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ABSTRACT
Upcoming galaxy surveys such as lsst and euclid are expected to significantly improve the
power of weak lensing as a cosmological probe. In order to maximise the information that
can be extracted from these surveys, it is important to explore novel statistics that complement
standard weak lensing statistics such as the shear-shear correlation function and peak counts.
In this work, we use a recently proposed weak lensing observable — weak lensing voids —
to make parameter constraint forecasts for an lsst-like survey. We make use of the cosmo-
SLICS suite of 𝑤CDM simulations to measure void statistics (abundance and tangential shear)
as a function of cosmological parameters. The simulation data is used to train a Gaussian
process regression emulator that we use to generate likelihood contours and provide parameter
constraints frommock observations.We find that the void abundance is more constraining than
the tangential shear profiles, though the combination of the two gives additional constraining
power. We forecast that without tomographic decomposition, these void statistics can constrain
the matter fluctuation amplitude, 𝑆8 within 0.7% (68% confidence interval), while offering
4.3, 4.7 and 6.9% precision on the matter density parameter,Ωm, the reduced Hubble constant,
ℎ, and the dark energy equation of state parameter, 𝑤0, respectively. We find that these results
are tighter than the constraints given by the shear-shear correlation function with the same
observational specifications, indicating that weak lensing void statistics can be a promising
cosmological probe potentially complementary with other lensing tests.

Key words: gravitational lensing: weak – large-scale structure of universe – cosmology:
theory – methods: data analysis

1 INTRODUCTION

The standard model of cosmology, in which the dominant matter
component consists of cold dark matter (CDM) while the late-time
accelerated expansion is driven by a positive cosmological constant,
Λ, is highly successful at describing a number of independent ob-
servations, which constrain these parameters with a large degree
of concordance. Notably, measurement of fluctuations in the Cos-
mic Microwave Background (CMB) (Planck Collaboration et al.
2018), provides measurements of the present day expansion rate of
the universe 𝐻0, the matter density parameter Ωm and the matter
fluctuation amplitude 𝜎8.

Another promising observational probe that is sensitive to and
can be used to constrain many cosmological parameters is grav-
itational lensing, a phenomenon according to which the light of
distant source images is distorted by the gravitational potentials of

★ E-mail:christopher.t.davies@durham.ac.uk (CTD)

the foreground matter. In the strong lensing regime distant galax-
ies are visibly distorted into large arcs. In the weak lensing (WL)
regime, which is the focus of this study, this effect is much smaller,
and the weak lensing signal is measured through the correlations
in distortions of many source galaxies (Bacon et al. 2000; Kaiser
et al. 2000; Van Waerbeke et al. 2000; Wittman et al. 2000). This
allows us to probe the total matter distribution of the Universe on the
largest scales (see Bartelmann & Schneider 2001; Kilbinger 2015,
for reviews), and offers a powerful method to study the clustering
of dark matter and its evolution.

Some of the most recent WL observations that supplement the
parameter measurements from the CMB include the DES (Troxel
et al. 2018) 1, HSC (Hikage et al. 2019) 2 and KiDS (Asgari et al.
2020) 3 WL surveys. However, all of these surveys measure lower

1 https://www.darkenergysurvey.org/
2 https://hsc.mtk.nao.ac.jp/ssp/
3 http://kids.strw.leidenuniv.nl/
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values of 𝜎8 compared to Planck, with a statistically significant dis-
agreement arising in the comparison between the Planck and KiDS
constraints. This is one example of the parameter tensions that have
arisen in recent years, where different observations point to slightly
different values of certain cosmological parameters, implying the
presence of either unaccounted for systematics or new physicswhich
are unaccounted for. Another example is the𝐻0 tension, where mul-
tiple observations find that measurements from the early Universe
are broadly inconsistent with those of the late universe (Verde et al.
2019), particularly the distance scale measurement of 𝐻0 based on
Cepheids by the SH0ES collaboration (Riess et al. 2019).

In order to address these parameter tensions, it is important
to measure cosmological parameters as precisely as possible, by
maximising the information that can be extracted from a given sur-
vey. The standard approach for weak lensing surveys is to measure
ΛCDM parameters with two-point statistics such as the shear-shear
correlation function or the convergence power spectrum (Schnei-
der et al. 2002; Semboloni et al. 2006; Hoekstra et al. 2006; Fu
et al. 2008; Heymans et al. 2012; Kilbinger et al. 2013; Hildebrandt
et al. 2017; Troxel et al. 2018; Hikage et al. 2019; Aihara et al.
2019; Asgari et al. 2020). However, two-point statistics do not cap-
ture non-Gaussian information, and weak lensing data are highly
non-Gaussian due to the non-linear evolution of the Universe. To
address this loss, many complimentary statistics have been devel-
oped, which encapsulate information beyond two-point statistics. A
common and popular example is the abundance ofWL peaks, which
has been shown to be complimentary to the two-point function and
helps break the Ω𝑚-𝜎8 parameter degeneracy (Jain & Van Waer-
beke 2000; Pen et al. 2003; Dietrich & Hartlap 2010). Peaks are
also shown to outperform the standard methods for constraining the
sum of neutrino mass (Li et al. 2019) and 𝑤0 Martinet et al. (2020).
By including complimentary statistics, the measurement errors on
cosmological parameters can be reduced, whichwill help inform the
statistical significance of any parameter tensions between multiple
observations.

The goal of this paper is to present parameter constraint fore-
casts for one such complimentary probe, WL voids. Voids are typi-
cally identified within the full 3D distribution of matter as regions
of low matter density or low tracer density, for which void statistics
such as their abundance, radial profiles and shapes contain useful
non-Gaussian information (see, e.g., White 1979; Fry 1986; Biswas
et al. 2010; Bos et al. 2012; Lavaux &Wandelt 2012). Most studies
use galaxy voids, which are identified as underdense regions in the
galaxy distribution (e.g., Paz et al. 2013; Sutter et al. 2014; Cautun
et al. 2016; Nadathur 2016), where galaxy void statistics are com-
plementary to the galaxy power spectrum and baryonic acoustic
oscillations (e.g., Pisani et al. 2015; Hamaus et al. 2016; Nadathur
et al. 2019). Recently, void WL profiles have also been shown to be
a powerful cosmological probe (see, e.g., Cai et al. 2015; Barreira
et al. 2015; Gruen et al. 2016; Barreira et al. 2017; Falck et al. 2018;
Baker et al. 2018).

While less explored compared with 3D voids, voids can also be
identified in projection, such as in the projected galaxy distribution
(e.g. Gruen et al. 2015; Barreira et al. 2017; Sánchez et al. 2017;
Cautun et al. 2018) or in a weak lensingmap (e.g. Davies et al. 2018;
Coulton et al. 2019). Here, we follow the latter approach and define
WL voids generally as 2D regions within WL convergence maps
that contain low convergence or few to no tracers. In a previous
work (Davies et al. 2018), we have shown that the lensing profiles
of 2D WL voids identified directly in WL convergence maps can
be measured with a larger signal-to-noise ratio (SNR) than those
of galaxy voids. This is because WL voids correspond to deeper

underdensities projected along the line of sight than galaxy voids,
and hence they have larger tangential shear profiles. This also means
that WL voids are better at constraining alternative cosmological
models, such as modified gravity models, than galaxy voids (Davies
et al. 2019b). Additionally, compared to other WL statistics, WL
voids are less affected by baryonic physics (Coulton et al. 2019).

