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Abstract 

Pancreatic islet isolation and subsequent transplantation have evolved from an experimental 

technique to an established procedure for complicated type 1 diabetes. Although logistically 

and financially demanding, high yields of transplantable islets can be achieved as more 

knowledge is gained about the suitability of donor pancreases and new technologies enable 

better preservation and isolation. Subsequent intraportal transplantation of the islets leads to 

reconstitution of endogenous insulin production, and sometimes complete independence from 

exogenous insulin treatment. Important issues, such as the need for potent 

immunosuppression, a lack of donor islet material, and an optimal islet engraftment site 

remain. Non-hepatic transplantation sites, often using a transplantation device, are under 

investigation. To ensure islet survival, an islet scaffold would require optimal vascularization. 

Enveloping the islets in a capsule could abrogate the need for immunosuppression. Such a 

device could also allow the use of islets from other sources, such as animal or stem cell 

derived islets. Of course, the ideal device would combine both optimal nutrient delivery and 

immunoevasion.  
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Introduction 

Type 1 diabetes (T1D) affects over half a million children and up to 40 million adults 

worldwide1, 2. T1D is characterized by insulin deficiency caused by autoimmune destruction 

of the insulin-producing beta cells in the islets of Langerhans of the pancreas. When 

untreated the insulin deficiency leads to hyperglycemia, ketoacidosis, and ultimately death. 

Treatment with exogenous insulin is lifesaving but cannot achieve normoglycemia or prevent 

glycemic variability with a high risk of hypoglycemia. Due to this glycemic variability and 

risk of hypoglycemia, target glucose values are set higher than the physiological range in 

order to avoid these hypoglycemic events. This comes with the cost of long-term micro- and 

macrovascular complications such as retinopathy, nephropathy and cardiovascular disease. 

These factors contribute to a reduced life expectancy in patients with T1D3-5.  

The goal of beta cell replacement therapy is to achieve normoglycemia by reconstitution of 

endogenous insulin production through administration of functional beta cells. Several 

studies have shown that reconstitution (or retention) of endogenous insulin production leads 

to reduced glycemic variability and fewer long-term complications8,9.Importantly, the clinical 

outcome resulting from the reconstituted insulin production is directly dependent on the 

number of functional beta cells that are present6, 7.   

Currently, beta cell replacement in clinical practice is established through either 

transplantation of a whole vascularized pancreas or through solitary islet transplantation. 

Whole pancreas transplantation has the advantage of transplanting the beta cells in their own 

biological environment, with optimal vascularization. If successful, this procedure often leads 

to optimal reconstitution of endogenous insulin production. However, the pancreas is a well-

vascularized exocrine digestive organ in contact with the digestive tract; transplanting this 

organ requires major abdominal surgery and bears considerable risk of infection, thrombosis 

and bleeding8. Isolated islets can be transplanted, but the isolation leads to removal of the 

islets from its normal environment in the pancreatic parenchyma and to the destruction of the 

islet capillary network. Transplantation of the islets through an infusion into the portal system 

is a minimal invasive procedure with fewer procedural risks. However, reconstitution of 

endogenous insulin production after islet transplantation is usually substantially less than 

after whole pancreas transplantation. This suboptimal endogenous insulin production is due 

to factors such as ischemia (until revascularization of the islets has been reestablished), an 

acute inflammatory response in response to intraportal islet infusion, initial exposure to high 
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concentrations of immunosuppressants, and suboptimal grafting sites9, 10. Although clinical 

outcomes of islet transplantation are steadily improving, the procedure is only performed in a 

selected number of patients with T1D. These are generally patients with hypoglycemia 

unawareness and recurrent severe hypoglycemic episodes, or those with severe and 

progressive complications despite optimal medical management11-13. Important factors that 

preclude broad implementation of islet transplantation in patients with T1D are the lack of 

donor organ tissue and the necessity of immunosuppressant therapy, combined with 

suboptimal long term outcomes9. In this review, we will focus on the procedure of clinical 

islet isolation and transplantation, and address factors limiting implementation and outcomes 

that could potentially be addressed by the use of biomaterials to improve efficacy, broad 

application, and the need for immunosuppression. 

Isolation 

Donor Selection  

Identification of a suitable organ donor is the first step in the clinical islet isolation and 

transplantation process.  Several donor and pancreas procurement characteristics have been 

identified that predict islet yield and/or function after islet isolation such as age, BMI, cause 

of death, duration of hospital stay, vasopressor usage, blood glucose concentration, 

abdominal organ (kidney, liver and pancreas) damage markers, cold ischemia time (CIT) and 

expertise of the organ procurement team14-23.  

