2004.08553.x

Beelen, A., Omont, A., Bavouzet, N., et al. 2008, A&A,

485, 645, doi: 10.1051/0004-6361:200809500

Behroozi, P., Wechsler, R. H., Hearin, A. P., & Conroy, C.

2019, MNRAS, 488, 3143, doi: 10.1093/mnras/stz1182
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Béthermin, M., Wu, H.-Y., Lagache, G., et al. 2017, A&A,

607, A89, doi: 10.1051/0004-6361/201730866

Bourne, N., Dunlop, J. S., Merlin, E., et al. 2017, MNRAS,

467, 1360, doi: 10.1093/mnras/stx031

Bouwens, R., Gonzalez-Lopez, J., Aravena, M., et al. 2020,

arXiv e-prints, arXiv:2009.10727.

https://arxiv.org/abs/2009.10727

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al.

2012, ApJL, 752, L5, doi: 10.1088/2041-8205/752/1/L5

Bouwens, R. J., Aravena, M., Decarli, R., et al. 2016, ApJ,

833, 72, doi: 10.3847/1538-4357/833/1/72

Capak, P. L., Carilli, C., Jones, G., et al. 2015, Nature, 522,

455, doi: 10.1038/nature14500

Casey, C. M. 2012, MNRAS, 425, 3094,

doi: 10.1111/j.1365-2966.2012.21455.x

Casey, C. M., Hodge, J., Zavala, J. A., et al. 2018a, ApJ,

862, 78, doi: 10.3847/1538-4357/aacd11
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APPENDIX

A. NUMBER COUNTS MODEL PREDICTIONS AT SHORTER WAVELENGTHS

As discussed in Casey et al. (2018a,b), the number counts at λ . 850µm only inform about the evolution

of the IRLF at z . 3.0, where the model parameters are already relatively well understood. Given that our

primary goal is to constrain the IRLF at earlier epochs, only the number counts at 1.2, 2 and 3 mm were used
in our analysis. Additionally, incorporating all the available number counts in the fitting procedure, particularly

those from single-dish telescope surveys, would increase the computational cost significantly since the simulated

area would increase by two order of magnitudes. This would make our fitting analysis prohibitive.

Nevertheless, as mentioned in the main text, our best-fit model nicely reproduces the number counts at

shorter wavelengths, from λ = 70µm to 850µm, covering a large dynamic range of flux density. In Figure 9, three
different examples are shown; the number counts at 250µm, 450µm/500µm, and 850µm. The remaining number

counts can be found in Casey et al. (2018b). Since most of the galaxies detected at these short wavelengths are

relatively bright galaxies at z . 3, the best-fit parameters studied in this work (which govern the faint and

high-redshift population) do not significantly change the model predictions at those wavelengths compared to
Casey et al. (2018b).
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Figure 9. Differential number counts at 250µm (left panel), 450µm/500 µm (middle panel), and 850µm (right panel). The
predictions from the best-fit model are represented by gray lines, while data points from the literature are illustrated as blue
circles. Note that in order to minimize the computational cost, only predictions from a model with αLF = −0.42, Ψ2 = −6.5,
and βem = 1.8 are included, i.e. without taking into account the uncertainties in the best-fit model parameters. Generally
speaking, the model reproduces all the far-infrared and sub-millimeter data aggregated over the last two decades from both
single-dish telescopes and interferometric surveys spanning more than a decade in wavelength and order of magnitudes in flux
density. At both 250µm and 500µm, the data come from BLAST (Patanchon et al. 2009; Béthermin et al. 2010) and Herschel

(Oliver et al. 2010; Clements et al. 2010; Béthermin et al. 2012). The 450µm data points (which have not been scaled relative
to the 500µm flux density) come from Casey et al. 2013; Chen et al. 2013; Geach et al. 2013; Hsu et al. 2016; Wang et al. 2017;
Zavala et al. 2017. Finally, the 850µm panel includes the works of Chapman et al. 2002; Webb et al. 2003; Coppin et al. 2006;
Scott et al. 2006; Beelen et al. 2008; Knudsen et al. 2008; Weiß et al. 2009; Casey et al. 2013; Chen et al. 2013; Karim et al.
2013; Hsu et al. 2016; Zavala et al. 2017.
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B. LUMINOSITY LIMITS OF THE ADOPTED SURVEYS
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Figure 10. Luminosity sensitivity limits of the three different surveys adopted in this work. Given that we use directly the
galaxy number counts to constrain our model, these luminosity limits were calculated adopting the minimum flux density bin
of each of the galaxy number counts (see Figure 5), respectively. The deepest number counts at 1.1 mm are sensitive to galaxies
down to LIR ∼ 2 × 1010 l⊙ up to z ∼ 8, while the larger area surveys at 2 mm and 3 mm are sensitive to brighter and rarer
galaxies with LIR > 1011

− 1012. Note that, although the cosmic SFRD presented in Figure 7 was calculated by integrating the
best-fit IR luminosity function over the interval log(L/L⊙) : [9, 13.8] (i.e. extrapolating beyond the surveys’ luminosity limits),
the majority of the contribution arise from galaxies with luminosities in the range of LIR = 1011

− 1013 L⊙, well within the
luminosity limits of the adopted data.
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