In this paper we use the cosmo-SLICS simulation suite
(Harnois-Déraps et al. 2019) to identify a particular class of WL
voids, the tunnels, for a range of cosmological parameters. We use
this data to train a Gaussian process regression emulator, which,
combined with Markov chain Monte Carlo, allows us to generate
likelihood contours and provide forecast parameter constraints for
an lsst-like survey.

The tunnel algorithmwe use here is one possible choice ofWL
void finder. In fact, similar to voids identified in the galaxy distribu-
tion (e.g. Colberg et al. 2008; Cautun et al. 2018; Baker et al. 2019),
there are several void finding methods that have been successfully
applied to WL maps. For example, Davies et al. (2020) have car-
ried out a detailed analysis on the impact that varying the WL void
definition might have on the resulting WL void statistics. They have
found that the ‘tunnel’ void finding algorithm offers a great trade
off betweenmaximising the observable tangential shear profile SNR
and minimising the impact of observational noise on the void statis-
tics. Therefore, we limit our analysis to only tunnels, and we defer a
more detailed study comparing the parameter constraining powers
of different void finders to a future work. For galaxy voids, studies
have shown that combining different void definitions can lead to
improved cosmological constraints (e.g. Paillas et al. 2019).

The layout of the paper is as follows. In Section 2we outline the
relevant theory for WL observations. In Section 3 we describe our
mock observational data, emulation and likelihood analysis pipeline
and void finding algorithm. In Section 4 we present the WL void
statistics used in our analysis and in Section 5 we present our pa-
rameter constraint forecasts. Finally we conclude in Section 6. For
completeness, we also have two appendices where we study respec-
tively the accuracy of our emulator and the impact of varying the
smoothing scale of WL maps.

2 THEORY

The lens equation for a gravitationally lensed image is

𝛼𝛼𝛼 = 𝛽𝛽𝛽 − 𝜃𝜃𝜃 , (1)

where 𝛼𝛼𝛼 is the deflection angle between 𝛽𝛽𝛽, the true position of the
source on the sky, and 𝜃𝜃𝜃, the observed position of the lensed image.
The corresponding Jacobian matrix of the (linear) lens mapping is
the deformation matrix A,

𝐴𝑖 𝑗 =
𝜕𝛽𝑖

𝜕𝜃 𝑗
= 𝛿𝑖 𝑗 −

𝜕𝛼𝑖

𝜕𝜃 𝑗
. (2)

Under the Born approximation and neglecting lens-lens coupling
and other second-order effects, the deflection angle can be expressed
as the gradient of a 2D lensing potential 𝜓,

𝛼𝛼𝛼 = ∇∇∇𝜓 , (3)

where 𝜓 is given by

𝜓(𝜃𝜃𝜃, 𝜒) = 2
𝑐2

∫ 𝜒

0

𝜒 − 𝜒′

𝜒𝜒′
Φ(𝜒′𝜃𝜃𝜃, 𝜃𝜃𝜃)𝑑𝜒′ . (4)

Here, 𝜒 is the comoving distance from the observer to the source and
𝜒′ is the comoving distance from the observer to the continuously-
distributed lenses, which is also the integration variable.Φ is the 3D

MNRAS 000, 1–14 (2020)
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lensing potential of the lens, and 𝑐 the speed of light. Φ is related
to the non-relativistic matter density contrast, 𝛿 = 𝜌/𝜌̄ − 1, through
the Poisson equation

∇2Φ = 4𝜋𝐺𝑎2 𝜌̄𝛿 , (5)

where 𝜌 is the matter density of the Universe (with a bar denoting
the mean), 𝐺 is the gravitational constant and 𝑎 is the scale factor.

Eq. (4) shows that the lensing potential is a line-of-sight inte-
gral of the matter distribution from the source to the observer. The
contribution that matter at distance 𝜒′ along the line of sight makes
to the total lensing potential is weighted by (𝜒 − 𝜒′)/𝜒𝜒′ and so
depends on its distances from the source and observer.

Eq.(3) allows Eq. (2) to be expressed in terms of 𝜓

𝐴𝑖 𝑗 = 𝛿𝑖 𝑗 − 𝜕𝑖𝜕 𝑗𝜓 , (6)

where partial derivatives are taken with respect to 𝜃𝜃𝜃. The matrix 𝐴𝐴𝐴
can be parameterised through the more physically instructive terms
convergence, 𝜅, and shear, 𝛾 = 𝛾1 + 𝑖𝛾2, as

𝐴𝐴𝐴 =

(
1 − 𝜅 − 𝛾1 −𝛾2

−𝛾2 1 − 𝜅 + 𝛾1

)
. (7)

This parameterisation allows the convergence and shear to be related
to the lensing potential via

𝜅 ≡ 1
2
∇2
𝜃𝜃𝜃
𝜓 , (8)

and

𝛾1 ≡
1
2
(
∇𝜃𝜃𝜃1∇𝜃𝜃𝜃1 − ∇𝜃𝜃𝜃2∇𝜃𝜃𝜃2

)
𝜓, 𝛾2 ≡ ∇𝜃𝜃𝜃1∇𝜃𝜃𝜃2𝜓, (9)

where ∇𝜃𝜃𝜃 ≡ (𝜒′)−1∇. Eq. (8) can be interpreted as a 2D Poisson
equation, and so by substituting Eq. (5) and Eq. (4) into Eq. (8), the
convergence can be expressed in terms of the matter overdensity

𝜅(𝜃𝜃𝜃, 𝜒) =
3𝐻20Ωm
2𝑐2

∫ 𝜒

0

𝜒 − 𝜒′

𝜒
𝜒′

𝛿(𝜒′𝜃𝜃𝜃, 𝜒′)
𝑎(𝜒′) 𝑑𝜒′ . (10)

This shows that the observedWL convergence can be interpreted as
the projected density perturbation along the line of sight, weighted
by the lensing efficiency factor (𝜒 − 𝜒′)𝜒′/𝜒. Here, the lensing
efficiency is greatest at 𝜒′ = 𝜒/2, when the lens is halfway between
the source and the observer.