Risk scores have been developed to calculate the probability of a successful islet isolation 

based on (some of) these variables. These risk scores have been criticized due the 

incorporation of subjective  parameters  that are difficult to quantify (i.e. level of surgical 

expertise, stiffness of organ, or degree of edema) and varying definitions of what constitutes a 

successful isolation18, 20, 21, 24 , 25. Furthermore, these risk scores do not measure the 

functionality or viability of the islet preparation which may better predict the transplant 

function in vivo26. Reliance on risk scores can lead to counterintuitive decisions. For example, 

a study on cadaveric pancreases showed that obesity correlates with an increase in the 

number of islets present in a pancreas,27 but obesity is also associated with impaired islet 

function28. Another such factor is donor age. A younger donor age seems to correlate with a 

lower islet yield. This is partly because pancreas mass increases until one’s 40’s29 (a higher 

pancreas mass correlates with a greater number of islets30), but also because of the difficulty 
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of freeing juvenile islets from the surrounding exocrine tissue using current enzyme mixes31. 

Evidence suggests that younger islets are superior to older islet once engrafted, which has led 

several groups to preferentially select pancreases from younger donors for isolation31. 

In the last several decades, donor characteristics have become less favorable resulting in a 

decrease of optimal pancreases for islet isolation32, 33. This has led several centers to explore 

the use of pancreases from donors with extended (suboptimal) donor criteria including higher 

age and donation after circulatory death (DCD) instead of donation after brain death (DBD).  

Organ retrieval from DCD donor can take place once death due to cardiac arrest has been 

established34. This leads to an inevitable period of warm ischemia in the donor organ35. In 

2019 DCD had increased to 58.8% of all organ donation procedures in the Netherlands, and 

to 34.0% of  procedures in Belgium36, 37. Although islet yield from DCD pancreases is on 

average lower, these islets appear to be as functional in vitro and in vivo as islets from DBD 

pancreases38. 

Isolation technique – Enzymatic Distention 

After the arrival of the pancreas in the islet isolation facility, the pancreas is prepared for 

perfusion with digestive enzymes. Often, the spleen and duodenum are removed first, as well 

as peripancreatic tissue such as fat and blood vessels, for better visualization during the 

perfusion process. Tissue glue or clamps can be used to prevent leakage.39 The current 

standard technique of perfusion of digestive enzymes is through a cannulated pancreatic 

duct40. This can be done in a retrograde fashion through the orifice of Wirsung in the head of 

the pancreas after removal of the duodenum, or in a retrograde and antegrade fashion from 

the body of the pancreas after a midsection incision41. The pancreas is kept at a low 

temperature to minimalize autolytic digestion during this phase40, 42.  

A blend of digestive enzymes is used prepared for infusion. Several studies have shown that 

the batch and type of enzyme used in the isolation procedure affect islet yield16, 43-48. The 

most important enzyme, collagenase, is obtained from Clostridium histolyticum bacteria. The 

ratio between certain classes of collagenases (class I and class II) are essential for optimal 

pancreas digestion49. Dependent on the production methodology, different classes of 

collagenase are produced and purified in each batch. To minimize the influence of this 

variability supplementary enzymes are added to the blend such as neutral protease proteases, 

thermolysin (derived from Bacillus thermoproteolyticus rokko bacteria), and clostripain (also 

derived from Clostridium histolyticum50, 51. The enzymatic activity is often expressed in 
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Wünsch units or trypsin-like activity44. These measurements are unfortunately not highly 

predictive of successful isolations44.  

Next, the enzyme blend is administered to the pancreatic tissue, either manually with a 

syringe, or with a recirculating pump (which can also be pressure controlled)39, 52. Also, a thin 

tube can be inserted through the pancreatic duct to the tail to allow the enzymes to be 

perfused starting at the tail53. This intraductal perfusion aims to uniformly distribute the 

enzymes throughout the pancreas and allow for binding to extracellular matrix components40. 

The length of this perfusion differs amongst centers and can last 10 minutes54 or up to 30 

minutes39. Next, the pancreas is often cut into several pieces and loaded into a digestion 

chamber (also known as a Ricordi chamber). This cylindrical chamber contains several 

marbles, and is closed off with a metal mesh (generally 400 µm pore)55. The chamber is then 

warmed to 37°C and agitated to start the mechanically-assisted enzymatic digestion 

process56. After digestion, the tissue is collected, cooled, centrifuged, washed and pooled. 

Often, the tissue is then resuspended in UW solution, which raises the density difference 

between exocrine tissue and islets57. 

Attempts have been made to isolate islets using other systems than enzymatic digestion, for 

example: (differential) sensitivity to freezing,58 anti-acinar cell monoclonal antibodies,59 

cryo-isolation,60 dielectrophoresis,61 hypoosmotic exposure,62, 63 (differential) sensitivity to 

water permeability,64 magnetic retraction,65, 66 quadrupole magnetic sorting,67 and selective 

osmotic shock,68 but these have not resulted in implementation in clinical human islet 

isolations. 

Isolation technique – Purification 

During pancreatic islet transplantation, the amount of tissue that can safely be infused in the 

recipient’s liver is limited due the risk of raising the portal venous pressure69. It has been 

hypothesized that this risk increases dramatically when more than 10 ml of tissue is infused70. 