The above derivation assumes a fixed source plane. However,
in real WL observations, the source galaxies do not occupy a single
plane at a fixed distance from the observer. The observed catalogue
of source galaxies has a probability distribution 𝑛(𝜒) that spans over
a range of 𝜒 values, and Eq. (10) must be weighted by this source
galaxy distribution in order to obtain 𝜅(𝜃𝜃𝜃) (see, e.g., Kilbinger 2015,
for details)

𝜅(𝜃𝜃𝜃) =
∫ 𝜒

0
𝑛(𝜒′)𝜅(𝜃𝜃𝜃, 𝜒′)𝑑𝜒′ . (11)

In this work, we measure the 𝜅 profile, 𝜅(𝑟), in and aroundWL
voids. However, as 𝜅(𝑟) is not directly observable, it is also useful
to relate it to the radial tangential shear profile, 𝛾𝑡 (𝑟), through

𝛾t (𝑟) = 𝜅(< 𝑟) − 𝜅(𝑟) , (12)

where

𝜅(< 𝑟) = 1
𝜋𝑟2

∫ 𝑟

0
2𝜋𝑟 ′𝜅(𝑟 ′)𝑑𝑟 ′ (13)

is the mean enclosed convergence within radius 𝑟. Notice that here
and throughout this paper we use 𝑟 rather than 𝜃 to represent the 2D
distance from the void centre.

WL observations rely on accurately measuring the shapes of
galaxies, and cross correlating the shapes of neighbouring galaxies.
However, any correlation in shape due to lensing is dominated by
the random shapes and orientations of galaxies, which is the leading
source of noises in WL observations, referred to as galaxy shape
noise (GSN). Since the lensing signal is weak by definition, when
identifying WL peaks (local maxima in the convergence field 𝜅(𝜃𝜃𝜃))
it is convenient to express the convergence relative to the standard
deviation of the corresponding GSN component of the field. This is
given by

𝜈 =
𝜅

𝜎GSN
(14)

where 𝜎GSN is the standard deviation of the contributions to the
signal from galaxy shape noise. 𝜎GSN can be calculated by generat-
ing mock GSN maps and applying any transformations also applied
to the convergence maps, such as smoothing. Mock GSN maps are
generated by assigning to pixels random convergence values from a
Gaussian distribution with standard deviation

𝜎2pix =
𝜎2int

2𝜃pix𝑛gal
, (15)

where 𝜃pix is the width of each pixel, 𝜎int is the intrinsic ellipticity
dispersion of the source galaxies, and 𝑛gal is the measured source
galaxy number density. In thisworkweuse𝜎int = 0.28 and 𝑛gal = 20
arcmin−2 as will be discussed in Section 3.1 .

It will also be useful to compare constraints from Eq. 12 to the
standard shear two-point correlation function, which is given by

𝜉± (𝜃𝜃𝜃) = 〈𝛾𝑡𝛾𝑡 〉 ± 〈𝛾×𝛾×〉 =
1
2𝜋

∫ ∞

0
𝑑𝑙𝑙𝑃𝜅 (𝑙)𝐽0,4 (𝑙𝜃𝜃𝜃) , (16)

where 𝛾𝑡 = −R(𝛾𝑒−2𝑖𝜙) (equivalent to Eq. (12), but presented
for completeness), 𝛾× = −I(𝛾𝑒−2𝑖𝜙), 𝜙 is the polar angle of the
separation vector 𝜃𝜃𝜃 , 𝐽0 and 𝐽4 are the Bessel functions for 𝜉+ and
𝜉− respectively, and 𝑙 is the Fourier mode.

3 METHODOLOGY

In this section we describe the methodology followed in this work,
including the simulations andmock lensing data, likelihood analysis
and the weak lensing void (tunnels) finding algorithm.

3.1 Mock Data

In this work we use mockWL convergence maps generated from the
cosmo-SLICS simulation suite (Harnois-Déraps et al. 2019), which
we briefly outline in this subsection.

The cosmo-SLICS suite is a set of N-body dark-matter-only
simulations run for 26 cosmology nodes in the [Ω𝑚, 𝑆8, ℎ, 𝑤0]
parameter space. Here Ω𝑚 is the matter density parameter today,
𝑆8 = 𝜎8 (Ω𝑚/0.3)0.5, ℎ = 𝐻0/100kms−1 Mpc−1 is the reduced
Hubble constant, and 𝑤0 is the dark energy equation of state pa-
rameter, which is assumed to be a constant. The 𝜎8 parameter
is the present-day root-mean-squared matter density perturbation
smoothed on 8ℎ−1 Mpc scales.

The four dimensional parameter space is sampled using a Latin
hypercube, which is a sampling algorithm designed to give a high
interpolation accuracy for a low node count. The exact cosmological
parameter space that is modelled by each simulation node is shown
in Fig. 1. At each node, a carefully-designed pair of simulations

MNRAS 000, 1–14 (2020)
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Figure 1.The four dimensional parameter space ([Ω𝑚, 𝑆8, ℎ, 𝑤0 ]) sampled
by the cosmo-SLICS simulation suite. The fiducial cosmology is indicated by
a star with parameter values [0.29, 0.82, 0.69, −1.00]. We have highlighted
two additional nodes with blue ([0.48, 0.68, 0.64, −0.77]) and red ([0.17,
0.86, 0.79, −1.69]) stars, which are selected as nodes in separate regions
of the parameter space, used to exemplify the behavior of WL voids as a
function of cosmological parameters.

are run, for which sampling variance is highly suppressed. This
is achieved by selecting a pair of initial conditions out of a large
number of random realisations, such that the mean matter power
spectrum closelymatches the ensemble average. The random phases
of this pair of initial conditions are used for all cosmology nodes.
The simulation volume is a cube with length 𝐿 = 505 ℎ−1Mpc, with
𝑁 = 15363 dark matter particles.

For each node, 50 pseudo-independent light-cones are con-
structed by resampling projected mass sheets, which are then ray-
traced under Born approximation to construct lensing maps and
catalogues (see Harnois-Déraps et al. 2019, for full details about
the light-cone and catalogue construction).

We use the cosmo-SLICS source catalogue down-sampled to
match lsst specifications with a source redshift distribution of 𝑧𝑠 =
[0.6, 1.4], which gives a conservative source galaxy number density
of 20 arcmin−2. From this we generate 50WL convergencemaps for
each of the 26 cosmology nodes, with a sky coverage of 10×10 deg2
each and pixel grid of dimensions 36002 (Giblin et al. 2018). These
maps are smoothed with a Gaussian filter with smoothing scale
𝜃𝑠 = 1 arcmin.

3.2 Emulation and likelihood analysis

In this subsection, we outline the procedure used to test the sensi-
tivity of WL void statistics to the cosmological parameters Ω𝑚, 𝑆8,
ℎ and 𝑤0.

The first step is to measure the WL void statistics from the 50
convergence maps for each of the 26 cosmo-SLICS cosmologies
shown in Fig. 1. Then, in order to make predictions of the WL void
statistics at arbitrary points in the 4D parameter space shown in
Fig. 1, we use a Gaussian process (GP) regression emulator from
scikit-learn (Pedregosa et al. 2011) to interpolate the void statistics

between nodes. GP regression is a non-parametric Bayesian ma-
chine learning algorithm used to make probabilistic predictions that
are consistent with the training data (see, e.g., Habib et al. 2007;
Schneider et al. 2008, for some of its early applications in cosmol-
ogy). The emulator requires the training data to sample the param-
eter space sufficiently, and generally the accuracy of the emulator is
limited by the availability of training data. The accuracy of the GP
emulator trained on cosmo-SLICS was tested extensively and found
to yield few per cent accuracy in its predictions of weak lensing
two-point correlation functions (Harnois-Déraps et al. 2019), den-
sity split statistics (Burger et al. 2020) persistent homology statistics
Heydenreich et al. (2020) and aperturemass statistics (Martinet et al.
2020). In this work the average void statistics and their standard er-
rors at each node are used as the training data for the emulator. We
present results showing the accuracy of the emulator in Appendix
A.

Finally, once the emulator has been trained we use Monte
Carlo Markov Chain (MCMC) to estimate the posteriors of the
parameters for the entire parameter space and produce likelihood
contours.We use the emcee python package (Foreman-Mackey et al.
2013) to conduct the MCMC analysis in this work sampling the 4D
parameter space as follows.

We employ a Bayesian formalism, in which the likelihood,
𝑃(𝑝𝑝𝑝 |𝑑𝑑𝑑), of the set of cosmological parameters 𝑝𝑝𝑝 = [Ω𝑚, 𝑆8, ℎ, 𝑤0]
given a data set 𝑑𝑑𝑑, is given, according to Bayes’ theorem, by

𝑃(𝑝𝑝𝑝 |𝑑𝑑𝑑) = 𝑃(𝑝𝑝𝑝)𝑃(𝑑𝑑𝑑 |𝑝𝑝𝑝)
𝑃(𝑑𝑑𝑑) , (17)

where 𝑃(𝑝𝑝𝑝) is the prior, 𝑃(𝑑𝑑𝑑 |𝑝𝑝𝑝) is the likelihood of the data con-
ditional on the parameters, and 𝑃(𝑑𝑑𝑑) is the normalisation. In our
analysis we use flat priors with upper and lower limits respectively
forΩ𝑟𝑚𝑚: [0.10, 0.55], 𝑆8: [0.61, 0.99], ℎ: [0.45, 0.90], 𝑤0: [-1.99,
-0.52]. We note that these priors slightly extend past the parameter
space in Fig. 1, which we have expanded to ensure the likelihood
contours presented in this work to not cross the prior boundary.

The log likelihood can be expressed as

log(𝑃(𝑑𝑑𝑑 |𝑝𝑝𝑝)) = −1
2
[𝑑𝑑𝑑 − 𝜇(𝑝𝑝𝑝)] 𝐶−1 [𝑑𝑑𝑑 − 𝜇(𝑝𝑝𝑝)] , (18)

where 𝜇(𝑝𝑝𝑝) is the prediction generated by the emulator for a set of
parameters 𝑝𝑝𝑝, and 𝐶−1 is the inverse covariance matrix. In practice
we use the emulator’s prediction of the void statistics at the fiducial
cosmology as the data 𝑑𝑑𝑑. The likelihood returns a 4D probability
distribution that indicates how well different regions of the param-
eter space describe the input data 𝑑𝑑𝑑. Note that in Eq. (18) we have
assumed that the covariance matrix does not vary with a change in
the cosmological parameters.

We calculate the covariance matrices from the 50 WL map
realisations from the fiducial cosmology, and divide it by a factor
of 180 in order to rescale the covariance matrix from a 100 deg2
area to the lsst survey area, which we take as 18, 000 deg2. We also
multiply the inverse covariancematrix by a factor 𝛼, which accounts
for the bias that is present when inverting a noisy covariance matrix
(Anderson 2003; Hartlap et al. 2007), given by:

𝛼 =
𝑁 − 𝑁bin − 2

𝑁 − 1 , (19)

where 𝑁 = 50 is the number of weak lensing maps that have been
used to calculate the covariance matrix and 𝑁bin is the number
of bins for which the statistic is computed. We note however that
Sellentin & Heavens (2016) present an alternative approach to ro-
bustly account for the uncertainty in the estimated covariance, via a
student-𝑡 likelihood distribution.
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3.3 The tunnel algorithm

To identifyWL voids, we use the tunnel algorithm initially proposed
in Cautun et al. (2018), which identifies the largest circles in a 2D
tracer catalogue that are empty of tracers. We choose to use this
void finding algorithm since, compared with several other common
2D void finders, it gives void lensing profiles with high SNR, whilst
also being least affected by the observational noises associated with
weak lensing measurements, such as galaxy shape noise (Davies
et al. 2020). The tunnel algorithm requires an input tracer catalogue
to identify voids. For the identification of WL voids, we use WL
peaks as tracers of the underlying convergence field (this avoids the
necessity to have a synthetic 2D galaxy map for this analysis). Here
we define WL peaks as local maxima in the WL convergence map
as in Eq. (14).

To identify tunnels, we first construct a Delaunay triangulation
of the tracers (WL peaks). This produces a unique tessellation of the
map with triangles, where each vertex is a tracer and the tessellated
triangles enclose no tracers. From each triangle, a corresponding
circumcircle can be defined, which is a circle that is directly on top
of its Delaunay triangle with all vertices of the latter residing on
the circumcircle’s circumference. This tessellation is unique, and
by definition gives circles that do not enclose any tracers. To avoid
identifying the same regions as voids multiple times, we discard any
circumcircles whose centers reside inside a larger circumcircle. The
resulting list represents our tunnel catalogue, where each tunnel is
characterized in terms of the centre and radius of its corresponding
circumcircle.

The WL peak catalogues that may be used to identify tunnels
contain peaks with a range of amplitudes (or heights) 𝜈. WL peaks
of different amplitudes trace different components of the WL map,
where the peaks with low or negative amplitudes trace underdense
regions of the map, and those with high amplitudes trace overdense
regions. Furthermore, peaks with low amplitudes are more suscep-
tible to either being created or contaminated by GSN. It is therefore
convenient to generate multiple sub-catalogues of a given WL peak
catalogue, by retaining only the peaks with amplitudes larger than
a given 𝜈 value. Varying the 𝜈 thresholds allows us to study how
the tunnels respond to tracer catalogues with different properties. In
this work we use WL peak catalogues with amplitudes of 𝜈 > 1, 2
and 3 to identify tunnels, and will also use these 𝜈 values to denote
the corresponding tunnel catalogues.

In Fig. 2 we show a visualisation of tunnels identified from cat-
alogues of WL peaks with amplitudes 𝜈 > 2. The figure shows WL
maps, WL peaks and tunnels for the fiducial cosmology (left), and
two sample cosmologies, blue (middle) and red (right) to exemplify
the impact of changing cosmological parameters. Here it can be seen
in the bottom left part of the panels that the red cosmology, which
has the highest 𝑆8 value of the three reference cosmologies, contains
more overdense (orange) regions than the other two cosmologies.
The increased overdensity in the bottom left of the red-cosmology
panel leads to more WL peaks, which generates more small tunnels
and fewer large tunnels relative to the other two cosmologies. This
highlights how changing the cosmological parameters changes the
structure observed in WL maps and the corresponding WL void
properties.

4 WEAK LENSING VOID STATISTICS

In this section we present the weak lensing void statistics used in this
analysis, showing their abundance in Section 4.1, and the tangential
shear profiles in Section 4.2.