Consequently, it is necessary to reduce the total tissue volume to be transplanted, while 

retaining as many islets as possible. Human islets do not have a uniform size or other easily 

exploitable distinct physical difference to exocrine tissue other than their difference in density 

(specific gravity). Therefore, isopycnic centrifugation (density gradient separation) is the 

preferred method to purify islets71. Large scale isopycnic centrifugation became possible after 

the implementation of the COBE 2991 cell processor and is now ubiquitous in islet isolation 
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laboratories72. Estimates of islet loss after its use range between 15-51%73. After purification, 

the tissue volume is reduced from approximately 40 mL to 2-6 mL74.  

A range of media have been employed to create density gradients for islet purification, and 

are still used worldwide. Ficoll and Biocoll are synthetic sucrose based solutions which can 

be purchased with differing densities and have been used to make continuous gradient in 

many centers75, 76 , 77-79, 80 , 81. UW solution has also been shown to be an excellent alternative 

to the lower density component of the density gradient82. Recently, CT contrast agents have 

been proposed as suitable solutions for the heavier component in creating a density gradient, 

such as iodixanol or iohexol. They are potentially advantageous to other solutions  due to 

their very high density, low viscosity and high osmolality83 , 84-86. 

After density purification isopycnic centrifugation, assessment of the total mass of islets (or 

beta cells87) is crucial to  determine the amount of potential endogenous insulin production 

for the transplant recipient, and also to determine factors that improve the isolation process 

and to compare isolation results among centers88. The predominant method to estimate the 

total islet volume, is by determining the number of  islet equivalents (IEQ)89. A sample 

(generally a 1:1000 sample) of each fractions after purification is stained with dithizone that 

colors the islets red. Then, each islet is counted and placed into a category based on its 

average diameter. Each category encompasses a range of 50 µm, starting at 50 µm diameter 

and ending at 400 µm diameter, and has a conversion factor to relate to an “standard” islet 

size of 150µm diameter90. Evaluations of the reproducibility of this type of manual 

assessment of total islet quantification show variation in the sampling technique and 

estimation islet sizes91. Even when using still images of islet preparations, the average 

percent coefficient of variation can be over 20% in experienced hands92, 93. It has been 

proposed to use an estimation of the volume and purity of islet fractions to obtain an IEQ93, 94. 

Digital analysis for IEQ quantification has been shown to reduce user islet size estimation 

variability in several studies88, 95-99. No one system has been adopted by all isolation centers, 

as software costs and differing approaches to the imaging of islets persist100. A newly 

developed free webpage, named Isletnet, hopes to be able to accurately determine IEQ based 

on an artificial intelligence logarithm101. However measured, recent studies have shown that 

there is not a perfect correlation between IEQ and in vivo functionality. The total volume of 

the islet product seems to predict this more accurately102. This has led some centers to adopt a 

system of quantifying IEQ as a product of the volume and purity of an islet preparation93.     
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Advances in islet isolation methodology   

In recent years, several technological advances have appeared in the field of islet isolation. 

The focus of a number of these studies has been on pancreas preservation. Although 

hypothermic machine perfusion (HMP) of the pancreas and subsequent islet isolation has 

been documented since the late 1970’s,103, 104 the systems were too cumbersome and 

pancreases tended to become edematous105. Decades later, as machinery miniatured, as more 

marginal pancreases were being procured, and as promising results from HMP of other 

transplanted organs were being achieved, new reports using lower perfusion pressures 

demonstrated little edema and proper islet yields after isolation106-108. Also, it was shown that 

the ATP content of a DCD pancreas can be increased during HMP to the level of a DBD 

pancreas109.   

Moreover, other modes of pancreas preservation have been explored using normothermic 

(37°C) conditions. Normothermic regional perfusion (NRP) was developed to quickly 

reestablish in situ perfusion in the organs awaiting procurement in DCD donors110. One case 

of a successful islet isolation using NRP has been reported111. Similar to HMP, normothermic 

machine perfusion (NMP) perfuses a pancreas ex vivo, but the organ is metabolically active, 

requiring oxygenation and nutrient administration. The first attempts to perform NMP, on a 

series of four pancreases, showed proper insulin release and flow, but also signs of edema 

and necrosis112.  

Oxygenation has been hypothesized as the most important actor in organ regeneration during 

(machine) perfusion113. To this end, it has been proposed that administration of oxygen in 

gaseous form (persufflation) is sufficient to prevent energy depletion prior to islet isolation114, 

115. Furthermore, persufflation can reduce inflammatory responses while allowing for a 

longer preservation time without noticeable impaired islet functionality or viability116. 

Since the publication of the ubiquitous semi-automated method of islet isolation,55 the islet 

isolation protocol has persisted essentially intact, with only minor revisions broadly 

incorporated117. The processed has remained an open, manual, time-consuming protocol 

requiring at least three operators to complete. Accordingly, the PRISM (Pancreatic Islet 

Separation Method)117 was developed with a continuous flow centrifuge at its core, which 

enables collection, washing, concentration, and density gradient purification of pancreatic 

digest118, 119. The protocol was developed with a continuous flow centrifuge at its core, which 

enables collection, washing, concentration, and density gradient purification of pancreatic 
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digest118. This closed method was further automated by creating a machine with software 

controlling each step through a touchscreen panel119. Promising results show the ability to 

consistently yield high numbers of functional, viable islets, but have yet to be confirmed in 

other centers118, 119.  