Table 1. Forecast of percentage uncertainties obtained from various WL
void statistics for an lsst-like survey. The first block of 4 rows show 68%
CL while the bottom 4 rows show 95% CL. In each block, the results shown
in the first three lines are quoted from the tightest contours in each figure in
Section 5 (see first column for more details). In the last line of each block,
‘𝛾-2PCF’ stands for the parameter constraints using the cosmic shear two-
point correlation functions for the same maps as used for the cosmic void
statistics.

Statistic Ω𝑚 𝑆8 ℎ 𝑤0

68% confidence limits
𝑑𝑛/𝑑𝑅𝑣 (combined) 4.3% 0.7% 4.7% 7.0%
𝛾𝑡 (combined) 6.8% 1.3% 6.3% 12.5%
𝑑𝑛/𝑑𝑅𝑣 and 𝛾𝑡 (𝜈 > 1) 4.9% 0.8% 5.0% 6.9%
𝛾-2PCF 4.5% 0.8% 4.1% 7.8%

95% confidence limits
𝑑𝑛/𝑑𝑅𝑣 (combined) 8.3% 1.4% 8.9% 13.5%
𝛾𝑡 (combined) 13.3% 2.6% 12.3% 25.1%
𝑑𝑛/𝑑𝑅𝑣 and 𝛾𝑡 (𝜈 > 1) 9.7% 1.6% 10.0% 13.9%
𝛾-2PCF 12.6% 2.2% 11.5% 23.0%

4.1 Void abundance

Fig. 3 shows the differential void abundance per unit area as a func-
tion of void radius. The three panels correspond to voids identified
in threeWL peak catalogues, with peak heights 𝜈 > 1, 2 and 3. Void
abundances for each of the nodes in Fig. 1 are plotted in grey, the
fiducial cosmology in black and two sample cosmologies in colour
(blue and red – corresponding to the two cosmologies in the middle
and right panels of Fig. 2).

The figure shows that as the 𝜈 threshold increases, the total
number ofWL voids decreases (given by the area under the curves),
and the average size of the voids increases. The spread in the void
abundances over all cosmologies is largest for the 𝜈 > 3 catalogue.
However, the data is also noisier in this catalogue, because there are
fewer peaks with 𝜈 > 3 and subsequently fewer tunnels.

The red cosmology produces more large voids for the 𝜈 > 1
and 2 catalogues than the fiducial and blue cosmologies. However,
the same behaviour is not seen for the 𝜈 > 3 catalogue, which may
indicate that the sensitivity of the void abundance to specific cos-
mological parameters changes as fewer tracers are used to identify
WL voids. The red cosmology has the largest 𝑆8 and smallest Ω𝑚

compared to the fiducial and blue cosmologies. Increasing 𝑆8 or
Ω𝑚 increases the clustering of matter which leads to a wider range
of WL void sizes, as we have seen in Fig. 2: this is because the
enhanced clustering creates more peaks with 𝜈 > 1 or 2 in dense
regions, reducing the void sizes there, and at the same time reduces
the amplitudes of some low peaks in underdense regions, increas-
ing void sizes there. On the other hand, for the 𝜈 > 3 catalogue, the
peaks are sparser in all three cosmologies (hence voids are larger),
and the fact that the red cosmology has more peaks at 𝜈 > 3 again
restricts the sizes of its voids, this time affecting the largest ones.

For 𝜈 > 1 the fiducial cosmology produces the fewest large
voids compared to the red and blue cosmologies, however for 𝜈 > 3
it produces the most large voids. The change in relative behaviour
between the fiducial, red and blue cosmologies as the 𝜈 threshold
increases, indicates that void abundances measured from different
WL peak catalogues contain complementary information to each
other. We will see this point more clearly later when looking at the
constraints from void abundances.
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Figure 2. (Colour Online) A visualisation of WL peaks (green points) used to identify the tunnels (white circles) in the WL convergence maps (colour map).
The left panel shows tunnels for the fiducial cosmology, while the middle and right panels show tunnels for the blue and red cosmologies highlighted in Fig. 1
respectively. The colour bar on the right indicates the convergence field in units of 𝜈 = 𝜅/𝜎GSN.
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Figure 3. (Colour Online) The differential void abundance as a function of void radius 𝑅𝑉 . The three panels correspond to voids identified in different WL
peak catalogues, with peak heights 𝜈 > 1, 2 and 3 (from left to right). The void abundances for all cosmologies in Fig. 1 are plotted in grey. Results for the
fiducial (black), red (red) and blue (blue) cosmologies are over-plotted in colour.
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Figure 4. (Colour Online) The tangential shear profiles as a function of re-scaled distance to void centre, 𝑟/𝑅𝑉 . The three panels correspond to voids identified
in three WL peak catalogues with peak heights 𝜈 > 1, 2 and 3 (from left to right). The tangential shear profiles for all cosmologies in Fig. 1 are plotted in grey.
Results for the fiducial cosmology (black), red (red) and blue (blue) cosmologies are over-plotted in colour.

4.2 Lensing tangential shear profiles

Fig. 4 shows the tangential shear profiles for WL voids, where the
panels (from left to right) show WL voids identified in the 𝜈 > 1, 2
and 3 catalogues. Tangential shear profiles for all cosmologies are
plotted in grey, with the fiducial and two highlighted cosmologies

plotted in colour as in Fig. 3. The tangential shear profiles are
calculated by first measuring the convergence profiles in annuli
centered on the void center (pixels are interpolated for small annuli),
where the number of annuli used is the lensing profile bin number.
The annuli are then stacked as a function of relative angular size
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Figure 5. (Colour Online) Constraint forecasts on cosmological parameters measured from void abundances. Contours are shown for WL voids identified in
WL peak catalogues with 𝜈 > 1 (blue), 𝜈 > 2 (orange), 𝜈 > 3 (green) and the combination of all three catalogues (red). The true cosmological parameter
values used to generate the data are indicated by the black point. The diagonal panels show the 1D marginalised probability distribution, and remaining panels
show the marginalised 2D probability contours enclosing the 68% and 95% confidence intervals. The table in the top right shows true parameter values (top)
and the inferred parameter values for the different peak catalogues with 68% (upper section) and 95% (lower section) confidence limits.

(𝑟/𝑅𝑉 ), weighted by their corresponding void area. Using Eq. 12,
this is then converted to the tangential shear profiles.

The tangential shear profiles plotted here are negative, which
indicates that the WL voids behave like concave lenses and their
interiors correspond to underdense regions. The figure shows that
as the 𝜈 threshold increases, the depth of the tangential shear profiles
at 𝑟/𝑅𝑉 = 1 decreases, butmeanwhile the spread in the amplitude of
the tangential shear profiles, as well as the spread in the width of the
peak around 𝑟/𝑅𝑉 = 1, amongst all cosmologies, increases. Note
that the peaks of the tangential shear profiles appear to be narrower
as the 𝜈 threshold increases, but this is an artificial consequence of
the fact that these plots are made against 𝑟/𝑅𝑉 with the void radius
𝑅𝑉 larger for larger 𝜈 thresholds.