Islet culture 

The first major clinical success of islet transplantation (published as the  Edmonton Protocol), 

required islets to be transfused within 4 hours after isolation11. This direct transplantation 

approach may allow for a greater number of islets to survive in vivo than if islets are 

maintained in culture prior to transplantion120. However, culturing islets for several one or 

more days before transplantation may offer several potential benefits120. Firstly, patients 

requiring a transplantation, but who live afar, can use this time to arrive at the transplantation 

facility121. This also provides time to start immunosuppressant induction treatment and 

achieve therapeutic levels of immunosuppressants before transplantation73. Furthermore, this 

period permits the islets to recuperate from the challenging isolation process122. Measuring 

the consumption of oxygen during this time may be a suitable method to quantify the islets’ 

recovery123. In fact, the percentage of islets lost during culture can be used to indicate the 

quality of the tissue to be transplanted39. Residual digestive enzymatic proteins may also be 

further diluted and washed out after subsequent medium changes124.  

Generally, medium is refreshed within 24 hours after isolation, and thereafter within 48 

hours65. Evidence suggests, however, that more islets survive when medium is refreshed 

within 6 hours of isolation125, 126. To this end, an automatic culture system, such as the one 

developed by Macopharma, continuously refreshes medium. However, it does not allow for 

multiple fractions to be cultured simultaneously127. This system is no longer in production. 

Another system which was developed to culture islets, utilized rotation to keep islets in a 

continuous fall128.  

Quality control 

In contrast to other forms of allogeneic transplantation, an islet product can be (and in many 

countries must be) assessed prior to being infused129. At a minimum, these release criteria 

ensure the recipients safety and determine the expected in vivo functionality for the 

recipient130. Each islet production center must adhere to its legislative body’s interpretation of 

judicial guidelines and regulations, which designates the reasoning and values of release 
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criteria74. Generally, release criteria for islet products include: IEQ, product volume, islet 

purity, islet viability, islet functionality (in vitro responsiveness to glucose by a glucose 

stimulation), microbial infection, and morphology among others39, 131, 132.  

An  islet product is most often tested for functionality by their in vitro responsiveness to 

glucose by a glucose stimulated insulin secretion test (GSIS). The standard GSIS test 

involves incubating islets in solution with a sub-physiological glucose concentration (1.0-3.3 

mM), followed by a solution with a supra-physiological glucose concentration (16.7-

25mM)85, 133, 134. This can also be performed in a dynamic fashion in which islets reside in a 

small chamber that is continuously perifused with solutions changing in glucose 

concentration (usually a low-high-low glucose concentration)89.  

Islet viability is important to assess in order to determine the amount of apoptotic/necrotic 

cells in a transplantation product. Generally, the average viability of the islet cells in the 

product must be at least 70%129. A fluorescence staining assay is most often used because of 

its ease of use. This assay utilizes fluorescein diacetate (FDA) and propidium iodide (PI, 

FDA/PI) to label live and dead cells respectively by testing membrane integrity135. Other 

types of viability stainings, such as SYTO-13/ethidium bromide, calcein AM/ethidium 

homodimer are more sensitive, and under consideration by some centers136. Infections in islet 

products are often determined through Gram staining, endotoxin assays and (an)aerobe 

cultures of the culture and transplant medium137. 

Measurements of oxygen consumption rate (OCR), which is related to mitochondrial 

function, have been shown to assess viability and health of islets in several studies138-141. 

OCR assays can be performed in microchambers, which also allows for the possibility to 

perifuse these chambers with differing glucose concentrations142, 143. By combining 

functionality with viability, these measurements correlate well with transplantation 

outcomes144. The best predictor of clinical transplantation outcome is the functionality of 

transplanted islets under the kidney capsule of immunodeficient mice145. However, as 

vascularization and functionality assessment takes at least several days this test cannot be 

used in practice as a release criterium146.   

If the islets have met the release criteria, the preparation is pelleted and resuspended in a 

balanced salt solution, often supplemented with human serum147. Early experiences with islet 

transplantation led on occasion to complications arising from an increased portal pressure 

during infusion148. It was hypothesized that this was due to aggregation of islets in the 
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syringes used for intraportal infusion. Therefore, flexible transplantation bags were 

introduced, allowing for manual homogenization of the preparation149.  

 

Transplantation 

Islet transplantation leads to reconstitution of endogenous insulin production in patients with 

complicated T1D, but requires potent immunosuppression. The current transplant site is the 

liver, but this site suffers from low oxygen availability, increased local inflammation, and 

elevated glucose and immunosuppressant concentrations. More patients with T1D would be 

able to benefit from this procedure, if immunoevasion (for example through encapsulation) 

could be achieved. Improved islet graft survival through optimal vascularization would 

benefit short and long term outcomes and allow for the use of novel beta cell sources.  

Islet transplantation procedure 

Islet transplantation is currently performed through an infusion into the portal vein13. 

Commonly, a percutaneous transhepatic approach under local anesthesia is used, in which the 

portal vein is visualized through ultrasonography and/or fluoroscopy150. In some centers, 

access is gained through a mini-laparotomy or laparoscopy, which can also be used as a 

fallback method151, 152. After gaining access to the portal vein a catheter is placed midway 

between the portal bifurcation and the splenic vein. Angiography is often employed to verify 

positioning of the catheter tip and portal vein patency. Through the catheter the islets are 

slowly infused under gravitational force and gentle agitation of the transplantation bag. Portal 

pressure is monitored before, during and after the procedure. Lower tissue volumes are 

generally not associated with a rise in portal pressure,153 but if portal pressure rises 

excessively the procedure should be aborted, or a portion of the islet product may be placed 

in the peritoneal cavity or other non-hepatic sites154. 

Most centers use heparin during the islet transplantation, starting with an intraportal injection 

before the product is infused153. After this, either continuous intravenous heparin or low-

molecular weight heparin is administered12, 153. This is to reduce the risk of portal vein 

thrombosis, and to facilitate islet grafting by reducing the coagulation and inflammatory 

components of the instant blood-mediated immune response (IBMIR)155, 156. After the 

procedure, tight glycemic control is maintained, preferably through intravenous insulin 

therapy, to facilitate optimal islet grafting155. Important procedure-related complications to 
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look for in the first 48 hours include bleeding from the puncture site, infection, and portal 

thrombosis. Often, bleeding episodes can be treated with supportive care only. In extreme 

cases, a radiological or surgical intervention may be required. Portal thrombosis can be 

diagnosed through ultrasonography and is treated by anticoagulation. Antibiotics should be 

administered to prevent and/or treat procedure-related infections, based on local microbe 

susceptibility and presence12, 13, 24, 153, 157. 

Immunosuppression 

One of the major drawbacks of (allogeneic) islet transplantation is the need for potent 

immunosuppressant therapy158. This is an important reason why islet-alone transplantation 

(islet transplantation without a previous or concurrent other organ transplantation) is often 

only performed in patients with T1D that is complicated by severe hypoglycemic events or 

extreme glycemic lability. In islet-after-kidney transplantation (islet transplantation in 

patients that already have a kidney transplantation), the threshold to transplant is lower 

because these patients use chronic immunosuppression already, and the procedure can be 

viewed as an alternative to simultaneous pancreas-kidney or pancreas-after-kidney 

transplantation12, 157. 

Immunosuppressant therapy in patients that will undergo an islet transplantation consists of 

induction and maintenance therapy. Historically, interleukin-2 (IL-2) receptor blockade was 

used as induction therapy11. Blockage of the IL-2 receptor prevents activation and 

proliferation of T lymphocytes159. Some centers still use IL-2 receptor blockade as primary 

induction therapy, but many have switched to induction therapy with T-lymphocyte depletion 

to provide more potent immunosuppression13. For optimal T-lymphocyte depletion, either 

anti-thymocyte globulin (ATG) or anti-CD52 (alemtuzumab) is used12, 160-163. Both potently 

and rapidly deplete the T-lymphocyte reservoir. For follow-up islet infusions, IL-2 receptor 

blockade is still preferred, to prevent over immunosuppression13, 24, 157.  

An important aspect of intraportal islet infusion is IBMIR. Islets that are introduced directly 

into the portal blood stream elicit a potent inflammatory response that is characterized by 

activation of complement, coagulatory pathways and a cytokine response. The major loss of 

islets shortly after transplantation is in part attributed to the IBMIR155, 156. To mitigate 

IBMIR, heparin is administered, and many centers also employ anti-inflammatory agents 

such as etanercept (anti-TNF alpha) and anakinra (anti-IL1) during islet transplantation13, 163. 

Given the important islet loss attributed to IBMIR, many new treatments are being 
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investigated. One such compound is low molecular dextran sulfate, which has recently shown 

similar efficacy to intravenous heparin164. Other compounds under investigation include α-1 

antitrypsin, liraglutide, reparixin and NF-κB inhibitors165-168. 

Maintenance immunosuppressant therapy is generally life long, and is meant to prevent islet 

allograft rejection. Among the most potent immunosuppressant agents used are the 

calcineurin inhibitors (CNIs), such as tacrolimus and ciclosporin169. CNIs act by impeding T-

cell activation through the inhibition of calcineurin169, 170. Important side effects include beta 

cell toxicity and chronic kidney damage. Tacrolimus has a more profound toxic effect on beta 

cells than ciclosporin which makes this compound a double-edged sword: potent 

immunosuppression is necessary to maintain islet allograft function, but the 

immunosuppressor itself is toxic to the islets. Corticosteroids are potent as well but are also 

associated with a higher risk of diabetes and beta cell dysfunction158, 169. Effective alternative 

immunosuppressant treatment regimens with less side effects are clearly needed. Many 

centers use antimetabolites (such as mycophenolate mophetil or azathioprine) or mammalian 

target of rapamycin (mTOR) inhibitors (such as sirolimus or everolimus), but these do not 

appear to be potent enough on their own to maintain islet allograft function158, 169, 171. For 

these reasons, the most commonly used maintenance regimen is dual therapy with tacrolimus 

and mycophenolate13. Other treatment strategies include co-stimulation blockade or addition 

of low-dose steroids to lower the dose of CNIs12, 160, 172. 