For the 𝜈 > 1 catalogue, the fiducial, red and blue cosmologies

all lie on top of each other. For 𝜈 > 2, the red cosmology (with the
largest 𝑆8 value) has a deeper tangential shear profile compared to
the other two cosmologies. For 𝜈 > 3 the difference in amplitude
increases further between the three reference cosmologies, with the
fiducial cosmology having the lowest (absolute) amplitude, however
the general trend between the three reference cosmologies is the
same for all 𝜈 thresholds. Part of this can again be attributed to the
high 𝑆8 value in the red cosmology,which enhances the clustering of
matter, resulting in low-density regions becomingmore underdense.
However, the three reference cosmologies have very distinct values
for the other three parameters, in particular Ω𝑚, which means that
an intuitive and yet complete explanation of their relative behaviours
is difficult to gauge by eye.

The observation that, although the spread in shapes amongst
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Figure 6. (Colour Online) The same as Fig. 5 but for the tangential shear profiles. See the caption in Fig.5 for more details

all cosmologies increases with the 𝜈 threshold, the general order in
which they appear does not change, indicates that there may not be
much complementary information between tangential shear profiles
measured from different 𝜈 thresholds. Also, while the differences
between the different cosmologies are larger for the 𝜈 > 3 catalogue,
the fact that there are relatively fewer voids in this catalogue means
that its constraining power is not necessarily stronger than the other
two catalogues, as we will see shortly.

5 PARAMETER CONSTRAINTS FORECAST

In this section we present parameter constraint forecasts for an lsst-
like survey from the void abundances and tangential shear profiles
of WL voids, as well as their combinations.

5.1 Void abundance constrains

Fig. 5 shows the likelihood contours for measuring the four cosmo-
logical parameters with WL void abundance. The diagonal panels
of the figure show the 1D marginalised likelihood distribution and
remaining panels show the 2D marginalised likelihood contours.
For each inference case, the inner and outer contours indicate re-
spectively the 68% and 95% confidence limits (CL). As mentioned
above, we use the fiducial cosmology as our ‘observed’ data set,
which is indicated by the black point. The figure shows results for
three 𝜈 thresholds with 𝜈 > 1 (blue), 𝜈 > 2 (orange) and 𝜈 > 3
(green). We also show results for the combination of all three cat-
alogues (red). The table in the top right of the figure indicates the
estimated cosmological parameters with their corresponding 68%
(top) and 95% (bottom) CL, for each of the contours.

All of the contours presented in this figure are centered on the
true (fiducial) cosmology, indicating that the WL void abundances
are able to measure cosmological parameters without any bias. The
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Figure 7. (Colour Online) The same as Fig. 5 but for the tangential shear profiles (blue), void abundance (orange), and combination of the two (green). Results
are shown for 𝜈 > 1WL peaks. See the caption in Fig. 5 for more details. Note that, for comparison, we have added the contours from the shear-shear two-point
correlation function (without tomography) extracted from the same maps in grey colour, and the corresponding constraints on the parameters are also listed in
the table in grey.

tightest contours are for theΩ𝑚 − 𝑆8 plane, which is expected since
these are the cosmological parameters to which WL analysis is the
most sensitive.

For nearly every combination of parameters, the three con-
tours for the 𝜈 > 1, 2 and 3 void catalogues occupy different parts
of the marginalised 2D parameter space, or have different degen-
eracy directions, where most of the overlapping occurs around the
true values. As suggested by the behaviour of the three reference
cosmologies discussed in Section 4.1, this indicates that void abun-
dances measured from different catalogues contain complementary
information to each other. We therefore also show parameter likeli-
hood contours for the combination of theWL void abundances from
the three catalogues in red.

The ‘Combined’ contours are smaller than any of the individ-
ual contours, for all combinations of parameters. This shows that

parameter measurements from the WL void abundances are sig-
nificantly improved when multiple catalogues are used. The 68%
and 95% CL percentage accuracy that the combinedWL void abun-
dance is able tomeasure the parameters with is shown in Table 1.We
note that when combining multiple catalogues, we had to reduce the
number of bins used for each catalogue to avoid having a data vector
with more bins than the number of WLmap realisations that we had
available for calculating the covariance matrix. For the individual
catalogues we use 20 bins, and when combining catalogues we use
10 bins per catalogue giving 30 in total. This coarser binning per
catalogue means that the red contours presented here may be larger
than the ‘true’ contours. We plan to run further simulations and
make more mock WL maps in the future, to improve the constraint
here.

Theoretically, the abundance of tunnels identified from a WL
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Figure 8. (Colour Online) The same as Fig. 5 but for the combination of the tangential shear profiles and the void abundance. Results are shown for the three
WL Peak catalogues with 𝜈 > 1 (blue), 𝜈 > 2 (orange), 𝜈 > 3 (green). See the caption in Fig. 5 for more details.

peak catalogue depends not only on the number of peaks, but also
on their clustering pattern. We therefore expect that the information
contained in WL void abundance and peak correlation functions
may have substantial overlapping. The latter probe has been studied
in details by Davies et al. (2019a), with certain scaling properties
observed. While it is beyond the scope of the current work, we will
conduct a similar analysis by forecasting the parameter constraining
power by WL peak two-point correlation functions in a followup
study.

5.2 Tangential shear constraints

Fig. 6 shows likelihood contours for the four cosmological param-
eters from tangential shear profiles. The colours of the contours
correspond to the same void catalogues as in Fig. 5. Again, the con-
tours are smallest in the Ω𝑚-𝑆8 plane, and each contour is roughly

centered on the true parameter values indicated by the black point,
showing that the tangential shear profiles are able to measure these
parameters without any bias. The figure shows that the contours
from 𝜈 > 1 and 𝜈 > 2 are similar in size, and the 𝜈 > 3 contours
are significantly larger and in most cases entirely enclose the other
contours. All of the contours in this figure, unlike in the case of void
abundances, occupy similar regions of the parameter space, or have
similar degeneracy directions. This confirms our conclusion based
on observation of Fig. 4, namely the tangential shear profiles from
different peak catalogues do not offer much complementarity.

As in Section 5.1,we combine the tangential shear profiles from
all three catalogues to generate ‘Combined’ likelihood contours.
Note that for individual catalogues the tangential shear profiles
are calculated with 30 bins each, and when combined, individual
catalogues are plotted with 10 bins each, giving 30 in total. Again,
this is to avoid having more data bins than WL map realisations
used to calculate the covaraince matrix. We expect this approach
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might give contours that are slightly larger than the truth, due to
the coarser binning. By combining catalogues, we find only a small
improvement in contour size relative the the 𝜈 > 1 catalogue, which
again suggests that there is very little complementary information
between the different 𝜈 catalogues for the tangential shear profiles.

The strongest constraints from the tangential shear profiles are
for the combined contour. We summarise the 68% and 95% CL for
the 𝛾𝑡 combined case in Table 1.

5.3 Constraints by combining void abundance and tangential
shear

In this sectionwe present parameter constraint forecasts for the com-
bination of the WL void abundance and tangential shear profiles.

Fig. 7 shows contours for the tangential shear profiles (blue)
WLvoid abundance (orange) and the combination of the two (green)
for the 𝜈 > 1 catalogue. We also include the shear-shear two-
point correlation function constraints as a comparison. We follow
Asgari et al. (2020) and sample the 2PCF using 9 logarithmically-
spaced angular separation bins from 0.5 to 300 arcmin, and use
only the 𝜉+ correlation function. Note that the WL void abundance
and tangential shear profile contours shown in this figure are also
presented as the blue contours in Fig. 5 and Fig. 6 respectively. We
include these contours in this figure to illustrate how the contours
behave when combining the two probes.

For all combinations of parameters, the WL void abundance
contours and the tangential shear contours occupy similar regions of
the parameter space and have similar degeneracy directions. How-
ever there is a large difference in size between the two for all panels
that include ℎ.

The combined contours are smaller than the contours from the
tangential shear profiles alone, which shows that there is a benefit of
combining these two probes. When comparing the tangential shear
contours and the combined contours, the parameter with the greatest
relative increase in accuracy is 𝑆8. This is shown in the table in the
top right of the figure, where it can be seen that the combined errors
are roughly half the tangential shear errors, although this seems to
be mainly due to the fact that void abundance alone can give much
stronger constraint on 𝑆8. Finally, the parameter with the greatest
absolute increase in accuracy enabled by this combination is 𝑤0,
which suggests that using different probes to strengthen constraints
could be particularly important for dark energy properties.

Note that, as in the previous subsections, we have had to reduce
the number of bins with which the two statistics are calculated when
creating the combined contours, to avoid having a data vector with
more bins than the number of realisations used for the covariance
matrix calculation. For the combined contours in this figure, we use
the void abundance calculated with 10 bins, and the tangential shear
profiles calculated with 20 bins.

We show the percentage errors (at 68% and 95% CL) for the
combination of the void abundance and tangential shear profiles, as
well as those of the shear two-point correlation function (𝛾-2PCF),
in Table 1. The grey contours in Fig. 7 show that the shear two-point
correlation function provides similar, constraints to those from the
combination of the void abundance and tangential shear profiles,
for all parameters at the 68% CL. Where constraints on Ω𝑚 and ℎ
are slightly better for the shear two-point correlation function. And
constraints on 𝑤0 are tighter for the combined void abundance and
tangential shear. However, for the 95% CL, constraints are better for
the combined void abundance and tangential shear profiles for all
parameters, relative to the shear two-point correlation function.

As shown by Table 1, the 68%CL constraints for the combined

void abundance with three 𝜈 thresholds are tighter than those of the
shear two-point correlation function for Ω𝑚, 𝑆8 and 𝑤0. For the
95% CL constraints, the difference is even larger, where better con-
straints come form the combined void abundance for all parameters.
The difference is most significant for 𝑤0, where the cause of this
behaviour is due to the tails in the contours for the shear two-point
correlation function in the 2D planes which are most prominent for
𝑤0. We expect that combining void abundance and 𝛾-2PCF will
further tighten the constraints, though this will be left for a future
study.

Fig. 8 shows contours for the WL void abundance and tangen-
tial shear profiles combined, for the three catalogues 𝜈 > 1 (blue),
2 (orange) and 3 (green) respectively. The smallest contours are for
the 𝜈 > 1 catalogue (which has been shown in green colour in Fig. 7)
and increasing the 𝜈 threshold increases the contour size, where the
larger contours almost entirely enclose the smaller contours. This is
because the number of voids decreases with 𝜈 increasing, meaning
that the statistical uncertainties increase and the constraining power
is weakened.

Nevertheless, it is interesting to note that in Fig. 6 the tangential
shear contours for the 𝜈 > 3 catalogue are large. The same is also
true in Fig. 5 with the WL void abundance for the same catalogue.
The resulting contour when the two statistics are combined however
is significantly smaller, as shown by the green contour in Fig. 8. So
even for this catalogue where individual constraints are poor, their
combination is highly beneficial.

6 DISCUSSION AND CONCLUSIONS

In this paper we have tested the sensitivity of the WL void abun-
dances and tangential shear profiles to four cosmological parame-
ters: Ω𝑚, 𝑆8, ℎ and 𝑤0. To this end, we have trained a Gaussian
Process emulator with 26 cosmologies sampled in this 4D parameter
space using Latin hypercube, which can be used to predict these two
void statistics for arbitrary cosmologies (within the range spanned
by the training cosmologies). We have investigated the impact of
changing the number of WL peaks used as tracers to identify voids,
and ran Markov Chain Monte Carlo samplings from our mock weak
lensing data to forecast the accuracies at which these four parame-
ters can be constrained by a future, lsst-like, lensing survey, using
different combinations of the above WL void statistics.

The results from Fig. 5 show that theWL void abundance com-
bined over all catalogues gives the tightest parameter constraints,
where the greatest sensitivity is to the 𝑆8 parameter. This is because
the abundances of WL voids identified fromWL peak catalogues at
different 𝜈 thresholds have different dependencies and degeneracy
directions in the studied parameter space. We suspect that there is a
close interlink between the void abundance and the peak two-point
correlation function, but will defer a detailed study of the latter to
a follow-up work. For now, we conclude that complementary infor-
mation is contained in the abundances of voids from different WL
peak catalogues, a fact that should be utilised in order to maximise
the use and scientific return of future lensing data.

WL void tangential shear profiles, in contrast, provide less tight
constraints on the same cosmological parameters, and the results
from different peak catalogues do not seem to be complementary to
each other. In particular, for low-𝜈 peak catalogues such as 𝜈 > 1
(Fig. 6), there is little degeneracy betweenΩ𝑚 and 𝑆8; this is because
𝑆8 is designed to break the degeneracy between Ω𝑚 and 𝜎8 for
standard WL analysis, e.g., shear two-point correlation function,
and the low-𝜈 peaks have little bias with respect to the underlying
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convergence field, so that their tangential shear profiles follow more
closely the parameter dependency of the shear two-point correlation
functions. WL void abundances, on the other hand, can have further
degeneracies between Ω𝑚 and 𝑆8 (as seen in Fig. 5), indicating
that they have different degeneracy directions between Ω𝑚 and 𝜎8
compared with the shear two-point function, and therefore can lead
to additional constraints to the latter.

Nevertheless, we highlight that the above conclusions only ap-
ply to the 4D parameters space that we have focused on in this work,
and may change if additional physics is introduced into the cosmo-
logical model. In Davies et al. (2019b) we found that the tangential
shear profiles are able to distinguish between modified gravity mod-
els with a larger signal-to-noise ratio than the void abundance. This
suggests that there may be other cosmological parameters not stud-
ied here, such as those governing modified gravity laws, to which
the tangential shear profile is more sensitive than theWL void abun-
dance. We leave an exploration of this possibility to future works.

Finally, we have found that combining void abundance and tan-
gential shear is another way to obtain tighter parameter constraints.
Even for the 𝜈 > 3 catalogues, for which these two void statistics
give poor individual constraints, significant improvement has been
found with their synergy.