Immunosuppression is associated with considerable side effects and complications. Foremost, 

suppression of the immune system leads to an increased risk of infection. This pertains to 

both opportunistic and common infections. In the long term, immunosuppressant therapy is 

associated with an increased risk of malignancy. This is most notable for skin malignancies, 

but also described for solid and hematologic neoplasms9, 153, 158, 161, 163, 169. 

Engrafting sites 

As transplantation site the liver has several advantages, such as easy accessibility, size, 

regenerative capacity, the availability of an afferent vein, a well-characterized safety profile, 

extensive clinical experience and a physiological insulin secretory site11, 173, 174. However, the 

liver’s microenvironment is also cited as a cause of the poor survival of islets after 

transplantation. This may in part be attributed to the IBMIR associated with the infusion of 

islets directly into the blood stream (the portal vein), and may even be enhanced in the liver 

due to local immunologically active macrophages (Kupffer cells)173, 175, 176. Still, other factors 
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may play a role as well, such as low oxygen content of the portal vein (pO2 10-15 mmHg 

versus 40 mmHg in arterial blood)177, relative hyperglycemia of portal venous blood (due to 

drainage of the digestive tract and local gluconeogenesis), and higher local concentrations of 

immunosuppressants (due to first pass effect)173.  

Given the possible contribution of the liver site to the poor long term islet allograft survival, 

many alternative graft sites have been investigated. Ideally, this site would be safe, easily 

accessible, and would allow for optimal islet grafting, vascularization and survival, and 

physiologic release of insulin.  

The bone marrow is a site that has been under thorough investigation173, 174. It is easily 

accessible and may offer a protected microenvironment as compared to the liver, although a 

recent study does not support this hypothesis178. Important downsides include the low oxygen 

tension and the non-physiological release of insulin174Still, a pilot study in humans 

demonstrated restoration of endogenous insulin production in patients with an autologous 

islet transplant in the bone marrow, but this effect was not replicated in an allogeneic 

transplant setting179, 180. In fact, the allogeneic transplant trial did not show any evidence for 

sustained islet allograft function in six of seven recipients after four months, possibly due to 

recurrent autoimmunity180.  

Another transplant site of interest is the omental pouch173, 174. This is a richly vascularized 

organ with portal venous drainage. In an autologous setting, it has been shown to lead to 

comparable outcomes as intraportal islet transplantation in a small case series181. No human 

studies with allogeneic islet transplantation in the omental pouch have been published thus 

far, but a phase 1/2 trial is under way to test this method182. This site is also a typical site 

where the option for scaffolded islet transplantation is explored. Even though the omentum is 

well vascularized, additional vascularization may lead to improved islet survival. A possible 

way to achieve this prevascularization is by using a vascularized device. An interesting study 

showed the feasibility of such a device, a nonbiodegradable knitted polymer pouch with large 

ports, in rats. This device had a subcutaneous delivery port so that islets could be introduced 

after the device had been vascularized in the host’s omentum. Seven out of ten diabetic rats 

had long term normal blood glucose levels with this device183. This approach is called 

macroencapsulation. Another option is microencapsulation, where only one or a few islets are 

protected by a biomaterial layer. In this case vascularization is provided per islet 

microcapsule, but the capsule itself protects from immune activation. Pareta et al.184 showed 
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the feasibility of this approach by transplanting islets in 300–400 µm microcapsules 

consisting of a double alginate layer in the omentum. When diabetic rats were transplanted 

with a marginal mass of these encapsulated islets, a significant reduction in blood glucose 

levels was observed.  

The final site of interest is the muscle, which is already used in clinical practice as a site for 

autotransplantation of parathyroid tissue185. The muscle is an easily accessible site with rich 

vascularization and less activity of the innate immune system as compared to the liver173. It is 

also ideally situated to obtain tissue biopsies and has a large capacity. A downside is the 

systemic release of insulin174. Again, this approach has already shown some efficacy in the 

setting of autologous islet transplantation186, 187. A somewhat controversial human trial with 

human fetal islets has shown the potential of this procedure, although islet graft function in 

the long term was poor188. In a  small case series a similar result was reported: islet graft 

function was poor or absent189. As with the omentum, research on the muscle as islet 

transplant site focuses on the use of scaffolds or devices to provide optimal 

prevascularization190. An interesting novel approach is to produce a biological scaffold from 

the donor’s parathyroid tissue. With this approach, islets from the donor are transplanted into 

the receiver’s muscle tissue in a scaffold made of parathyroid tissue. This approach has 

shown to improved vascularization and engraftment of co-transplanted islets in vitro191. Many 

other devices are being tested, as in omental islet transplantation. Interestingly, the muscle is 

also typically targeted as a graft site in islet xenotransplantation192.  

The skin is targeted in the same way as the muscle, but suffers from poorer vascularization 

and a more active innate immune system193, 194. Studies are ongoing, but currently in the 

preclinical phase195. Other sites, such as the spleen and the kidney capsule, have been found 

to be unsuitable. The spleen offers a similar profile to the liver, but is less accessible and less 

safe. The potential advantage, absence of portal hypertension, does not appear to outweigh 

these problems173. The kidney capsule is the graft site of choice in the murine islet transplant 

model. Transplanting islets in the kidney capsule lead to poor results in larger mammals, 

probably due to poor vascularization and a tight capsule173 174, 196, 197.  

Patient results 

Outcomes of islet transplantation have been steadily improving, owing in part to improved 

isolation techniques, immunosuppressant regimens and patient management13. Almost all the 

major centers have reported their outcomes in several specified subgroups, such as islet-alone 
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transplant recipients with complicated hypoglycemia, islet transplantation recipients who 

have received a previous transplantation (mostly kidney, but also pancreas, lung, and even 

liver), or simultaneous islet and kidney recipients11, 12, 24, 157, 198-201. Islet graft function-related 

outcome measures of importance include insulin independence, graft failure, severe 

hypoglycemic events, HbA1c (with targets ranging from <48 to <53 mmol/mol Hb (6.5 – 

7%)), insulin requirement, fasting glucose concentrations, fasting or stimulated C-peptide 

concentrations, or combined scores of these parameters (such as the beta score, beta-2 score 

and Igls score)202-204. Patient reported outcomes are generally focused on general and 

diabetes-related quality of life, and fear of hypoglycemia157, 205. Important complications that 

are frequently reported comprise diabetes-related complications (i.e. retinopathy, 

nephropathy), kidney function, infection, procedure-related complications (i.e. bleeding, 

thrombosis) and malignancy.  

Two landmark trials have recently been published describing these outcomes in the two 

major groups of islet transplant recipients, islet-alone and islet-after-kidney patients24, 157. 

Hering et al.24 published the outcomes of islet transplantation in a group of patients with T1D 

complicated by severe hypoglycemia. In this trial, 48 patients received an average of two islet 

infusions. The primary outcome of freedom of severe hypoglycemic events with an HbA1c of 

<53 mmol/mol Hb was achieved by 87.5% of the patients after one year, and 70% after two 

years. 52.1% of patients were insulin independent after one year, but this percentage had 

halved at two year follow-up. Diabetes-related quality of life improved, and general quality 

of life was stabilized205. Lablanche et al.157 reported the outcomes of a randomized trial of 

intensive medical treatment versus islet transplantation in patients who had received a 

previous kidney transplantation. In this randomized trial 26 patients were assigned to islet 

transplantation, and 24 to intensive medical management (and after initial trial follow-up islet 

transplantation as well). Recipients received 1–3 islet infusions. HbA1c after six months was 

reduced to 38 mmol/mol Hb (5.6%), while it remained stable around 66 mmol/mol Hb (8.2%) 

in the medical management group. 84% of patients in the islet transplant group had an HbA1c 

of <53 mmol/mol Hb (7%), as compared to 0% in the medical management group. 92% of 

patients in the islet transplant group were free from severe hypoglycemic events, whereas in 

the medical management group 36% of patients were free from severe hypoglycemia. Total 

insulin independence at one year was 59%. Quality of life improved in the islet 

transplantation group, but not in the medical management group. One patient died on the 
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waiting list, due to severe hypoglycemia. Seven islet infusions in six recipients were 

complicated by hemorrhage, and one portal vein thrombosis was reported.  

So, with current protocols, over half of the islet recipients achieve insulin independence and 

over 85% achieve treatment success. Both these favorable outcomes diminish over time. This 

phenomenon is attributed to several factors. An important role may be played by 

immunosuppressants such as tacrolimus, sirolimus and prednisolone, which have 

diabetogenic properties158. Another important factor is chronic rejection, which is seen in any 

type of allogeneic transplantation158. A final factor is the liver, which is a suboptimal grafting 

site due to local inflammatory conditions, low oxygen tension and local exposure to high 

concentrations of glucose and immunosuppressants173, 175, 176. 

Novel beta cell sources  

An important limitation of clinical islet transplantation is the lack of donor organ tissue. One 

or more donor pancreases are still required per islet transplantation13. Since organ donation 

rates vary between 1 and 35 per million per year and the incidence of T1D lies around 200 

per million per year (in Europe), organ donation will not be able to provide a suitable supply 

of islet tissue even if the problem of immunosuppression is solved206, 207. Two major sources 

of islet tissue are currently explored. The first is utilizing islets from an animal source such as 

pigs: xenotransplation. The second is generating beta cells (or beta-like cells) from 

pluripotent stem cells.  

Xenotransplantation, almost always with porcine islets, bears its own important challenges208. 

First of all, animal islets elicit a greater immune response in humans than human islets do. 

This is accounted for by the IBMIR but also by increased recognition of cytotoxic T-cells 

through the CD40 ligand. To solve this, more potent immunosuppression could be employed, 

with of course a greater risk of side effects209. Another strategy is genetic modification of the 

donor pigs210, 211. Both these strategies do not solve some other important problems with 

xenotransplantation, such as the presence of infectious animal-specific pathogens (such as 

porcine endogenous retroviruses - PERVs), ethical issues, and social acceptance. 