Overall, we find that weak lensing voids can be a promising
cosmological probe to constrain models. The cosmological param-
eter to which the WL void statistics are most sensitive is 𝑆8, which
can be measured at the sub percent level (68% CL). We also find
that Ω𝑚 can be measured to within ' 4%, ℎ to within ' 5% and 𝑤0
within ' 7% (all 68% CL).

As a comparison, we find that parameter constraints from the
combined void abundances are comparable to those from the shear
two-point correlation function (which were obtained from the same
WLmaps) at the 68%CL, however the constraints are tighter for the
combined void abundance at the 95%CL.Wenote thatwe are unable
to combinemultiple catalogues without reducing the number of bins
so the results presented here are upper limits. Further combinations
such as combining the void abundance and tangential shear profiles
over all catalogues, will show the maximum constraining power of
WL voids, where it would also be possible to include further peak
catalogues with higher or lower 𝜈 thresholds. However, combining
so many statistics into a single data vector requires a larger number
of simulations than those currently available to us, so we leave
such a study to a future project. We also note that constraints from
the shear two-point correlation function can be improved by using
tomography (Martinet et al. 2020), and it is therefore also important
to test how tomography can improve the constraints from WL void
statistics in the future.

Throughout this study, we have adopted a Gaussian smoothing
of 𝜃𝑠 = 1 arcmin. It may also be interesting to study how the param-
eter constraints depend on the smoothing scale used to smooth the
WL convergence maps.We know that using larger smoothing scales
increases the size of the WL voids and reduces their total number
(Davies et al. 2020). A larger number of WL map realisations will
then be required in order to accurately measure WL void statistics
for larger smoothing scales, so we leave such a study to future work.
Nevertheless, we have performed a test by using a larger smoothing
scale, 𝜃𝑠 = 2 arcmin, and in Appendix Bwe give a brief summary of
the resulting parameter constraints. We can see that the results are
similar to what we have found for a 1 arcmin smoothing, cf. Fig. 7.

We have mentioned several potential follow-up works above,
including a more in-depth study based on a larger number of simu-
lations. Having a greater number of WL map realisations will also
allow us to use larger data vectors in our likelihood analysis. This

would allow us to calculate likelihood contours for the tangential
shear profiles combined over all catalogues with a greater number
of bins, which may decreases the errors on the parameter estimates.
This is because coarse binning of the statistics increases the contour
size. It will further enable us to combine both the void abundances
and their tangential shear profiles for all peak catalogues in a single
analysis, which again we have not been able to do in this work.

It will also be important to develop an understanding of how
the void function is affected by systematics including intrinsic align-
ments, baryonic feedback, and masking (which can bias statistics
measured from convergence maps, e.g. see Giblin et al. (2018) ),
which we leave to future study.

In Davies et al. (2020) we studied the differences in WL void
statistics between WL voids identified from different void finders.
We found that the tunnel algorithm offered one of the best com-
promises between high signal-to-noise ratio and small impact from
galaxy shape noise in the tangential shear profiles. However, it will
also be interesting to assess the constraining power of WL voids
identified using other void finders such as the watershed algorithm.
The aim is to have a fully comprehensive study of the many different
and unexplored ways to use future high-quality weak lensing data
to maximise our ability to test cosmological models and constrain
cosmological parameters.
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APPENDIX A: ACCURACY OF THE EMULATOR

In order to test the accuracy of the GP emulator used to interpolate
statistics between the cosmological parameter nodes in Fig. 1, we
perform a cross validation test, which is outlined as follows. First,
we remove one node from the training set of simulated data, and
train the emulator with the remaining 25 cosmologies. An emulator
prediction for the missing node is then calculated. The result is
compared to the simulated version, by taking the difference between
the two and dividing it by the standard error of the simulated data
for that node. The above steps are then repeated 25 more times, by
removing a different node from the training set at each iteration,
which results in measurements of the emulator accuracy at each
node. We note that the above procedure provides an upper limit
for the emulator accuracy, since the emulator accuracy increases as
more training data is used, and the cross validation measurements
uses training data with one less node than the training data used in
the main analysis.

Fig. A1 shows the cross validation test performed for the WL
void abundace (left column) and the tangential shear profiles (right
column). Results are shown for the catalogues with 𝜈 > 1, 2 and 3 in
the top, middle and bottom rows respectively. The cross validation
test at each node is plotted in grey, with the fiducial cosmology
plotted in red. We highlight the fiducial cosmology because we use
it as our mock observed data when generating likelihood contours.
This makes it the most important region of the parameter space to
emulate accurately.

The figure shows that the emulator accuracy does not vary
greatly as a function of the 𝜈 threshold. We find that the emulator is
able to accurately predict the WL void abundance to within ≈ 0.1𝜎,
and within ≈ 2𝜎 for the tangential shear profiles

Regions towards the center of the 4D parameter space will be
emulated more accurately than those at the boundary, since there is
less training data for the GP emulator to train from at the edges of
the parameter space. This is what creates the large spread amongst
the grey curves in each panel, where curves towards the center of
the 4D parameter space are more accurate, as shown by the fiducial
cosmology. We are currently developing a suite of simulations to
sample areas of the cosmo-SLICS parameter space more densely,
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Figure A1. (Colour Online) The cross validation of the emulator accuracy. One node is removed from the training set and the emulation and simulation of the
removed nodes are compared relative to its standard error. This is repeated for each of the 26 nodes, which gives an upper limit on the emulator accuracy. The
left and right columns show results for the WL void abundance and tangential shear profiles respectively.

which will help to further improve the accuracy of the emulator by
providing more training cosmologies that more densely sample the
parameters space through Latin hypercubes or other node design
schemes.

APPENDIX B: THE IMPACT OF THE MAP SMOOTHING
SCALE

The analyses carried out in this work used smoothed WL con-
vergence maps, which is required to suppress GSN. However this
introduces an additional free parameter in the analysis – the smooth-
ing scale applied to the maps, where we use a Gaussian smoothing
of 1 arcmin in the main body of this work. In Davies et al. (2020) we
studied how varying the smoothing scale impacts the resulting WL
void statistics, and Liu et al. (2015) have shown that parameter con-
straints from WL peaks can be improved when multiple smoothing
scales are combined. It is therefore useful to also show results for a
different smoothing scale.

The likelihood contours for the statistics presented in Table 1

are shown in Fig. B1, but for a smoothing scale of 2 arcmin. These
contours behave in a similar way to the case of 1 arcmin smoothing,
with the tightest constraints coming from the combined WL void
abundance. Overall these constraints are only slightly poorer than
for the smaller smoothing scale.

It is possible to create constraints from combining multiple
smoothing scales. However, due to the limited number of WL map
realisations (which ultimately limits the length of our data vector to
less than 50 bins), we leave this analysis to a future work.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B1. (Colour Online) Likelihood contours for the statistics presented in Table 1, with WL void statistics identified in WL convergence maps smoothed
over a 2 arcmin scale.
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