Interestingly, certain pig strains have been developed that do not carry PERVs174, 208, 212. At 

this moment, xenotransplantation has been extensively investigated in pig to non-human 

primate models with promising results, and the first positive safety results of trials with 

encapsulated porcine islets have been reported213. 
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Insulin producing cells could also be differentiated from human pluripotent stem cells. Early 

on, embryonic stem cells were used. Currently, research is mostly focused on generating 

beta(-like) cells from induced pluripotent stem cells214. Already, insulin producing human 

cells have been generated and tested with positive results 215, 216. Problems associated with 

stem-cell based beta(-like) cell transplantation include dedifferentiation of the insulin 

producing cells and formation of neoplasms217. For the first problem, refinement of 

differentiation protocols is an ongoing process. Because of the risk of neoplasm formation, 

these cells are introduced into the patients in a scaffold. Several of these pilot trials are 

currently underway218.  

Use of biomaterials in islet transplantation  

Both xeno-islets and stem-cell derived islets or islet-like cells have the important downside of 

an uncertain safety profile174. Xenotransplants are associated with animal-specific viral 

infections, and stem-cell derived islets could be prone to form neoplasms219. These problems 

may be solved by encapsulation. In islet encapsulation, a semipermeable barrier permits 

exchange of nutrients and insulin, but prevents an immune response. Both 

microencapsulation (encapsaluting a single or a few islets) and macroencapsulation 

(encapsulating an entire islet graft) may be viable options194, 220. The first human trial with 

immunoevasive macroencapsulated islets has shown poor islet graft function. There may be 

several reasons for this poor function, such as limited diffusion of insulin over the capsule 

membrane, foreign body response to the capsule, and lack of oxygenation221. Several case 

series have been published with microencapsulated islets, demonstrating safety and 

prolonged C-peptide positivity in these patients, although complete glycemic control is not 

achieved yet222. 

In islet transplantation, an optimal transplant site has not yet been identified. Biomaterials 

may offer the opportunity to create a prevascularized and preferably retrievable graft site to 

improve initial islet survival. Such a scaffold could be placed in minimally invasive sites such 

as skin and muscle, or in sites that have ideal local circumstances such as the omentum. 

Avoidance of direct infusion into the blood stream would lead to reduced acute inflammation, 

further improving islet survival. Optimal vascularization may also benefit long term islet 

survival.  

The ideal device would allow for optimal delivery of nutrients to the islets, but also provide 

immunoevasion. Whether such a device is realistic is uncertain, since encapsulation in 
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essence prevents vascularization. Devices could also focus on different aspects of islet 

transplantation. One such aspect is optimal (pre)vascularization, leading to optimal survival 

and graft function. This device would still necessitate immunosuppression but would offer 

the chance of curation for a patient, off-setting the downsides of immunosuppression in 

patients with complicated T1D. Also, several studies have shown that marginal beta cell mass 

reduces glycemic variability, complication risk, and hypoglycemia burden6, 7. In this respect, 

any biological device with beta(-like) cells in it that is immunoevasive and offers some 

endogenous insulin production would be beneficial for a large group of patients with T1D. 

In conclusion 

The field of clinical islet isolation and transplantation offers many potential areas of research. 

Current islet isolation techniques yield enough islets to be able to transplant in some cases, 

but the procedure is still time-consuming, expensive, and lacking in efficiency. Intraportal 

islet transplantation reconstitutes endogenous insulin production, sometimes leading to 

insulin independence, and stabilizes glycemic control, but islet graft function deteriorates in 

the long term. Furthermore, the need for immunosuppressant therapy and the lack of 

sufficient donor tissue limit broad implementation. Application of biomaterials may improve 

many aspects in clinical islet isolation and transplantation.  

The struggle to supply enough transplantable tissue in the current reality of decreasing quality 

donor characteristics is ongoing. Concurrently, research is revealing which pancreases are 

suitable not only for isolation, but also for subsequent transplantation. As the process of islet 

isolation has come to maturity, more consistent results are achieved, yet have not shown 

significant improvement. Technological advances may drive efficiency and push back 

logistic restraints which have obstructed wider implementation of isolation centers into more 

institutions. Likewise,  progress in quality control parameters is being made to better 

correlate in vitro measurements of allogeneic islets to transplantation outcomes and should be 

considered when an alternative source of insulin producing cells become available.   

In islet transplantation, prevascularized grafts could be created with biomaterials. This would 

improve islet survival and allow for retrieval of transplanted islets, specifically those from 

novel sources such as xeno-islets or stem cell-derived islets. Alternative engraftment sites 

such as muscle and omentum could also be exploited in this way. Furthermore, islet micro- or 

macroencapsulation may offer a way to abrogate the need for immunosuppression and its 

associated problems. 
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In conclusion, even though much progress has been made in clinical islet isolation and 

transplantation, several problems need to be addressed before this treatment could be 

implemented in general T1D care. Biomaterials may offer solutions to many of these 

problems. 
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